Algebra 2

Angle Sum and Difference, Double Angle and Half Angle Formulas

Topic Index | Algebra2/Trig Index | Regents Exam Prep Center

Hipparchus, considered to be the most eminent of Greek astronomers (born 160 B.C.), derived the formulas for $\sin (A \pm B)$ and $\cos (A \pm B)$.
The following formulas (or formulae, in Latin) are trigonometric identities.

Sum and Difference Formulas:

$\sin (A+B)=\sin A \cos B+\cos A \sin B$
$\sin (A-B)=\sin A \cos B-\cos A \sin B$
$\cos (A+B)=\cos A \cos B-\sin A \sin B$
$\cos (A-B)=\cos A \cos B+\sin A \sin B$

$$
\begin{aligned}
& \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} \\
& \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}
\end{aligned}
$$

Half Angle Formulas:

$$
\begin{gathered}
\sin \left(\frac{1}{2} A\right)= \pm \sqrt{\frac{1-\cos A}{2}} \\
\cos \left(\frac{1}{2} A\right)= \pm \sqrt{\frac{1+\cos A}{2}} \\
\tan \left(\frac{1}{2} A\right)= \pm \sqrt{\frac{1-\cos A}{1+\cos A}} \\
\tan \left(\frac{1}{2} A\right)=\frac{1-\cos A}{\sin A}=\frac{\sin A}{1+\cos A}
\end{gathered}
$$

Double Angle Formulas:

$$
\begin{aligned}
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =1-2 \sin ^{2} A \\
& =2 \cos ^{2} A-1
\end{aligned}
$$

$$
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
$$

Example 1:

$$
\begin{aligned}
& \text { If } \sin A=\frac{3}{5} \text { and } \cos B=\frac{-12}{13} \text { where } 0 \leq A \leq \frac{\pi}{2} \text { and } \pi \leq B \leq \frac{3 \pi}{2} \\
& \text { find a.) } \cos (A+B) \\
& \quad \text { b.) } \tan (A-B)
\end{aligned}
$$

Solution: The given information produces the triangles shown at the right. The Pythagorean Theorem, or a Pythagorean triple, is used to find the missing sides. Using the information from the triangles, find the answers to parts a and b .
a.)

$$
\begin{aligned}
& \cos (A+B)=\cos A \cos B-\sin A \sin B \\
& \cos (A+B)=\frac{4}{5} \cdot \frac{-12}{13}-\frac{3}{5} \cdot \frac{-5}{13} \\
& \cos (A+B)=\frac{-48}{65}-\frac{-15}{65}=\frac{-33}{65}
\end{aligned}
$$

b.)

$$
\begin{aligned}
\tan (A-B) & =\frac{\tan A-\tan B}{1+\tan A \tan B} \\
& =\frac{\frac{3}{4}-\frac{5}{12}}{1+\frac{3}{4} \cdot \frac{5}{12}}=\frac{16}{63}
\end{aligned}
$$

If you did not know the formula for $\tan (A-B)$, the relationship between tangent, sine and cosine could be used to solve this problem.

$$
\begin{aligned}
& \tan (A-B)=\frac{\sin (A-B)}{\cos (A-B)} \\
& \tan (A-B)=\frac{\sin A \cos B-\cos A \sin B}{\cos A \cos B+\sin A \sin B} \\
& \tan (A-B)=\frac{\frac{3}{5} \cdot \frac{-12}{13}-\frac{4}{5} \cdot \frac{-5}{13}}{\frac{4}{5} \cdot \frac{-12}{13}+\frac{3}{5} \cdot \frac{-5}{13}} \\
& \tan (A-B)=\frac{\frac{-16}{\frac{65}{2}}}{\frac{-63}{65}}=\frac{16}{63}
\end{aligned}
$$

Example 2:

Solution:

The positive square root is chosen because cos 15° lies in Quadrant I.
$\cos 15^{\circ}=\cos \left(\frac{1}{2} 30^{\circ}\right)=+\sqrt{\frac{1+\cos 30^{\circ}}{2}}$
$=+\sqrt{\frac{1+\frac{\sqrt{3}}{2}}{2}}=+\sqrt{\frac{2+\sqrt{3}}{4}}=+\frac{\sqrt{2+\sqrt{3}}}{2}$

Example 3:

Given that $\tan x=\frac{a}{b}$, and $\pi \leq x \leq \frac{3 \pi}{2}$
evaluate in terms of a and b :
a.) $\sin 2 x$
b.) $\tan 2 x$

Tricky one!!

Solution: The given information produces the triangle shown at the right. Note the signs associated with a and b. The Pythagorean Theorem is used to find the hypotenuse. Using the information from the triangle, find the answers to parts a and b.
a.)
$\sin 2 x=2 \sin x \cos x$

$$
\begin{aligned}
& =2 \cdot \frac{-a}{\sqrt{a^{2}+b^{2}}} \cdot \frac{-b}{\sqrt{a^{2}+b^{2}}} \\
& =\frac{2 a b}{a^{2}+b^{2}}
\end{aligned}
$$

b.)

$$
\begin{aligned}
& \tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}=\frac{2 \frac{a}{b}}{1-\left(\frac{a}{b}\right)^{2}} \\
& =\frac{\frac{2 a}{b}}{\frac{b^{2}-a^{2}}{b^{2}}}=\frac{2 a}{b} \cdot \frac{b^{2}}{b^{2}-a^{2}}=\frac{2 a b}{b^{2}-a^{2}}
\end{aligned}
$$

If you did not know the formula for tan $2 x$, you could use the relationship between tangent, sine and cosine to find the answer. This solution will utilize the answer from part a for the numerator.

$$
\begin{aligned}
& \tan 2 x=\frac{\sin 2 x}{\cos 2 x}=\frac{2 \sin x \cos x}{\cos ^{2} x-\sin ^{2} x} \\
& =\frac{\frac{2 a b}{a^{2}+b^{2}}}{\left(\frac{-b}{\sqrt{a^{2}+b^{2}}}\right)^{2}-\left(\frac{-a}{\sqrt{a^{2}+b^{2}}}\right)^{2}}=\frac{\frac{2 a b}{a^{2}+b^{2}}}{\frac{b^{2}-a^{2}}{a^{2}+b^{2}}}=\frac{2 a b}{b^{2}-a^{2}}
\end{aligned}
$$

Topic Index | Algebra2/Trig Index | Regents Exam Prep Center

Created by Donna Roberts
Copyright 1998-2012 http://regentsprep.org
Oswego City School District Regents Exam Prep Center

