
TUNING MATLAB FOR
BETTER PERFORMANCE

Keith Ma

Boston University

Research Computing Services

 General advice about optimization

 A typical workflow for performance optimization

 MATLAB's performance measurement tools

 Common performance issues in MATLAB

 Worked example: image smoothing (moving average)

Tutorial Overview

2Tuning MATLAB for Better Performance

 "The First Rule of Program Optimization: Don't do it. The
Second Rule of Program Optimization (for experts only!):
Don't do it yet." –- Micheal A. Jackson, 1988

 "We should forget about small efficiencies, say about 97%
of the time: premature optimization is the root of all
evil. Yet we should not pass up our opportunities in that
critical 3%. A good programmer will not be lulled into
complacency by such reasoning, he will be wise to look
carefully at the critical code; but only after that code has
been identified" --- Donald Knuth, 1974

 ...learn to trust your instruments. If you want to know how
a program behaves, your best bet is to run it and see
what happens” --- Carlos Bueno, 2013

General Advice on Performance Optimization
3Tuning MATLAB for Better Performance

create
measure
while goals not met

profile

modify

test

measure

end while

A typical optimization workflow

4Tuning MATLAB for Better Performance

create
measure
while goals not met

profile

modify

test

measure

end while

A typical optimization workflow

5Tuning MATLAB for Better Performance

 Design and write the
program

 Test to make sure that it
works as designed /
required

 Don't pay “undue”

attention to performance at
this stage.

create

measure
while goals not met

profile

modify

test

measure

end while

A typical optimization workflow

6Tuning MATLAB for Better Performance

 Run and time the program

 Be sure to try a typical
workload, or a range of
workloads if needed.

 Compare your results with
you goals/requirements. If
it is “fast enough”, you are
done!

create
measure
while goals not met

profile
modify

test

measure

end while

A typical optimization workflow

7Tuning MATLAB for Better Performance

 Detailed measurement of
execution time, typically
line-by-line

 Use these data to identify
“hotspots” that you should
focus on

create
measure
while goals not met

profile

modify
test

measure

end while

A typical optimization workflow

8Tuning MATLAB for Better Performance

 Focus on just one
“hotspot”

 Diagnose and fix the
problem, if you can

create
measure
while goals not met

profile

modify

test
measure

end while

A typical optimization workflow

9Tuning MATLAB for Better Performance

 You just made some
changes to a working
program, make sure you
did not break it!

create
measure
while goals not met

profile

modify

test

measure
end while

A typical optimization workflow

10Tuning MATLAB for Better Performance

 Run and time the program,
as before.

create
measure
while goals not met

profile

modify

test

measure

end while

A typical optimization workflow

11Tuning MATLAB for Better Performance

 Repeat until your
performance goals are met

 tic and toc
– Simple timer functions (CPU time)

 timeit

– Runs/times repeatedly, better estimate of the mean run time, for
functions only

 profile

– Detailed analysis of program execution time

– Measures time (CPU or wall) and much more

 MATLAB Editor

– Code Analyzer (Mlint) warns of many common issues

Tools to measure performance

12Tuning MATLAB for Better Performance

 Serial Performance

– Eliminate unnecessary work

– Vectorize (eliminate loops)

– Improve memory use

– Compile (MEX)

 Parallel Performance

– “For-free” in many built-in MATLAB functions

– Explicit parallel programming using the Parallel computing
toolbox

Where to Find Performance Gains ?

13Tuning MATLAB for Better Performance

Unnecessary work (1): redundant operations

for i=1:N
 x = 10;
 .
 .
end

x = 10;
for i=1:N
 .
 .
end

Code Tuning and Optimization 14

Avoid redundant operations in loops:

bad

good

Unnecessary work (2): reduce overhead

Code Tuning and Optimization 15

for i=1:N
 x(i) = i;
end
for i=1:N
 y(i) = rand();
end

for i=1:N
 x(i) = i;
 y(i) = rand();
end

function myfunc(i)

 % do stuff

end

for i=1:N

 myfunc(i);

end

function myfunc2(N)

 for i=1:N

 % do stuff

 end

end

myfunc2(N);

..from loops

..from function calls

good

good

bad

bad

Unnecessary work (3): logical tests

for i=1:N

 if i == 1

 % i=1 case

 else

 % i>1 case

 end

end

Code Tuning and Optimization 16

% i=1 case

for i=2:N

 % i>1 case

end

Avoid unnecessary logical tests...
...by moving known cases
out of loops

if (i == 1 | j == 2) & k == 5

% do something

end

...by using short-circuit
logical operators

if (i == 1 || j == 2) && k == 5

% do something

end

bad

good

bad

good

Unnecessary work (4): reorganize equations

c = 4;

for i=1:N

 x(i)=y(i)/c;

 v(i) = x(i) + x(i)^2 + x(i)^3;

z(i) = log(x(i)) * log(y(i));

end

s = 1/4;

for i=1:N

 x(i) = y(i)*s;

v(i) = x(i)*(1+x(i)*(1+x(i)));

z(i) = log(x(i) + y(i));

end

Code Tuning and Optimization 17

Reorganize equations to use
fewer or more efficient
operators

Basic operators have different
speeds:

 Add 3- 6 cycles
 Multiply 4- 8 cycles
 Divide 32-45 cycles
 Power, etc (worse)

bad

good

Unnecessary work (5): don't 'clear all'

Code Tuning and Optimization 18

MATLAB improves performance by interpreting a program only once, unless
you tell it to forget that work

Vectorize (1)

19

MATLAB is designed for vector and matrix operations. The use of for-
loop, in general, can be expensive, especially if the loop count is
large and nested.

When possible, use vector representation instead of for-loops.

i = 0;
for t = 0:.01:100
 i = i + 1;
 y(i) = sin(t);
end

t = 0:.01:100;
y = sin(t);

Tuning MATLAB for Better Performance

bad good

Vectorize (2): why is is faster?

20

 Implicit (automated, internal) parallelization

 Highly-tuned, compiled, math libraries employing state-of-the-art
algorithms and performance optimizations techniques

 Highly-tuned, compiled, core MATLAB functions

 Make use of CPU-level vectorization

Tuning MATLAB for Better Performance

Vectorize (3): example using logical arrays

21Tuning MATLAB for Better Performance

Logical arrays can be used for indexing:

d = rand(1000, 1);
h = rand(1000, 1);

v = [];
for n = 1:1000

if h(n) > 0.5
v(end+1) =

1/12*pi*(d(n)^2)*h(n));
end

end

d = rand(1000, 1);
h = rand(1000, 1);

mask = h<0.5;
v = 1/12*pi*(d(mask)^2)*h(mask));

bad

good

Vectorize (4): example using logical arrays

22Tuning MATLAB for Better Performance

Or in other, more creative, ways:

A = rand(100,1);
B = rand(100,1);

for i = 1:100
 if B(i)>0.5
 C(i) = A(i)^2;
 else
 C(i) = exp(B(i));
 end
end

A = rand(100,1);
B = rand(100,1);

D = (B>0.5);
C = D.*(A.^2)+(~D).*exp(B);

bad

good

Vectorize (5): example using repmat

23Tuning MATLAB for Better Performance

repmat helps construct the matrices needed for vectorized calculations

x = -3:0.01:3;
y = -3:0.01:3;

xx = repmat(x, numel(y), 1);
yy = repmat(y' , 1, numel(x));

plane = 5+3*xx+2*yy;

Vectorize (6): example using bsxfun

24Tuning MATLAB for Better Performance

bsxfun provides a way of combining matrices of different dimensions
without using repmat to match their size first

Valid operations are:

@plus, @minus, @times, @rdivide, @ldivide, @power, @max, @min,
@rem, @mod, @atan2, @atan2d, @hypot, @eq, @ne, @lt, @le, @gt,
@ge, @and, @or, @xor

A = [97 89 84; 95 82 92; 64 80 99];
Abar = mean(A);

dev = bsxfun(@minus, A, Abar);

A = [97 89 84; 95 82 92; 64 80 99];
Abar = mean(A);

dev = A – repmat(Abar, size(A,1), 1);

Vectorize (6): other utility functions

25

Function Description

all Test to see if all elements are of a prescribed value

any Test to see if any element is of a prescribed value

zeros Create array of zeroes

ones Create array of ones

repmat Replicate and tile an array

find Find indices and values of nonzero elements

diff Find differences and approximate derivatives

squeeze Remove singleton dimensions from an array

prod Find product of array elements

sum Find the sum of array elements

cumsum Find cumulative sum

shiftdim Shift array dimensions

logical Convert numeric values to logical

sort Sort array elements in ascending /descending order

Tuning MATLAB for Better Performance

Memory (1): the memory hierarchy

Code Tuning and Optimization 26

To use memory
efficiently:

 Minimize disk I/O

 Avoid unnecessary
memory access

 Make good use of the
cache

 Arrays are always allocated in
contiguous address space

 If an array changes size, and
runs out of contiguous space, it
must be moved.

 x = 1;
 for i = 2:4
 x(i) = i;
 end

 This can be very very bad for
performance when variables
become large

Memory (2): preallocate arrays

27

Memory
Address

Array
Element

1 x(1)

… . . .

2000 x(1)

2001 x(2)

2002 x(1)

2003 x(2)

2004 x(3)

.

10004 x(1)

10005 x(2)

10006 x(3)

10007 x(4)

Tuning MATLAB for Better Performance

 Preallocating array to its maximum size prevents
intermediate array movement and copying

 A = zeros(n,m); % initialize A to 0

 A(n,m) = 0; % or touch largest element

 If maximum size is not known apriori, estimate with
upperbound. Remove unused memory after.

 A=rand(100,100);
 % . . .
 % if final size is 60x40, remove unused portion
 A(61:end,:)=[]; A(:,41:end)=[]; % delete

Memory (3): preallocate arrays, cont.

28Tuning MATLAB for Better Performance

Memory (4): cache and data locality

• Cache is much faster than main memory (RAM)

• Cache hit: required variable is in cache, fast

• Cache miss: required variable not in cache, slower

• Long story short: faster to access contiguous data

Code Tuning and Optimization 29

Memory (5): cache and data locality, cont.

…

x(1)
x(2)

x(3)
x(4)
x(5)
x(6)

x(7)
x(8)

x(9)
x(10)

Main memory

“mini” cache
holds 2 lines, 4 words each

for i = 1:10
 x(i) = i;
end

a
b…

Code Tuning and Optimization 30

Memory (6): cache and data locality, cont.

…

x(1)

x(2)

x(3)
x(4)
x(5)
x(6)

x(7)
x(8)

x(9)
x(10)

• ignore i for simplicity

• need x(1), not in cache, cache miss

• load line from memory into cache

• next 3 loop indices result in cache hits

for i=1:10
 x(i) = i;
end

a
b…

x(1)

x(2)
x(3)

x(4)

Code Tuning and Optimization 31

Memory (7): cache and data locality, cont.

…

x(1)
x(2)

x(3)
x(4)
x(5)
x(6)

x(7)
x(8)

x(9)
x(10)

need x(5), not in cache, cache miss

● load line from memory into cache

● free ride next 3 loop indices, cache hits

for i = 1:10
 x(i) = i;
end

a
b…

x(1)
x(2)

x(3)
x(4)

x(5)

x(6)
x(7)
x(8)

Code Tuning and Optimization 32

Memory (8): cache and data locality, cont.

…

• need x(9), not in cache --> cache
miss

• load line from memory into cache

• no room in cache, replace old line

for i=1:10
 x(i) = i;
end

x(5)

x(6)
x(7)
x(8)

x(9)

x(10)

a
b

Code Tuning and Optimization 33

x(1)
x(2)

x(3)
x(4)
x(5)
x(6)

x(7)
x(8)

x(9)

x(10)

a
b…

 Multidimensional arrays are stored in memory along columns
(column-major)

 Best if inner-most loop is for array left-most index, etc.

Memory (9): for-loop order

34

n=5000; x = zeros(n);
for i = 1:n % rows
 for j = 1:n % columns
 x(i,j) = i+(j-1)*n;
 end
end

n=5000; x = zeros(n);
for j = 1:n % columns
 for i = 1:n % rows
 x(i,j) = i+(j-1)*n;
 end
end

Tuning MATLAB for Better Performance

goodbad

Memory (10): compute-in-place

35

Compute and save array in-place improves performance and
reduces memory usage

Caveat: May not be work if the data type or size changes – these
changes can force reallocation or disable JIT acceleration

More generally, avoid temporary variables

x = rand(5000);
y = x.^2;

x = rand(5000);
x = x.^2;

Tuning MATLAB for Better Performance

goodbad

Worked Example: sliding window image smoothing

36Tuning MATLAB for Better Performance

Original: first view of the earth from the moon, NASA Lunar Orbiter 1, 1966

Input: downsampled, with gaussian noise Output: smoothed with 9x9 window

http://www.nasa.gov/multimedia/imagegallery/image_feature_623.html

	Slide 1
	Where to Find Performance Gains ?
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Eliminate redundant operations in loops
	Slide 15
	Avoid if statements within loops
	Divide is more expensive than multiply
	Slide 18
	Vector Is Better Than Loops
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Vector Utility Functions
	Cache
	How Does MATLAB Allocate Arrays ?
	Always preallocate array before using it
	Cache (4)
	Cache (5)
	Cache (6)
	Cache (7)
	Cache (8)
	For-loop Order
	Compute In-place
	Slide 36

