
Lecture III. Topological K-theory and Algebraic Geometry

In this lecture, we will develop some of the machinery which makes topological
K-theory both useful and computable. Not only is this of considerable interest in
its own right, but also much of current research by algebraic K-theorists centers
around developing similar results for algebraic K-theory.

The topological group O(n) ⊂ Mn(R) ' Rn2
consists of those real matrices A

with A · At = 1; the topological group U(n) ⊂ Mn(C) ' Cn2
consists of those

complex matrices A with A ·At
= 1. Stabilizing with respect to n in the usual way,

we obtain
O =

⋃
n≥1

O(n), U =
⋃
n≥1

U(n).

Our analysis of classifying spaces for G-torsors with G = O(n) or U(n) is the
major ingredient in the proof of the following theorem.

Theorem. Let X be a finite dimensional C.W. complex. Then

KO0
top(X) = [X,BO × Z], K0

top(X) = [X,BU × Z].

Of fundamental importance in the study of topological K-theory is the following
theorem of Raoul Bott. Recall that if (X,x) is pointed space, then the loop space
ΩX is the function complex (with the compact-open topology) of continuous maps
from (S1,∞) to (X,x).

Theorem: Bott Periodicity.
(a.) There is a homotopy equivalence

BO × Z ' Ω8(BO × Z)

from BO×Z to its 8-fold loop space. Moreover, the homotopy groups πi(BO×Z)
are given by Z,Z/2,Z/2, 0,Z, 0, 0, 0 depending upon whether i is congruent to
0, 1, 2, 3, 4, 5, 6, 7 modulo 8.

(b.) There is a homotopy equivalence

BU × Z ' Ω2(BU × Z)

from BU × Z to its 2-fold loop space. Moreover, πi(BU × Z) is Z if i is even
and equals 0 if i is odd.

Thus, both BO × Z and BU × Z are Ω-spectra as defined as follows.

Definition III.1. An Ω-spectrum E is a sequence of pointed spaces {E0, E1, . . . },
each of which has the homotopy type of a pointed C.W. complex, together with
homotopy equivalences relating each En with the loop space of En+1; in other words,
a sequence of pointed homotopy equivalences

E0 '→ ΩE1 '→ Ω2E2 '→ · · · '→ ΩnEn → · · ·
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Theorem. (cf. [Spanier]) Let E be an Ω-spectrum. Then for any topological space
X with closed subspace A ⊂ X, set

hn
E(X,A) = [(X,A), En], n ≥ 0

Then (X, a) 7→ h∗E(X,A) is a generalized cohomology theory which satisfies all of
the Eilenberg-Steenrod axioms except that its value at a point (i.e., (∗, ∅)) may not
be that of ordinary cohomology:

(a.) h∗E(−) is a functor from the category of pairs of spaces to graded abelian groups.
(b.) for each n ≥ 0 and each pair of spaces (X,A), there is a functorial connecting

homomorphism ∂ : hn
E(A) → hn+1

E (X,A).
(c.) the connecting homomorphisms of (b.) determine long exact sequences for every

pair (X,A).
(d.) h∗E(−) satisfies excision: i.e., for every pair (X,A) and every subspace U ⊂ A

whose closure lies in the interior of A, h∗E(X,A) ' h∗E(X − U,A− U).

Observe that in the above definition we use the notation h∗E(X) for h∗E(X, ∅) =
h∗E(X+, ∗), where X+ is the disjoint union of X and a point ∗.

Definition III.2. The (periodic) topological K-theories KO∗top(−),K∗
top(−) are

the generalized cohomology theories associated to the Ω-spectra given by BO × Z
and BU × Z with their deloopings given by Bott periodicity. In particular,

K2j
top(X) = [X,BU × Z], K2j−1

top (X) = [X,U ],

so that we recover our definition of K0
top(X) (and similarly KO0

top(X)) whenever
X is a finite dimensional C.W. complex.

Tensor product of vector bundles induces a multiplication

K0
top(X)⊗K0

top(X) → K0
top(X)

for any finite dimensional C.W. complex X. This can be generalized by observing
that tensor product induces group homomorphisms U(m)×U(n) → U(n+m) and
thereby maps of classifying spaces

BU(m)×BU(n) → BU(n+m).

With a little effort, one can show that these multiplication maps are compatible up
to homotopy with the standard embeddings U(m) ⊂ U(m + 1), U(n) ⊂ U(n + 1)
and thereby give us a pairing

(BU × Z)× (BU × Z) → BU × Z

(factoring through the smash product). In this way, BU × Z has the structure of
an H-space which induces a pairing of spectra and thus a multiplication for the
generalized cohomology theory K∗(−). (A completely similar argument applies to
KO∗(−)).

As an example of how topological K-theory inspired even the early effort in al-
gebraic K-theory we mention the following classical theorem of Hyman Bass. The
analogous result in topological K-theory for rank e vector bundles over a finite di-
mension C.W. complex of dimension d < e can be readily proved using the standard
method of “obstruction theory”.
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Theorem: Bass stability theorem. Let A be a commutative, noetherian ring
of Krull dimension d. Then for any two projective A-modules P, P ′ of rank e > d,
if [P ] = [P ′] ∈ K0(A) then P must be isomorphic to P ′.

We next describe the close relationship between K∗
top(X) and the integral coho-

mology H∗(X) = H∗(X,Z) of X. Indeed, we give below the general form of the
spectral sequence for any generalized cohomology theory, and observe that this is
particularly nice for K∗

top(−).

Theorem: Atiyah-Hirzebruch spectral sequence. For any generalized coho-
mology theory h∗E(−) and any topological space X, there exists a right half-plane
spectral sequence of cohomological type

Ep,q
2 = Hp(X,hq(∗)) ⇒ hp+q

E (X).

In the special case of K∗
top(−), this takes the following form

Ep,q
2 = Hp(X,Z(q/2)) ⇒ Kp+q

top (X)

where Z(q/2) = Z if q is an even non-negative integer and 0 otherwise.

What is a spectral sequence of cohomological type? This is the data of a 2-
dimensional array Ep,q

r of abelian groups for each r ≥ r0 (typically, r0 equals 0, or
1 or 2; in our case r0 = 2) and homomorphisms

dp,q
r : Ep,q

r → Ep+r,q−r+1
r

such that the next array Ep,q
r+1 is given by the cohomology of these homomorphisms:

Ep,q
r+1 = ker{dp,q

r }/im{dp−r,q+r−1
r }.

To say that the spectral sequence is “right half plane” is to say Ep,q
r = 0 whenever

p < 0. We say that the spectral sequence converges to the abutment E∗∞
(in our case h∗E(X)) if at each spot (p, q) there are only finitely many non-zero
homomorphisms going in and going out and if there exists a decreasing filtration
{F pEn

∞} on each En
∞ so that

En
∞ =

⋃
p

F pEn
∞, 0 =

⋂
p

F pEn
∞,

F pEn
∞/F

p+1En
∞ = Ep,n−p

R R >> 0.

If X is a C.W. complex then we can define its p-skeleton skp(X) for each p ≥ 0
as the subspace of X consisting of the union of those cells of dimension ≤ p. Then
the filtration on h∗E(X) for the Atiyah-Hirzebruch spectral sequence is given by

F pE∗∞ = ker{h∗E(X) → h∗E(skp(X)}.

While we are discussing spectral sequences, we should mention the following:
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Theorem: Serre spectral sequence. Let (B, b) be a connected, pointed C.W.
complex. For any fibration p : E → B of topological spaces with fibre F = p−1(b) and
for any abelian group A, there exists a convergent first quadrant spectral sequence
of cohomological type

Ep,q
2 = Hp(B,Hq(F,A)) ⇒ Hp+q(E,A)

provided that π1(B, b) acts trivially on H∗(F,A).

The following theorem tells us that topological K-theory tensor the rational
numbers is essentially rational cohomology H∗(−,Q).

Theorem (Atiyah-Hirzebruch). Let X be a C.W. complex. Then there exists
a homomorphism of graded rings

ch : K∗
top(X)⊗Q → H∗(X,Q)

which restricts to isomorphisms

K0
top(X)⊗Q ' Hev(X,Q), K1

top(X)⊗Q ' Hodd(X,Q).

In Lecture V, we shall discuss operations on both topological and algebraic K-
theory. These operations originate from the observation the the exterior products
Λi(P ) of a projective module P are likewise projective modules and the exterior
products Λi(E) of a vector bundle E are likewise vector bundles. The other simple
fact that we use is the following relationship

Λn(V ⊕W ) = ⊕i+j=nΛi(V )⊗ Λj(W )

which one can first check for vector spaces, then extend to either projective modules
or vector bundles.

In particular, J. Frank Adams introduced operations

ψk(−) : K0
top(−) → K0

top(−), k > 0

(called Adams operations) which have many applications. We shall use these
Adams operations in algebraic K-theory, but here is a short list of famous theorems
of Adams using topological K-theory and Adams operations:

Applications (Adams)
(1.) Determination of the number of linearly independent vector fields on the n-sphere

Sn for all n > 1.
(b.) Determination of the only dimensions (namely, n = 1, 2, 4, 8) for which Rn ad-

mits the structure of a division algebra. (The examples of the real numbers
R, the complex numbers C, the quaternions, and the Cayley numbers gives us
structures in these dimensions.)

(c.) Determination of those (now well understood) elements of the homotopy groups
of spheres associated with KO0

top(S
n).

In the remainder of this lecture, I shall review some of the basic concepts of
algebraic geometry.
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Definition III.3. A sheaf of sets F on a topological space X is a contravariant
functor

F : (open sets of X, inclusions) → (sets)

satisfying the sheaf axiom: for any open set U , any open covering {Ui → U}i∈I ,

F (U) = equalizer {
∏
i∈I

F (Ui)
→→

∏
i,j∈I

F (Ui ∩ Uj)}.

In other words, an element s ∈ F (U) (called a “section of F on U”) is uniquely
determined by elements si ∈ F (Ui) which agree on intersections si|Ui∩Uj

= sj|Ui∩Uj

for all i, j ∈ I, where sj|Ui∩Uj
denotes the image of si ∈ F (Ui) under the functorially

given map F (Ui) → F (Ui ∩ Uj).
For any x ∈ X, the stalk of Fx at x is the following set: colimitx∈UF (U).
If the functor F is actually a functor to (groups)(respectively, (abelian groups);

resp., (rings);etc.), then we say that F is a sheaf of groups (resp., sheaf of abelian
groups; resp., sheaf of rings;etc).

Basic Example Let p : E → X be a continuous map. Define an associated sheaf
F by sending an open subset U ⊂ X to the set of continuous functions s : U → E
with the property that p ◦ s : U → X is the inclusion U ⊂ X.

Recall that if A is a commutative ring we denote by SpecA the set of prime
ideals of A. The set X = SpecA is provided with a topology, the Zariski topology
defined as follows: a subset Y ⊂ X is closed if and only if there exists some ideal
I ⊂ A such that Y = {p ∈ X; I ⊂ p}. We define the structure sheaf OX of
commutative rings on X = SpecA by specifying its value on the basic open set
Xf = {p ∈ SpecA, f /∈ p} for some f ∈ A to be the ring Af obtained from A by
adjoining the inverse to f . (Recall that A→ Af sends to 0 any element a ∈ A such
that fn · a = 0 for some n). We now use the sheaf axiom to determine the value
of OX on any arbitrary open set U ⊂ X, for any such U is a finite union of basic
open subsets. The stalk OX,p of the structure sheaf at a prime ideal p ⊂ A is easily
computed to be the local ring Ap = {f /∈ p}−1A.

Thus, (X = SpecA,OX) has the structure of a local ringed space: a topolog-
ical space with a sheaf of commutative rings each of whose stalks is a local ring. A
map of local ringed spaces f : (X,OX) → (Y,OY ) is the data of a continuous map
f : X → Y of topological spaces and a map of sheaves OY → f∗OX on Y , where
f∗OX(V ) = OX(f−1(V )) for any open V ⊂ Y .

If M is an A-module for a commutative ring A, then M defines a sheaf M̃ of
OX -modules on X = SpecA. Namely, for each basic open subset Xf ⊂ X, we
define M̃(Xf ) ≡ Af ⊗A M . This is easily seen to determine a sheaf of abelian
groups on X with the additional property that for every open U ⊂ X, M̃(U) is a
sheaf of OX(U)-modules with structure compatible with restriction to smaller open
subsets U ′ ⊂ U .

Definition III.4. A local ringed space (X,OX) is said to be an affine scheme if
it is isomorphic (as local ringed spaces) to (X = SpecA,OX) as defined above. A
scheme (X,OX) is a local ringed space for which there exists a finite open covering
{Ui}i∈I of X such that each (Ui,OX|Ui

) is an affine scheme.
If k is a field, a k-variety is a scheme (X,OX) with the property there is a finite

open covering {Ui}i∈I by affine schemes with the property that each (Ui,OX|Ui
) '

(SpecAi,OSpecAi
) with Ai a finitely generated k-algebra without nilpotents.
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Example The scheme P1
Z is a non-affine scheme defined by patching together

two copies of the affine scheme SpecZ[t]. So P1
Z has a covering {U1, U2} correspond-

ing to rings A1 = Z[u], A2 = Z[v]. These are “patched together” by identifying the
open subschemes Spec(A1)u ⊂ SpecA1, Spec(A2)v ⊂ SpecA2 via the isomorphism
of rings (A1)u ' (A2)v which sends u to v−1.

Note that we have used SpecR to denote the local ringed space (SpecR,OSpecR);
we will continue to use this abbreviated notation.

Definition. Let (X,OX) be a scheme. We denote by PX the exact category of
sheaves F of OX-modules with the property that there exists a finite open covering
{Ui} of X by affine schemes Ui = SpecAi and free, finitely generated Ai-modules
Mi such that the restriction F|Ui

of F to Ui is isomorphic to the sheaf M̃i on
SpecAi.

We define the algebraic K-theory of the scheme X by setting

K∗(X) = K∗(PX).

In our last two lectures, we will need a generalization of the concept of a topology
on a set, a generalization introduced by Grothendieck for which sheaf theory is still
feasible.

Definition III.5. A Grothendieck site on a scheme (X,OX) consists of a class
C/X of schemes over X (i.e., each provided with a specified morphism to X) closed
under fibre products (i.e., if Y1 → X,Y2 → X ∈ C/X, then Y1 ×X Y2 → X ∈ C/X)
together with a class of morphisms E such that

(a.) all isomorphisms of C/X are in E
(b.) E is closed under composition
(c.) if V → U, V ′ → U ∈ E, then V ×U V ′ → V ′ ∈ E.
(d.) if Y → X ∈ C/X,U → Y ∈ E, then the composition U → X ∈ C/X.

An E-covering {Ui → U}i∈I consists of morphisms in E with the property that
the union of their images equals U .

A sheaf on such a site is a contravariant functor F : C/X → (sets) satisfying
the sheaf axiom: for all E-coverings {Ui → U}i∈I ,

F (U) = equalizer {
∏
i∈I

F (Ui)
→→

∏
i,j∈I

F (Ui ×U Uj)}.

The (Grothendieck) E-topology on the site (C/X, E) is the collection of all
E-coverings for this site. In our next lecture, we will be particularly interested in
the etale topology in which E consists of all etale maps between schemes.


