Course Code	Course Name	Teaching Scheme (hrs/week)				Credits Assigned			
		Theory	Practical	Tutorial	Theory	Oral & Practical	Tutorial	Total	
ITC802	Big Data Analytics	04	02		04	01		05	

Course	Course	Examination Scheme							
Code	Name	Theory Marks				Term	Practical	Oral	Total
		Internal Assessment			End	work			
		Test 1	Test 2	Avg.	Sem.				
				of	Exam				
				Two					
				Tests					
ITC802	Big Data Analytics	20	20	20	80	25		25	150

Course Objectives:

- 1. To provide an overview of an exciting growing field of big data analytics.
- 2. To introduce the tools required to manage and analyze big data like Hadoop, NoSql Map-Reduce.
- 3. To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability.
- 4. To enable students to have skills that will help them to solve complex real-world problems in for decision support.

Course Outcomes: At the end of this course a student will be able to:

- 1. Understand the key issues in big data management and its associated applications in intelligent business and scientific computing.
- 2. Acquire fundamental enabling techniques and scalable algorithms like Hadoop, Map Reduce and NO SQL in big data analytics.
- 3. Interpret business models and scientific computing paradigms, and apply software tools for big data analytics.
- 4. Achieve adequate perspectives of big data analytics in various applications like recommender systems, social media applications etc.

Detailed syllabus:

Sr.	Module Detailed Content		Book	Hours
No.				
1	Introduction to Big Data	Introduction to Big Data, Big Data characteristics, types of Big Data, Traditional vs. Big Data business approach, Case Study of Big Data Solutions.	From Ref. Books	03
2	Introduction to Hadoop	What is Hadoop? Core Hadoop Components; Hadoop Ecosystem; Physical Architecture; Hadoop limitations.	Hadoop in Practise Chapte r 1	02
3	NoSQL	 What is NoSQL? NoSQL business drivers; NoSQL case studies; NoSQL data architecture patterns: Key-value stores, Graph stores, Column family (Bigtable) stores, Document stores, Variations of NoSQL architectural patterns; Using NoSQL to manage big data: What is a big data NoSQL solution? Understanding the types of big data problems; Analyzing big data with a shared-nothing architecture; Choosing distribution models: master-slave versus peer-to-peer; Four ways that NoSQL systems handle big data problems 	No- SQL book	04
4	MapReduce and the New Software Stack	 Distributed File Systems : Physical Organization of Compute Nodes, Large-Scale File-System Organization. MapReduce: The Map Tasks, Grouping by Key, The Reduce Tasks, Combiners, Details of MapReduce Execution, Coping With Node Failures. Algorithms Using MapReduce: Matrix-Vector Multiplication by MapReduce , 	Text Book 1	06

5	Finding Similar	Selections by MapReduce, Computing Projections by MapReduce, Union, Intersection, and Difference by MapReduce, Computing Natural Join by MapReduce, Grouping and Aggregation by MapReduce, Matrix Multiplication, Matrix Multiplication with One MapReduce Step. Applications of Near-Neighbor Search, Jaccard	Text	03	
	Items	Similarity of Sets, Similarity of Documents, Collaborative Filtering as a Similar-Sets Problem Distance Measures: Definition of a Distance Measure , Euclidean Distances, Jaccard Distance, Cosine Distance, Edit Distance, Hamming Distance.	Book 1 		
6	Mining Data Streams	 The Stream Data Model: A Data-Stream- Management System, Examples of Stream Sources, Stream Querie, Issues in Stream Processing. Sampling Data in a Stream : Obtaining a Representative Sample , The General Sampling Problem, Varying the Sample Size. Filtering Streams: The Bloom Filter, Analysis. Counting Distinct Elements in a Stream The Count-Distinct Problem, The Flajolet-Marti Algorithm, Combining Estimates, Space Requirements . Counting Ones in a Window: The Cost of Exact Counts, The Datar-Gionis- Indyk- 	Text Book 1	06	
7	Link Analysis	DGIM Algorithm, Decaying Windows. PageRank Definition, Structure of the web, dead ends, Using Page rank in a search engine, Efficient computation of Page Rank: PageRank Iteration Using	Text Book 1	05 	

		MapReduce, Use of Combiners to Consolidate the Result Vector. Topic sensitive Page Rank, link Spam, Hubs and Authorities.		
8	Frequent Itemsets	Handling Larger Datasets in Main MemoryAlgorithm of Park, Chen, and Yu, TheMultistageAlgorithm, The Multihash Algorithm.The SON Algorithm and MapReduceCounting Frequent Items in a Stream	Text Book 1	05
		Sampling Methods for Streams, Frequent Itemsets in Decaying Windows		
9	Clustering	CURE Algorithm, Stream-Computing, A Stream- Clustering Algorithm, Initializing & Merging Buckets, Answering Queries	Text Book 1	05
10	Recommendation Systems	A Model for Recommendation Systems, Content-Based Recommendations, Collaborative Filtering.	Text Book 1	04
11	Mining Social- Network Graphs	Social Networks as Graphs, Clustering of Social- Network Graphs, Direct Discovery of Communities, SimRank, Counting triangles using Map-Reduce	Text Book 1	05

Text Books:

- 1. Anand Rajaraman and Jeff Ullman "Mining of Massive Datasets", Cambridge University Press,
- 2. Alex Holmes "Hadoop in Practice", Manning Press, Dreamtech Press.
- 3. Dan McCreary and Ann Kelly "Making Sense of NoSQL" A guide for managers and the rest of us, Manning Press.

References:

- 1. Bill Franks , "Taming The Big Data Tidal Wave: Finding Opportunities In Huge Data Streams With Advanced Analytics", Wiley
- 2. Chuck Lam, "Hadoop in Action", Dreamtech Press
- 3. Judith Hurwitz, Alan Nugent, Dr. Fern Halper, Marcia Kaufman, "Big Data for Dummies", Wiley India
- 4. Michael Minelli, Michele Chambers, Ambiga Dhiraj, "Big Data Big Analytics: Emerging Business Intelligence And Analytic Trends For Today's Businesses", Wiley India
- 5. Phil Simon, "Too Big To Ignore: The Business Case For Big Data", Wiley India
- 6. Paul Zikopoulos, Chris Eaton, "Understanding Big Data: Analytics for Enterprise

Class Hadoop and Streaming Data', McGraw Hill Education.

7. Boris Lublinsky, Kevin T. Smith, Alexey Yakubovich, "Professional Hadoop Solutions", Wiley India.

Oral Exam:

An oral exam will be held based on the above syllabus.

Term work:

Assign a case study for group of 2/3 students and each group to perform the following experiments on their case-study; Each group should perform the exercises on a large dataset created by them.

Term work: (15 marks for programming exercises + 10 marks for mini-project)

Suggested Practical List: Students will perform at least 8 programming exercises and implement one mini-project. The students can work in groups of 2/3.

- 1. Study of Hadoop ecosystem
- 2. 2 programming exercises on Hadoop
- 3. 2 programming exercises in No SQL

4. Implementing simple algorithms in Map- Reduce (3) - Matrix multiplication, Aggregates, joins, sorting, searching etc.

- 5. Implementing any one Frequent Itemset algorithm using Map-Reduce
- 6. Implementing any one Clustering algorithm using Map-Reduce
- 7. Implementing any one data streaming algorithm using Map-Reduce

8. Mini Project: One real life large data application to be implemented (Use standard Datasets available on the web)

- a) Twitter data analysis
- b) Fraud Detection
- c) Text Mining etc.

Theory Examination:

Question paper will comprise of 6 questions, each carrying 20 marks.

Total 4 questions need to be solved.

Q.1 will be compulsory, based on entire syllabus.

Remaining question will be randomly selected from all the modules.

Weightage of marks should be proportional to number of hours assigned to each module.