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ABSTRACT: To accurately extract the fault characteristics of vibration signals of rotating machinery is of great 

significance to the unit online monitoring and evaluation. However, because the current feature extraction methods 

are mainly for single channel, the results of feature extraction are often inaccurate. To this end, a coupling fault 

feature extraction method based on bivariate empirical mode decomposition (BEMD) and full spectrum is proposed 

for rotating machinery. Firstly, the two-dimensional orthogonal signal obtained by orthogonal sampling technique is 

decomposed by bivariate empirical mode decomposition to obtain the intrinsic mode function with phase information. 

In order to obtain the sensitive modal components, the sensitivity coefficients are constructed on the basis of mutual 

information. Then, calculate the sensitivity coefficient of each intrinsic mode function, and the intrinsic mode 

function with the larger sensitive coefficient is selected as the sensitive component. Finally, the full spectrum of the 

sensitive component is obtained by using the full vector envelope technique, so as to get a comprehensive and 

accurate characteristic component. The results of simulations experiment and an application example show that this 

method can extract the fault characteristic component of the rotating machinery comprehensively and accurately. It is 

of great significance to realize the accurate diagnosis of coupling faults of rotating machinery.  

KEY WORDS： Rotating machinery; Bivariate empirical mode decomposition (BEMD); Full spectrum; Mutual 

information; Coupling fault; Feature extraction 

 

1. Introduction 

Rotating machinery is one of the key parts of 

large mechanical equipment, such as hydraulic 

turbine, steam turbine and wind turbine, which 

have found wide application in various industrial 

fields [1]. Due to the influence of load, damping, 

friction and other factors, the rotating machinery 

usually exhibits complex dynamic behavior, 

which is related to non-stationarity and 

nonlinearity [2]. And the vibration signals of 

rotating machinery often show coupling. In order 

to ensure the safe and reliable operation of the 

equipment, the equipment condition monitoring 

and fault diagnosis technology needs to have 

higher precision. Whether it can accurately extract 

the characteristic signal of coupling fault is the 

key to the condition monitoring and fault 

diagnosis of rotating machinery [3, 4].  

At present, many scholars have done some 

research on the feature extraction of rotating 

machinery fault signal, especially in the matter of 



signal processing methods. The main methods are 

wavelet transform (WT) [5, 6], Hilbert-Huang 

transform, empirical mode decomposition (EMD) 

[7, 8] and variational mode decomposition (VMD) 

[9, 10] and so on, and the characteristic of 

different fault feature extraction method as shown 

in Tab.1. Wavelet transform is the improvement of 

the Fourier transform, has a certain ability to deal 

with nonlinear signals. But its essence is the inner 

product principle characteristic waveform signal 

decomposition based on basis function, exists the 

choice problem for basis functions, and the 

different vibration will show the characteristics of 

different waveforms [11, 12]. Therefore, the 

adaptive ability of wavelet transform is poor. 

EMD has strong adaptability and good local 

analysis ability, and has been widely used in the 

field of fault diagnosis. However, the EMD 

method is lack of rigorous theoretical basis, and 

there is a serious phenomenon of modal aliasing 

in the decomposition process [13, 14]. Variational 

mode decomposition (VMD) is a new adaptive 

signal decomposition method, which has a solid 

theoretical foundation, and can solve the problem 

of mode mixing in EMD, but there are parameter 

optimization problems in VMD [15].  

However, due to the complex mechanism of the 

fault of rotating machinery, and the vibration 

signal is often nonlinear, the vibration signals in 

different directions may represent different fault 

characteristic information [16]. Through single 

channel signal feature extraction and fault 

diagnosis, it often leads to misjudgment and 

omission [17, 18]. Therefore, it is more accurate 

to collect the signal of multiple channels, and 

through the effective information fusion. 

Therefore, taking into account the rotating 

machinery generally has two sensors in horizontal 

and vertical directions, this paper utilize bivariate 

empirical mode decomposition (BEMD) to 

decompose the signal collected from two 

directions. 

In 2007, bivariate empirical mode 

decomposition (BEMD) was firstly introduced by 

Gabriel Rilling et al [19]. It is not limited to single 

direction processing of real valued signals, and it 

can analyze complex signals consisting of two 

orthogonal directions contained phase information 

and synchronization [20,21]. 

Tab.1 The characteristic of different fault feature 

extraction method  

method characteristic 

WT 

Exists the choice problem for basis functions 

and the different vibration will show the 

characteristics of different waveforms 

EMD 

Lack of rigorous theoretical basis and there 

is a serious phenomenon of modal aliasing in 

the decomposition process. 

VMD 

Solve the problem of mode mixing in EMD, 

but there are parameter optimization 

problems in VMD. 

BEMD 

This method can detect synchronous features 

contained in the two-dimensional signal and 

comprehensively extract the information of 

fault signal. 

M.D.Khadmul, Islam Molla, et al. [22] 

applied bivariate empirical mode decomposition 

to decompose complex climate signals into simple 

components and then combined with the classical 

FFT spectrum to clearly observe the climate 

change. Then R. Court et al [23] used bivariate 

empirical mode decomposition of the wind 

generator state detection, which can overcome the 

one-dimensional EMD information cannot be 

fusion defects, more accurately, the wind turbine 

generator non-stationary vibration signal more 

powerful processing results, getting good effect. 

The joint information between different 

sensors such as phase information and 

synchronization is of significance for rotating 

machinery condition to evaluate [24]. The signal 

obtained from multiple sensors is evaluated to 

contribute to the effective extraction of fault 

information, so it has received increasing 

attention in the past years. Okatan A et al. [25] 



uses the normalized matrix of the spectral norm to 

propose the new Calman filter, and proposes a 

sensor information fusion Calman filter test 

method, which improves the fusion accuracy. Liu 

X F et al.[26] proposed a fuzzy fault measurement 

method and a fuzzy integral information fusion 

method for rotating machinery. By using multiple 

classifiers, fuzzy measures and fuzzy integral 

theory, the diagnosis results are fused and the 

final diagnosis results are obtained. The full 

spectrum is a fault diagnosis method based on 

homologous information fusion technology, 

which can acquire more comprehensive fault 

characteristics and reveal the direction of the 

vibration relative to the direction of the vibration 

of rotating machinery [27, 28].  

In this paper, we proposed a coupling fault 

feature extraction method based on bivariate 

empirical mode decomposition and full spectrum 

for rotating machinery. In order to suppress noise 

interference in the signal component, the 

sensitivity coefficients are constructed on the 

basis of mutual information, and through the 

sensitive coefficient to extract unique IMFs of the 

signal. The specific arrangement of this paper is 

organized as follows. A review on bivariate 

empirical mode decomposition (BEMD) 

is illustrated in sections 2. Section 3 describes the 

sensitive feature extraction based on mutual 

information. Sections 4 give brief introductions of 

full spectrum. Section 5 describes the coupling 

fault feature extraction method based on BEMD 

and full spectrum. Section 6 applies the proposed 

method to both simulated data and experimental 

data obtained from the turbine guide bearing. 

Conclusions come in Section 7. 

2. Bivariate Empirical Mode 

Decomposition  

The essence of bivariate empirical mode 

decomposition (BEMD) is to decompose a 

two-dimensional signal adaptively into intrinsic 

mode components with physical meaning. The 

modal component obtained from the 

decomposition is a series of single component 

signals from high frequency to low frequency in 

two directions. This paper takes the algorithm II 

in [19] to perform BEMD. For a two-dimensional 

signal )(tx , the basic decomposition process is as 

follows. 

Step 1: Determine the direction of 

projection 2 πk k N  , where1 k N  .  

Step 2: The two-dimensional signal )(tx  is 

projected onto the
k .  

    ))(Re()( txetp k
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Step 3: Extract the corresponding moment for 

the local maximum of X  k

jt , then the set 
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  is interpolated. Get the maximum 

envelope ( )
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e t
  in the direction k . 

Step 4: Calculate the mean of the maximum 

envelope ( )
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  in each direction.  
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Step 5: Similar to the EMD decomposition 

process, the residual component is calculated: 

)()()( tmtxtS             (3) 

Determine whether the )(tS  meets the 

requirements of IMF. If satisfied, proceed to step 

6, if not, repeat step 2-6. Until )(tS  satisfies the 

conditions of the intrinsic mode function IMF.  

Step 6: Record the resulting IMF and remove 

it from the original signal. And get IMF1 as: 

)()(1 thtc  , residual component as:  

           )()()( 11 tctxtr              (4) 

Step 7: Repeat the above steps until you get 

all the IMFs. The original signal can be expressed 

as:  







K

k
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Where, K represents the total number of 

IMFs. 

3. Sensitive feature extraction based 

on mutual information  

3.1 Mutual information 

Mutual information can measure the degree 

of interdependence between the two variables, 

which means that the information content is 

shared between the two variables [29, 30]. Given 

two random variables X and Y, calculate their 

respective marginal probability distribution and 

joint probability distribution )(xp 、 )(yp  and 

),( yxp . The mutual information between them 

is: 

  
x y ypxp

yxp
yxpyxMI

)()(

),(
log),(,  (6) 

3.2 Sensitivity coefficient based on mutual 

information 

The IMFs can be obtained by bivariate 

empirical mode decomposition (BEMD) the fault 

vibration signals, and obtain the intrinsic mode 

functions (IMFs). However, not all the IMFs are 

important to the evaluate condition of machinery 

ratoting, so it is of significant to select the 

sensitive IMFs [31]. Firstly, orthogonal sampling 

technique is used to collect the vibration signals 

in the normal and fault state, which are recorded 

as )(txz
 and )(tx . Then the fault vibration signal 

)(tx  is decomposed by BEMD. Get modal 

component IMFs. )(1 tc 、…、 )(tcn
. 

1) According to the formula (6), the mutual 

information 
iMI  between the intrinsic mode 

components IMF )(tci
),,2,1( ni   and the 

fault vibration signals )(tx  is calculated. And do 

the normalization as follows. 

)max( iii MIMIa           (7) 

2) Calculate the mutual information 
iIM  

between the intrinsic mode components IMF 

)(tci
),,2,1( ni   and the normal vibration 

signals )(txz
.The same normalization is done as 

follows. 

)max( iii IMIMb            (8) 

3) Calculate the sensitivity coefficient of each 

modal component IMFs as follows: 

iii ba               (9) 

Where,
ia , represent the mutual information 

between the nth IMFs and their original signals. 

ib , represent the mutual information between the 

nth IMFs and the normal signals. In order to make 

the component better reflect the characteristics of 

the original signal, ia should be as large as 

possible. In order to better monitor the 

characteristics of the fault signals, ib should be 

as small as possible. Considering the 

characteristics of the early fault signal of rotating 

machinery, the amplitude of the signal is smaller, 

and the mutual information between the IMFs and 

the original signal is relatively small. Therefore, 

this paper reflects the change of signal 

characteristic components by increasing the 

multiple relations. That is to say, the higher the 

i  value, the more sensitive the IMF. 

4. Full spectrum theory 

There are usually two vertical sensors in the 

same section of the rotor for rotating machinery to 

extract vibration information. The full spectrum 

can fuse the vibration signals of each other in 

vertical direction, and comprehensively express 

the intensity and spectrum structure of the rotor 

vibration [32, 33]. 

The core idea of the full spectrum: rotating 

machinery emerges whirling phenomena under 

the combination of harmonic frequencies. The 

whirling trajectory is a series of ellipses. The 



length of the long axis of the ellipse is defined as 

the principal vibration vector to evaluate vibration 

intensity. The length of the short axis of the 

ellipse is defined as the auxiliary vector to 

evaluate vibration intensity as auxiliary. And 

through the whirling intensity under the harmonic 

frequency of rotor, the rotating machinery fault is 

diagnosed and identified [34]. 

Set X, Y direction of the data sequence are 

x~  and y~ . They can constitute the complex 

sequence yixz ~~~  . Carry on the Fourier 

transform for the complex sequence z~ , and get 

the Frequency domain complex signal Z
~

. 

)Im()Re(
~~~

ZZYiXZ      (10) 

The length of the long axis of the ellipse 
aiR  

is defined as the main vibration vector.  

 iNiai ZZ
N

R 
2

1
       (11) 

The length of the short axis of the ellipse 

biR  is defined as vice vibration vector.  

 iNibi ZZ
N

R 
2

1
       (12) 

i  is the angle between the main vibration 

vector and the X axis.  
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i  is the initial phase angle of the elliptic 

trajectory at this frequency. According to the 

property of Fourier transform in the following as 

(Details of the derivation of the literature [28]): 
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Where, 12,,2,1  Ni 
 

Therefore, utilize Fourier transform through 

the data sequence of the two channels, obtain the 

characteristic information of each harmonic 

trajectory which full spectrum required, complex 

calculated under harmonic is simplified as a 

simple calculation between complex Fourier 

parameters. Not only greatly reduce the amount of 

calculation, but also very robust, in addition, and 

established a contact with the conventional 

analysis method. When the information source is 

a single source, the algorithm is still established, 

fully meet the requirements of real-time detection 

and analysis. 

5. Coupling fault feature extraction 

method based on BEMD and full 

spectrum 

Owing to the complexity, coupling and 

uncertainty of rotating machinery faults, the 

intrinsic dynamic characteristics of the faults are 

more complicated. The external manifestation is 

that the vibration signals in different directions 

may indicate different characteristic information, 

and the single-channel signal characteristics 

diagnosis for rotary machinery is prone to 

misjudgment and leakage judgment. And BEMD 

and full spectrum have advantages in the 

processing of two dimensional signals and 

information fusion. Therefore, this paper proposes 

a new coupling fault feature extraction method 

based on BEMD and full spectrum for rotating 

machinery. To select the sensitive IMF, use the 

sensitivity coefficient based on mutual 

information as the screening criteria. The 

extraction process of this method is shown in Fig 

1. Specific steps are as follows:  



Collect vibration data from two orthogonal 

directions for different health conditions 

Decompose the collected vibration 

used BEMD

Obtain the modal component IMFs

Extract full spectral feature 

Screen

Obtain sensitive IMFs 

Obtain full spectrum of the 

sensitive IMFs

Calculate the 

sensitivity of 

each IMFs

Fig. 1 Flow chart of the proposed method 

 

Step 1: Collect the orthogonal vibration 

signal of the rotating machine in the normal and 

fault condition by the sensor. 

Step 2: The orthogonal fault vibration signal 

is decomposed by BEMD to obtain K intrinsic 

mode components  Kkck ,,2,1  . 

Step 3: Calculate the sensitivity of each 

modal component IMFs. 

Step 4: Select the modal component IMFs 

with the larger sensitive coefficient as sensitive 

modal components IMFs. 

Step 5: Full spectrum analysis of the selected 

modal components IMFs is carried out to detect 

the characteristic frequency of coupling fault 

signals. 

6. Experiment results  

6.1 Simulation experiment 

There are two common phenomena that a 

change in amplitude at the typical frequency [35] 

and a new frequency appearance [36] when 

rotating machinery fault. In this paper, the 

vibration signal of the hydropower unit bearing is 

simulated. Suppose that the rotating frequency of 

hydropower unit is f0 , It is considered that the 

vibration fault signal of the actual hydroelectric 

generating set often contains f0, 2f0, 3f0, 50Hz, 

100Hz and some common characteristic signals 

and noise. In order to make the simulation result 

more fitting with the actual situation and verify 

the effectiveness of the proposed method, this 

paper in the processing of two-dimensional 

signals, simulate the normal and fault signals of 

the hydropower unit to verify. The specific 

simulation vibration signal is as follows. 

),1(2)100sin(3)5sin(5)sin(8 Nrandtttxz    

),1(2)100cos(3)5cos(5)cos(8 Nrandtttyz    

)2sin(5),1(2)100sin(5)5sin(5)sin(8 tNrandtttx  

)2cos(5),1(2)100cos(5)5cos(5)cos(8 tNrandttty  

 Where, the 
zx  and 

zy  are used to simulate 

the normal signals, which are composed of a 

rotating component at a frequency of f0 with 

amplitude of 8, a rotating component at a 

frequency of 5f0 with amplitude of 5, a rotating 

component at a frequency of 50Hz with amplitude 

of 3 and the noise generated randomly with 

amplitude of 2. Each component of the normal 

vibration signal is shown in Fig.2(a). Fig.2(a) 

separately represent the rotating component at a 

frequency of f0, 5f0, 50Hz and the noise generated 

randomly in turn.  

The x and y  are used to simulate the 

fault signals, which not only are composed 

components of the normal signal, but also have 

the rotating component at a frequency of 2f0 with 

amplitude of 5 and the rotating component at a 

frequency of 50Hz with increased amplitude of 2. 

Each component of the fault vibration signal 

shown in Fig.2(b). And Fig.2(b) separately 

represent the rotating component at a frequency of 

f0, 5f0, 50Hz ,the noise generated randomly and 

the rotating component at a frequency of 2f0 in 

turn. 

Where   represents the angular velocity, 

in actual hydroelectric generating set, the rated 

speed is 107.1r/min, the sampling frequency is 



227Hz and the sampling point is 1024. 

Considering the consistency with the actual 

operation of hydropower units and the simplicity 

of simulation, it can be assumed that the unit 

speed is 107r/min, sampling frequency is 250Hz, 

and sampling point N is 1000. The normal and the 

fault raw signal is shown in Figure 3, followed are 

from the normal signal of the X direction to the 

normal signal of the Y direction to the fault signal 

of the X direction and to the fault signal of the Y 

direction.  

 The proposed method is used to extract the 

feature of the simulation signal in figure 3. Firstly, 

the orthogonal fault raw signal is decomposed by 

BEMD, and the results are shown in figure 4. 

Where the blue curve represents the real part and 

the black one represents the imaginary part of the 

decomposition results by BEMD. Then calculate 

the sensitivity coefficient of each IMF, as shown 

in table 2. 

Tab.2 Sensitivity coefficient of each characteristic 

component  

IMF IMF1 IMF2 IMF3 IMF4 IMF5 

Sensitivity 

coefficient 
2.881 0.693 1.078 0.767 0.654 

The IMF1 and IMF3, whose sensitivity 

coefficient is greater than 1, are selected as 

sensitive IMFs. Utilize the full vector envelope 

technique to fuse the sensitive IMFs are selected, 

and obtain full spectrum of the sensitive IMFs. As 

shown in Fig. 5.  

 Based on the full spectrum of the sensitive 

IMFs in Fig.5, this method proposed in the paper 

can fuse the orthogonal signals in two directions. 

And it can accurately detect the new frequency 

appearance at a frequency of 5f0 and the change in 

amplitude at the typical frequency of 50Hz.  

Obviously, the method has strong compatibility 

and effectiveness. 
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    (b) Components of fault vibration signal        

 Fig.2 Components of normal and fault vibration signal 
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Fig.3 Observation signal of normal and faulty 
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Fig.4 Results of BEMD decomposition for fault signal 
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Fig.5 Full spectrum of sensitive IMFs 

6.2 Coupling fault feature extraction of 

turbine guide bearing  

To verify the effectiveness of proposed 

method in coupling fault feature extraction for 

rotating machinery, the experimental studies on a 

hydroelectric turbine in upper reaches of Yellow 

River are conducted. The experimental signals are 

acquired from the prototype of hydroelectric 

turbine with 5 blades and 16 guide vanes, the 

maximum water head is 25.7m, the rated head is 

16m, and the rated power of the turbine is about 

49 MW and the rated speed is 107.1r/min 

(1.79Hz). Figure 6 describes specific layout of 

measuring points of pressure fluctuation signals in 

the turbine [37]. 

The measured data are collected turbine 

guide bearing by the vibration and throw 

monitoring sensors turbine guide bearing (As 

shown in Fig.6), which are from horizontal and 

vertical direction. Randomly select a segment of 

signal from normal and fault condition to verify 

the effectiveness of proposed method, as shown in 

Fig.7. From top to bottom: the normal signal of 

the X direction, the normal signal of the Y 

direction, the fault signal of the X direction and 

the fault signal of the Y direction. Where, the 

sampling frequency is 227 Hz and the sampling 

point M is 1024. Under the same load, the fault 

raw data is collected when the unit is abnormal. 

Using the method proposed in this paper to 

extract the Coupling fault feature of turbine guide 

bearing. Firstly, the fault signal is decomposed by  

 

Fig.6 Specific layout of measuring point in hydroelectric turbine 
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Fig.7 Raw vibration data of normal and fault signals 
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Fig.8 BEMD decomposition results of measured fault signal 
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(b) The decomposition results of imaginary part fault signal 

Fig.9 EMD decomposition results of real and imaginary part 

of measured fault signal 
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Fig.10 Full vector envelope spectrum of BEMD 
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  Fig.11 Spectrum of EMD decomposition sensitive component 

decomposition sensitive component 

BEMD, the results of the decomposition are 

shown in Fig 8 (where the blue represents the real 

part and the black represents the imaginary part). 

As shown in figure 8, the BEMD decomposition 

can effectively preserve the phase information of 

the orthogonal two-dimensional signal, and the 

decomposition results have good synchronization. 

In order to illustrate the advantages of BEMD, the 

real and imaginary parts of the fault signal are 

separately decomposed by EMD, the results are 

shown in Fig.9. Obviously, when utilize EMD to 

decompose the orthogonal two-dimensional signal, 

the phase information contained in the orthogonal 

signal lost. In addition, compared to the 

decomposition results of BEMD, the 



decomposition component of EMD is too much, 

that is the phenomenon of over decomposition.  

 On the basis of BEMD decomposition, the 

sensitivity coefficients of each IMFs are 

calculated, as shown in Table 3. And select the 

sensitive coefficient of large IMF2, IMF3 and 

IMF5 as the sensitive component IMFs. Then 

utilize the full vector envelope technique to fuse 

the sensitive IMFs are selected, and obtain the full 

spectrum of the sensitive IMFs. As shown in Fig. 

10. Obtain the decomposition results of EMD to 

compare with the decomposition results of BEMD 

as shown in Fig 11. Calculate the sensitivity 

coefficients of the IMFs obtained by EMD in two 

directions, as shown in table 4. In the IMFs of the 

real part, IMF2, IMF3 and IMF6 with the larger 

sensitivity coefficient are selected as the sensitive 

IMFs, and In the IMFs of the imaginary part, 

IMF2, IMF4 and IMF5 with the larger sensitivity 

coefficient are selected as the sensitive IMFs. The 

frequency spectrum analysis of the sensitivity 

coefficient in each direction is carried out. The 

frequency spectrum of the EMD sensitive IMFs is 

shown in figure 11 (where, the upper part 

represents the real part and the lower part 

represents the imaginary part of the 

decomposition results by BEMD).  

Tab.3 Sensitivity coefficients of BEMD modal 

components 

IMFs IMF1 IMF2 IMF3 IMF4 IMF5 

Sensitivity 

coefficient 
0.661 1.043 1.172 0.564 0.984 

Tab.4 Sensitivity coefficients of EMD modal 

components 

IMFs IMF1 IMF2 IMF3 IMF4 IMF5 

Real part 0.831 1.634 1.875 0.73 0.455 

Imaginary 

part 
0.76 2.292 0.877 1.12 1.853 

IMFs IMF6 IMF7 IMF8 IMF9  

Real part 1.344 0.495 0.393 0.543  

Imaginary 

part 
0.742 0.436 0.874 0.432  

It can be seen from Fig.11 that the vibration signal 

(real part) in the horizontal direction can be 

divided into 2f0, a small number of the 3 

frequency 3f0 and 15f0. But the vibration signal in 

the vertical direction (imaginary part) contains 1f0, 

15f0. And the small 50Hz vibration signal. Thus, 

the vibration signal due to a certain interference, 

the results of the extraction of the two directions 

are different, which often brings trouble to feature 

extraction. Compared with this, the method 

proposed in this paper can solve the problem of 

the inconsistency between the two channels. As 

shown in the Fig.10, this method can better fuse 

the information in two orthogonal directions of 

vibration signal. This method has good 

compatibility, which can be more comprehensive 

and accurate to detect the vibration signal in the 

rotating machinery, and the feature extraction 

results are more reliable. 

7. conclusions  

This paper proposed a method to extract a 

feature from orthogonal signals in two directions 

sensors for the condition monitoring of rotating 

machinery based on bivariate empirical mode 

decomposition (BEMD) and full spectrum.  

BEMD is employed to decompose signals 

from two orthogonal sources together, thus a 

complicated rotation can be represented by a set 

of simpler rotation components. BEMD is proved 

to outperform standard EMD for two orthogonal 

signals, because the intrinsic mode functions 

(IMFs) derived by BEMD preserve the signal 

phase information, and detect synchronous 

features contained in the two-dimensional signal. 

And effectively solve the problem of 

misjudgment and leakage judgment in extract 

feature method by single-channel signal for rotary 

machinery. Thus the comparison of IMFs for 

different health conditions is made reasonable and 

easy.  

A criterion based on mutual information is 

proposed for selecting the most sensitive IMF. 



The definition of this standard is to better 

represent the IMF of the original signal and 

penalize IMFs that cannot distinguish between 

different health conditions. Therefore, the IMF 

selected always ensures that it retains unique 

information about a particular health condition. 

The performance of proposed method has 

been evaluated of the hydroelectric turbine in 

upper reaches of Yellow River. Experiments 

results verified the effectiveness of the proposed 

method in two orthogonal directions fault feature 

extraction and fault diagnosis for rotating 

machinery. 
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