Complex Analysis: Some Highlights

Gareth E. Roberts

Department of Mathematics and Computer Science
College of the Holy Cross
Worcester, MA

MATH 305
Spring 2016
Complex Anaylsis

Complex Analysis

$$
\begin{gathered}
z=x+i y, \text { with } x, y \in \mathbb{R} \\
i=\sqrt{-1} \text { or } i^{2}=-1
\end{gathered}
$$

Complex Analysis

$$
\begin{gathered}
z=x+i y, \text { with } x, y \in \mathbb{R} \\
i=\sqrt{-1} \text { or } i^{2}=-1
\end{gathered}
$$

Replace the real line \mathbb{R} with the complex plane \mathbb{C}.

$$
\mathbb{C}=\{z=x+i y \mid x, y \in \mathbb{R}\} \approx \mathbb{R}^{2}
$$

Complex Analysis

$$
\begin{gathered}
z=x+i y, \text { with } x, y \in \mathbb{R} \\
i=\sqrt{-1} \text { or } i^{2}=-1
\end{gathered}
$$

Replace the real line \mathbb{R} with the complex plane \mathbb{C}.

$$
\mathbb{C}=\{z=x+i y \mid x, y \in \mathbb{R}\} \approx \mathbb{R}^{2}
$$

Consider functions $f: \mathbb{C} \mapsto \mathbb{C}$. We will study the calculus of such functions, e.g., limits, continuity, differentiability, integration, power series. What's similar and what's different?

Cool Formulas

Figure : Math pride!

Cool Graphs

Figure: How do we visualize complex functions?

More Cool Graphs

Figure : Some minimal surfaces: catenoid (left), helicoid (center), Enneper surface (right). Nature forms these surfaces to minimize energy (soap film).

Even Cooler Graphs

Figure : Some fractals in the complex plane created by some past research students. Both figures concern the use of Newton's method to find the roots of a complex polynomial, an example of a dynamical system. Figures by Gabe Weaver (left) and Trevor O'Brien (right).

Cool Theorems

Theorem (The Fundamental Theorem of Algebra)

Any complex polynomial $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$ with $a_{n} \neq 0$ has at least one root $z_{0} \in \mathbb{C}$ (i.e., $p\left(z_{0}\right)=0$).

Cool Theorems

Theorem (The Fundamental Theorem of Algebra)

Any complex polynomial $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$ with $a_{n} \neq 0$ has at least one root $z_{0} \in \mathbb{C}$ (i.e., $p\left(z_{0}\right)=0$).

This in turn implies that any polynomial can be completely factored into a product of linear terms. We say that \mathbb{C} is an algebraically closed field. This is not the case for \mathbb{R}.

$$
f(x)=x^{2}+3
$$

has no solutions in \mathbb{R}.

Cool Applications

- Heat equation: $u_{t}=k \nabla^{2} u$, where $u=u(x, y, z, t)$ measures temperature at point (x, y, z) at time t

Describes distribution of heat in a given region over time.

Cool Applications

- Heat equation: $u_{t}=k \nabla^{2} u$, where $u=u(x, y, z, t)$ measures temperature at point (x, y, z) at time t

Describes distribution of heat in a given region over time.

- In the plane, a steady state solution satisfies $\nabla^{2} u=0$, or

$$
u_{x x}+u_{y y}=0
$$

a famous equation called Laplace's equation.

Cool Applications

- Heat equation: $u_{t}=k \nabla^{2} u$, where $u=u(x, y, z, t)$ measures temperature at point (x, y, z) at time t

Describes distribution of heat in a given region over time.

- In the plane, a steady state solution satisfies $\nabla^{2} u=0$, or

$$
u_{x x}+u_{y y}=0
$$

a famous equation called Laplace's equation.

- Complex Analysis Fun Fact: Suppose that $f(z)$ is a differentiable function. Then the real and imaginary parts of f each satisfy Laplace's equation.

