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Complex Analysis

z = x + iy ,with x , y ∈ R

i =
√
−1 or i2 = −1

Replace the real line R with the complex plane C.

C = {z = x + iy |x , y ∈ R} ≈ R2

Consider functions f : C 7→ C. We will study the calculus of such
functions, e.g., limits, continuity, differentiability, integration, power
series. What’s similar and what’s different?
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Cool Formulas

Figure : Math pride!
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Cool Graphs

Figure : How do we visualize complex functions?
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More Cool Graphs

Figure : Some minimal surfaces: catenoid (left), helicoid (center), Enneper
surface (right). Nature forms these surfaces to minimize energy (soap film).
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Even Cooler Graphs

Figure : Some fractals in the complex plane created by some past research
students. Both figures concern the use of Newton’s method to find the roots
of a complex polynomial, an example of a dynamical system. Figures by
Gabe Weaver (left) and Trevor O’Brien (right).
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Cool Theorems

Theorem (The Fundamental Theorem of Algebra)

Any complex polynomial p(z) = a0 + a1z + a2z2 + · · ·+ anzn with
an 6= 0 has at least one root z0 ∈ C (i.e., p(z0) = 0).

This in turn implies that any polynomial can be completely factored into
a product of linear terms. We say that C is an algebraically closed
field. This is not the case for R.

f (x) = x2 + 3

has no solutions in R.
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Cool Applications

Heat equation: ut = k∇2u, where u = u(x , y , z, t) measures
temperature at point (x , y , z) at time t

Describes distribution of heat in a given region over time.

In the plane, a steady state solution satisfies ∇2u = 0, or

uxx + uyy = 0,

a famous equation called Laplace’s equation.

Complex Analysis Fun Fact: Suppose that f (z) is a differentiable
function. Then the real and imaginary parts of f each satisfy
Laplace’s equation.
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