Geometry Lab with Mathematica

Mathematica is used in a course of Geometric
Techniques for Computer Graphics € CAD

by Joan Trias and Vera Sacristan

Abstract

An experience of a Geometry Lab based on Mathematica for a
Geometry course for Computer Science students, intended to be a
basis for later courses in Computer Graphics, CAD and CAGD, is
presented. Students combine their knowledge of basic geometry topics
like polyhedra, curve and surface generation, affine and perspective
transformations, among others, by means of lists manipulation and
a clever use of substitution rules to generate apparently complicated
geometric scenes in which geometric objects are placed in different
positions in space. Several examples are offered, some of them together
with their code. The reader can enjoy himself solving the proposed
examples and producing new variants.

Introduction

e are currently teaching a course for Computer Science students (Facul-

tat d’Informatica de Barcelona, Universitat Politecnica de Catalunya,
Barcelona) dealing with geometric computation techniques as a basis
for later courses in the fields of Computer Graphics, CAD and CAGD.

We have designed and organized a Geometry Lab for this course based on
Mathematica as a software tool ([3]); the aim of this contribution is to descri-
be this project and the corresponding experience. A very short communica-
tion related to it has been presented in [1].

Describing the experience

The course is intended to cover different topics that are useful for computer
graphics and computer aided design; among others, some of them are: poly-
hedra, generation of curves and surfaces, affine bi- and three-dimensional
transformations, perpective transformations, elementary methods of curve
and surface design in CAD, geometric algorithms. During the course our
students must and also achieve what we could consider a certain maturity in
three-dimensional geometry as well as in geometric objects manipulation.

More than presenting a classical course covering these subjects, we have
preferred to teach students the basic geometric operations they will need
while developing geometric applications in computer graphics and related
fields. We have identified some of these operations; namely we want our
students to be able to perform the following ones:

o Place geometric 3D objects onto a plane, such as in figure 1.

Figure 1. Torus generated
by shapes that has been put
in tangent position onto the

plane vt +y+2—3=0.

e Draw 2D objects (curves, polygons or similar) onto a plane, for example
onto the faces of some regular polyhedron (as can be seen in figure 2).

e Construct geometric objects that are in some sense defined by an “axis”
or at least the position of which in space can be essentially determined
by the position of an axis, as would be for example in the case of a cy-
linder, a cone, an helicoid o a torus (the axis we can consider in the last
case being the normal to the diametral plane, the problem illustrated

<

Figure 2. Rhodonea, epitrochoids and other classical “mecha-
nical” or “spirographical” curves that have been put on several
faces of a dodecahedron generated by Polyhedra.

in figure 1 can be reformulated in terms of an “axis” problem). Figure
3 shows an example of this kind of problem.

Figure 3. Constructing a circular heliz around an axis deter-
mined by the origin and the point (1,1,1).

Another problem related to that one could consist of constructing a
circle with its center in a curve and placed onto the plane perpendicular
to the curve at that point. This can be a point of departure for the
synthesis of tubular surfaces.

e Produce the most common affine transformations; although many pro-
blems can be solved directly by changing the coordinate systems, stu-
dents must know the specific language of transformations and use it to
solve geometric problems, as for example in figure 4.

Figure 4. A cylinder in original po-
sition has been transformed to pro-
duce another copy of it with an axis
now determined by the baricenters of
the two missing faces of the dodeca-
hedron.

As can be seen, our course has a highly practical orientation, that makes
necessary a strong activity in a geometry lab. The examples we have seen
are typical exercices we propose to our students.

The main tools

We distinguish between geometric and programming tools.

a) Geometric tools

From the point of view of mathematics, and specifically of geometry, the
required background is not much extensive; the main tool we sistematically
use is the coordinate transformation, specially between cartesian coordi-
nate systems.

To establish some notation, recall that if we consider two coordinate systems,
S = (0,{€1,---,€,}), with O being the origin and {éy,---,¢€,} the basis
of the corresponding vector space, determining the coordinate axes, and a
“new” coordinate system given by S’ = (O’,{€1',---,€,'}), then the “old”
coordinates X of a point, and the “new” ones X’ of the same point are
related, as is well known, by the matrix equation

X = AX'+ W,
(S) A7 - " .. .
where W = 00’ is the position vector of the new origin expressed in the

system S, and A is the “change of basis matrix”, formed with the column
vectors of the new basis as linear combinations of the old one; here W,

4

X and X’ are also column vectors. We can also derive the relation X’ =
A7H (X — W). We shall refer to this transformation as the “inverse” one,

while the former version will be called the “direct” one.

Students can program constructions of complex three-dimensional scenes
with a sistematic and clever use of coordinate transformations, making a
proper choice of the coordinate systems involved, sometimes concatenating
and sometimes combining direct and inverse changes. A typical example of
use of direct and inverse transformations can be seen in figure 5, correspon-
ding to a variant of one of the exercices our students must solve. Seemingly
complicated efects are not difficult to generate.

Figure 5. Observe
the cardioid with an
inner one, both tan-
genl at a common
point.

Our main tool is very simple, and with such a simple tool we are able to go
very far, from the point of view of the complexity of geometric scenes our
students are able to produce.

b) Programming tools

From the point of view of programming, there are many reasons that
explain why we use Mathematica; let us mention, among others, the fo-
llowing ones:

e Proximity to mathematical language, particularly matrix and vector
calculations, with a simple notation.

o Extensive supply of geometric objects, as well as incorporated functions
to produce geometric objects such as curves or surfaces.

e Powerful 3D graphics processing.
e Powerful manipulation of lists.

e Powerful and precise substitution rules.

Let us discuss in the sequel the before mentioned items.

Proximity to mathematical language allows us to write Mathematica func-
tions almost as if we were writing mathematical functions or expressions;
consider for example the definition of norm derived from the dot product:

norm[v_]:=N[Sqrt[v.v]]
or the definition of cross product:

e1={1,0,0%}

e2={0,1,0%}

e3={0,0,1%}

vectorProduct[u_,v_]:=
N[{Det[{u,v,el}],Det[{u,v,e2}],Det[{u,v,e3}]1}]

The richness of geometric objects, ranging from the most elementary ones
(geometric primitives like Polygon, Line, Point, and others) to more com-
plex ones, allows us to generate non trivial objects. We also make a heavy use
of the packages Shapes and Polyhedra and, to a minor extent, of Surface-
OfRevolution, as well as of the incorporated functions to produce curves or
surfaces.

Powerful 3D graphics processing is important because it allows our students
to concentrate on geometry, which is the objective of the course: once the
plan to solve a problem is traced from the point of view of geometry, then

Mathematica does the rest, specially 3D rendering and perspective projecti-
ons, so that they don’t need to pay attention to such details, important, but
lengthy to solve.

Powerful manipulation of lists allows to easily manipulate geometric struc-
tures, due to the list structured coding of geometric objects and scenes; the
possibility of coding complex geometric scenes by means of lists renders easy
their manipulation and transformation, and permits cumulative construction
from simple to more complex structures.

As an example, load the package shapes (and suppose it loaded from now
on) and generate a cylinder cyl0 with

Needs["Graphics ‘Shapes ‘"]
cyl0=Cylinder/[]
Show[Graphics3D[cyl0]]

Observe that what we have really obtained is a list of polygons, which are the
quadrangular faces of the lateral surface by means of which we approximate
the true cylinder by a polyhedral surface; indeed, we have cyl10 equal to

{
Polygon[{{0.951056516295153, 0.3090169943749474, 1},

{0.809016994374947, 0.5877852522924732, 1}}],

Polygon[{{1., 0, 1}, {1., 0, -1},
{0.951056516295153, 0.3090169943749474, -1},
{0.951056516295153, 0.3090169943749474, 1}}]

t

It is not difficult now to manipulate this structure having in mind that ma-
nipulating lists produces geometric manipulation of the scenes (figure 6):

cyl00=Droplcyl0,{2,5}]
Show[Graphics3D[cyl00] ,Boxed->False,ViewPoint->{2,2,2}]

Perhaps one of the most important characteristics of Mathematica for us is
the possibility to easily program selective substitutions inside a complicated

Figure 6

tree-like structure describing a geometric object or a geometric scene; this
allows us to easily program transformations and in general manipulations of
geometric objects, changing only the coordinates, but retaining the overall
structure.

Let us consider an example; suppose we want to transform the cylinder cy10
by (z,y,z) — (2z,3y, z); just write a substitution rule and look at the result
by representing both objects in the same scene (figure 7):

cyli=cyl0/.{x_7NumberQ,y_7NumberQ,z_7NumberQ}->{2x,3y,z}
Show[Graphics3D[{cyl0,cyl1}]]

Now we could apply a new transformation to the scene scene={cyl1,cyl0},
such as for example to interchange the roles of the axes z and z; it suffices

to use a substitution rule (see the result in figure 7).

scene2=scene/.{x_7NumberQ,y_7NumberQ,z_7NumberQ}->{z,y,x}
Show[Graphics3D[scene2]]

Figure 7

With these possibilities of substitution rules, the point transformation X =
AX"+ W can be easily enlarged to produce the transformation of a whole
geometric object or even a complete geometric scene formed by several
objects (with a slightly more robust formulation even graphic objects can be
transformed); this means that a complex object or scene can be expressed,
as a whole, in an another coordinate system, with no need of decomposing
or taking apart the elementary geometric components of the complex object,
express each of them in the old or new coordinate system, and finally recons-
truct the whole structure, as had to be done in a more classic programming

environment. That is the point that makes this method so powerful and easy
at the same time, in order to perform geometric transformations.

The most simple version for a function transforming new coordinates into
old ones could be the following one, in the 3D case:

coordinateTransf [(*X=AX’+Wx)

obj_, (*object or scenex)

A_, (*change of basis (row) matrix*)
W_ (*new originx)

1:=N[objl/.{a_7NumberQ,b_?NumberQ,c_7NumberQ}->A.{a,b,c}+W

This function can be trivially completed to cope with the “inverse” coordinate
transformation, in the case where both vector bases are orthonormal, and
even in other cases, and also enhanced from the programming point of view;
for the sake of simplicity, we express it in this form.

With these tools in hand we are able to challenge our students with sofisti-
cated (and, we expect, imaginative) 3D geometric scenes.

Let us present now the general strategy of resolution of geometric problems
consisting of scenes or objects we wish to produce using coordinate transfor-
mations, by means of the resolution of some examples.

A basic example

Let us begin with a simple problem: drop a circular cylinder cy1A of radius 1,
height 1, onto the plane 7 : x + y+ 2z = 3 such that the cylinder’s axis passes
through the point P = (1,1,1) € #. First of all, generate such a cylinder in
canonical position, that is with its symmetry axis coincident with coordinate
axis Oz and the base onto the plane z = 0:

cylA=ParametricPlot3D[{Cos[t],Sin[t],z},{t,0,2Pi},{z,0,1},
PlotPoints->{20,2},DisplayFunction->Identity] [[1]]

This will be a 3D object precomputed once and for all; we thus obtain the
coding not only of this cylinder but of all the cylinders with the same metric
characteristics in any other cartesian system of coordinates (O'; {z',y’, 2'}),

provided that its position mimics exactly the position of the canonical one,
that is, its axis coincides with the third axis of coordinates O’z and its base
is on the coordinate plane z’ = 0. This is the basic idea for our strategy
of resolution of this kind of problems: suppose the problem solved and the
cylinder put onto the plane in the right position; place an appropiate car-
tesian system of coordinates, related to the plane and to the cylinder: then
the description of the object on top of the plane expressed in this system of
coordinates is exactly the canonical one; hence it only remains to express it
in the old cartesian system. So, the only problem is to construct the new
cartesian system so that the third axis O'z" coincides with the axis of the
cylinder and such that z/ = 0 is identified with the plane .

Let us construct such a basis manually (it can be automatized):

uu3={1,1,1} (*normal to the planex*)

u3=uu3/norm[uu3]

uul=vectorProduct[u3,e3] (*for example, if not dependentx)
ul=uul/norm[uul]

u2=vectorProduct [u3,ul]

AA={ul,u2,u3}

A=Transpose[AA]

Now, with W={1,1,1}, we can consider the new coordinate system and
express the cylinder in the ancient one:

plane=Polygon[{{3,0,0},{0,3,0},{0,0,3}}]
axes[length_:1]:={Line[{{0,0,0},{length,0,0}}],

Line[{{0,0,0},{0,length,0}}],

Line[{{0,0,0},{0,0,1length}}]}
axesOnThePlane=coordinateTransf [axes[],A,W]
cylinderOnThePlane=coordinateTransf [cylA,A,W]
Show[Graphics3D[{axes[3.2],plane,axesOnThePlane}],
Boxed->False]
Show[Graphics3D[{axes[3.2],plane,cylinderOnThePlane}],
Boxed->False]

and see the result in figure 8.

10

Figure 8

A more complete example

Let us now consider a more complex scene (figure 9), composed by part of a
cylinder generated by shapes, of radius 2, height 8, with axis coincident with
Oy, an icosahedron obtained with Polyhedra, reescaled and with center at
(3.5,—1,2.5) (by means of a coordinate transformation) and three spheres
obtained with shapes with centers, respectively, at (0,0,0), (—3,0,0) and
(0,0,3), that are “looking at” a point, the center of the polyhedron, that is,
with their polar axes pointing to that point.

Figure 9

This can be obtained by the following code (where we have slightly automa-

11

tized the process of contructing an orthonormal basis, in which the third axis
is given by two points supposed to be different and is also supposed not to
be parallel to the Oz axis):

Needs["Graphics ‘Polyhedra‘"]

basis[A_,B_]:=Module[{uu3,uull},
uu3=B-A; (*supposed different*)
u3=uu3/norm[uu3] ;
uul=vectorProduct [u3,e3]; (*supposed independent*)
ul=uul/norm[uull;
u2=vectorProduct [u3,ul];
Transpose[{ul,u2,u3}]]

lookAt={3.5,-1,2.5}

icosa0=Icosahedronl[]
scale={{.3,0,0},{0,.3,0},{0,0,.3}}
icosal=coordinateTransf[icosal,scale,lookAt]

cyl0=Cylinder[2,4,30]
cyli=Droplcyl0,{2,5}]
cyl2=cyl1l/.{x_7NumberQ,y_7NumberQ,z_7NumberQ}->{x,z,y}

sphO=Sphere[1,20,20]

center1={0,0,0}
sphl=coordinateTransf [sphO,basis[centerl,lookAt],centeri]
Li=Line[{centerl,lookAt}]

center2={0,-3,0}
sph2=coordinateTransf [sphO,basis[center2,lookAt],center2]
L2=Line[{center2,lookAt}]

center3={0,3,0}
sph3=coordinateTransf [sphO,basis[center3,lookAt],center3]
L3=Line[{center3,lookAt}]

12

Show[Graphics3D[{
{GrayLevel[.7],cyl2},
{GrayLevel[1],sphl,sph2,sph3,icosall,
{L1,L2,L3}
}], Boxed->False, PlotRange->All, Lighting->False]

Now we are ready to place the new object just created into any other scene,
in any desired position (as onto a plane, like in figure 10).

Figure 10

Some other examples

There are many additional programming exercices we propose to our stu-
dents; the complete set of them for our Geometry Lab can be found in [2].

Let us mention only a sample of them.

We sistematically use ParametricPlot and ParametricPlot3D to generate
curves and surfaces, usually in general position in space; consider for example
figure 11.

Concerning 2D affine transformations, an exercise incorporating a great num-
ber of different transformations is the construction of a toothed wheel from
the description of its smallest piece: the tooth. After the programming task,
prisms based on the wheel can be generated and used as a component in
more complex scenes, concerning now 3D affine transformations, such as for

13

B
&

Figure 11. Constructing a spiral heliz, with plane projection
onto an Archimedes spiral, and then putting it in a precise po-
sition onto the plane x +y + z = 3.

example specular symmetry (see figure 12).

ik

Figure 12. Toothed wheels, prisms and specular symmetry.

Another interesting exercise is the generation of polyhedra of revolution
from a plane polygonal profile, as a standard tool for volume generation
in solid modelling and CAD; one of the most popular objects is the chess
queen, that we also integrate in more complex geometric compositions, such
as in figure 13.

14

Figure 13. Composi-
tion with chess pieces
of revolution.

Conclusions

Our geometry lab is not merely an experimental complement in our course,
but it is an integral part of it, and one of the most important ones. Without
the possibility of using Mathematica we would not have been able to organize
the course as we have done, and without it our course would have been very
different.

Our impression is that students learn much better geometry with such kind
of lab exercices, they become enthousiastic about them and they realize the
importance of the relationship between theory and applications.

With our experience, we hope we have contributed to make many people more
familiar with mathematics laboratories, specially geometry ones, and to be
helping that way to the incorporation of the new developing technologies
in mathematical education, to put the teaching of mathematics in a new
high-tech environment, and consequently, on a new and modern basis.

As a byproduct of our preparation of materials for the course we have at
our disposal an extensive set of Mathematica functions that constitute a
powerful tool for mathematical calculation and illustration (specifically, in
the difficult field of 3D geometrical illustration); once it will be organized as
a Mathematica package, it will become available. By now, our contribution
to this use of Mathematica in preparing graphic material for teaching can
be found in [2]. Some other authors in our Department have developed

15

Mathematica packages for geometrical calculation and have used them as an
illustration tool for educational purposes to prepare classroom material ([4]).

References

1]

Hurtado, F., Trias, J.: Técnicas geométricas para la informdtica grifica:
practicas de laboratorio, Actas de las Jornadas sobre Nuevas Tecnologias
en la Ensenanza de las Matematicas en la Universidad (Eds. A.Montes,

J.M.Brunat), TEMU-95, (241-250), Departament de Matematica Apli-
cada II, Universitat Politecnica de Catalunya, 1995.

Trias, J.: Geometria Computacional, practiques de laboratori, Universi-
tat Politecnica de Catalunya, 1995.

Wolfram, S.: Mathematica, a system for doing mathematics by compu-

ter, Addison-Wesley, 1991.

Xambé, S., Grané, J.: Geometria con Mathematica, Actas de las Jor-
nadas sobre Nuevas Tecnologias en la Ensenanza de las Matematicas
en la Universidad (Eds. A.Montes, J.M.Brunat), TEMU-95, (425-457),
Departament de Matematica Aplicada II, Universitat Politecnica de Ca-
talunya, 1995.

About the authors

Both authors are mathematicians and Professors of Mathematics in the De-
partament de Matematica Aplicada II, Universitat Politecnica de Catalunya,
Barcelona, and are teaching courses in Computational Geometry.

Their research interest is also centered in the field of Discrete, Combinatorial

and Computational Geometry (complexity theory and algorithm design).

16

Both are enthousiastic about the use of advanced mathematical software for
classroom laboratories, as a valuable aid in teaching mathematics.

Joan Trias

Dept. de Matematica Aplicada II
Facultat d’Informatica de Barcelona
Pau Gargallo, 5

Universitat Politecnica de Catalunya
E-08028 Barcelona, Spain

e-mail: avtrias@ma2.upc.es

Vera Sacristan

Dept. de Matematica Aplicada II
Facultat d’Informatica de Barcelona
Pau Gargallo, 5

Universitat Politecnica de Catalunya
E-08028 Barcelona, Spain

e-mail: vera@ma2.upc.es

17

