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Introduction

The course notes on which this book is based served as the text for the accel-
erated honors analysis course that I have been teaching at Princeton University.
The traditional honors mathematics program at Princeton consists of three one-
semester courses, covering calculus in one variable in the first semester, linear
algebra in the second semester, and calculus in several variables in the third
semester, and was usually taken by undergraduates in their first three semesters.
In recent years undergraduates have entered the university with more experience
in rigorous and abstract mathematics, and have been particularly eager to pass
on to more advanced mathematics courses as quickly as possible. Consequently
as an experiment we tried condensing the contents of the three semesters into a
one-year course, with a fair bit of additional material as well, called the accel-
erated honors analysis course. About a third of the students taking the honors
sequence have chosen the accelerated version, and generally they have done
quite well indeed. The course begins rather abstractly with a background in set
theory and algebra, treats differentiation and integration in several dimensions
from the beginning, treats some standard material on linear algebra of particu-
lar interest in analysis, and ends with differential forms and Stokes’s theorems
in n dimensions, with the classical cases as examples. The course covers a good
deal of material and proceeds quite rapidly. It meets twice weekly, for 90 minute
sessions, but in addition there are tutorial sessions three times a week in the
evening, run by student tutors to help the students read and understand the
somewhat densely written course notes and to provide guidance in aproaching
the problems. Providing these extra sessions is possibly the only way to cover
the material at a not too unreasonable pace. Those students who feel that the
lectures are rather rushed do turn up quite regularly for the tutorial sessions.

During the 2007-2008 academic year Lillian Pierce and I cotaught the third
term of the regular honors course, while she was a graduate student here, and
we reorganized the presentation of the material and the problem assignments;
her suggestions were substantial and she played a significant part in working
through the revisions that year. The goal was to continue the rather abstract
treatment of the underlying mathematical topics following Michael Spivak’s now
classical treatment, but with somewhat more emphasis on differentiation and
somewhat less emphasis on the abstract treatment of differential forms. The
problems were divided into two categories: a first group of problems testing
a basic understanding of the essential topics discussed and their applications,
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iv INTRODUCTION

problems that almost all serious students should be able to solve without too
much difficulty, and a second group of problems covering more theoretical as-
pects and tougher calculations, challenging the students but still not particularly
difficult. The temptation to include a third category of optional very challenging
problems, to introduce interested students to a wider range of other theoretical
and practical aspects, was frustrated by a resounding lack of interest on the
part of the students. When the accelerated course was set up in the 2010 - 2011
academic year I used the notes we had developed for the third term of the reg-
ular course sequence and added additional material at the beginning, including
more linear algebra.

I should like to express here my sincere thanks to the students who compiled
the lecture notes that were the basis for the first version of the course notes:
Robert Haraway, Adam Hesterberg, Jay Holt and Alex Schiller; to the gradu-
ate students who have cotaught the course and have done the major share of
grading the assignments; and to the students who have taken the course these
past few years, for a number of corrections and suggestions for greater clarity. I
would particularly like to thank my colleagues Lillian Pierce, for her many sug-
gestions and very great help in reorganizing the course, and Tadahiro Oh, for a
very thorough review of the notes and a great many very valuable suggestions
and corrections. I owe a particular debt of gratitude to Kenneth Tam for a very
close reading of the last versions of the notes. He pointed out and helped correct
some errors that had slipped into previous revisions; he was an excellent critic
on matters of consistency and clarity; and he suggested some very significant
improvements and additions. The remaining errors and confusion are my own
responsibility though.

Robert C. Gunning
Fine Hall, Princeton University, Summer 2017
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Chapter 1

Algebraic Fundamentals

1.1 Sets and Numbers

Perhaps the basic concept in mathematics is that of a set, an unambiguously
determined collection of mathematical entities. A set can be specified by listing
its contents, as for instance the set A = {w, x, y, z}, or by describing its contents
in any other way so long as the members of the set are fully determined. Among
all sets the strangest is no doubt the empty set, traditionally denoted by ∅,
the set that contains nothing at all, so the set ∅ = { }; this set should be
approached with some caution, since it can readily sneak up unexpectedly as an
exception or counterexample to some mathematical statement if that statement
is not carefully phrased. There is a generally accepted standard notation dealing
with sets, and students should learn it and use it freely. That a belongs to or
is a member of the set A is indicated by writing a ∈ A; that b does not belong
to the set A is indicated by writing b 6∈ A. A set A is a subset of a set B if
whenever a ∈ A then also a ∈ B, and the condition that A is a subset of B is
indicated by writing A ⊂ B or B ⊃ A. There is some variation in the usage
though. With the definition adopted here, A ⊂ B includes the case that A = B
as well as the case that there are some b ∈ B for which b 6∈ A; in the latter
case the inclusion A ⊂ B is said to be a proper inclusion and it is denoted by
A $ B or B % A . In particular ∅ ⊂ A for any set A; for since there is nothing
in the empty set ∅ the condition that anything contained in ∅ is also contained
in A holds vacuously. Sets A and B are said to be equal, denoted by A = B
or B = A, if they contain exactly the same elements, or equivalently if both
A ⊂ B and B ⊂ A.

The intersection of sets A and B, denoted by A ∩ B, consists of those
elements that belong to both A and B, and the union of sets A and B, denoted
by A ∪ B, consists of those elements that belong to either A or B or both.
More generally, for any collection of sets {Aα}, the intersection and union of
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2 CHAPTER 1. ALGEBRAIC FUNDAMENTALS

Figure 1.1: Venn diagrams illustrating the sets A∩B, A∪B, A∆B respectively.

this collection of sets are defined by⋂
α

Aα =
{
a
∣∣∣ a ∈ Aα for all Aα

}
,(1.1) ⋃

α

Aα =
{
a
∣∣∣ a ∈ Aα for some Aα

}
.

Two sets A and B are disjoint if A ∩ B = ∅. The intersection and union
operations on sets are related by

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),(1.2)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

The difference of two sets A and B, denoted by A ∼ B, consists of those a ∈ A
such that a 6∈ B, whether B is a subset of A or not; for clarity ∅ ∼ ∅ = ∅, a
result that might not be altogether clear from the definition of the difference.
Obviously the order in which the two sets are listed is critical in this case; but
there is also the symmetric difference between these two sets, defined by

(1.3) A∆B = B∆A = (A ∼ B) ∪ (B ∼ A) = (A ∪B) ∼ (A ∩B).

The symmetric difference, as well as the intersection and union, can be illus-
trated by Venn diagrams, as in the accompanying Figure 1.1. It is clear from
the definitions that

A ∼ (B ∪ C) = (A ∼ B) ∩ (A ∼ C),(1.4)

A ∼ (B ∩ C) = (A ∼ B) ∪ (A ∼ C).

If A,B,C, . . . are all viewed as subsets of a set E, and that is understood in the
discussion of these subsets, then a difference such as E ∼ A often is denoted just
by ∼ A and is called the complement of the subset A; with this understanding
(1.4) takes the form

∼ (A ∪B) = (∼ A) ∩ (∼ B),(1.5)

∼ (A ∩B) = (∼ A) ∪ (∼ B).

It is worth writing out the proofs of (1.2) and (1.4) in detail if these equations
do not seem evident.

A mapping f : A −→ B from a set A to a set B associates to each a ∈ A
its image f(a) ∈ B. The set A often is called the domain of the mapping and
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the set B the range of the mapping. The mapping f : A −→ B is said to be
injective if f(a1) 6= f(a2) whenever a1 6= a2; it is said to be surjective if for
every b ∈ B there is a ∈ A such that b = f(a); and it is said to be bijective
if it is both injective and surjective. A bijective mapping f : A −→ B is said
to establish a one-to-one correspondence between the sets A and B, since
it associates to each point a ∈ A a unique point b ∈ B, and each point of B
is associated in this way to a unique point of A. A mapping f : A −→ B is
bijective if and only if there is a mapping g : B −→ A such that g(f(a)) = a
for every a ∈ A and f(g(b)) = b for every b ∈ B. Indeed if f is bijective
then it is surjective, so each point b ∈ B is the image b = f(a) of a point
a ∈ A, and f is also injective, so the point a is uniquely determined by b and
consequently can be viewed as the image a = g(b) of a well-defined mapping
g : B −→ A, for which b = f(g(b)); and for any a ∈ A substituting b = f(a) in
the preceding formula shows that f(a) = f

(
g(f(a))

)
, so since f is injective it

follows that a = g(f(a)). Conversely if there is a mapping g : B −→ A such that
g(f(a)) = a for every a ∈ A and f(g(b)) = b for every b ∈ B then the mapping
f is clearly both injective and surjective so it is bijective. The mapping g is
called the inverse mapping to f ; it is usually denoted by g = f−1, and it is a
bijective mapping from B to A. For any mapping f : A −→ B, not necessarily
bijective or injective or surjective, there can be associated to any subset X ⊂ A
its image f(X) ⊂ B, defined by

(1.6) f(X) =
{
f(a) ∈ B

∣∣∣ a ∈ X },
and to any subset Y ⊂ B its inverse image f−1(Y ) ⊂ A, defined by

(1.7) f−1(Y ) =
{
a ∈ A

∣∣∣ f(a) ∈ Y
}
.

The image f(X) may or may not coincide with the range of the mapping f . If
f : A −→ B is injective then clearly it determines a bijective mapping from any
subset X ⊂ A to its image f(X) ⊂ B, so in a sense it describes an injection
of the set X into B. If f : A −→ B is bijective the inverse image f−1(Y ) of a
subset Y ⊂ B is just the image of that subset Y under the inverse mapping f−1;
it should be kept clearly in mind though that f−1(Y ) is well defined even for
mappings f : A −→ B that are not bijective, so mappings for which the inverse
mapping f−1 is not even defined. Thus the notation f−1(Y ) really has two
different meanings, and some care must be taken to distinguish them carefully
to avoid confusion and errors. For any mapping f : A −→ B and any subsets
X1, X2 ⊂ A and Y1, Y2 ⊂ B it is fairly easy to see that

f(X1 ∪X2) = f(X1) ∪ f(X2),(1.8)

f(X1 ∩X2) ⊂ f(X1) ∩ f(X2) but it may be a proper inclusion,

f−1(Y1 ∪ Y2) = f−1(Y1) ∪ f−1(Y2),

f−1(Y1 ∩ Y2) = f−1(Y1) ∩ f−1(Y2);
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this is an instance in which the inverse images of sets are better behaved than
the images of sets. To any mappings f : A −→ B and g : B −→ C there can be
associated the composite mapping g ◦ f : A −→ C defined by

(1.9) (g ◦ f)(a) = g
(
f(a)

)
for all a ∈ A.

The order in which the composite is written should be kept carefully in mind:
g ◦ f is the operation that results from first applying the mapping f and then
the mapping g.

To any set A there can be associated other sets, for example, the set con-
sisting of all subsets of A, sometimes called the power set of A and denoted by
P(A). The power set P(∅) of the empty set is the set that consists of a single ele-
ment, since the only subset of the empty set is the empty set itself; the power set
of the set {a} consisting of a single point has two elements, P({a}) = {{a}, ∅};
and the power set of the set {a, b} consisting of two points has four elements,
P({a, b}) = {∅, {a}, {b}, {a, b}}. To any two sets A,B there can be associated
the set

(1.10) BA =
{
f : A −→ B

}
consisting of all mappings f : A −→ B. If A = {a} consists of a single point
there is the natural bijection φ : B{a} −→ B that associates to any mapping
f ∈ B{a} its image f(a) ∈ B, since the mapping f is fully determined by its
image and any point b ∈ B is the image of the mapping f for which f(a) = b.
On the other hand there is the natural bijection φ : {a}B −→ {a} since there is
a single mapping f ∈ {a}B , the mapping for which a = f(b) for every b ∈ B. If
B = F2 = {0, 1} is the set consisting of two points 0 and 1 there is the natural
bijection ψ : (F2)A −→ P(A) that associates to each mapping f : A −→ F2

the subset Ef = f−1(1) ⊂ A; for the mapping f is determined uniquely by the
subset Ef ⊂ A, since f(x) = 1 if x ∈ Ef and f(x) = 0 if x ∈ A ∼ Ef , and for
any subset E ⊂ A the characteristic function χE of the set E, the mapping
χE : A −→ F2 defined by

(1.11) χE(a) =

 1 if a ∈ E,

0 if a /∈ E,

has the property that χ−1
E (1) = E. The bijective mapping ψ can be viewed as

the identification

(1.12) P(A) = (F2)A;

sometimes the power set P(A) of a set A is denoted just by P(A) = 2A.
Yet a different way of associating to a set A another set is through an

equivalence relation on the set A, a relation between some pairs of elements
a1, a2 ∈ A which is denoted by a1 � a2 and is characterized by the following
three properties:
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(i) reflexivity, a � a for any a ∈ A;
(ii) symmetry, if a1 � a2 then a2 � a1; and
(iii) transitivity, if a1 � a2 and a2 � a3 then a1 � a3.

If � is an equivalence relation on a set A then to any a ∈ A there can be
associated the set of all x ∈ A that are equivalent to a, the subset

(1.13) Aa =
{
x ∈ A

∣∣∣ x � a } ⊂ A,
which by reflexitivity includes in particular a itself. The set Aa is called the
equivalence class of a with respect to the equivalence relation �. Similarly to
any b ∈ A there can be associated the set Ab of all y ∈ A that are equivalent to
b. If c ∈ Aa∩Ab for an element c ∈ A then c � a and c � b so by symmetry and
transitivity a � b; then by symmetry and transitivity again whenever x ∈ Ab
then x � b � a so x � a and consequently x ∈ Aa, hence Ab ⊂ Aa, and
correspondingly Aa ⊂ Ab so that actually Ab = Aa. Thus the set A is naturally
decomposed into a collection of disjoint equivalence classes; the set consisting of
these various equivalence classes is another set, called the quotient of the set
A under this equivalence relation and denoted by A/�. This is a construction
that arises remarkably frequently in mathematics. For example, to any mapping
f : A −→ B between two sets A and B there can be associated an equivalence
relation on the set A by setting a1 �f a2 for two points a1, a2 ∈ A whenever
f(a1) = f(a2); it is quite clear that this is indeed an equivalence relation and
that the quotient A/ �f can be identified with the image f(A) ⊂ B.

The notion of equivalence also is used in a slightly different way, as a relation
among sets rather than as a relation between the elements of a particular set.
For instance the equality A = B of two sets clearly satisfies the three conditions
for an equivalence relation; it is not phrased as an equivalence relation between
elements of a given set but rather as an equivalence relation among various sets,
to avoid any involvement with the paradoxical notion of the set of all sets. As
another example, two sets A,B are simply said to be equivalent if there is a
bijective mapping f : A −→ B; that these two sets are equivalent is indicated
by writing A ↔ B. This notion also clearly satisfies the three conditions for
an equivalence relation among sets. Equivalent sets intuitively are those with
the same “number of elements”, whatever that may mean. One possibility for
giving that notion a definite meaning is merely to use the equivalence relation
itself as a proxy for the “number of elements” in a set, that is, to define the
cardinality of a set A as the equivalence class of that set,

(1.14) #(A) =
{
X
∣∣∣ X is a set for which X ↔ A

}
.

With this definition #(A) = #(B) just means that the sets A and B determine
the same equivalence class, that is, that A ↔ B so that there is a bijective
mapping f : A −→ B.

For sufficiently small sets this notion of cardinality can be made somewhat
more explicit. Consider formal symbols {/, /, . . . , /} , which are constructed
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beginning with the symbol {/}, followed by its successor {/, /} obtained by
adjoining a stroke, followed in turn by its successor {/, /, /} obtained by adjoin-
ing another stroke, and so on; at each stage of the construction the successor
of one of these symbols is obtained by adjoining another stroke to that symbol.
The initial symbol {/} represents the cardinality or equivalence class of sets con-
sisting of the sets that can be obtained by replacing the stroke / by an element
of any set; its successor {/, /} represents the cardinality or equivalence class
of sets consisting of the sets that can be obtained by replacing the strokes /, /
by distinct elements of any set, and so on. The cardinalities thus constructed
form a set N called the set of natural numbers. The natural number that is
the cardinality represented by the symbol {/} is usually denoted by 1, so that
1 = #(X) for any set X consisting of a single element; and if n ∈ N is the
cardinality described by one of the symbols in this construction the cardinality
represented by its successor symbol is denoted by n′ and is called the successor
of n. As might be expected, a customary notation is 2 = 1′, 3 = 2′, and so on.
It is evident from this construction that the set N of natural numbers satisfies
the Peano axioms:

(i) origin, there is a specified element 1 ∈ N;
(ii) succession, to any element a ∈ N there is associated an element
a′ ∈ N, called the successor to a, such that

(ii′) a′ 6= a,
(ii′′) a′ = b′ if and only if a = b, and
(ii′′′) 1 is not the successor to any element of N;

(iii) induction, if E ⊂ N is any subset such that 1 ∈ E and that
a′ ∈ E whenever a ∈ E then E = N.

The axiom of induction is merely a restatement of the fact that the set N is
constructed by the process of considering the successors of cardinalities already
in N. A simple consequence of the axiom of induction is that every element
a ∈ N except 1 is the successor of another element of N; indeed if

E = 1 ∪
{
x ∈ N

∣∣∣ x = y′ for some y ∈ N
}

it is clear that 1 ∈ E and that if x ∈ E then x′ ∈ E so by the induction
axiom E = N. The set N of natural numbers is customarily defined by the
Peano axioms; for it is evident that any set satisfying the Peano axioms can
be identified with the set of natural numbers, by yet another application of the
axiom of induction.

Note particularly that it is not asserted or assumed that the cardinality of
any set actually is a natural number. The sets with cardinalities that are natural
numbers are called finite sets, while the sets that are not finite sets are called
infinite sets. That a set S is infinite is indicated by writing #(S) =∞, a slight
abuse of notation since it does not mean that ∞ is the cardinality of the set S
but just that S is not a finite set. The set N itself is an infinite set. Indeed it
is evident from the definition of the natural numbers that a finite set cannot be
equivalent to a proper subset of itself; but the mapping f : N −→ N ∼ {1} that
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associates to each natural number n its successor n′ is injective by succession
and surjective by the preceding discussion, so N is equivalent to N ∼ {1} hence
N cannot be finite. It is traditional to set #(N) = ℵ0; so if A is any set that is
equivalent to N then #(A) = ℵ0 as well. A set A such that #(A) = ℵ0 is said
to be a countably infinite set, while a set that is either finite or countably
infinite, is called a countable set1.

Induction is also key to the technique of proof by mathematical induction:
If T (n) is a mathematical statement depending on the natural number n ∈ N,
if T (1) is true and if T (n′) is true whenever T (n) is true, then T (n) is true for
all n ∈ N; indeed if E is the set of those n ∈ N for which T (n) is true then
by hypothesis 1 ∈ E and n′ ∈ E whenever n ∈ E, so by the induction axiom
E = N. Many examples of the application of this method of proof will occur in
the subsequent discussion.

There is a natural comparison of cardinalities of sets defined by setting

(1.15) #(A) ≤ #(B) if there is an injective mapping f : A −→ B.

This is well defined, since if A′ ↔ A, B′ ↔ B, and #(A) ≤ #(B) there are
a bijective mapping g : A −→ A′, a bijective mapping h : B −→ B′, and an
injective mapping f : A −→ B; and the composite mapping

f ′ = h ◦ f ◦ g−1 : A′ −→ B′

is an injective mapping hence #(A′) ≤ #(B′). As far as the notation is con-
cerned, it is customary to consider #(B) ≥ #(A) as an alternative way of
writing #(A) ≤ #(B), and to write #(A) < #(B) or #(B) > #(A) to indicate
that #(A) ≤ #(B) but #(A) 6= #(B). Since any finite set can be represented
as a subset of N but does not admit a bijective mapping to N it follows that
n < ℵ0 for any n ∈ N. For any infinite subset E ⊂ N it is the case that
#(E) = #(N) = ℵ0, even if E is a proper subset of N; indeed each element
of E is in particular a natural number n, so when these natural numbers are
arranged in increasing order n1 < n2 < n3 < · · · then the mapping f : E −→ N
that associates to ni ∈ E the natural number i ∈ N is a bijective mapping and
consequently #(E) = #(N). 2 It is somewhat counterintuitive that any infinite
proper subset of N has the same cardinality, or the same number of elements, as
N; if A ⊂ B is a proper subset and both A and B are finite then #(A) < #(B),

1This terminoogiy is not universally accepted, so some caution is necessary when comparing
discussions of these topics; it is not uncommon to use “at most countable” in place of countable
and “countable” in place of countably infinite.

2Actually N is the smallest infinite set, in the sense that if S is any infinite set then
#(N) ≤ #(S). The demonstration though does require the use of the axiom of choice; see the
discussion in the Princeton Companion to Mathematics. Indeed by the axiom of choice it is
possible to choose one of the points of S and to label it x1; since S is infinite there are points
in S other than x1, so by the axiom of choice again it is possible to choose a point in S other
than x1 and to label it x2; and inductively if x1, . . . , xν are labeled there remain other points
in S, since S is infinite, so by the axiom of choice again choose another point and label it
xν+1 = xν′ . That establishes the existence of a subset of S indexed by a subset X = {ν} ⊂ N
of the natural numbers, where X includes 1 and includes ν′ for any ν ∈ X so by the induction
axiom X = N, as desired.
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but that is not necessarily the case for infinite sets. The further examination of
inequalities among cardinalities of sets rests upon the following result, which is
evident for finite sets but not obvious for infinite sets.

Theorem 1.1 (Cantor-Bernstein Theorem) If there are injective mappings
f : A −→ B and g : B −→ A between two sets A and B then there is a bijective
mapping h : A −→ B.

Proof: The mapping f : A −→ B is injective, but its image is not necessarily
all of B; the mapping g is injective so its inverse g−1 : g(B) −→ B is an
injective mapping onto B, but it is defined only on the subset g(B) ⊂ A. That
suggests considering the mapping h0 : A −→ B defined by setting h0(a) = f(a)
for all points a ∈ A ∼ g(B) and h0(a) = g−1(a) for all points a ∈ g(B).
This is indeed a well defined surjective mapping h0 : A −→ B that restricts
to injective mappings on A ∼ g(B) and g(B). However there may be, indeed
actually are, points a1 ∈ A ∼ g(B) and a2 ∈ g(B) for which (g ◦ f)(a1) = a2 so
f(a1) = g−1(a2) and the mapping h0 fails to be injective; the problem thus lies
in points

a1 ∈ (g ◦ f)
(
A ∼ g(B)

)
⊂ g(B).

If all such points are moved into the domain of the mapping f rather than the
domain of the mapping g−1 that solves that problem for such points; but the
mapping h0 may still fail to be injective for a similar reason. The solution is to
introduce the set

C =
(
A ∼ g(B)

)
∪
⋃
n∈N

(g ◦ f)n
(
A ∼ g(B)

)
⊂ A;

since
(
A ∼ g(B)

)
⊂ C then

(
A ∼ C

)
⊂ g(B). In terms of this set introduce

the mapping h : A −→ B defined by

h(x) =

 f(x) if x ∈ C ⊂ A,

g−1(x) if x ∈ (A ∼ C) ⊂ A,

where g−1(x) is well defined on the subset (A ∼ C) ⊂ g(B) since g is injective.
The theorem will be demonstrated by showing that the mapping h : A −→ B
just defined is bijective.

To demonstrate first that h is injective consider any two distinct points
x1, x2 ∈ A and suppose to the contrary that h(x1) = h(x2). If x1, x2 ∈ C then
by definition h(x1) = f(x1) and h(x2) = f(x2) so f(x1) = f(x2), a contradiction
since f is injective. If x1, x2 ∈

(
A ∼ C

)
⊂ g(B) then x1 = g(y1) and x2 = g(y2)

for uniquely determined distinct points y1, y2 ∈ B since g is injective, and by
definition h(x1) = y1 and h(x2) = y2 so y1 = y2, a contradiction. If x1 ∈ C and
x2 ∈

(
A ∼ C

)
then by definition h(x1) = f(x1) and h(x2) = y2 where y2 ∈ B

is the uniquely determined point for which g(y2) = x2. Since h(x1) = h(x2)
it follows that f(x1) = y2 hence x2 = g(y2) = (g ◦ f)(x1). Since x1 ∈ C then
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by the definition of the set C either x1 ∈
(
A ∼ g(B)

)
or there is some n ∈ N

for which x1 ∈ (g ◦ f)n
(
A ∼ g(B)

)
; and in either case x2 = (g ◦ f)(x1) ∈

(g ◦ f)k
(
A ∼ g(B)

)
⊂ C for some k, a contradiction since x2 ∈

(
A ∼ C

)
. That

shows that h is injective.
To demonstrate next that h is surjective, consider a point y ∈ B and let

x = g(y) ∈ A. If x ∈
(
A ∼ C

)
then by definition h(x) = g−1(x) = y. If

x ∈ C it cannot be the case that x ∈
(
A ∼ g(B)

)
since x = g(y) ∈ g(B), so it

must be the case that there is some n ∈ N for which x ∈ (g ◦ f)n
(
A ∼ g(B)

)
;

consequently x = (g ◦ f)(x1) for some point x1 ∈ C. Since g
(
f(x1)

)
= x = g(y)

and g is injective it must be the case that y = f(x1); and since x1 ∈ C then
by definition h(x1) = f(x1) = y. That shows that h is surjective and thereby
concludes the proof.

The Cantor-Bernstein theorem shows that the inequality (1.15) among car-
dinalities of sets satisfies some simple natural conditions; these conditions arise
in other contexts as well, so they will be described here a bit more generally. A
partial order on a set S is defined as a relation x ≤ y among elements x, y ∈ S
of that set with the following properties:

(i) reflexivity, x ≤ x for any x ∈ S;
(ii) antisymmetry, if x ≤ y and y ≤ x then x = y for any x, y ∈ S;
and
(iii) transitivity, if x ≤ y and y ≤ z then x ≤ z for any x, y, z ∈ S.

For example, the set of all subsets of a set S is clearly a partially ordered set if
A ≤ B means that A ⊂ B for any subsets A,B ⊂ S; and the set N of natural
numbers clearly also is a partially ordered set if a ≤ b is defined as in (1.15).
As in the case of equivalence relations, the notion of a partial ordering can
be applied to relations among sets as well as to relation among elements of a
particular set, so in particular it can be applied to the relation #(A) ≤ #(B).

Corollary 1.2 The relation (1.15) is a partial order on the cardinalities of sets.

Proof: The reflexivity of the relation (1.15) is clear since the identity mapping
ι : A −→ A that associates to any a ∈ A the same element ι(a) = a ∈ A
is clearly injective; and transitivity is also clear since if f : A −→ B and
g : B −→ C are injective mappings then the composition g ◦ f : A −→ C
is also injective. Antisymmetry on the other hand is far from clear, but is an
immediate consequence of the Cantor-Bernstein theorem; and that is sufficient
for the proof.

Theorem 1.3 (Cantor’s Theorem) The power set P(A) of any set A has
strictly greater cardinality than A, that is,

(1.16) #
(
P(A)

)
> #(A) for any set A.
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Proof: The mapping that sends each element a ∈ A to the subset {a} ⊂ A is an
injective mapping g : A −→ P(A), hence #(A) ≤ #

(
P(A)

)
. Suppose though

that there is a bijective mapping f : A −→ P(A). The subset

E =
{
x ∈ A

∣∣∣ x /∈ f(x)
}

is a well defined set, possibly the empty set; so since the mapping f is assumed to
be surjective the subset E must be the image E = f(a) of some a ∈ A. However
if a ∈ E then from the definition of the set E it follows that a /∈ f(a) = E,
while if a /∈ E = f(a) then from the definition of the set E it also follows
that a ∈ E; this contradictory situation shows that there cannot be a bijective
mapping f : A −→ P(A) and thereby concludes the proof.

In particular #(N) < #
(
P(N)

)
, so the set of all subsets of the set N of

natural numbers is not a countable set but is a strictly larger set, a set with a
larger cardinality. The set of all subsets of that set is properly larger still, so
there is no end to the size of possible sets. Nonetheless there are many sets that
appear to be considerably larger than N but nonetheless are still countable.

Theorem 1.4 (Cantor’s Diagonalization Theorem) If to each natural num-
ber n ∈ N there is associated a countable set En, then the union E =

⋃
n∈NEn

is a countable set.

Proof: Since each set En is countable the elements of En can be labeled
xn,1, xn,2 and so on; the elements of the union E then can be arranged in
an array

x1,1 x1,2 x1,3 x1,4 · · ·
x2,1 x2,2 x2,3 x2,4 · · ·
x3,1 x3,2 x3,3 x3,4 · · ·
· · · · · · · · · · · · · · · ,

where row n consists of all the elements xn,i ordered by the natural number
i ∈ N. Imagine these elements now rearranged in order by starting with x1,1

then proceeding along the increasing diagonal with x2,1, x1,2, then in the next
increasing diagonal x3,1, x2,2, x1,3 and so on; if row n is finite the places that
would be filled by some terms xn,i are blank so are just ignored in this ordering.
When all of the elements in E are written out in order as

x1,1, x2,1, x1,2, x3,1, x2,2, x1,3, · · ·

and all the duplicated elements are eliminated there is the obvious injection
E −→ N, showing that E is countable.

Corollary 1.5 The set of all finite subsets of N is countable.

Proof: First it follows by induction on n that for any natural number n ∈ N
the set En of all subsets A ⊂ N for which #(A) = n is countable; that is clearly
the case for n = 1, and if En is countable then since

En+1 ⊂
⋃
i∈N

{
{i} ∪A

∣∣∣A ∈ En }
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it follows that En+1 is countable by Cantor’s Diagonalization Theorem and the
observation that a subset of a countable set is countable. Then since all the sets
En are countable it follows again from Cantor’s Diagonalization Theorem that
the set E =

⋃
n∈NEn is countable, which suffices for the proof.
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PROBLEMS, GROUP I:

(1) Write out the proofs of equations (1.4) and (1.8).

(2) Show that A ∪ B = A ∩ B if and only if A = B. Is it true that A ∪ B = A
and A ∩B = B if and only if A = B? Why?

(3) The formula A ∪ B ∩ C ∪ D does not have a well-defined meaning un-
less parentheses are added. What are all possible sets this formula can describe
for possible placements of parenthesis? Illustrate your assertions with suitable
Venn diagrams.

(4) For which pairs of sets A,B is A∆B = A ∪ B? For which pairs of sets
is A∆B = A ∩B? For which pairs of sets is A∆B = A?

(5) If f ∈ BA, if X ⊂ A and if Y ⊂ B show that f
(
X ∩ f−1(Y )

)
= f(X) ∩ Y.

(6) If f ∈ BA is injective and if X1, X2 are subsets of A show that f(X1∩X2) =
f(X1) ∩ f(X2).

(7) Show that the set of all polynomials with rational coefficients is countable.

(8) Is the set of all monotonically increasing sequences of natural numbers (se-
quences of natural numbers aν such that aν ≤ aν+1) countable or not? Why?

PROBLEMS, GROUP II:

(9) Show that the set consisting of all countably long sequences (a1, a2, a3, . . .),
where an = 0 or 1, is not a countable set. Show though that the set consisting
of all countably long sequences (a1, a2, a3, . . .), where an = 0 or 1 but an = 0
for all but finitely many values of n, is countable. Is the set of all sequences
(a1, a2, a3, . . .), where an = 0 or 1 and where the sequences are periodic in the
sense that an+N = an for all n and for some finite number N depending on the
sequence, countable or not? Why?

(10) Is there an infinite set S for which the power set P(S) is countable? Why?

(11) For any mapping f ∈ BA set a1 � a2 if a1, a2 ∈ A and f(a1) = f(a2). Show
that this defines an equivalence relation on the set A. Show that the mapping
f : A −→ B induces an injective mapping F : A/ �−→ B.
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(12) For any given countable collection of sets Am let

A′ =

∞⋃
n=1

∞⋂
m=n

Am and A′′ =

∞⋂
n=1

∞⋃
m=n

Am.

Describe the sets A′ and A′′, and show that A′ ⊂ A′′.

(13) A partition of a set A is a representation of A as a union A =
⋃
αAα

of pairwise disjoint subsets Aα ⊂ A. It was demonstrated on page 5 that to any
equivalence relation a1 � a2 on A there can be associated a partition of A into
equivalence classes. Show that conversely for any partition A =

⋃
αAα of a set

A there is an equivalence relation on A so that the sets Aα are the equivalence
classes. (Your proof shows that an equivalence relation on a set is equivalent to
a partiton of the set, a useful observation.)

(14) To each mapping f ∈ BA associate the mapping f∗ ∈ P(B)P(A) that
associates to any subset X ⊂ A the image f(X) ⊂ B; the mapping f −→ f∗

thus is a mapping φ : BA −→ P(B)P(A). Is the mapping φ injective? surjec-
tive? Why?
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1.2 Groups, Rings and Fields

It is possible to introduce algebraic operations on the cardinalities of sets,
and for this purpose two further constructions on sets are relevant. The union
A∪B of two sets was considered in detail in the preceding section; the disjoint
union A

⊔
B is the union of these two sets when they are viewed as being

formally disjoint, so that if a ∈ A ∩ B then in the disjoint union the element a
is viewed as an element aA ∈ A and a distinct element aB ∈ B. Of course if the
two sets A and B are actually disjoint then A

⊔
B = A ∪ B. The Cartesian

product of the two sets A and B is the set defined by

(1.17) A×B =
{

(x, y)
∣∣∣ x ∈ A, y ∈ B }.

In these terms the sum and product of the cardinalities of sets A and B are
defined by

(1.18) #(A) + #(B) = #(A
⊔
B) and #(A) ·#(B) = #(A×B).

It is fairly clear that these operations are well defined, in the sense that if A′ ↔ A
and B′ ↔ B then (A′

⊔
B′)↔ (A

⊔
B) and (A′×B′)↔ (A×B). In particular

these operations are defined on the natural numbers if the sets are finite and on
the number ℵ0 if the sets are countable. They satisfy the following laws:

(i) the associative law for addition: a+ (b+ c) = (a+ b) + c;
(ii) the commutative law for addition: a+ b = b+ a;
(iii) the associative law for multiplication: a · (b · c) = (a · b) · c;
(iv) the commutative law for multiplication: a · b = b · a; and
(v) the distributive law: (a+ b) · c = a · c+ b · c.

To verify that these laws are satisfied, if a = #(A), b = #(B), and c = #(C)
then b+ c = #(B

⊔
C) so a+ (b+ c) = #

(
A
⊔

(B
⊔
C)
)

= #(A
⊔
B
⊔
C) while

a+ b = #(A
⊔
B) so (a+ b) + c = #

(
(A
⊔
B)
⊔
C
)

= #(A
⊔
B
⊔
C), showing

that a+ (b+ c) = (a+ b) + c. Moreover a+ b = #(A
⊔
B) = #(B

⊔
A) = b+ a.

Then for multiplication b · c = #(B ×C) so a · (b · c) = #
(
A× (B ×C)

)
where

B×C =
{

(b, c)
}

so A× (B×C) =
{(
a, (b, c)

)}
=
{

(a, b, c)
}

; correspondingly

(a · b) · c = #
(
(A×B)× C

)
where (A×B)× C =

{ (
(a, b), c

) }
=
{

(a, b, c)
}

,

and consequently a · (b · c) = (a · b) · c. Moreover a · b = #(A × B) and
b · a = #(B ×A); but the mapping that sends (x, y) ∈ A×B to (y, x) ∈ B ×A
is a bijective mapping so #(A×B) = #(B ×A) and consequently a · b = b · a.
Finally (a+ b) · c = #

(
(A
⊔
B)× C

)
where (A

⊔
B)× C = (A× C)

⊔
(B × C)

so #
(
(A
⊔
B) × C

)
= #

(
(A × C)

⊔
(B × C)

)
= a · c + b · c and consequently

(a+ b) · c = a · c+ b · c.
The algebraic notation is usually simplified by writing ab in place of a ·b and

by dropping parentheses when the associative laws indicate that they are not
needed to specify the result of the operation uniquely, so by writing a+ b+ c in
place of (a+b)+c and abc in place of (a ·b) ·c. Some care must be taken, though,
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since there are expressions in which parentheses are necessary. The expression
a · b + c could stand for either a · (b + c) or (a · b) + c and these can be quite
different. The informal convention is to give the product priority, in the sense
that products are grouped together first; so normally a · b + c is interpreted as
(ab) + c. If there are any doubts, though, it is safer to insert parentheses.

The addition of natural numbers is closely related to other operations on
natural numbers. First, the successor to a natural number a = #(A), where A
is a finite collection of strokes, is identified with the natural number a′ = #(A′),
where A′ is derived from A by adding another stroke; thus A′ = A

⊔
{/} hence

#(A′) = #(A) + #({/}) so

(1.19) a′ = a+ 1 for any a ∈ N.

This provides another interpretation of the successor operation on the natural
numbers and thereby fits that operation into the standard algebraic machinery.
Second, there is the cancellation law of the natural numbers:

(1.20) a+ n = b+ n for a, b, n ∈ N if and only if a = b.

Indeed it is clear that a+n = b+n if a = b, and the converse can be established by
induction on n. For that purpose note that a+1 = b+1 is equivalent to a′ = b′,
which by succession implies that a = b; thus if a+n+1 = b+n+1 for some n ∈ N
then (a + n)′ = (b + n)′ so by succession a + n = b + n and then by induction
a = b. The cancellation law plays a critical role in extending the algebraic
operations on the natural numbers. There is no analogue of the cancellation
law for infinite cardinals; indeed it is easy to see that ℵ0 = ℵ0 + 1 = ℵ0 + 2
and so on, so the cancellation law does not hold in this case. Third, the order
relation a < b for natural numbers, where a = #(A) and b = #(B) for sets
A and B consisting of collections of strokes, indicates that there is an injective
mapping f : A −→ B but that there is not a bijective mapping g : A −→ B;
the collection of strokes B can be viewed as a collection of strokes bijective to
A together with some additional strokes C, hence B = A

⊔
C and therefore

#(B) = #(A) + #(C) so

(1.21) if a, b ∈ N then a < b if and only if b = a+ c for some c ∈ N.

That expresses the order relation for the natural numbers in terms of the group
operations on the natural numbers. There is not a similar characterization of
the order relation a ≤ b since there is no natural number that expresses the
equivalence class of the empty set; that is one reason for seeking an extension
of the natural numbers.

The basic reason for extending the natural numbers though is to introduce
inverses of the algebraic operations of addition and multiplication as far as
possible. To describe the algebraic properties of the extended sets it may be
clearest first to describe these algebraic structures more abstractly. A group
is defined to be a set G with a specified element 1 ∈ G and with an operation
that associates to any elements a, b ∈ G another element a · b ∈ G satisfying
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Figure 1.2: Symmetry group of a rectangle

(i) the associative law: (a · b) · c = a · (b · c) for any a, b, c ∈ G;
(ii) the identity law: 1 · a = a · 1 = a for any a ∈ G;
(iii) the inverse law: to each a ∈ G there is associated a unique
a−1 ∈ G such that a · a−1 = a−1 · a = 1.

The element 1 ∈ G is called the identity in the group, and the element a−1 ∈ G
is called the inverse of the element a ∈ G. A group G is said to be an abelian
group, or equivalently a commutative group, if it also satisfies

(iv) the commutative law: a · b = b · a for all a, b ∈ G.

A group may consist of either finitely many or infinitely many elements; for
a finite group the cardinality of the group is customarily called the order of
the group. An element a of a group is said to have order n if an = 1, the
identity element of the group. Just as in the case of the natural numbers, it is
customary to simplify the notation by writing ab in place of a · b and dropping
parentheses when the meaning is clear, so by writing abc in place of (ab)c. The
cancellation law holds in any group: if a · b = a · c for some a, b, c ∈ G then
b = (a−1 · a) · b = a−1 · (a · b) = a−1 · (a · c) = (a−1 · a) · c = c. Although the
multiplicative notation for the group operation is most common in general, there
are cases in which the additive notation is used. In the additive notation the
group operation associates to any elements a, b ∈ G another element a+ b ∈ G;
the associative law takes the form (a+ b) + c = a+ (b+ c); the identity element
is denoted by 0 and the identity law takes the form a + 0 = 0 + a = a; and
the inverse law associates to each a ∈ G a unique element −a ∈ G such that
a+ (−a) = (−a) + a = 0.

The simplest group consists of just a single element 1 with the group op-
eration 1 · 1 = 1. A more interesting example of a group is the symmetric
group S(A) on a set A, the set of all bijective mappings f : A −→ A, where
the product f · g of two bijections f and g is the composition f ◦ g, the identity
element of S(A) is the identity mapping ι : A −→ A for which ι(a) = a for
all a ∈ A, and the inverse of a mapping f is the usual inverse mapping f−1.
It is a straightforward matter to verify that S(A) does satisfy the group laws.
Even more interesting though are the groups of bijective mappings of a set A
that preserve some additional structures on the set A, often called the groups
of symmetries of these sets. For instance, assuming some familiarity with
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1 a b c
1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

Table 1.1: Cayley table for the group of symmetries of a rectangle

elementary plane geometry, suppose that A is a plane rectangle as in the ac-
companying Figure 1.2 and consider the Euclidean motions of three-space that
are bijective mappings of the rectangle to itself. One motion is the flip a of the
plane around the horizontal axis of the rectangle, a mapping that interchanges
the vertices 1 and 4 and interchanges the vertices 2 and 3. Another motion is the
flip b around the vertical axis of the rectangle, a mapping that interchanges the
vertices 1 and 2 and interchanges the vertices 3 and 4. Repeating each of these
mappings leaves the rectangle unchanged, so a2 = b2 = 1, the identity mapping.
Performing first the flip a and then the flip b interchanges the vertices 1 and 3
and interchanges the vertices 2 and 4, so it amounts to a rotation c = ba of the
plane around the center of the rectangle through an angle of π radians or 180
degrees; and repeating this rotation leaves the rectangle unchanged, so c2 = 1
as well. On the other hand performing the two flips in the other order really
amounts to the same rotation, so c = ab as well. These symmetries thus form
a group of order 4, consisting of the identity mapping 1, the flips a and b and
the rotation c. As for other finite groups, the algebraic operations in this group
can be written as a multiplication table for the group, often called the Cayley
table for the group, as in Table 1.1. The elements of the group are listed in the
top row and the left-hand column; the entry in the table in the row associated
to an element x of the group and the column associated to an element y of the
group is the product x · y in the group. Evidently then the group is abelian if
and only if the Cayley table is symmetric about the main diagonal, as is the
case in Table 1.1. Each row and each column of the Cayley table for any
group must be a list of all the elements of the group with no repetitions; for
the multiplication of the elements of a group G by a fixed element a ∈ G is a
bijective mapping from the group to itself. In table 1.1 the entries along the
principal diagonal are all 1 reflecting that the elements of the group have order
2, so that x2 = 1 for all elements x of the group. This group V of symmetries
of a rectangle thus is a group of order 4 in which each element has order 2; it is
called Klein’s Vierergruppe3.

Another group of order 4 is the group of rotations that preserve a square;
that group consists of the identity mapping, a counterclockwise rotation a of

3Alternatively it is called Klein’s four-group; it was an example examined illustratively
by Felix Klein in his classic book Vorlesungen über das Ikosaeder und die Auflösung der
Gleichungen vom fünften Grade (Lectures on the icosahedron and the solution of equations
of the fifth degree) in 1884.
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1 a b c
1 1 a b c
a a b c 1
b b c 1 a
c c 1 a b

Table 1.2: Cayley table for the group of rotations of a square

π/2 radians or 90 degrees, a counterclockwise rotation b of π radians or 180
degrees, and a counterclockwise rotation c of 3π/2 radians or 270 degrees. These
operations clearly satisfy a2 = b, a3 = c, a4 = 1, so the group can be viewed as
consisting of the products a, a2, a3, a4 = 1. This group Z4 is called the cyclic
group of order 4, and its Cayley table is Table 1.2. It is clear from comparing
Tables 1.1 and 1.2 that the two groups described by these tables are quite
distinct; every element of the first group is of order 2 but that is not the case
for the second group.

IfG is a group andH ⊂ G is a subset such that 1 ∈ H, that a·b ∈ H whenever
a, b ∈ H, and that a−1 ∈ H whenever a ∈ H, then it is clear that the subset H
also has the structure of a group with the group operation of G; such a subset is
called a subgroup ofG. A mapping φ : G −→ H from a groupG to a groupH is
called a homomorphism of groups if φ(a ·b) = φ(a) ·φ(b) for all elements a, b ∈
G. A group homomorphism preserves other aspects of the group automatically.
For instance if 1G denotes the identity element of G and 1H denotes the identity
element of H then since φ(1G) = φ(1G · 1G) = φ(1G) · φ(1G) it follows from
cancellation in H that φ(1G) = 1H ; moreover since φ(a) · φ(a−1) = φ(a · a−1) =

φ(1G) = 1H it follows that φ(a−1) =
(
φ(a)

)−1
. A group homomorphism that

is a bijective mapping is called a group isomorphism; the inverse mapping is
clearly also a group isomorphism φ−1 : H −→ G, and the groups G and H can
be identified through this isomorphism. For example, it is easy to see that any
group of order 4 must be isomorphic either to Klein’s Vierergruppe V or to the
cyclic group Z4, so up to isomorphism there are just two groups of order 4, both
of which are abelian. The smallest nonabelian group is one of order 6.

Groups involve a single algebraic operation; but the natural numbers and
other sets involve two separate algebraic operations. The basic structure of
interest in this context is that of a ring4, defined as a setR with distinct specified
elements 0, 1 ∈ R and with operations that associate to any two elements a, b ∈
R their sum a+ b ∈ R and their product a · b ∈ R such that

(i) R is an abelian group under the sum operation with the identity
element 0 ;
(ii) the product operation is associative and commutative and has
the identity element 1 ∈ R, so that (a ·b) ·c = a · (b ·c) and a ·b = b ·a

4What is called a ring here sometimes is called a commutative ring with an identity, since
there are more general algebraic structures similar to rings but without the assumptions that
multiplication is commutative and that there is a multiplicative identity element.
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and 1 · a = a · 1 = a for any elements a, b, c ∈ R; and
(iii) the operations are distributive, in the sense that a · (b + c) =
a · b+ a · c for any elements a, b, c ∈ R.

The additive inverse of an element a ∈ R is denoted by −a ∈ R. The operation
a+b alternatively is called addition and the operation a·b alternatively is called
multiplication. The additive identity 0 plays a special role in multiplication;
for the distributive law implies that a · 0 = 0 for any a ∈ R, since a = a ·
1 = a · (1 + 0) = a · 1 + a · 0 = a + a · 0 hence by cancellation a · 0 = 0.
Another consequence of the distributive law is that (−a) · b = −(a · b), since
a ·b+(−a) ·b =

(
a+(−a)

)
·b = 0 ·b = 0; therefore of course (−a) · (−b) = a ·b as

well, and in particular (−1)2 = 1. A field is defined to be a ring F for which the
set F× of nonzero elements of F is a group under multiplication; thus a field is
a ring with the additional property that whenever a ∈ F and a 6= 0 then there
is an element a−1 ∈ F for which a a−1 = a−1 a = 1. For both rings and fields
the notation is customarily simplified by writing ab in place of a · b, by dropping
parentheses if the meaning is clear, so by writing a+ b+ c in place of a+ (b+ c)
and abc in place of a(bc), and by writing a − b in place of a + (−b). If R is a
ring a subset S ⊂ R is called a subring if S itself is a ring under the operations
of R, and correspondingly a subfield for fields. A subring S ⊂ R thus must
contain the elements 0, 1, the sum a+b and product ab of any elements a, b ∈ S,
and the additive inverse −a of any element a ∈ S; and in the case of fields S
must contain the multiplicative inverse a−1 of any nonzero element a ∈ S. A
mapping φ : R −→ S between two rings R,S is called a homomorphism of
rings if

(i) φ(a+ b) = φ(a) + φ(b) and φ(a · b) = φ(a) · φ(b) for any a, b ∈ R;
(ii) φ(1R) = 1S for the multiplicative identities 1R, 1S of these two
rings.

Since a ring is a group under addition it follows as for general groups that
φ(0R) = 0S for the additive identities and φ(−a) = −φ(a) for any a ∈ R; but
since R is not a group under multiplication it is necessary to assume that a
homomorphism preserves the multiplicative identity elements. A homomor-
phism of fields has the same definition. A bijective ring or field homomorphism
is called a ring or field isomorphism.

The natural numbers can be extended to a ring by adding enough elements
to provide inverses under addition; however the additional elements must be
chosen so that the extension is actually a ring, that is, so that the associative,
commutative and distributive laws continue to hold for the extended elements.
A convenient way of ensuring this is to construct the extension directly in terms
of the natural numbers and the operations of addition and multiplication of the
natural numbers. Thus consider the Cartesian product N × N consisting of all
pairs {(a, b)} of natural numbers a, b ∈ N and define operations5 on such pairs

5The underlying idea is to view pairs (a, b) as differences a−b of natural numbers, to define
the ring operations as on these differences, and to introduce an equivalence relation among
pairs that describe the same difference a− b.
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by

(1.22) (a, b) + (c, d) = (a+ c, b+ d) and (a, b) · (c, d) = (ac+ bd, ad+ bc).

It is a straightforward matter to verify that these two operations satisfy the
same associative, commutative and distributive laws as the natural numbers, as
a simple consequence of those laws for the natural numbers. The only slightly
complicated cases are those of the associative law for multiplication and the
distributive law, where a calculation leads to(
(a, b)(c, d)

)
(e, f) = (ace+adf+bcf+bed, ade+acf+bce+bdf) = (a, b)

(
(c, d)(e, f)

)
and(
(a, b)+(c, d)

)
(e, f) =

(
ae+bf+ce+df, af+be+cf+de

)
= (a, b)(e, f)+(c, d)(e, f).

Next introduce the equivalence relation on the set N× N defined by

(1.23) (a1, b1) � (a2, b2) if and only if a1 + b2 = a2 + b1.

It is easy to see that this actually is an equivalence relation; indeed reflexivity
and symmetry are obvious, and if (a, b) � (c, d) and (c, d) � (e, f) then a+ d =
b+ c and c+ f = d+ e so (a+ f) + c = a+ (f + c) = a+ (d+ e) = (a+ d) + e =
(b + c) + e = (b + e) + c from which it follows from the cancellation law of
the natural numbers, which must be used in the construction of the extension,
that a + f = b + e hence (a, b) � (e, f). It is an immediate consequence of the
definition of equivalence that

(1.24) (a, b) � (a+ c, b+ c) for any a, b, c ∈ N,

a very useful observation in dealing with this equivalence relation. It is another
straightforward matter to verify that the group operations on N × N preserve
equivalence classes, in the sense that if (a1, b1) � (a2, b2) then(

(a1, b1) + (c, d)
)
�
(

(a2, b2) + (c, d)
)

and(1.25) (
(a1, b1) · (c, d)

)
�
(

(a2, b2) · (c, d)
)
.

The quotient (N × N)/� of the set N × N by this equivalence relation is then
a well defined set, denoted by Z and called the set of integers; the operations
of addition and multiplication are well defined among equivalence classes of
elements of N × N so they are well defined on the set Z, and these algebraic
operations satisfy the same associative, commutative and distributive laws as
the natural numbers. In view of (1.24) for any (a, b) ∈ N× N

(1.26) (a, b) + (1, 1) = (a+ 1, b+ 1) � (a, b)

so the equivalence class of (1, 1) in the quotient Z satisfies the group identity
law; and in addition for any (a, b) ∈ N× N

(1.27) (a, b) + (b, a) = (a+ b, a+ b) � (1, 1)
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so the equivalence class of (b, a) in the quotient Z acts as the additive inverse
of the equivalence class of (a, b) and therefore Z is a well defined ring.

The mapping φ : N −→ Z that associates to any n ∈ N the equivalence class
in Z of the pair (n+ 1, 1) ∈ N×N is an injective mapping, since if (m+ 1, 1) �
(n + 1, 1) then m + 2 = n + 2 so m = n by the cancellation law of the natural
numbers, which is used again here; therefore the mapping φ identifies the natural
numbers with a subset φ(N) ⊂ Z. Furthermore φ(m+n) ∈ Z is the equivalence
class of the pair (m+n+1, 1) � (m+n+1+1, 1+1) =

(
(m+1)+(n+1), 1+1

)
=

(m+ 1, 1) + (n+ 1, 1) while φ(m) +φ(n) ∈ Z is the equivalence class of the pair
(m + 1, 1) + (n + 1, 1), so φ(m + n) = φ(m) + φ(n); on the other hand since
φ(m ·n) is the equivalence class of the pair (m ·n+ 1, 1) while φ(m) ·φ(n) is the
equivalence class of the pair (m+1, 1)·(n+1, 1) =

(
(m+1)·(n+1)+1·1, (m+1)·

1+(n+1) ·1
)

= (mn+1+m+n+1, 1+m+n+1) � (mn+1, 1) in view of (1.24)
so φ(m · n) = φ(m) · φ(n). Thus under the imbedding φ : N −→ Z the algebraic
operations on N are just the restriction of the algebraic operations on Z, so Z is
an extension of the set N with its algebraic operations to a ring. To see what is
contained in the larger set Z that is not contained in the subset N, it is evident
from (1.24) that any pair (m,n) ∈ N×N is equivalent to either (1, 1) or (k+1, 1)
or (1, k+1) where k ∈ N; the equivalence class of (k+1, 1) is in the image φ(N) of
the natural number k, the equivalence class of (1, 1) is the additive identity in Z
but is not contained in φ(N), and the equivalence class of (1, k+1) is the inverse
−φ(k) but is not contained in φ(N); so the only elements in Z not contained in
the image φ(N) are precisely the elements needed to extend the natural numbers
to a ring, in the sense that Z = N t {0} t −N. Whenever (m,n) ∈ N× N then
(m,n) � (m + 1 + 1, n + 1 + 1) = (m + 1, 1) + (1, n + 1) = φ(m) − φ(n), so
the elements of the ring Z can be identified with differences of elements in the
image φ(N) of the natural numbers in the ring Z.

A particularly interesting class of rings are the ordered rings, defined as
rings R with a distinguished subset P ⊂ R such that

(i) for any element a ∈ R either a = 0 or a ∈ P or −a ∈ P , and only
one of these possibilities can occur, and
(ii) if a, b ∈ P then a+ b ∈ P and a · b ∈ P .

The set P is called the set of positive elements of the ring R; and associated
to this set P is the partial order defined by setting a ≤ b if either b = a or
b − a ∈ P . That this is indeed a partial order is clear: it is reflexive since
a ≤ a; it is transitive since if a ≤ b and b ≤ c then b− a ∈ P and c− b ∈ P so
c− a = (c− b) + (b− a) ∈ P ; and it is antisymmetric since if a ≤ b then either
b = a or b − a ∈ P and if b ≤ a then either b = a or a − b ∈ P , and since it
cannot be the case that both b− a ∈ P and a− b ∈ P it must be the case that
a = b. Actually it is a rather special partial order, a linear order, meaning
that for any a, b ∈ R either b− a = 0 or b− a ∈ P or a− b ∈ P and only one of
these possibilities can arise; and these possibilities correspond to the relations
a = b, a < b and b < a respectively. The relation of set inclusion A ⊂ B is
an example of a partial order that is not a linear order. As usual for an order
a < b is taken to mean that a ≤ b but a 6= b, and b ≥ a is equivalent to a ≤ b



22 CHAPTER 1. ALGEBRAIC FUNDAMENTALS

while b > a is equivalent to a < b. Since a = a− 0 it is clear that a > 0 if and
only if a ∈ P , so the positive elements of the ordered ring are precisely those
elements a ∈ R for which a > 0; note particularly that the additive identity
0 is not considered a positive element. It may be useful to list a few standard
properties of the order in an ordered ring.

(i) If a ∈ R and a 6= 0 then a2 > 0; for if a ∈ P then a2 ∈ P , while
if a /∈ P then −a ∈ P and a2 = (−a)2 ∈ P .
(ii) The multipicative identity is positive, that is 1 > 0, since 1 = 12.
(iii) If a ≤ b and c > 0 then ca ≤ cb, for if b− a ∈ P and c ∈ P then
c · (b− a) ∈ P .
(iv) If a ≤ b and c < 0 then ca ≥ cb, for if b− a ∈ P and c < 0 then
−c ∈ P and c(a− b) = (−c)(b− a) ∈ P ;
(v) If a ≤ b then −a ≥ −b, for (−a)− (−b) = b− a ∈ P .

For the special case of the ring Z it is clear that the subset φ(N) satisfies the
condition to be the set of positive elements defining the order on Z; these ele-
ments are called the positive integers, noting again that with this convention
0 is not considered a positive integer.

Some interesting additional examples of rings can be derived from the ring
Z by considering for any n ∈ N the equivalence relation defined by

(1.28) a ≡ b (mod n) if and only if a− b = nx for some x ∈ Z.

It is easy to see that if a1 ≡ a2 (mod n) and b1 ≡ b2 (mod n) then (a1 + b1) ≡
(a2 + b2) (mod n) and (a1 · b1) ≡ (a2 · b2) (mod n); hence the operations of
addition and multiplication can be defined on equivalence classes, providing the
natural structure of a ring on the quotient; that quotient ring is often denoted
by Z/nZ. This ring is not an ordered ring; for if it were an ordered ring then
1 + 1 + · · · + 1 > 0 for any such sum since 1 > 0, but the sum of n copies
of 1 is 0. It is amusing and instructive to write out the detailed addition and
multiplication tables for some small values of n.

To any ring R it is possible to associate another ring R[x] called the poly-
nomial ring over the ring R. The elements p(x) ∈ R[x] are formal polynomials
in a variable x, expressions of the form

(1.29) p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

with coefficients aj ∈ R; they can be written more succinctly and more con-
veniently in the form p(x) =

∑n
j=0 ajx

j . If an 6= 0 the polynomial is said to
have degree n, the term anx

n is the leading term of the polynomial and the
coefficient an is the leading coefficient. The ring R is naturally imbedded as a
subset of R[x] by viewing any a ∈ R as a polynomial of degree 0. A polynomial
really is just a string (a0, a1, . . . , an) of finitely many elements ai ∈ R in the
ring, written out as in (1.29) for convenience in defining the algebraic opera-
tions. Two polynomials always can be written in the form p(x) =

∑n
j=0 ajx

j

and q(x) =
∑n
k=0 bkx

k for the same integer n, since some of the coefficients aj



1.2. GROUPS, RINGS AND FIELDS 23

or bk can be taken to be zero. The sum of these polynomials is defined by

p(x) + q(x) =

n∑
j=0

(aj + bj)x
j

so is just the sum of the corresponding coefficients; and their product is defined
by

p(x) · q(x) =

n∑
j,k=0

ajbkx
j+k

so is a collection of products of a coefficient of p(x) and a coefficient of q(x)
grouped by powers of the variable x. It is a straightforward matter to verify
that R[x] is a ring with these operations, where the additive identity is the
identity 0 of the ring R and the multiplicative identity is the multiplicative
identity 1 of the ring R.

In rings such as Z/6Z there are nonzero elements such as the equivalence class
a of the integer 2 and the equivalence class b of the integer 3 for which a · b = 0.
Such elements cannot possibly have multiplicative inverses; for that would imply
that b = (a−1 ·a) ·b = a−1 ·(a ·b) = a−1 ·0 = 0, a contradiction. A ring for which
a · b = 0 implies that either a = 0 or b = 0 is called an integral domain. It is
clear that any ordered ring R is an integral domain; for if R is an ordered ring,
if a, b ∈ R and neither of these two elements is zero, then ±a ∈ P and ±b ∈ P
for some choice of the signs and consequently ±(a · b) = (±a) · (±b) ∈ P for the
appropriate sign so a · b 6= 0. In an integral domain the cancellation law holds:
if a · c = b · c where c 6= 0 then 0 = bc− ac = (b− a) · c and since c 6= 0 it follows
that b−a = 0 so b = a. Any field obviously is an integral domain; but there are
integral domains, such as the ring of integers Z, that are not fields. However any
integral domain R actually can be extended to a field. To see this, consider the
Cartesian product R×R× consisting of all pairs (a, b) where a, b ∈ R and b 6= 0;
and define6 operations of addition and multiplication of elements of R×R× by

(1.30) (a, b) + (c, d) = (ad+ bc, bd) and (a, b) · (c, d) = (ac, bd).

Introduce the equivalence relation on the set R×R× defined by

(1.31) (a1, b1) � (a2, b2) if and only if a1 · b2 = a2 · b1.

It is easy to see that this actually is an equivalence relation. Indeed reflexivity
and symmetry are trivial; and for transitivity if (a1, b1) � (a2, b2) and (a2, b2) �
(a3, b3) then a1b2 = a2b1 and a2b3 = a3b2 so a1b2b3 = b1a2b3 = b1a3b2 and
consequently (a1b3 − a3b1)b2 = 0 so a1b3 − a3b1 = 0 by the cancellation law. It
is an immediate consequence of the definition of equivalence that

(1.32) (a, b) � (a · c, b · c) if c 6= 0,

6The idea of this construction is to introduce formally the quotients a/b of pairs of elements
of the ring integers for which b 6= 0; and the definitions of the sum and product of two pairs
are defined with this in mind.
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a very useful observation in dealing with this equivalence relation. It is a
straightforward matter to verify that addition and multiplication on R × R×
preserve equivalence classes, in the sense that if (a1, b1) � (a2, b2) so that
a1b2 = a2b1 then (

(a1, b1) + (c, d)
)
�
(

(a2, b2) + (c, d)
)

and(1.33) (
(a1, b1) · (c, d)

)
�
(

(a2, b2) · (c, d)
)
.

Therefore these operations can be defined on set of equivalence classes and
it is readily verified that this set is a ring under these operations, with the
additive identity element the equivalence class of (0, 1), the multiplicative iden-
tity element the equivalence class of (1, 1), and the additive inverse −(a, b) the
equivalence class of (−a, b). The only slightly complicated case is that of the
associative law of addition, where a calculation leads to

(a, b) +
(
(c, d) + (e, f)

)
=
(
adf + bcf + bde, bdf

)
=
(
(a, b) + (c, d)

)
+ (e, f).

The quotient F = (R × R×)/� of the set R × R× by this equivalence relation
is then a well defined ring. If a 6= 0 and b 6= 0 then (b, a) · (a, b) = (a · b, a · b) �
(1, 1), since the product a · b is nonzero in an integral domain; thus (b, a) is the
multiplicative inverse of (a, b), and consequently F is a field. This field is called
the field of quotients of the ring R. The mapping φ : R −→ F that sends
an element a ∈ R to the equivalence class φ(a) ∈ F of the element (a, 1) ∈
R × R× is clearly an injective mapping for which φ(a1 + a2) = φ(a1) + φ(a2)
and φ(a1 · a2) = φ(a1) · φ(a2); in this way R can be realized as a subset of F
such that the algebraic operations of R are compatible with those of F .

In particular since the ring Z is an ordered ring, hence an integral domain,
it has a well defined field of quotients, denoted by Q and called the field of
rational numbers. Any rational number in Q can be represented by the
equivalence class of a pair (a, b) ∈ Z×Z×; and since (a, b) = (a, 1) · (1, b) then if
φ(a) is the equivalence class of (a, 1) and φ(b)−1 is the equivalence class of (1, b)
it follows that φ(a) · φ(b)−1 is the equivalence class of (a,b), so any rational can
be represented by the product a ·b−1 for some integers a, b, and as in (1.32) that
rational also can be represented by the product (a · c)(b · c)−1 for any nonzero
integer c. It is customary to simplify the notation by setting a · b−1 = a/b, so
that rationals can be represented by quotients a/b for integers a, b. The field Q
is an ordered field, where the set P of positive elements is defined as the set of
rationals a/b where a > 0 and b > 0. To verify that, any rational other than
0 can be represented by a quotient a/b of integers; if the integers are of the
same sign then after multiplying both by −1 if necessary both will be positive
so a/b ∈ P ; but if they are of opposite signs the quotient a/b can never be
represented by a quotient of two positive integers so a/b /∈ P . It is clear that
if a/b and c/d are both in P then so are (a/b) + (c/d) and (a/b) · (c/d), so P
can serve as the positive elements in the field Q. The natural numbers are a
countably infinite set, as already noted. Since the integers can be decomposed
as the union Z = {0} t N t −N of countable sets, where N is identified with
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the positive integers, then the ring Z is also a countably infinite set. The set
of all pairs of integers is also countably infinite, by Cantor’s Diagonalization
Theorem; and since the rationals can be imbedded in the set of pairs Z × Z
by selecting a representative pair for each equivalence class in Q it follows that
the field Q is also a countably infinite set. This is yet another example of
sets N ⊂ Z ⊂ Q where the inclusions are strict inclusions but nonetheless
#(N) = #(Z) = #(Q) = ℵ0.

The rationals Q form an ordered field, but one that is still incomplete for
many purposes. For instance although there are rational numbers x such as
x = 1 for which x2 < 2 and rational numbers such as x = 2 for which x2 > 2,
there is no rational number x for which x2 = 2, a very old observation7. However
the rationals can be extended to a larger field R, the field of real numbers,
which does include a number x for which x2 = 2, among many other delightful
properties. This is a rather more difficult extension to describe than those from
the natural numbers to the integers or from the integers to the rationals; indeed
in a sense it is not a purely algebraic extension. Hence the discussion here will
begin with an axiomatic definition of the field R of real numbers; the actual
construction of this field as an extension of the rationals, which amounts to
a verification that the field R described axiomatically actually exists, and the
demonstration of its uniqueness, will be deferred to the Appendix to Section
2.2. To begin more generally, suppose that F is an ordered field, where the
order is described by a subset P ⊂ F of positive elements. A nonempty subset
E ⊂ F is bounded above by a ∈ F if x ≤ a for all x ∈ E, and correspondingly
it is bounded below by b ∈ F if x ≥ b for all x ∈ E. That E is bounded
above by a is indicated by writing E ≤ a, and that E is bounded below by b
is indicated by writing E ≥ b; more generally E1 ≤ E2 indicates that x1 ≤ x2

for any x1 ∈ E1 and x2 ∈ E2. A subset is just said to be bounded above if
it is bounded above by some element of the field F , and correspondingly for
bounded below. If E ⊂ F is bounded above, an element a ∈ F is said to be the
least upper bound or supremum of the set E if

(i) E ≤ a, and
(ii) if E ≤ x then x ≥ a;

the least upper bound of a set E is denoted by sup(E). Correspondingly if
E ⊂ F is bounded below, an element b ∈ F is said to be the greatest lower
bound or infimum of the set E if

(i) E ≥ b, and
(ii) if E ≥ y then y ≤ b;

the greatest lower upper bound of a set E is denoted by inf(E). It is evident
that if −E = { −x ∈ F | x ∈ E } then sup(−E) = − inf(E).

7This is often attributed to the school of Pythagoras, an almost mythical mathematician
who lived in the sixth century BCE in Greece; see for instance the Princeton Companion
to Mathematics. Suppose that a, b ∈ N are any natural numbers for which (a/b)2 = 2,
or equivalently a2 = 2b2, where it can be assumed that not both a and b are multiples of
2. Since a2 is a multiple of 2 then a itself must be a multiple of 2, so a = 2c; but then
4c2 = (2c)2 = a2 = 2b2 so b must also be a multiple of 2, a contradiction.
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For a general ordered field it is not necessarily the case that a set that is
bounded above has a least upper bound, or that a set that is bounded below
has a greatest lower bound; as noted earlier, the set of rational numbers x ∈ Q
satisfying x2 < 2 is bounded above but has no least upper bound. An ordered
field with the property that any nonempty set that is bounded above has a
least upper bound is called a complete ordered field. For any such field it
is automatically the case that any nonempty set that is bounded below has a
greatest lower bound, since sup(−E) = − inf(E) hence inf(E) = − sup(−E).

The set R of the real numbers is defined to be a complete ordered field.
That there exists such a field and that it is uniquely defined up to isomorphism
remain to be demonstrated; so for the present just assume that R is a complete
ordered field. There is a natural mapping φ : N −→ R defined inductively
by φ(1) = 1 and φ(n + 1) = φ(n) + 1, where 1 denotes either the identity
1 ∈ N or the multiplicative identity 1 ∈ R as appropriate and n+ 1 = n′ is the
successor to n in N. Since φ(1) = 1 > 0 in R then φ(2) = φ(1) + φ(1) > 0 in
R as well, and by induction it follows that φ(k) > 0 for every natural number
k ∈ N. Moreover φ(n + k) = φ(n) + φ(k) for all n, k ∈ N, by induction on k,
so φ(n + k) > φ(n) for any n, k ∈ N; consequently the mapping φ is injective.
By yet another induction on k it follows that φ(n · k) = φ(n) · φ(k), so the
mapping φ preserves both of the algebraic operations. The ring Z of integers
was constructed in terms of pairs (a, b) of natural numbers. If the mapping φ
is extended to a mapping φ : N2 −→ R by setting φ(a, b) = φ(a) − φ(b) it is
a straightforward calculation to verify that φ

(
(a, b) + (c, d)

)
= φ(a, b) + φ(c, d)

and φ
(
(a, b) · (c, d)

)
= φ(a, b) · φ(c, d) in terms of the algebraic operations on

N2 as defined in (1.22), and that φ(a, b) = φ(c, d) whenever (a, b) � (c, d)
for the equivalence relation (1.23); this extension thus determines a mapping
φ : Z −→ R that is a homomorphism of rings. If φ(m) = φ(n) for some
m,n ∈ Z then φ(m + k) = φ(n + k) for any integer k; there is an integer k
so that m + k and n + k are contained in the subset N ⊂ Z, and since the
mapping φ is injective on that subset it must be the case that m + k = n + k
hence that m = n. That shows that the ring homomorphism φ : Z −→ R is
also injective. The ring Z is an integral domain, and the field Q of rational
numbers is constructed in terms of pairs (a, b) of integers by the quotient field
construction for any integral domain. If the mapping φ : Z −→ R is extended
to a mapping φ : Z × Z× −→ R by setting φ(a, b) = φ(a) · φ(b)−1 it is also a
straightforward calculation to verify that φ

(
(a, b) + (c, d)

)
= φ(a, b) + φ(c, d)

and φ
(
(a, b) · (c, d)

)
= φ(a, b) · φ(c, d) in terms of the algebraic operations on

Z × Z× as defined in (1.30), and that φ(a, b) = φ(c, d) whenever (a, b) � (c, d)
for the equivalence relation (1.31); this extension thus determines a mapping
φ : Q −→ R which is a homomorphism of fields, and it is readily seen to be
an injective homomorphism by the analogue of the argument used to show that
the ring homomorphism φ : Z −→ R is injective. Thus the field Q of rationals
can be viewed as a subfield of the field R of real numbers, and will be so viewed
subsequently; each rational number p/q can be identified with a well defined
real number.
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Theorem 1.6 For any real number a > 0 there is an integer n with the property
that 1/n < a < n; and for any real numbers a < b there is a rational number r
with the property that a < r < b.

Proof: If it is not true that there is an integer n1 such that n1 > a then n ≤ a
for all integers n so the subset N ⊂ R is a nonempty set that is bounded above;
and since the real numbers form a complete ordered field the set N must have
a least upper bound b. The real number b − 1 then is not an upper bound for
the set N, so there is some integer n > b− 1; but in that case n+ 1 > b, so that
b cannot be an upper bound of the set N, a contradiction. It follows that the
assumption that there is not an integer n1 > a is false, hence there is an integer
n1 > a. In particular there is also an integer n2 >

1
a , and then 0 < 1

n2
< a. If

n ≥ n1 and n ≥ n2 then 1/n < a < n.
If a < b then by what has just been shown there is an integer n0 such

that 1
n0

< (b − a). The set S ⊂ R of rational numbers m
n0

for all m ∈ Z for
which m

n0
≤ a has the upper bound a, hence it has a least upper bound r ∈ R.

Since r − 1
2n0

is not an upper bound of S there must be some rational number
m0

n0
∈ S for which r − 1

2n0
< m0

n0
, and m0

n0
≤ a since m0

n0
∈ S. On the other hand

m0+1
n0

= m0

n0
+ 1

n0
≥ r + 1

2n0
> r and consequently m0+1

n0
/∈ S so m0+1

n0
> a; and

m0+1
n0
≤ a+ 1

n0
< b so that a < m0+1

n0
< b, which suffices for the proof.

In particular for any real number r ∈ R for which r > 0 there are integers
n ∈ Z such that n > r and 1

n < r; an ordered field with this property is called
an archimedian field. Furthermore for any two real numbers r1 < r2 there
are rational numbers p

q such that r1 < p
q < r2; so any real number can be

approximated as closely as desired by rational numbers. On the other hand the
field R as defined axiomatically is sufficiently complete that, for example, any
positive real number has a unique positive square root. To demonstrate that,
for any r ∈ R for which r > 0 introduce the sets of real numbers

X =
{
x ∈ R

∣∣∣ x > 0, x2 < r
}

and Y =
{
y ∈ R

∣∣∣ y > 0, y2 > r
}
.

These sets are clearly nonempty and x < y for any x ∈ X and y ∈ Y ; so by
the completeness property of the real numbers there are real numbers x0, y0 for
which x0 = sup(X) and y0 = inf(Y ). Any y ∈ Y is an upper bound for X so
it must be greater than the least upper bound of X, thus x0 ≤ y; and x0 is a
lower bound for Y so it must be less than the greatest lower bound of Y , thus
x0 ≤ y0. If x2

0 < r then x2
0 = r − ε for some ε > 0, and if a = 2x0 + 1 and h is

a real number for which 0 < h < min(1, ε/a) then 2x0h+ h2 < (2x0 + 1)h = ah
so

(x0 + h)2 = x2
0 + 2x0h+ h2 < r − ε+ ah < r;

thus (x0+h) ∈ X, which is a contradiction since x0 = sup(X), and consequently
x2

0 ≥ r. On the other hand if y2
0 > r then y2

0 = r + ε for some ε > 0, and if
0 < h < min(y0, ε/2y0) then

(y0 − h)2 = y2
0 − 2y0h+ h2 > r + ε− 2y0h > r;
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thus (y0− h) ∈ Y , which is a contradiction since y0 = inf(Y ), and consequently
y2

0 ≤ r. Altogether then r ≤ x2
0 ≤ y2

0 ≤ r hence x2
0 = y2

0 = r. The uniqueness of
the square root of course is clear.
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PROBLEMS, GROUP I:

(1) Verify that the operations on pairs of natural numbers defined in equa-
tion (1.22) satisfy the same associative, commutative and distributive laws as
do the corresponding operations on the natural numbers, and that these oper-
ations are compatible with the equivalence relation on these pairs, in the sense
that equation (1.25) holds.

(2) (i) Show that the power set P(A) of a set A is an abelian group, where
the group operation is the symmetric difference A∆B of sets.
(ii) What is the order of this group?
(iii) Write out the multiplication table for this group in the special case that
#(A) = 2.

(3) Write out the Cayley table for the group of symmetrices of an equilateral
triangle (a group of order 6, the smallest nonabelian group).

(4)(i) Show that if G is a group and if (ab)n = 1 for some elements a, b ∈ G and
some natural number n then (ba)n = 1.
(ii) Show that if G is a group for which a2 = 1 for any elements a ∈ G then G
is an abelian group.

(5) Show that in an abelian group the mapping a −→ an for a positive in-
teger n is a group homomorphism. Find an example of a nonabelian group for
which this mapping is not a group homomophism.

(6) In an ordered ring R the absolute value |x| of an element x ∈ R is de-
fined by

|x| =

 x if x ≥ 0,

−x if x < 0.

Show that:
(i) |x| ≥ 0 for all x ∈ R and |x| = 0 if and only if x = 0;
(ii) |xy| = |x||y| for any x, y ∈ R;
(iii) |x+ y| ≤ |x|+ |y| for any x, y ∈ R.

PROBLEMS, GROUP II:

(7) The addition and multiplication of cardinal numbers are defined by #(A) +
#(B) = #(AtB) and #(A) ·#(B) = #(A×B) for any sets A,B, finite or not.
(i) Show that n+ ℵ0 = ℵ0 + ℵ0 = ℵ0 for any n ∈ N.
(ii) Show that ℵ0 · ℵ0 = ℵ0.
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(8) (i) Show that the ring Z/4Z with 4 elements is not an integral domain.
(ii) Construct a field consisting of precisely 4 elements. [Suggestion: Begin with
the field F2 of two elements, and considering the set of pairs (a1, a2) of elements
a1, a2 ∈ F2 with the algebraic operations

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2),

(a1, a2) · (b1, b2) = (a1b1 + a2b2, a2b1 + a1b2 + a2b2).

Remember that −a = a in the field F2. (An alternative way of describing the
preceding algebraic operations is to write the pairs (a1, a2) as a1 + εa2 for some
entity ε and to add and multiply these expressions as polynomials in ε where it
is assumed that ε2 + ε+ 1 = 0; this may remind you of the standard definition
of complex numbers.)

(9) Show that a finite integral domain is a field.

(10) Suppose that φ : F −→ G is a mapping from a field F to a field G that
preserves the algebraic operations, in the sense that φ(a+ b) = φ(a) + φ(b) and
φ(ab) = φ(a)φ(b) for all a, b ∈ F .
(i) Show that φ(a− b) = φ(a)− φ(b) for all a, b ∈ F .
(ii) Show that φ(0F ) = 0G where 0F is the zero element of the field F and 0G
is the zero element in the field G.
(iii) Show that either φ(a) = 0G for all a ∈ F or φ(a) 6= φ(b) whenenver a, b ∈ F
and a 6= b.
(iv) Show that if φ(a) 6= 0 for some element a ∈ F then the image of φ is a
subfield of G.
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1.3 Vector Spaces

A vector space over a field F is defined to be a set V on which there are two
operations, addition, which associates to v1,v2 ∈ V an element v1 + v2 ∈ V ,
and scalar multiplication, which associates to a ∈ F and v ∈ V an element
av ∈ V , such that

(i) V is an abelian group under addition;
(ii) scalar multiplication is associative:

(ab)v = a(bv) for any a, b ∈ F and v ∈ V ;
(iii) the multiplicative identity 1 ∈ F is also the identity for scalar
multiplication:

1v = v for all v ∈ V ;
(iv) the distributive law holds for addition and scalar multiplication:

a(v1 + v2) = av1 + av2 and (a1 + a2)v = a1v + a2v
for all a, a1, a2 ∈ F and v,v1,v2 ∈ V .

Note that the definition of a vector space involves both the set V and a particular
field F . The elements of V are called vectors, and usually will be denoted by
bold-faced letters; the elements of the field F are called scalars in this context.
If 0 ∈ F is the additive identity in the field and v ∈ V is any vector in the
vector space then 0v = (0+0)v = 0v+0v, so since V is a group under addition
it follows that 0v is the identity element of that group; that element is denoted
by 0 ∈ V and is called the zero vector. The simplest vector space over any
field F is the vector space consisting of the zero vector 0 alone; it is sometimes
called the trivial vector space or the zero vector space and usually it is
denoted just by 0.

A standard example of a vector space over a field F is the set Fn consisting
of n-tuples of elements in the field F . The common practice, which will be
followed systematically here, is to view a vector v ∈ Fn as a column vector

(1.34) v =

x1

...
xn


where xi ∈ F are the coordinates of the vector v. Associated to any vector
v ∈ Fn though there is also its transposed vector tv, the row vector

(1.35) tv = (x1, . . . , xn);

this alternative version of a vector does play a significant role other than just
notational convenience, for instance in matrix multiplication. Sometimes for
notational convenience a vector is described merely by listing its coordinates,
so as

(1.36) v = {xj} = {x1, . . . , xn},

although the vector still will be viewed as a column vector. The sum of two
vectors is the vector obtained by adding the coordinates of the two vectors, and
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the scalar product of a scalar a ∈ F and a vector v ∈ V is the vector obtained
by multiplying all the coordinates of the vector by a; thus

(1.37)

x1

...
xn

+

y1

...
yn

 =

x1 + y1

...
xn + yn

 and a

x1

...
xn

 =

a x1

...
a xn

 if a ∈ F.

It is clear that Fn is a vector space over the field F with these operations.
A nonempty subset V0 ⊂ V for which v1 + v2 ∈ V0 whenever v1,v2 ∈ V0

and av ∈ V0 whenever a ∈ F and v ∈ V0 is called a linear subspace of
V , or sometimes a vector subspace of V ; clearly a linear subspace is itself
a vector space over F . To a linear subspace V0 ⊂ V there can be associated
an equivalence relation in the vector space V by setting v1 � v2 (mod V0)
whenever v1 − v2 ∈ V0. This is clearly an equivalence relation: it is reflexive
since v1 − v1 = 0 ∈ V0; it is symmetric since if v1 − v2 ∈ V0 then (v2 − v1) =
−(v1 − v2) ∈ V0; and it is transitive since if v1 − v2 ∈ V0 and v2 − v3 ∈ V0

then v1 − v3 = (v1 − v2) + (v2 − v3) ∈ V0. The equivalence class of a vector
v ∈ V is the subset v + V0 =

{
v + w

∣∣w ∈ V0

}
⊂ V . If v1 � v′1 and v2 � v′2

then (v1 + v2)− (v′1 + v′2) = (v1 − v′1) + (v2 − v′2) ∈ V0 since v1 − v′1 ∈ V0 and
v2−v′2 ∈ V0, hence v1+v2 � v′1+v′2; and similarly (av1−av′1) = a(v1−v′1) ∈ V0

so av1 � av′1. Thus the algebraic operations on the vector space V extend to
the set of equivalence classes, which then also has the structure of a vector space
over the field F . This vector space is denoted by V/V0 and is called the quotient
space of V by the subspace V0, or alternatively the vector space V modulo
V0. For example the subset of Fn consisting of vectors for which the first m
coordinates are all zero where 0 < m < n is a vector subspace V0 ⊂ Fn. Two
vectors in Fn are equivalent modulo V0 precisely when their first m coordinates
are the same, so the equivalence class is described by the first m coordinates;
hence the quotient space Fn/V0 can be identified with the vector space Fm.

If V1, V2 ⊂ V are two linear subspaces of a vector space V over a field F it is
clear that their intersection V1∩V2 is a linear subspace of V . If the intersection is
the zero subspace, consisting only of the zero vector 0, the two linear subspaces
are said to be linearly independent. The sum of any two subspaces is the
subset

(1.38) V1 + V2 =
{

v1 + v2

∣∣∣ v1 ∈ V1, v2 ∈ V2

}
⊂ V,

and it is easy to see that it also is a linear subspace of V . The sum of two
linear subspaces is said to be a direct sum if the two subspaces are linearly
independent, and in that case the sum is denoted by V1 ⊕ V2. Any vector
v ∈ V1 + V2 can be written as the sum v = v1 + v2 of vectors v1 ∈ V1 and
v2 ∈ V2, by the definition of the sum of the subspaces. Any vector v ∈ V1 ⊕ V2

also can be written as the sum v = v1 +v2 of vectors v1 ∈ V1 and v2 ∈ V , since
the direct sum is special case of the sum of two linear subspaces; but in the case
of a direct sum that decomposition is unique. Indeed if v1 + v2 = w1 + w2 for
vectors v1,w1 ∈ V1 and v2,w2 ∈ V2 where V1∩V2 = 0 then v1−w1 = w2−v2 ∈
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V1 ∩V2 = 0 hence v1 = w1 and v2 = w2. The uniqueness of this representation
of a vector v ∈ V1 ⊕ V2 makes the direct sum of two linear subspaces a very
useful construction.

On the other hand, to any two vector spaces V1, V2 over a field F there can
be associated another vector space V over F that is the direct sum of subspaces
V ′i isomorphic to Vi; indeed let V be the set of pairs

(1.39) V =
{

(v1,v2)
∣∣∣ v1 ∈ V1, v2 ∈ V2

}
with the structure of a vector space over F where the sum is defined by

(v′1,v
′
2) + (v′′1 ,v

′′
2 ) = (v′1 + v′′1 , v′2 + v′′2 )

and the scalar product is defined by

a(v1,v2) = (av1, av2).

It is a straightforward matter to verify that V = V ′1 ⊕ V ′2 where

V ′1 = { (v′1,0) | v′1 ∈ V1 } and V ′2 = { (0,v′2) | v′2 ∈ V2 },

and that V ′i is isomorphic to Vi for i = 1, 2. The vector space V so constructed
also is called the direct sum of the two vector spaces V1 and V2, or sometimes
their exterior direct sum, and also is indicated by writing V = V1⊕ V2 as an
abbreviation. Sometimes the direct sum of two vector spaces is also called the
product of these vector spaces and is then denoted by V1 × V2. It is of course
possible to consider the direct sum, or product, of more than two vector spaces.

The span of a finite set v1,v2, . . . ,vn of vectors in a vector space V over a
field F is the set of vectors defined by

(1.40) span(v1,v2, . . . ,vn) =


n∑
j=1

ajvj

∣∣∣∣∣ aj ∈ F
 ;

clearly the span of any finite set of vectors in V is a linear subspace of V .
By convention the span of the empty set of vectors is the trivial vector space 0
consisting of the zero vector alone. Vectors v1,v2, . . . ,vn are said to be linearly
dependent if

∑n
j=1 ajvj = 0 for some aj ∈ F where aj 6= 0 for at least one of

the scalars aj ; and these vectors are said to be linearly independent if they are
not linearly dependent, so if

∑n
j=1 ajvj = 0 implies that aj = 0 for all indices

1 ≤ j ≤ n. It is easy to see that vectors v1, . . . ,vn are linearly dependent if and
only if span(v1, . . . ,vn) = span(v1, . . . ,vj−1,vj+1, . . . ,vn) for some index 1 ≤
j ≤ n. Indeed if span(v1, . . . ,vn) = span(v1, . . . ,vj−1,vj+1, . . . ,vn) then vj ∈
span(v1, . . . ,vn) = span(v1, . . . ,vj−1,vj+1, . . . ,vn) so vj =

∑
1≤i≤n,i 6=j aivi,

and that shows that the vectors v1, . . . ,vn are linearly dependent; conversely
if the vectors v1, . . . ,vn are linearly dependent then

∑n
i=1 aivi = 0 for some

scalars ai, not all of which are zero; so if aj 6= 0 then vj = −
∑

1≤i≤n,i 6=j aia
−1
j vi

so span(v1, . . . ,vn) = span(v1, . . . ,vj−1,vj+1, . . . ,vn).
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Theorem 1.7 (Basis Theorem) If m vectors w1, . . . ,wm in a vector space
V are contained in the span of n vectors v1, . . . ,vn in V where m > n then the
vectors w1, . . . ,wm are linearly dependent.

Proof: Of course if wi = 0 for some index i then the vectors w1, . . . ,wm are
linearly dependent; so it can be assumed that wi 6= 0 for all indices i. Since
w1 ∈ span(v1, . . . ,vn) it follows that w1 =

∑n
j=1 ajvj for some scalars aj ;

not all of the scalars aj can vanish, so by relabeling the vectors vj it can be
assumed that a1 6= 0 hence that w1 = a1v1 +

∑n
j=2 ajvj or equivalently that

v1 = a−1
1 w1 −

∑n
j=2 a

−1
1 ajvj , and it is clear from this that span(v1, . . . ,vn) =

span(w1,v2 . . . ,vn). Then since w2 ∈ span(v1, . . . ,vn) = span(w1,v2, . . . ,vn)
it follows that w2 = b1w1 +

∑n
j=2 bjvj for some scalars bj , not all of which

vanish. If b1 6= 0 but bj = 0 for 2 ≤ j ≤ n this equation already shows
that the vectors w1,w2 are linearly dependent, and hence of course so are
the vectors w1, · · · ,wn. Otherwise bj 6= 0 for some j > 1, and by relabel-
ing the vectors vj it can be assumed that b2 6= 0; and by the same argument
as before it follows that span(v1, . . . ,vn) = span(w1,w2,v3 . . . ,vn). The ar-
gument can be continued, so eventually either the set of vectors (w1, . . . ,wn)
is linearly dependent or span(w1, . . . ,wn) = span(v1, . . . ,vn). Since wn+1 ∈
span(v1, . . . ,vn) = span(w1, . . . ,wn) it follows that wn+1 =

∑n
j=1 cjwj and

consequently the vectors w1, . . .wn+1 are linearly dependent and therefore so
are the vectors w1, . . .wm and that suffices for the proof.

A vector space V is finite dimensional if it is the span of finitely many
vectors, that is, if V = span(v1, . . . ,vn) for some vectors v1, . . . ,vn ∈ V . If
these vectors are not linearly independent then as already observed the span
is unchanged by deleting at least one of these vectors; and that argument can
be repeated until all the remaining vectors are linearly independent. Therefore
any finite dimensional vector space can be written as the span of a finite set
of linearly independent vectors, called a basis for the vector space. It is an
immediate consequence of the Basis Theorem that the number of vectors in a
basis is the same for all bases. Indeed if w1, . . . ,wm and v1, . . . ,vn are two
bases for a vector space V then since w1, . . . ,wm ∈ span(v1, . . . ,vn) and since
the vectors w1, . . . ,wm are linearly independent the Basis Theorem shows that
m ≤ n; reversing the roles of these two bases and applying the same argument
shows that n ≤ m. The number of vectors in a basis for a vector space V is
called the dimension of that vector space; that V has dimension n is indicated
by writing dimV = n.

Theorem 1.8 If V is a finite dimensional vector space over a field F and
W ⊂ V is a subspace then W and the quotient space V/W are both finite
dimensional vector spaces and

(1.41) dimV = dimW + dimV/W.

Proof: If W ⊂ V and if w1 . . . ,wm is a basis for W then there is a basis for
V of the form w1, . . . ,wm,v1, . . . ,vn for some vectors v1, . . . ,vn ∈ V . Indeed
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if W ⊂ V but W 6= V then there is at least one vector v1 ∈ V ∼ W , and
the vectors w1, . . . ,wm,v1 are linearly independent; if these vectors do not
span V then the argument can be repeated, providing a vector v2 such that
the vectors w1, . . . ,wm,v1,v2 are linearly independent, and the argument can
be continued. The Basis Theorem shows that this process finally stops; for
since V is finite dimensional it has a basis of m + n vectors for some n so
there can be no more than m + n linearly independent vectors in V . This
argument starting from the empty set also gives a basis for any subspace of V .
Vectors in the quotient space V/W are equivalence classes v + W for vectors
v ∈ V , and since wi + W = W it follows that the equivalence classes vi + W
for 1 ≤ i ≤ n span V/W . If

∑n
i=1 ai(vi + W ) = W for some ai ∈ F then∑n

i=1 aivi ∈ W so that
∑n
i=1 aivi =

∑m
j=1 biwi, which can only be the case

if ai = bj = 0 for all i, j, since the vectors wj ,vi are linearly independent;
that means that the equivalence classes vi + W for 1 ≤ i ≤ n are linearly
independent vectors in V/W . These vectors thus are a basis for the vector
space so dimV/W = n = dimV −dimW since dimV = m+n and dimW = m;
and that demonstrates (1.41). It follows immediately from this that the vector
spaces W and V/W are finite dimensional, which concludes the proof.

For example, the vector space Fn has a canonical basis that can be described
in terms of the Kronecker symbol

(1.42) δij =

 1 if i = j,

0 if i 6= j,

and the associated Kronecker vector

(1.43) δj =


δ1
j

δ2
j
...
δnj

 ∈ Fn,

the column vector for which all coordinates are 0 except for the j-th coordinate
which is 1. It is clear that the n vectors δ1, δ2, . . . , δn are linearly independent
and span the vector space Fn hence are a basis for that vector space Fn; indeed
any vector (1.34) can be written uniquely in terms of this basis as

(1.44) v =

n∑
j=1

xjδj .

A homomorphism or linear transformation between vector spaces V
and W over the same field F is defined to be a mapping T : V −→W such that

(i) T (v1 + v2) = T (v1) + T (v2) for all v1,v2 ∈ V , and
(ii) T (av) = aT (v) for all a ∈ F and v ∈ V .
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A linear transformation T : V −→ W is called an injective linear transfor-
mation if it is an injective mapping when viewed as a mapping between these
two sets; and it is called a surjective linear transformation if it is a sur-
jective mapping when viewed as a mapping between these two sets. A linear
transformation T : V −→ W that is both injective and surjective is called an
isomorphism between the two vector spaces. A particularly simple example
of an isomorphism is the identity linear transformation I : V −→ V from a
vector space to itself, the mapping defined by I(v) = v for every vector v ∈ V .
That two vector spaces V and W are isomorphic is denoted by V ∼= W , which
indicates that there is some isomorphism between the two vector spaces but
does not specify the isomorphism. It is clear that this is an equivalence relation
between vector spaces over the field F .

The kernel or null space of a linear transformation T : V −→ W is the
subset

(1.45) ker(T ) =
{

v ∈ V
∣∣∣ T (v) = 0

}
⊂ V ;

it is clear that ker(T ) ⊂ V is a linear subspace of V , for if v1,v2 ∈ ker(T )
then T (v1 + v2) = T (v1) + T (v2) = 0 + 0 = 0 so v1 + v2 ∈ ker(T ) and
T (av1) = aT (v1) = a0 = 0 so av1 ∈ ker(T ).

Lemma 1.9 A linear transformation T : V −→ W is injective if and only if
ker(T ) = 0.

Proof: If ker(T ) = 0 and if T (v1) = T (v2) for two vectors v1,v2 ∈ V then
T (v1 − v2) = 0 so (v1 − v2) ∈ ker(T ) = 0 hence v1 = v2, so T is an injective
mapping. Conversely if a linear transformation T : V −→ W is an injective
mapping then T−1(0) is a single point of V hence ker(T ) = 0.

The image of a linear transformation T : V −→W is the subset

(1.46) T (V ) =
{
T (v)

∣∣∣ v ∈ V } ⊂W,
the image of the mapping T in the usual sense. It is clear that T (V ) ⊂ W is a
linear subspace of W ; for if w1,w2 ∈ T (V ) then w1 = T (v1) and w2 = T (v2) for
some vectors v1,v2 ∈ V so w1 +w2 = T (v1) +T (v2) = T (v1 +v2) ∈ T (V ) and
aw1 = aT (v1) = T (av1) ∈ T (V ) for any a ∈ F . Clearly a linear transformation
T : V −→W is surjective precisely when its image is the full vector space W .

Theorem 1.10 If T : V −→ W is a linear transformation between two finite
dimensional vector spaces over a field F then T induces an isomorphism

(1.47) T ∗ : V/ker(T )
∼=−→ T (V ) where T (V ) ⊂W,

so that

(1.48) dimV = dim ker(T ) + dimT (V ).

In particular T itself is an isomorphism if and only if ker(T ) = 0 and T (V ) =
W .
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Proof: If V0 = ker(T ) then V0 is a linear subspace of V . The elements of the
quotient vector space V/V0 are the subsets v + V0 ⊂ V ; and since T (V0) = 0
the linear transformation T maps each of these subsets to the same element
T (v +V0) = T (v) ∈W and in that way T determines a mapping T ∗ : V/V0 −→
W which is easily seen to be a linear transformation having as its image the
linear subspace T (V ) ⊂ W . An element v + V0 ∈ V/V0 is in the kernel of the
linear transformation T ∗ if and only if T (v + V0) = T (v) = 0, which is just
the condition that v ∈ V0 hence that v + V0 = V0 is the zero vector in V/V0.
That shows that the linear transformation (1.47) is an isomorphism, and (1.48)
follows in view of Theorem 1.8 while it is clear that T itself is an isomorphism
if and only if ker(T ) = 0 and T (V ) = W , which suffices for the proof.

The explicit descriptions of linear transformations and the determination
of their properties for the special case of mappings between finite dimensional
vector spaces rest on their effect on bases of the vector spaces, as in the following
observations.

Theorem 1.11 (Mapping Theorem) Let v1, . . . ,vn be a basis for a vector
space V and w1, . . . ,wm be a basis for a vector space W over a field F .
(i) Any linear transformation T : V −→ W is determined fully by the images
T (vi) of the basis vectors vi; and a linear transformation T : V −→ W can be
defined by specifying as the images T (vj) any arbitrary n vectors in W .
(ii) The linear transformation defined by the values T (vi) ∈ W is injective if
and only if the vectors T (vi) are linearly independent.
(iii) The linear transformation defined by the values T (vi) ∈ W is surjective if
and only if the vectors T (vi) span W .
(iv) Two vector spaces over a field F are isomorphic if and only if they have the
same dimension.

Proof: (i) If T : V −→W is a linear transformation then

(1.49) T

 n∑
j=1

ajvj

 =

n∑
j=1

ajT (vj),

hence the linear transformation T is determined fully by the images T (vi); and
for any specified vectors T (vi) ∈W the linear transformation defined by (1.49)
is a linear transformation taking these values.
(ii) The linear transformation T determined by the images T (vi) fails to be
injective if and only if there are scalars aj ∈ F , not all of which are 0, such that

0 = T

 n∑
j=1

ajvj

 =

n∑
j=1

ajT (vj);

and that is precisely the condition that the vectors T (vj) are linearly dependent.
(iii) Since the linear transformation T determined by the images T (vi) is given
by (1.49) it is evident that the linear transformation is surjective if and only if
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the vectors T (vj) span W .
(iv) If T : V −→ W is an isomorphism it must be both injective and surjecive,
and it then follows from the preceding parts of this theorem that the vectors
T (vi) are a basis for W and consequently dimW = dimV . On the other hand if
dimV = dimW = n and v1, . . . ,vn is a basis for V while w1, . . . ,wn is a basis
for W then by the preceding part of this theorem there is a linear transformation
T : V −→W sending each vi to wi, and it is both injective and surjective so is
an isomorphism of vector spaces. That suffices for the proof.

The set of all linear transformations from a vector space V to a vector space
W is denoted by L(V,W ); of course this is defined only for two vector spaces
over the same field F . The sum of two linear transformations S, T ∈ L(V,W )
is the mapping defined by (S + T )(x) = S(x) + T (x) for any vector x ∈ V ,
and is clearly itself a linear transformation (S + T ) ∈ L(V,W ); and the scalar
product of an element c ∈ F and a linear transformation T ∈ L(V,W ) is the
mapping defined by (cT )(x) = cT (x) for any vector x ∈ V , and is clearly also
a linear transformation. The distributive law obviously holds for addition and
scalar multiplications, so the set L(V,W ) is another vector space over the field
F . Linear transformations are mappings from one space to another, so as in
the case of any mappings the composition ST of two mappings S and T is
the mapping defined by (ST )(v) = S

(
T (v)

)
; the composition also is a linear

transformation since (ST )(v1 + v2) = S
(
T (v1 + v2)

)
= S

(
T (v1) + T (v2)

)
=

S
(
T (v1)

)
+ S

(
T (v2)

)
= ST (v1) + ST (v2) for any vectors v1,v2 ∈ V and

(ST )(av) = S
(
T (av)

)
= S

(
aT (v)

)
= aS

(
T (v)

)
= aST (v) for any vectors

v ∈ V and any scalar a ∈ F .

Theorem 1.12 A linear transformation T : V −→ W between vector spaces
V and W over a field F is an isomorphism if and only if there is a linear
transformation S : W −→ V such that ST : V −→ V and TS : W −→ W are
the identity linear transformations, ST = TS = I.

Proof: If T : V −→W is an isomorphism of vector spaces then T is surjective
so for any vector w ∈W there will be a vector v ∈ V such that T (v) = w; and
T is injective so the vector v is uniquely determined and consequently can be
viewed as a function v = S(w) of the vector w ∈ W , thus defining a mapping
S : W −→ V for which TS(w) = T (v) = w so that TS = I. For any vector
v ∈ V since w = T (v) ∈ W it follows that T (v) = w = TS(w) = TST (v),
so since T is injective necessarily v = ST (v) and consequently ST = I. The
mapping S is a linear transformation; for if w1 = T (v1) and w2 = T (v2) then
by linearity w1+w2 = T (v1+v2) hence S(w1+w2) = v1+v2 = S(w1)+S(w2)
and if T (v) = w then also by linearity T (av) = aT (v) = aw so S(aw) = aS(w)
for any scalar a ∈ F .

Conversely suppose that there is a linear transformation S such that ST = I
and TS = I. For any vector w ∈ W it follows that w = TS(w) so that w is
in the image of T hence T is surjective. If T (v) = 0 for a vector v ∈ V then
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v = ST (v) = S(0) = 0 so that the kernel of T is the zero vector hence T is
injective, which suffices for the proof.

Theorem 1.13 Any n-dimensional vector space V over the field F is isomor-
phic to the vector space Fn.

Proof: If v1, . . . ,vn is a basis for V then by the Mapping Theorem there is a
linear transformation T : Fn −→ V defined by T (δj) = vj . By the Mapping
Theorem again the linear transformation T is injective, since the image vectors
T (δj) = vj are linearly independent, and surjective, since the image vectors
T (δj) = vj span the vector space V ; hence the linear transformation is an
isomorphism between the vector spaces Fn and V .

Thus the vector space Fn for a field F is not only a simple example of an
n-dimensional vector space over the field F but is also a standard model for any
such vector space. The choice of an isomorphism T : V −→ Fn for a vector
space V over a field F can be viewed as a coordinate system in V , for it
permits any vector v ∈ V to be described by its image T (v) = x = {xi} ∈ Fn,
so to be described by the coordinates xi ∈ F . A coordinate system for a vector
space V is determined by the choice of a basis for V ; and since there are a great
many bases there are also a great many different coordinate systems for V . It is
clear though that if S, T : V −→ Fn are any two coordinate systems for a vector
space V then T = US where U = TS−1 : Fn −→ Fn is an isomorphism of the
vector space Fn; and conversely if S : V −→ Fn is a coordinate system for the
vector space V and U : Fn −→ Fn is an isomorphism of the vector space Fn,
then T = US : V −→ Fn also is a coordinate system for the vector space V .
Actually for many purposes it is sufficient just to consider the vector spaces Fn

rather than abstract vector spaces over the field F , since some general properties
of finite dimensional vector spaces can be proved by a simple calculation for the
vector spaces Fn.

A linear transformation T : Fm −→ Fn can be described quite explicitly
in a way that is very convenient for calculation. The image of a basis vector
δj ∈ Fm is a linear combination of the basis vectors δi ∈ Fn, so

(1.50) T (δj) =

n∑
i=1

aijδi

for some scalars aij ∈ F ; hence by linearity the image of an arbitrary vector
v =

∑m
j=1 xjδj ∈ Fm with the coordinates {xj} is the vector

(1.51) w = T (v) =

m∑
j=1

xjT (δj) =

m∑
j=1

n∑
i=1

xjaijδi =

n∑
i=1

yiδi

with the coordinates {yi} given by

(1.52) yi =

m∑
j=1

aijxj .
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Thus the linear transformation T is described completely by the set of scalars
aij ∈ F . It is customary and convenient to list these scalars in an array of the
form

(1.53) A =


a11 a12 a13 · · · a1m

a21 a22 a23 · · · a2m

a31 a32 a33 · · · a3m

· · ·
an1 an2 an3 · · · anm


called an n ×m matrix over the field F ; an n ×m matrix A with entries in
the field F thus describes a linear trasformation T : Fm −→ Fn, and that
convention should be kept firmly in mind. The horizontal lines are called the
rows of the matrix and the vertical lines are called the columns of the matrix,
so an n×m matrix can be viewed as a collection of n row vectors or alternatively
as a collection m column vectors. The scalars aij are called the entries of the
matrix, so A = {aij} where aij is the entry in row i and column j. The linear
relation between the coordinates {xj} of a vector in Fm and the coordinates {yi}
of the image vector in Fn is (1.52). The preceding conventions and terminology
are rather rigidly followed so should be kept in mind and used carefully and
systematically.

Associating to a linear transformation T : Fm −→ Fn the n × m matrix
describing that linear transformation identifies the vector space L(Fm, Fn) of
all linear transformations with the vector space of all n ×m matrices over the
field F , since that association clearly preserves addition of vectors and scalar
multiplication; thus there is the natural isomorphism L(Fm, Fn) ∼= Fnm, since
an n×m matrix is merely a collection of nm scalars, and consequently

(1.54) dimL(Fm, Fn) = nm.

When the vector space Fnm is identified in this way with the vector space
L(Fm, Fn) it is often denoted by Fn×m; so this stands for the vector space
of matrices over the field F having n rows and m columns. The zero vector
in Fn×m is described by the zero matrix 0, the matrix having all entries
0; this represents the trivial linear transformation that maps all vectors in
Fm to the zero vector in Fn. The matrix I ∈ Fn×n describing the identity
linear transformation Fn −→ Fn, the linear transformation that takes the basis
vectors δi to themselves, clearly has the entries I = {δij}, the Kronecker symbols;
it is called the identity matrix. It is often convenient to specify the size of an
identify matrix, so to denote the n× n identity matrix by In; thus for instance

(1.55) I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

The equation (1.52) describing the relations between the coordinate of vec-
tors v = {xj} and w = {yi} related by the linear transformation w = Tv
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described by a matrix A can be viewed as a collection of linear equations relat-
ing the variables xi and yj . This system of equations often is viewed as a matrix
product, expressing the column vector or n× 1 matrix y = {yi} as the product
of the n×m matrix A and the column vector or m× 1 matrix x = {xj} in the
form

(1.56)


y1

y2

y3

· · ·
yn

 =


a11 a12 a13 · · · a1m

a21 a22 a23 · · · a2m

a31 a32 a33 · · · a3m

· · ·
an1 an2 an3 · · · anm



x1

x2

x3

· · ·
xm


where the entry yi in row i of the product is the sum over the index j of the
products of the entries aij in row i of the matrix A and the successive entries
xj of the column vector x, so

yi = ai1x1 + ai2x2 + ai3x3 + · · ·+ aimxm.

More generally the product of an n×m matrix A = {aij} and an m× l matrix
B = {bij} is defined to be the n× l matrix AB = C = {cij} with entries

(1.57) cij =

m∑
k=1

aikbkj for 1 ≤ i ≤ n, 1 ≤ j ≤ l;

so column j of the product matrix AB = C is the column vector cj = A bj
where bj is column j of the matrix B, and row j of the product matrix AB = C
is the row vector tcj = tajB where taj is row j of the matrix A. Matrices A and
B can be multiplied to yield a product only when the number of columns of the
matrix A is equal to the number of rows of the matrix B; and the number of
rows of the product AB is the number of rows of A while the number of columns
of the product AB is the number of columns of the matrix B. For example in
the product (

a11 a12 a13

a21 a22 a23

)b11 b12

b21 b22

a31 a32

 =

(
c11 c12

c21 c22

)
the first column of the product AB = C is the product of the matrix A and the
first column of the matrix B; explicitly

c11 = a11b11 + a12b21 + a13b31

c21 = a21b11 + a22b21 + a23b31.

It is easy to see from the definition that the matrix product is associative,
in the sense that A(BC) = (AB)C and consequently that multiple products
such as ABC are well defined, and that it is distributive, in the sense that
A(B + C) = AB + BC and (A + B)C = AC + BC. It is worth calculating a
few matrix products just to become familiar with the technique.
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Theorem 1.14 If a linear transformations T : Fn −→ Fm is described by an
m×n matrix B and a linear transformation S : Fm −→ F l is described by l×m
matrix A then the composition S ◦ T : Fn −→ F l is described by the product
matrix AB.

Proof: For any index 1 ≤ i ≤ n

(S ◦ T )(δi) = S
(
T (δi)

)
= S

(
m∑
k=1

bkiδk

)
=

m∑
k=1

bkiS(δk)

=

m∑
k=1

bki

l∑
j=1

ajkδj =

l∑
j=1

m∑
k=1

ajkbkiδj =

l∑
j=1

cjiδj ;

thus the composition S ◦ T is described by the matrix C = {cji} where cji =∑m
k=1 ajkbki so that C = AB, which suffices for the proof.

In view of the preceding theorem, the linear transformation described by
a matrix A is usually also denoted by A, and AB denotes both the matrix
product and the composition A ◦ B of the linear transformations described by
these matrices. This convention will be followed henceforth. It follows from
Theorem 1.12 that the linear transformation described by a matrix A is an iso-
morphism if and only if that linear transformation has an inverse linear trans-
formation, or in matrix terms, if and only if there is a matrix A−1 such that
AA−1 = A−1A = I, the identity matrix; such a matrix A is called an invertible
matrix or a nonsingular matrix. A matrix that is not nonsingular of course
is called a singular matrix. Not all matrices in Fn×n have inverses; the zero
matrix of course has no inverse, nor does the matrix A = ( 0 1

0 0 ) since AA = 0,
so these are examples of singular matrices. On the other hand the identity
matrix is nonsingular, since it is its own inverse, while if A is nonsingular then
so is A−1 with (A−1)−1 = A; and if A and B are nonsingular matrices then
so is their product since clearly (AB)(B−1A−1) = I hence B−1A−1 = (AB)−1.
Thus the set of nonsingular n×n matrices is a group under multiplication called
the general linear group over the field F and denoted by Gl(n, F ).

Some other notational conventions involving matrices are widely used. In
extension of the definition (1.35) of the transpose of a vector, the transpose of
an n×m matrix A = {aij} is defined to be the m× n matrix

(1.58) tA = B = {bij} where bij = aji;

thus if ai is the i-th column vector of the matrix A then tai is the i-th row
vector of the matrix tA. If the matrix A describes a linear transformations
A : Fn −→ Fm then the transposed matrix tA describes a linear transforma-
tion tA : Fm −→ Fn; but note that tA does not describe the inverse linear
transformation to that described by A but rather something quite different al-
together, since for instance the inverse of a linear transformation between two
vector spaces of different dimensions is not even well defined. If C = AB the
entries of these matrices are related by cij =

∑
k aikbkj , and that equation can
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be interpreted alternatively as tC = tB tA, so transposition reverses the order
of matrix multiplication. Another notational convention is that a matrix can
be decomposed into matrix blocks by splitting the rectangular array of its
entries into subarrays. Thus for example an n × m matrix A = {aij} can be
decomposed into 4 matrix blocks

A =

(
A11 A12

A21 A22

)
where A11 is a k×k matrix, A12 is a k×(m−k) matrix, A21 is an (n−k)×k matrix
and A22 is an (n−k)×(m−k) matrix. A decomposition of this form in which A12

and A21 are both zero matrices is called a direct sum decomposition, denoted
by A = A11⊕A22. An n×n matrix A which has the direct sum decomposition
A = A11 ⊕ A22 ⊕ · · · ⊕ Ann in which each of the component matrices Aii is a
1 × 1 matrix, just a scalar, is called a diagonal matrix since all of its terms
vanish aside from those terms along the main diagonal, as in

(1.59)


a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4

 .

Another special form of a matrix is a lower triangular matrix, a matrix A =
{aij} such that aij = 0 whenever i < j, as for example

(1.60)


a11 0 0 0
a21 a22 0 0
a31 a32 a33 0
a41 a42 a43 a44

 ;

a upper triangular matrix of course is defined correspondingly as a matrix
A = {aij} such that aij = 0 whenever i > j.

The direct sum Fm ⊕ Fn of vector spaces Fm and Fn was defined in (1.39)
to be the set of pairs (x,y) of vectors x ∈ Fm and y ∈ Fn; it is customary

though in this context to write this pair as

(
x
y

)
, thereby naturally identifying

the direct sum Fm ⊕ Fn with the vector space Fm+n. An r × m matrix A
describes a linear transformation A : Fm −→ F r that takes the vector x ∈ Fm
to the vector Ax ∈ F r; and correspondingly an s × n matrix B describes a
linear transformation B : Fn −→ F s that takes the vector y ∈ Fn to the vector
By ∈ F s. These two linear transformations can be combined into the direct
sum A⊕B, an (r+ s)× (m+n) matrix, which acts on the direct sum Fm⊕Fn
through the matrix product

(1.61)

(
A 0
0 B

)(
x
y

)
=

(
Ax
By

)
;

thus direct sums of matrices act naturally on direct sums of vector spaces indi-
cating the compatibility of the two notions of direct sum.
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Two n × m matrices A and B over a field F are said to be equivalent
matrices if there are a nonsingular n × n matrix S and a nonsingular m ×m
matrix T such that B = SAT . This is a basic equivalence relation among
matrices; but there are other equivalence relations of equal importance and
even greater interest that will be discussed in Section 4.2. It is clear that this is
an equivalence relation among n×m matrices; indeed reflexivity and symmetry
are quite obvious, and if B is equivalent to A so that B = SAT for nonsingular
matrices S and T and if C is equivalent to B so that C = UBV for nonsingular
matrices U and V then C = (US)A(TV ) where US and TV are nonsingular
matrices. If a matrix A is viewed as a mapping A : Fm −→ Fn that takes a
vector x ∈ Fm to the vector y = Ax ∈ Fn, it is natural to ask what matrix
represents this linear transformation after changes of coordinate in Fm and
Fn. Thus an isomorphism T : Fm −→ Fm takes the vector x′ to the vector
x = Tx′, and an isomorphism S : Fn −→ Fn takes the vector y to the vector
y′ = Sy; and making these substitutions in the equation y = Ax yields the
equation y′ = Sy = SAx = SATx′ = Bx′ where B = SAT ∼= A. In this sense
equivalent matrices describe the same linear transformation but expressed in
different coordinates. Alternatively, the equivalence of matrices A and B can
be expressed in terms of the linear transformations defined by these matrices as
the assertion that the following diagram is commutative:

(1.62)

Fm
A−−−−→ Fn

T

xiso S

yiso

Fm
B−−−−→ Fn.

The arrows in the diagram indicate mappings, in this case linear transforma-
tions, labeled by the letters A,B, S, T ; and the notation “iso” indicates that the
two linear transformations S and T are isomorphisms. A diagram such as this is
said to be commutative if any two sequences of mappings in the diagram that
begin and end at the same point are equal; in this case that can only mean that
the mapping in the path B is equal to the result of first applying the mapping
T , then the mapping A, and finally the mapping S, which is just the assertion
that B = SAT . Commutativity of diagrams is a very commonly used notion
that can simplify considerably statements of the equality of various combina-
tions of mappings. However the notion of equivalence of matrices is viewed,
though, it leads to a natural classification problem: does an equivalence class of
matrices have a simple standard representative, and are there simple invariants
that determine when two matrices are equivalent? That is the motivation for
the next segment of the discussion.

Theorem 1.15 If A ∈ Fn×m is a matrix describing a linear transformation
A : Fm −→ Fn then there are a nonsingular n× n matrix S and a nonsingular
m×m matrix T such that the matrix SAT = B = {bij} has the entries

(1.63) bij =

{
δij for 1 ≤ i, j ≤ k
0 otherwise
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where m− k is the dimension of the kernel of A; thus B is the n×m matrix

(1.64) B =

(
Ik 0
0 0

)
.

Proof: If the kernel of the linear transformation has dimension m − k choose
vectors vk+1, . . . ,vm in Fm that form a basis for the kernel, and extend this
set of vectors to a basis v1, . . . ,vk,vk+1, . . . ,vm for the full vector space Fm.
The image vectors wi = Avi ∈ Fn for 1 ≤ i ≤ k are linearly independent;

for if 0 =
∑k
i=1 ci Avi = A

(∑k
i=1 ci vi

)
where not all the scalars ci vanish

then
∑k
i=1 ci vi is a nontrivial vector in ker(A), but that is impossible since

this vector is not in the span of the basis vk+1, . . . ,vm for ker(A). Extend the
vectors w1, . . . ,wk to a basis w1, . . . ,wn for the vector space Fn. Introduce
the isomorphisms T : Fm −→ Fm for which Tδi = vi and S : Fn −→ Fn

for which Swi = δi, and let B = SAT : Fm −→ Fn. If 1 ≤ i ≤ k then
Bδi = SATδi = SAvi = Swi = δi, while on the other hand if k + 1 ≤ i ≤ m
then Bδi = SATδi = SAvi = 0; that means that the entries of the matrix B
are bji = δji for 1 ≤ i ≤ k and bji = 0 otherwise, so that the matrix B has the
form (1.64), and that suffices for the proof.

There remain the questions whether the normal form (1.64) is uniquely de-
termined, and if so whether it can be calculated more directly. To discuss these
matters it is useful to introduce a further standard convention in linear alge-
bra. When an n ×m matrix A is viewed as a collection of m column vectors
A =

(
a1 a2 · · · am

)
, where aj ∈ Fn, the linear subspace of Fn spanned by

these column vectors aj is called the column space of the matrix A and the
dimension of this subspace is called the column rank of the matrix A, denoted
by crank(A). The column space of course is just the image AFm ⊂ Fn, since
Ax =

∑m
i=1 ajxj for any vector x ∈ Fm, so the column rank of A is just the

dimension of the image AFm. The row space of the matrix A and its row
rank rrank(A) are defined correspondingly; or alternatively since the rows of a
matrix A are the columns of the transposed matrix tA the row space of A is the
transpose of the column space of tA so that rrank(A) = crank( tA).

Theorem 1.16 Let A be an n×m matrix over a field F .
(i) crank(SA) = crank(A) and rrank(SA) = rrank(A) for any nonsingular n×n
matrix S.
(ii) crank(AT ) = crank(A) and rrank(AT ) = rrank(A) for any nonsingular
m×m matrix T .
(iii) rrank(A) = crank(A) for any matrix A.

Proof: (i) If S is a nonsingular n × n matrix the mapping S : Fn −→ Fn

that takes a vector v to Sv is an isomorphism of vector spaces. Therefore
the column space of the matrix A, the subspace of Fn spanned by the column
vectors aj of the matrix A is isomorphic to the column space of the matrix
SA, the subspace of Fn spanned by the column vectors Saj of the matrix SA,
or equivalently crank(SA) = crank(A). On the other hand since the entries
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of the product matrix B = SA are bij =
∑n
k=1 sikakj it follows that the row

vectors bi = { bij | 1 ≤ j ≤ m } of the matrix B are the linear combinations
bi =

∑n
k=1 sikak of the row vectors ak = {akj |1 ≤ j ≤ m} of the matrix A and

therefore rrankB ≤ rrankA. Conversely since S is nonsingular and A = S−1B
it is also the case that rrankB ≤ rrankA, so altogether rrank(B) = rrank(A).
(ii) If B = AT then tB = tT tA and rrank tB = crankB and correspondingly
for the matrix A; it therefore follows from (i) that crank(AT ) = crank(A) and
rrank(AT ) = rrank(A) for any nonsingular m×m matrix T .
(iii) By Theorem 1.15, there are invertible matrices S, T so that SAT has the
form (1.64); and it is obvious from that form that crank(SAT ) = rrank(SAT ) =
k. Since it was just observed that crank(SAT ) = crank(A) and correspondingly
for the row ranks it follows immediately that crank(A) = rrank(A), which suf-
fices for the proof.

Since row rank and the column rank of any matrix are always the same, the
distinction between them is ordinarily ignored and the common value is just
called the rank of the matrix and denoted by rank(A).

Corollary 1.17 (Equivalence Theorem) Two n × m matrices over a field
are equivalent if and only if they have the same rank; hence any n ×m matrix

A is equivalent to a unique matrix of the form

(
Ir 0
0 0

)
where r = rank(A).

Proof: Theorem 1.15 shows that any n × m matrix is equivalent to one of
the form (1.64), which clearly is of rank k; and it follows from the preceding
Theorem 1.16 (i) that equivalent matrices have the same rank; consequently the
normal form (1.64) is uniquely determined, by the rank, which suffices for the
proof.

Corollary 1.18 An n × n matrix over a field F is invertible if and only if
rank(A) = n.

Proof: It is clear that a matrix of the form

(
Ir 0
0 0

)
is invertible if and only

if r = n; any matrix is equivalent to a matrix of this form, by the Equivalence
Theorem, and since any two equivalent matrices have the same rank by Theo-
rem 1.16 and since any matrix equivalent to an invertible matrix is invertible
that suffices for the proof.

An auxiliary tool that is required for the further discussion deals with rear-
rangements or permutations of a set of variables, where for example x4, x1, x3, x2

is a rearrangement or permutation of the set of variables x1, x2, x3, x4; thus a
permutation of such a set of variables is just an element in the symmetric group
S(x1, x2, x3, x4), as considered earlier on page 16. To the usual order of the
variables there can be associated the polynomial P (x) =

∏
i<j(xi−xj), a poly-

nomial of degree n(n − 1)/2 consisting of the product of the differences of any
two distinct variables where the index of the first variable is less than the index
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of the second variable; the square P (x)2 of this polynomial can be rewritten as
the product of all the differences xi−xj of distinct variables so is independent of
the order of the variables. After a permutation π of the variables the resulting
polynomial π∗P (x) still consists of the products of the differences of any two
distinct variables, but possibly with a reversal of the signs of the differences; for
example if P (x) = (x1−x2)(x1−x3)(x2−x3) then if π is the permutation that in-
terchanges the variables x2 and x3 the result of applying this permutation to the
polynomial is the polynomial π∗P (x) = (x1−x3)(x1−x2)(x3−x2) = −P (x). In
general π∗P (x) = ±P (x) for some sign, which is called the sign of the permuta-
tion π and is denoted by sgn(π) so that π∗P (x) = sgn(π) ·P (x). A permutation
π is even if sgn(π) = +1 and is odd if sgn(π) = −1.

Theorem 1.19 (i) sgn(π) = −1 for the permutation π ∈ S(x1, . . . , xn) that
interchanges two variables xi and xj.
(ii) Any permutation can be written as a composition of permutations that in-
terchange two variables.
(iii) sgn(π1π2) = sgn(π1)·sgn(π2) for any two permutations π1, π2 ∈ S(x1, . . . , xn).

Proof: (i) A permutation π that interchanges xi and xj does not change the
sign of any factor of the polynomial P (x) that does not involve the variable xi
or the variable xj . If k < i < j or i < j < k the product (xi − xk)(xj − xk) is
unchanged by the permutation; and if i < k < j the product (xi − xk)(xk − xj)
is replaced by (xj − xk)(xk − xi) so the sign of the product is unchanged. Thus
the only effect of the permutation π on the sign of the polynomial P (x) arises
from the change in the sign of the factor (xi − xj) hence π∗P (x) = −P (x) so
sgn(π) = −1.
(ii) Suppose a permutation π replaces the variables x1, x2, . . . , xn by a rear-
ranged set xj1 , xj2 , . . . , xjn of variables. Composing the permutation π with the
permutation π1,j1 that interchanges the variables x1 and xj1 replaces the vari-
ables xj1 , xj2 , . . . , xjn by x1, xk2

, . . . , xkn ; composing this permutation with the
permutation π2,k2

replaces the variables x1, xk2
, . . . , xkn by x1, x2, xl3 , . . . , xln ,

and so on. Thus the composition of the permutation π with the composition of
these permutations which interchange two variables leads to the identity per-
mutation.
(iii) For any two permutations π1, π2 of the variables π∗2P (x) = sgn(π2)P (x)
by definition; applying the permutation π1 to both sides of this equality yields
π∗1
(
π∗2P (x)

)
= sgn(π2) · π∗1P (x) = sgn(π2)sgn(π1)P (x), by definition. On the

other hand π∗1
(
π∗2P (x)

)
is the result of applying first the permutation π2 and

then the permutation π1 so is the result of applying the composite permutation
π1 ◦ π2, and consequently π∗1

(
π∗2P (x)

)
= sgn(π1 ◦ π2)P (x), and that suffices for

the proof.

The preceding theorem does provide a method that can be useful for deter-
mining whether a permutation is odd or even. By that theorem any permutation
can be written as a composition of transpositions, permutations that inter-
change two variables, while each transposition has sign −1 and the sign of the
permutation is the product of the signs of these transpositions, it follows that
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a permutation is even if it can be written as a product of an even number of
transpositions and is odd if it can be written as a product of an odd number of
transposition. A permutation can be written as a product of transpositions in
a number of different ways; but the theorem ensures that the parity of the total
number of transpositions is an invariant of the permutation.

A linear transformation T : V −→ F from a vector space V over a field F
to the field F itself is often called a linear function. Also of interest of course
are linear functions of several variables, or multilinear functions, mappings
T : V k −→ F from Cartesian products V k of a vector space V over the field
F to the field F that are linear transformations in each separate variable; thus
a multilinear function T : V k −→ F associates to any k vectors vi ∈ V a
value T (v1,v2, . . . ,vk) ∈ F , where T (v1,v2, . . . ,vk) is a linear function of the
vector vj ∈ V whenever the remaining vectors v1, . . . ,vj−1,vj+1, . . . ,vk are
held fixed. A multilinear function T : V k −→ F is said to be a symmetric
multilinear function if

(1.65) T (vj1 ,vj2 , . . . ,vjk) = T (v1,v2, . . . ,vk)

for any permutation j1, j2, . . . , jk of the indices 1, 2, · · · , k; and it is said to be
an alternating multilinear function if

(1.66) T (vj1 ,vj2 , . . . ,vjk) = sgn

(
j1 j2 · · · jk
1 2 · · · k

)
T (v1,v2, . . . ,vk)

for any permutation j1, j2, . . . jk of the indices 1, 2, · · · , k, where the factor

sgn

(
j1 j2 · · · jk
1 2 · · · k

)
is the sign of the permutation j1, j2, · · · , jk of the in-

dices 1, 2, · · · , k, as defined on the preceding page. It is convenient to extend

the definition by setting sgn

(
j1 j2 · · · jk
1 2 · · · k

)
= 0 if the indices j1, j2, · · · , jk

are not a permutation of the indices 1, 2, · · · , k, so if for example there are some
repeated indices among j1, j2, · · · , jk. Both symmetric and alternating multi-
linear functions are of considerable interest; but actually for the purposes of the
discussion here the alternating multilinear functions are of the greatest interest.
The following special case is particularly important; other cases of great interest
will be considered in the later discussion of differential forms.

Theorem 1.20 For any field F and any n there is an alternating multilinear
function

(1.67) Φ : Fn × · · · × Fn︸ ︷︷ ︸
n

−→ F

from n copies of the vector space Fn to F , and it is uniquely determined up to
a constant factor.

Proof: If Φ is an alternating multilinear function as in (1.67) and the vectors
vi ∈ Fn are written in terms of the basis vectors δj as vi =

∑n
j=1 vjiδj then
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since Φ is multilinear it follows that

Φ(v1, · · · ,vn) = Φ

 n∑
j1=1

vj11δj1 , . . . ,

n∑
jn=1

vjnnδjn


=

n∑
j1,...,jn=1

vj11 · · · vjnnΦ(δj1 , . . . , δjn)

where Φ(δj1 , . . . , δjn) ∈ F ; and since Φ also is assumed to be alternating

Φ(δj1 , . . . , δjn) = sgn

(
j1 . . . jn
1 . . . n

)
Φ(δ1, . . . , δn).

Thus if there is an alternating multilinear function (1.67) then it must have the
form

(1.68) Φ(v1, . . . ,vn) = C

n∑
j1,...,jn=1

sgn

(
j1 . . . jn
1 · · · n

)
vj11 · · · vjnn

where C = Φ(δ1, . . . , δn). Conversely the mapping

Φ : Fn × · · · × Fn −→ F

defined by (1.68) is an alternating multilinear function, since each term vj11, . . . , vjn
has exactly one factor from each column and

Φ(vk1
, . . . ,vkn) = C

n∑
j1,...,jn=1

sgn

(
j1 . . . jn
1 · · · n

)
vj1k1

· · · vjnkn

= C

n∑
j1,...,jn=1

sgn

(
k1 . . . kn
1 · · · n

)(
j1 . . . jn
k1 · · · kn

)
vj1k1

· · · vjnkn

= sgn

(
k1 . . . kn
1 · · · n

)
(v1, . . . ,vn).

That suffices for the proof.

The preceding theorem shows that any alternating multilinear function has
the form (1.68) for some constant C; for any n × n matrix A the value of the
multilinear function (1.68) where vi = ai are the columns of the matrix A and
C = 1 is called the determinant of the n× n matrix A =

(
a1 a2 · · · an

)
and is denoted by detA, so that

(1.69) detA =

n∑
j1,...,jn=1

sgn

(
j1 . . . jn
1 · · · n

)
aj11 · · · ajnn;

the summation is formally extended over all choices of the integers j1, . . . , jn,

with the understanding that sgn

(
j1 . . . jn
1 · · · n

)
= 0 unless the indices j1, . . . , jn

are a permutation of the indices 1, . . . , n. The basic properties of the determi-
nant follow quite directly from its definition.
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Theorem 1.21 The determinant mapping over a field F satisfies
(i) det I = 1 for the identity matrix I.
(ii) det tA = detA.
(iii) det(AB) = detA · detB for any n× n matrices A and B, and
(iv) detA 6= 0 if and only if A is a nonsingular matrix.

Proof (i) By definition the determinant mapping is normalized so that det I =
Φ(δ1, . . . , δn) = 1.
(ii) The products a1j1 · · · anjn and aj11 · · · ajnn run over the same set of values
as the indices j1, . . . , jn run through all permutations of the integers 1, . . . , n so
the basic formula (1.69) has the same value when the terms aij are replaced by
aji.
(iii) If A = {aij} and B = {bij} are n× n matrices, the j-th column vj of their
product AB = {

∑n
k=1 aikbkj} is the linear combination vj =

∑n
k=1 akbkj of the

column vectors ak of the matrix A; so for any linear function φ : Fn −→ F it
follows that

φ(vj) = φ

(
n∑
k=1

akbkj

)
=

n∑
k=1

bkjφ(ak).

The determinant is defined by (1.69), and since the function Φ is multilinear
and alternating

detAB = Φ(v1, . . . ,vn) =

n∑
k1,...,kn=1

bk11 . . . bknnΦ (ak1
, . . .akn)

=

n∑
k1,...,kn=1

bk11 · · · bknnsgn

(
k1 · · · kn
1 · · · n

)
Φ(a1, . . . ,an)

= detB · detA.

(iv) If an n × n matrix A is nonsingular then it has a well defined inverse
matrix A−1 for which AA−1 = I, and it then follows from parts (i) and (iii) of
this theorem that detA detA−1 = det(A · A−1) = det I = 1, and consequently
detA 6= 0. Conversely if A is an n× n matrix for which detA 6= 0 then by the
Equivalence Theorem, Theorem 1.15, there are nonsingular matrices S, T such

that SAT = B where B =

(
Ik 0
0 0

)
for some number k with 0 ≤ k ≤ n; and

since the matrices S and T are nonsingular detS 6= 0 and detT 6= 0 by what
has just been proved, while detA 6= 0 by assumption so detB 6= 0 in view of
(iii). That can be the case only if k = n, since if one of the columns of B is zero
then detB = 0 as a consequence of the defining formula (1.69); and if k = n
then B = I is a nonsingular matrix, and therefore A is a product of nonsingular
matrices so it is also nonsingular. That suffices for the proof.

Some further properties of determinants are useful in calculating their actual
values.
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Corollary 1.22 The determinant mapping over a field F satisfies the follow-
ing.
(i) detA changes signs if any two columns or rows are permuted.
(ii) detA = 0 if the columns or rows are linearly dependent.
(iii) If a matrix A′ arises from a matrix A by multiplying any row or column by
a ∈ F then detA′ = a detA.
(iv) If a matrix A′ arises from a matrix A by adding to one column a con-
stant multiple of another column, or the corresponding operation on rows, then
detA′ = detA.

Proof: (i) The determinant is defined as detA = Φ(a1, . . . ,an) in terms of the
columns of the matrix A; and since the function Φ is alternating and the sign of
a transposition is −1 it follows that detA changes sign whenever two columns
of A are interchanged. Since det tA = detA by Theorem 1.21 (ii) it follows
from what has just been demonstrated that detA also changes sign with any
two rows are interchanged.
(ii) If the columns of A are linearly dependent then a multiple of one of the
columns is in the span of the remaining columns; if it is assumed for simplicity
of notation that a1 =

∑n
j=2 cjaj then by linearity

F (a1, . . . ,an) =

n∑
j=2

cjF (aj ,a2, . . . , an).

By (i) the function F changes sign when columns 1 and j are interchanged; but
if the two columns are equal it also must be the case that the function does not
change signs, and that can be the case only when the function F is zero.
(iii) Since the function Φ in (1.67) is multilinear it is multiplied by a if any
column is multiplied by a; and since det tA = detA by Theorem 1.21 (ii) that
also is the case when any row is multiplied by a.
(iv) Since the function φ is multilinear

φ(a1 + ca2,a2, . . . ,an) = φ(a1,a2, . . . ,an) + cφ(a2,a2, . . . ,an)

and φ(a2,a2, . . . ,an) = 0 by (ii).

One rather straightforward way to calculate the explicit value of a determi-
nant is to reduce the calculation to that of the determinants of smaller matrices.
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The basic formula (1.69) can be written

detA =

n∑
j1=1

n∑
j2,...,jn=1

sgn

(
j1 j2 . . . jn
1 2 · · · n

)
aj11aj22 · · · ajnn

= a11

n∑
j2,...,jn=1

sgn

(
1 j2 . . . jn
1 2 · · · n

)
aj22 · · · ajnn

+ a21

n∑
j2,...,jn=1

sgn

(
2 j2 . . . jn
1 2 · · · n

)
aj22 · · · ajnn

+ · · ·+

+ an1

n∑
j2,...,jn=1

sgn

(
n j2 . . . jn
1 2 · · · n

)
aj22 · · · ajnn

so

(1.70) detA = a11 detA11 − a21 detA21 + · · ·+ (−1)n+1an1 detAn1

where Aij is the matrix arising from the matrix A by deleting both row i and
column j. Thus for instance

(1.71) det

(
a b
c d

)
= adet d− cdet b = ad− cb

and

det

1 2 3
6 5 4
7 0 8

 = 1 det

(
5 4
0 8

)
− 6 det

(
2 3
0 8

)
+ 7 det

(
2 3
5 4

)
= −105.

The columns of the matrix A can be permuted, with a change of sign, and the
same formula can be applied to the rows, which provides a good deal of flexibility
in this approach to calculating determinants. Note that if the entries aj1 in
(1.70) are replaced by aji for i 6= 1 the result would be the determinant of the
matrix obtained from A by replacing column 1 by column i, so the result would
be 0, the determinant of a matrix with two identical columns. Consequently
if A† is the matrix with the entries A†ij = (−1)i+j detAji, a matrix called the
adjugate of the matrix A, it follows from (1.70) that

(1.72) A ·A† = A† ·A = (detA) · I.

For example

(1.73)

(
a b
c d

)†
=

(
d −b
−c a

)
where det

(
a b
c d

)
= ad− bc.
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This can be applied to solve a system of linear equations Ax = a for a square ma-
trix A explicitly as x = 1

detAA
†a, an application customarily called Cramer’s

rule.
Matrices and vector spaces arise very commonly in other algebraic structures.

A permutation of a set of variables can be described by a matrix operation; for
example

(1.74)

(
0 1
1 0

)
·
(
x1

x2

)
=

(
x2

x1

)
and

0 1 0
0 0 1
1 0 0

 ·
x1

x2

x3

 =

x2

x3

x1

 .

The matrices describing permutations in this way, called permutation matri-
ces, are those matrices such that each row and each column contains a single
entry of 1 but all other entries of 0. Multiplication in a group has the effect
of permuting the elements of the group, so any finite group can be viewed as
a subgroup of the set of all permutations of the elements of the group, and in
that way any group is isomorphic to a group of matrices. This is actually an
immensely useful tool in the investigation of abstract groups.

The algebraic discussion here will be concluded by examining yet another
general algebraic structure. An algebra over field F is defined to be a vector
space A over the field F with an additional operation that associates to any two
vectors v1,v2 ∈ A their product v1 · v2 ∈ A such that

(i) multiplication of vectors is associative and has an identity element
I ∈ A;
(ii) the distributive laws v·(v1+v2) = v·v1+v·v2 and (v1+v2)·v =
v1 · v + v2 · v hold for any vectors v,v1,v2 ∈ A;
(iii) scalar multiplication and the multiplication of vectors are related
by the laws c(v1 · v2) = (cv1) · v2 = v1 · (cv2) for all c ∈ F and
v1,v2 ∈ A.

Note particularly that it is not assumed that the multiplication of vectors is
commutative; if the multiplication of vectors is commutataive the algebra is
called a commutative algebra. The dimension of an algebra A is defined to
be its dimension as a vector space. Just as in the case of rings, the zero element
0 plays a special role in multiplication in an algebra, so that 0 · v = v · 0 = 0
for any vector v ∈ A, with the same proof as in the preceding examination of
rings. The matrix space Fn×n under multiplication of matrices is an example
of an algebra, which of course is not necessarily commutative. The field F itself
is a commutative one-dimensional algebra over F , indeed can readily be seen to
be the unique one-dimensional algebra over F . The set F [X] of all polynomials
with coefficients in F is another commutative algebra, although not a finite
dimensional algebra; and other infinite dimensional algebras will arise in the
subsequent discussion.

It is not difficult to describe all 2-dimensional commutative real algebras;
indeed that is a good exercise in the study of algebras. If A is a commutative
real algebra and dimA = 2, choose a basis v1,v2 for the vector space A so that
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v1 is the identity for multiplication in the algebra; the multiplication table in
terms of this basis then must be of the form

Ax1,x2 : v1 · v1 = v1, v1 · v2 = v2 · v1 = v2, v2 · v2 = x1v1 + x2v2

for some x1, x2 ∈ R. This multiplication table can be simplified by replacing v2

by v′2 = v2 − tv1 for a suitable real number t ∈ R; for any choice of t ∈ R the
vectors v1,v

′
2 are another basis for V , and by the distributive law

v′2 · v′2 = (v2 − tv1) · (v2 − tv1) = v2 · v2 − 2tv1 · v2 + t2v1 · v1

= (x1v1 + x2v2)− 2tv2 + t2v1 = (x1 + t2)v1 + (x2 − 2t)v2

= (x1 + t2)v1 + (x2 − 2t)(v′2 + tv1) = (x1 + tx2 − t2)v1 + (x2 − 2t)v′2

so if 2t = x2 it follows that

v′2 · v′2 = yv1 for some y ∈ R.

For a further simplification replace the vector v′2 by v′′2 = sv′2 for another real
number s ∈ R, so that

v′′2 · v′′2 = s2yv1.

The real number y appearing in this formula can be either 0 or positive or
negative. Recalling that that any positive real number can be written as the
square of a positive real number, which was demonstrated at the end of section
1.2, it is possible to choose s so that s2y = 1 if y > 0 and s2y = −1 if y < 0.
Therefore after relabeling the vectors v1 and v2 the multiplication table for the
algebra takes the simpler form

(1.75) Aε : v1 · v1 = v1, v1 · v2 = v2 · v1 = v2, v2 · v2 = εv1

where ε is either 0 or 1 or −1. For the case ε = 0 the 2× 2 real matrices

(1.76) v1 =

(
1 0
0 1

)
v2 =

(
0 1
0 0

)
obviously satisfy (1.75); the vector space spanned by these two matrices is

(1.77) A0 =

{(
a b
0 a

) ∣∣∣∣ a, b ∈ R
}
,

and a straightforward calculation shows that this set of matrices is closed under
multiplication and is a commutative real algebra. For the case ε = 1 the 2 × 2
real matrices

(1.78) v1 =

(
1 0
0 1

)
v2 =

(
0 1
1 0

)
clearly satisfy (1.75); the vector space spanned by these two matrices is

(1.79) A1 =

{(
a b
b a

) ∣∣∣∣ a, b ∈ R
}
,
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and a straightforward calculation shows that this set of matrices is closed under
multiplication and form a commutative real algebra. For the case ε = −1 the
2× 2 real matrices

(1.80) v1 =

(
1 0
0 1

)
v2 =

(
0 1
−1 0

)
obviously satisfy (1.75); the vector space spanned by these two matrices is

(1.81) A−1 =

{(
a b
−b a

) ∣∣∣∣ a, b ∈ R
}
,

and a straightforward calculation shows that this set of matrices also is closed
under multiplication and form a commutative real algebra. It is also easy to see
that these three real commutative algebras are distinct algebras, in the sense
that no two of which are isomorphic. Indeed there are elements in A0 the
squares of which are zero, as for instance v2 · v2 = 0; in A1 however (x1v1 +
x2v2) · (x1v1 + x2v2) = (x2

1 + x2
2)v1 + 2x1x2v2 for any real x1, x2, so nonzero

elements always have nonzero squares, but (v1 + v2) · (v1 − v2) = 0 so there
are nonzero elements having products 0; finally if (x1v1 + x2v2) ∈ A−1 then
(x1v1 + x2v2) · (x1v1 − x2v2) = (x2

1 + x2
2)v1 for any real x1, x2, so any nonzero

element (x1v1 + x2v2) ∈ A−1 has the multiplicative inverse (x1v1 + x2v2)−1 =
(x2

1 + x2
2)−1(x1v1 − x2v2), showing that A−1 actually is a field.

The field A−1 is called the field of complex numbers and is denoted by
C. The basis vector v1 is customarily identified with the real identity element
1, and a product xv1 ∈ C is identified with the real number x viewed as being
imbedded in C; since (xv1) · (yv1) = (xy)v1 the imbedding R ⊂ C is compatible
with the algebraic operations in the fields R and C. The basis vector v2 is usually
denoted by i, and the products yv2 = yi for y ∈ R are known for historic reasons
as imaginary numbers. The elements of the field C, the complex numbers,
thus are written z = x + iy, where x = <(z) ∈ R is called the real part of
the complex number z and y = =(z) ∈ R is called the imaginary part of the
complex number z. In (1.80) there is a choice whether to use v2 or −v2 as
the second basis vector; whichever is chosen clearly leads to the same algebra
(1.81) and the same algebraic operations. Thus it is possible to associate to any
complex number z = x+ iy ∈ C another complex number z = x− iy called the
complex conjugate of z; and the mapping z −→ z is a field isomorphism since
it is readily verified that (z1 + z2) = z1+z2 and (z1 · z2) = z1 ·z2. In terms of the
matrices (1.81) complex conjugation corresponds to taking the transpose of the
matrix. It is worth noting that obviously there is no nontrivial isomorphism of
the field R with itself, exhibiting an interesting difference between the two fields
R and C. It is an interesting exercise to go through the preceding classification
of 2-dimensional algebras for the case of algebras over the complex numbers.
The argument goes through as before; but any complex number is the square
of another complex number, so there are only the two distinct algebras (1.75)
over the complex numbers corresponding to the values ε = 0, 1 and neither is a
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field. The world is in some ways not as interesting as it might be; alas there are
no other finite dimensional real algebras that are fields8.

8See the Princeton Companion to Mathematics
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PROBLEMS, GROUP I:

(1) If W1,W2 are linear subspaces of a vector space V over a field F , which
of the following subsets of V are also linear subspaces and why:
(i) W1 ∩W2 (ii) W1 ∪W2 (iii) W1 ∼W2 (iv) W1 +W2.

(2) Find a basis for the subspace of R4 spanned by the vectors (1, 2,−1, 0),
(4, 8,−4,−3), (0, 1, 3, 4), and (2, 5, 1, 4).

(3) Find an example of a vector space V and subspaces M,N1, N2 ⊂ V such
that M ⊕N1 = M ⊕N2 = V but N1 6= N2.

(4) If A is an m×n matrix over a field F show that the vector space V consisting
of those vectors x ∈ Fn such that Ax = 0 has dimension at least n−m. Find
an example in which n > m and the dimension of V is strictly greater than n−m.

(5) If A is an m × n matrix over a field F with n < m show that there do
not exist any n×m matrices B over that field for which AB = I.

(6) Find 2× 2 matrices A,B for which AB = 0 but BA 6= 0.

(7) Show that rankAB ≤ min(rankA, rankB) for any two matrices A,B for
which the product is defined; and find an example for which this is an equality
and another example for which this is a strict inequality.

(8) Consider the set of n× n matrices

Ii1,i2,...,in =
(
δi1 , δi2 , . . . , δin

)
where δi ∈ Rn is the Kroneceker vector having the entry 1 in row i and entries
0 in the other rows and i1, i2, . . . , in are any n integers in the range [1, n], not
necessarily distinct integers.
(i) What is the rank of the matrix Ii1,i2,...,in?
(ii) What is det Ii1,i2,...,in?

(iii) What is the vector Ii1,i2,...,inx for a column vector x =

x1

· · ·
xn

 in Rn?

(9) Let X be the real matrix x1 x2 x3

x2 x3 x1

x3 x1 x2

 .

(i) For what values xi is rankX = 2?
(ii) For what values xi is rankX = 1?
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(10) A reasonably effective technique for calculating the rank and determinant
of an m × n matrix A over a field F and examining explicitly the system of
linear equations Ax = y is through the elementary row operations on A:
(i) add c times row i to row j for some scalar c ∈ F ;
(ii) interchange rows i and j;
(iii) multiply row i by a nonzero scalar c ∈ F .
Show that these operations do not change the rank of a matrix, and that each can
be realized by multiplying the matrix A on the left by a suitable m×m matrix
(an elementary matrix). These operations can be applied to simplify the
form of a matrix A by reducing it to a matrix A′ that is as close to an identity
matrix as possible, so that it is easy to calculate its rank and determinant.
When the same product E of elementary matrices is applied to both sides the
equation Ax = y becomes A′x = EAx = Ey, which has the same solution x; so
finding the solution x and determining the conditions on y under which there
exists a solution x (or equivalently finding the image of the mapping defined
by the matrix A) are simplified as well. To ensure that the same elementary
operations are applied to the matrix A as to the vector y it is customary to
apply the operations to the extended matrix (A y) where the vector y is added
as an additional last column of the matrix A. Apply this procedure to show
that A can be reduced to A′ in the following example:

A =

1 2 3 4 5 y1

1 0 1 0 1 y2

1 2 2 2 1 y3

 A′ =

1 0 0 −2 −3 y′1
0 1 0 0 −2 y′2
0 0 1 2 4 y′3

 .

Determine the vector y′ explicitly in terms of the vector y. Determine the rank
of the matrix A. Show that the equation Ax = y can be solved for x whenever
y is specified arbitrarily; and in particular find a solution x when y = {1, 2, 3}.
Is your solution unique?

PROBLEMS, GROUP II:

(11) If V is an n-dimensional real vector space show that the kernel of any
nonzero linear transformation T : V −→ R is a linear subspace of dimension
n− 1 and conversely that any such linear subspace is the kernel of some linear
transformation T : V −→ R.

(12) If A is an m × n and B is an n × m matrix show that I − AB is non-
singular if and only if I −BA is nonsingular.

(13) Show that an m × n matrix A over a field F has rank 1 if and only if
A = b tc for some nonzero (column) vectors b ∈ Fm and c ∈ Fn.

(14) If A,B,C,D are square real matrices where detA 6= 0 and AC = CA

show that det

(
A B
C D

)
= det

(
AD − CB

)
. Find an example to show that this

is not necessarily the case if the hypotheses are not assumed.
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(15) An n × n matrix A is symmetric if A = tA and is skew symmetric if
A = − tA.
(i) Show that the set of symmetric matrices is a linear subspace of the vector
space of all n × n matrices, as is the set of skew-symmetric matrices, and find
the dimensions of these linear subspaces.
(ii) Show that the vector space of n × n matrices is the direct sum of the sub-
space of symmetric and the subspace of skew symmetric matrices, provided that
2 6= 0 in the field F . What happens for the field F2 = Z/2Z of two elements in
which 2 = 0?

(16) The trace tr(A) of an n × n matrix is defined to be the sum of its di-
agonal terms.
(i) Show that tr(A + B) = tr(A) + tr(B), that tr(AB) = tr(BA) and that
tr(ABA−1) = tr(B) if the matrix A is invertible.
(ii) Is tr(AB) = tr(A)tr(B)? Why?
(iii) Show that the equation AB − BA = I has no solutions in n × n matrices
A and B over a field F provided that n 6= 0 in F .

(17) If T : Fn −→ Fn is a linear transformation such that the kernel of T
is equal to the image of T show that n must be an even number. Find an ex-
ample of such a mapping.

(18) If T : V −→ V is a linear transformation on a finite dimensional vec-
tor space show that there is some number n for which Tn(V ) ∩ kerTn = 0.

(19) (i) For any elements a1, . . . , an in a field F show that

det


1 a1 · · · an−1

1

1 a2 · · · an−1
2

· · · · · · · · ·
1 an · · · an−1

n

 =
∏

1≤i<j≤n

(ai − aj) .

This determinant is called the Vandermonde determinant.
(ii) Using the Vandermonde determinant show that for any n pairs

(a1, b1), . . . , (an, bn)

of elements in the field F , where ai are distinct elements, there is a polynomial
p(x) of degree at most n− 1 such that p(ai) = bi for 1 ≤ i ≤ n.
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(20) A diagram of vector spaces Vi and linear transformations Ti of the form

V1
T1−→ V2

T2−→ V3
T3−→ V4

T4−→ . . .

is said to be an exact sequence of vector spaces if in any subsegment of

the form Vi−1
Ti−1−→ Vi

Ti−→ Vi+1 the image of the linear transformation Ti−1 is
precisely the kernel of the linear transformation Ti. For example, the assertion

that the sequence 0
T0−→ V1

T1−→ V2 is exact is equivalent to the assertion that
the linear transformation T1 is injective while on the other hand the assertion

that the sequence V1
T1−→ V2

T2−→ 0 is exact is equivalent to the assertion that
the linear transformation T1 is surjective.
(i) What is the interpretation of the exactness of the sequence

0
T0−→ V1

T1−→ V2
T2−→ 0?

(ii) What is the interpretation of the exactness of the sequence

0
T0−→ V1

T1−→ V2
T2−→ V3

T3−→ 0,

traditionally called a short exact sequence?
(iii) Show that

∑n
i=1(−1)i dimVi = 0 for any exact sequence of the form

0
T0−→ V1

T1−→ V2
T2−→ · · · Tn−1−→ Vn

Tn−→ 0,

a sequence beginning and ending with the trivial vector space 0.



Chapter 2

Topological Fundamentals

2.1 Normed Vector Spaces

The geometric as distinct from the algebraic properties of vector spaces
involve the notion of the length or size of a vector. Formally a norm on a real
vector space V is a mapping V −→ R that associates to any vector x ∈ V a real
number ‖x‖ ∈ R, the norm of the vector x, with the following properties:Note
that (ii), hermitian symmetry, implies that (v,v) always is a real number, so
that condition (iii) does make sense.

(i) positivity : ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0;(2.1)

(ii) homogeneity : ‖cx‖ = |c| ‖x‖ for any c ∈ R;

(iii) the triangle inequality : ‖x + y‖ ≤ ‖x‖+ ‖y‖.

For the 1-dimensional real vector space R the norm of a number x ∈ R, usually
denoted by |x| and called the absolute value of x, is defined by

(2.2) |x| =

 x if x ≥ 0,

−x if x ≤ 0.

That the absolute value satisfies the condition required in a norm is quite ap-
parent; and it is clear that aside from a constant factor the absolute value is the
only norm on the vector space R1, since for any norm ‖x‖ on R1 it follows from
homogeneity that ‖x‖ = ‖x · 1‖ = |x| ‖1‖. However for general vector spaces
there are a variety of norms in quite common use; in particular there are the
following three norms in the vector space Rn of dimension n > 1:
(i) the `1 or mean norm of a vector x = {xj}:
‖x‖1 =

∑n
j=1 |xj |;

(ii) the `2 or Cartesian norm or Euclidean norm of a vector x = {xj}:
‖x‖2 =

√∑n
j=1 x

2
j =

√
x2

1 + · · ·+ x2
n with the non-negative square root;

(iii) the `∞ or supremum norm or sup norm of a vector x = {xj}:

61
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‖x‖∞ = max1≤j≤n |xj |.
That the `1 norm satisfies the properties of a norm is clear since the absolute
value of a real number is a norm. That the `∞ norm satisfies the properties of
a norm also is clear, except perhaps for the triangle inequality; to verify that
inequality, if x,y ∈ Rn then since |xj | ≤ ‖x‖∞ and |yj | ≤ ‖y‖∞ for 1 ≤ j ≤ n
it follows that |xj + yj | ≤ |xj | + |yj | ≤ ‖x‖∞ + ‖y‖∞ for 1 ≤ j ≤ n and con-
sequently that ‖x + y‖∞ = max1≤j≤n |xj + yj | ≤ ‖x‖∞ + ‖y‖∞. That the `2
norm satisfies these three properties also is obvious except for the triangle in-
equality. That can be demonstrated quite conveniently by introducing another
linear functional, the inner product of two vectors x,y ∈ Rn, defined by

(2.3) (x,y) =

n∑
j=1

xjyj for vectors x = {xj} and y = {yj} ∈ Rn;

often the inner product is written (x,y) = x · y and is called the dot product
of the two vectors x and y. The `2 norm is obviously defined in terms of the
inner product by

(2.4) ‖x‖2 =
√

(x,x) (with the non-negative square root).

Actually inner products on vector spaces arise more generally and play a signif-
icant role in both algebra and analysis, so it is advantageous to consider them
rather more generally. A real inner product space is defined as a real vector
space V with a mapping that assigns to any vectors x,y ∈ V a real number
(x,y) ∈ R with the following properties:

(i) linearity : (c1x1 + c2x2,y) = c1(x1,y) + c2(x2,y) for any c ∈ R;(2.5)

(ii) symmetry : (x,y) = (y,x);

(iii) positivity : (x,x) ≥ 0 and (x,x) = 0 if and only if x = 0.

It is evident that the inner product (2.3) does satisfy these conditions, and that
for any inner product on V the function

(2.6) ‖x‖ =
√

(x,x) ≥ 0 for any x ∈ V

satisfies the first two conditions in the definition of a norm; but the triangle
inequality is demonstrated most easily by using the inner product, and will be
demonstrated using just the basic properties (2.5) of an inner product on a real
vector space V . It is apparent from symmetry (ii) and linearity (i) that an inner
product (x,y) on a vector space V is also a linear function of the vector y. Not
so obvious perhaps is that an inner product is determined by the norm (2.6) it
defines, since

(2.7) (x,y) = 1
4‖x + y‖2 − 1

4‖x− y‖2

which is demonstrated by noting that

‖x + y‖2 − ‖x− y‖2 = (x + y,x + y)− (x− y,x− y)

=
(

(x,x) + 2(x,y) + (y,y)
)
−
(

(x,x)− 2(x,y) + (y,y)
)

= 4(x,y).
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Equation (2.7) is called the polarization identity.

Theorem 2.1 For any vectors x,y in a real inner product space V
(i) |(x,y)| ≤ ‖x‖‖y‖, and this is an equality if and only if the two vectors are
linearly dependent;
(ii) ‖x + y‖ ≤ ‖x‖ + ‖y‖, and this is an equality if and only if one of the two
vectors is a non-negative multiple of the other.

Proof: (i) The inequality (i) is trivial if either x = 0 or y = 0, so assume that
x,y ∈ V are nonzero vectors and set

z = y − (y,x)

‖x‖2
x, so that (z,x) = (y,x)− (y,x)

‖x‖2
(x,x) = 0.

Then

0 ≤ (z, z) = (z,y)− (y,x)

‖x‖2
(z,x)

= (z,y) = ‖y‖2 − (y,x)

‖x‖2
(x,y),

so that ‖x‖2‖y‖2 − (y,x)2 ≥ 0, which implies the inequality (i); and this in-
equality is an equality if and only if z = 0 so the vectors x and y are linearly
dependent.
(ii) Assuming the inequality (i)

‖x + y‖2 = (x + y,x + y) = ‖x‖2 + 2(x,y) + ‖y‖2(2.8)

≤ ‖x‖2 + 2|(x,y)|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2
,

which implies the inequality (ii). If ‖x + y‖ = ‖x‖ + ‖y‖ the inequalities in
(2.8) are all equalities so 2|(x,y)| = 2‖x‖‖y‖ and then by (i) the vectors x
and y must be linearly dependent; if x 6= 0 then y = cx for some c ∈ R,
and substituting this into the equality ‖x + y‖ = ‖x‖ + ‖y‖ it follows that
|1 + c|‖x‖ = ‖(1 + c)x‖ = ‖x + y‖ = ‖x‖+ ‖y‖ = ‖x‖+ ‖cx‖ = (1 + |c|)‖x‖ so
|1 + c| = 1 + |c| and consequently c ≥ 0, which suffices for the proof.

The very useful inequality (i) in the preceding theorem, called the Cauchy-
Schwarz inequality, can be written as the assertion that for any two nonzero
vectors x,y ∈ V the quotient

(2.9) Q(x,y) =
(x,y)

‖x‖‖y‖
satisfies − 1 ≤ Q(x,y) ≤ 1.

Although the cosine function only will be defined later in Section 3.3, the ele-
mentary geometric properties of that function are probably sufficiently familiar
to the readers that they can be assumed for the purposes of the next definitions.
Thus it follows from (2.9) that there is a unique angle θ(x,y) such that

(2.10) 0 ≤ θ(x,y) ≤ π and cos θ(x,y) = Q(x,y).
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Figure 2.1: Geometrical interpretation of the Cauchy-Schwarz inequality in R2

It is customary to call this angle θ(x,y) the angle between the vectors x
and y. For the usual `2 norm and its inner product, as in the accompanying
Figure 2.1, if (x, y) ∈ R2 is a vector of length ‖(x, y)‖2 = 1 at the origin in
the plane of the variables x, y making an angle θ with the real axis then in
the right triangle in the figure x = cos θ and

(
(1, 0), (x, y)

)
= x and since

‖(1, 0)‖2 = ‖(x, y)‖2 = 1 then

Q
(
(1, 0), (x, y)

)
=

(
(1, 0), (x, y)

)
‖(1, 0)‖2‖(x, y)‖2

= x.

Thus by definition (2.10) the angle θ between the vectors (1, 0) and (x, y) is
defined by cos θ = x, showing that at least in this case the definition (2.10) of
the angle between these two vectors agrees with the usual geometric sense of
the angle between them. Two nonzero vectors x,y ∈ V in a general real inner
product space are said to be parallel and in the same direction if Q(x,y) = 1,
so the angle between them is θ(x,y) = 0; and the vectors are said to be parallel
and in the opposite direction if Q(x,y) = −1, so the angle between them is
θ(x,y) = π. Equivalently two nonzero vectors are parallel and in the same
direction if one of them is a positive multiple of the other, and they are parallel
and in the opposite direction if one of them is a negative multiple of the other;
that is evident from the proof of Theorem 2.1. The two vectors are said to
be orthogonal or perpendicular if Q

(
x,y

)
= 0, so the angle between them

is θ(x,y) = π/2 or 3π/2. With this interpretation the inner product can be
described alternatively as

(2.11) (x,y) = ‖x‖‖y‖ cos θ(x,y),

in terms of the angle θ(x,y) between the vectors x and y. This geometrical
interpretation of the Cauchy-Schwarz inequality makes the classical `2 norm
particularly useful in many applications.

One special case deserves some additional attention. The field of complex
numbers C was defined at the end of Section 1.3 as one of the 2-dimensional
real algebras, and as such it has the natural structure of a 2-dimensional real
vector space. A complex number z = x + i y can be identified with the vector
{x, y} ∈ R2, so that ‖z‖22 = x2 +y2. On the other hand zz = (x+ i y)(x− i y) =
x2 +y2, so the `2 norm also can be defined by ‖z‖22 = zz. The advantage of this
alternative expression is that for any two complex numbers z1, z2 the norm of
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the product satisfies ‖z1z2‖22 = (z1z2)(z1z2) = (z1z1) · (z2z2) = ‖z1‖22‖z2‖22, and
consequently ‖z1z2‖2 = ‖z1‖2‖z2‖2; so the `2 norm respects the multiplication
of the complex numbers, much the same way that the absolute value norm
respects the multiplication of the real numbers. For that reason this norm is
usually denoted by |z| rather than ‖z||2, and it is called the absolute value or
in the older literature the modulus of the complex number z.

There are a great number of inequalities such as the Cauchy-Schwarz in-
equality that play significant roles throughout mathematics. Another such in-
equality is related to the l1 norm, which sometimes is called the mean norm
since 1

n‖x‖1 is the mean or average value of the n coordinates xj of any vector
x = {xj} ∈ Rn; the mean or average often also is called the arithmetic mean
of the n real numbers xj . The multiplicative analogue of the arithmetic mean
is the geometric mean, the value (|x1||x2| · · · |xn|)1/n.

Theorem 2.2 (Inequality of the arithmetic and geometric means) For
any real numbers xj ∈ R

(2.12) |x1x2 · · ·xn| ≤ µn

where

(2.13) µ =
1

n

(
|x1|+ |x2|+ · · ·+ |xn|

)
;

and this is an equality if and only if |x1| = · · · = |xn| = µ.

Proof: It is clearly sufficient to prove the result under the additional hypothesis
that xj > 0 for all j, since the result holds trivially if any variable is 0 and
the absolute values of the variables are all nonnegative. The proof will be by
induction on n. The case n = 1 holds trivially, so assume that the result has
been demonstrated for some n ≥ 1 and let

µ =
1

n+ 1

(
x1 + · · ·+ xn + xn+1

)
for real numbers xj > 0. If xj = µ for all indices 1 ≤ j ≤ n+1 the desired result
holds trivially; so it can be assumed that xn > µ and µ > xn+1, by reordering
the xj suitably. In that case

y = xn + xn+1 − µ ≥ xn − µ > 0

and the induction assumption can be applied to the n real numbers x1, . . . , xn−1, y,
for which x1 + · · ·+ xn−1 + y = x1 + · · ·+ xn−1 + xn + xn+1 − µ = nµ so that

x1 · · ·xn−1 · y ≤ µn

and consequently

(2.14) x1 · · ·xn−1 · y · µ ≤ µn+1.
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Now

y · µ− xn · xn+1 = (xn + xn+1 − µ)µ− xn · xn+1

= (xn − µ)(µ− xn+1) > 0

so xn · xn+1 < y · µ and substituting this into (2.14) shows that

x1 · · ·xn+1 < x1 · · ·xn−1 · y · µ ≤ µn+1,

which suffices for the proof.

In any vector space there is a useful notion of the equivalence of two norms
‖x‖a and ‖x‖b, defined by

‖x‖a � ‖x‖b if there are real numbers ca > 0, cb > 0 such that(2.15)

‖x‖a ≤ ca ‖x‖b and ‖x‖b ≤ cb ‖x‖a for all x ∈ V .

That this is actually an equivalence relation is quite straightforward. Indeed
reflexivity and symmetry are clear; as for transitivity, if ‖x‖a � ‖x‖b there are
positive real numbers ca, cb such that ‖x‖a ≤ ca‖x‖b and ‖x‖b ≤ cb‖x‖a while
if ‖x‖b � ‖x‖c there are positive real numbers kb, kc such that ‖x‖b ≤ kb‖x‖c
and ‖x‖c ≤ kc‖x‖b, hence ‖x‖a ≤ ca‖x‖b ≤ cakb‖x‖c and ‖x‖c ≤ kc‖x‖b ≤
kccb‖x‖a so that ‖x‖a � ‖x‖c.

A ball of radius r ≥ 0 centered at a point a in a vector space V with the
norm ‖x‖ is defined to be the set

(2.16) B(a, r) =
{

x ∈ V
∣∣∣ ‖x− a‖ ≤ r

}
.

The norm in a normed vector space V is actually determined by the unit ball
at the origin in that vector space, for it is apparent that

(2.17) ‖x‖ = inf
{
r ≥ 0

∣∣∣ x ∈ B(0, r)
}
.

Consequently two norms ‖x‖a and ‖x‖b on a vector space V are equivalent if
and only if there are positive real numbers da and db such that

(2.18) Ba(0, 1) ⊂ daBb(0, 1) and Bb(0, 1) ⊂ dbBa(0, 1)

where Ba(a, r) is the ball defined in terms of the norm ‖x‖a while Bb(a, r) is
the ball defined in terms of the norm ‖x‖b and daBb(0, 1) denotes the set of all
points dax ∈ V for which x ∈ Bb(0, 1). The three norms defined previously are
described by unit balls of rather different shapes, as indicated in Figure 2.2; it is
rather clear geometrically from that figure that these three norms are equivalent,
and it is easy to prove it explicitly.

Theorem 2.3 For any vector x ∈ Rn

(2.19) ‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞ and ‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞;

consequently the `1, `2 and `∞ norms are equivalent to one another.
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Figure 2.2: The unit balls B(0, 1) for the `1, `2 and `∞ norms on R2.

Proof: First ‖x‖1 =
∑n
j=1 |xj | ≥ |xj0 | for any particular index j0 so ‖x1‖ ≥

‖x‖∞, and similarly ‖x‖22 =
∑n
j=1 |xj |2 ≥ |xj0 |2 for any particular index j0 so

‖x2‖ ≥ ‖x‖∞. On the other hand ‖x‖1 =
∑n
j=1 |xj | ≤

∑n
j=1 ‖x‖∞ = n‖x‖∞

and similarly ‖x‖22 =
∑n
j=1 x

2
j ≤

∑n
j=1 ‖x‖2∞ = n‖x‖2∞ hence ‖x‖2 ≤

√
n‖x‖∞.

That demonstrates (2.19), which shows that ‖x‖1 � ‖x‖∞ and ‖x‖2 � ‖x‖∞,
and consequently by symmetry and transitivity ‖x‖1 � ‖x‖2, which suffices for
the proof.

Another sort of norm is defined on the vector space L(V,W ) of linear trans-
formations between two normed vector spaces V and W ; but since this norm
depends explicitly on the norms chosen in the vector spaces V and W it is
useful to modify the notation to indicate the norms in V and W explicitly,
writing L(V, `V ; W, `W ) for the space of linear transformations between V
and W when these vector spaces have `V and `W norms. A linear transforma-
tions T ∈ L(V, `V ; W, `W ) for which the quotients ‖Tx‖

W
/‖x‖

V
are bounded

above for all x ∈ V ∼ {0} is called a bounded linear transformation. The
operator norm ‖T‖o for a bounded linear transformation s defined by

(2.20) ‖T‖o = sup

{
‖T x‖

W

‖x‖
V

∣∣∣∣ x ∈ V, x 6= 0

}
for any linear transformation T ∈ L(V, `V ; W, `W ). It is apparent from this
definition that the operator norm ‖T‖o can be defined alternatively as the in-
fimum of all real numbers C ≥ 0 for which ‖Tx‖W ≤ C‖x‖V for all x ∈ V .
As will be seen in the next paragraph, any linear transformation between finite
dimensional vector spaces is a bounded linear transformation; but that is not
the case even for some quite naturally defined linear transformations between
infinite dimensional vector spaces. That the operator norm actually is a norm
for bounded linear transformations is clear; it is obviously positive and homoge-
neous, and if S, T ∈ L(V, ‖x‖

V
; W, ‖x‖

W
) are bounded linear transformations

then
‖(S + T )(x)‖

W

‖x‖
V

≤ ‖S(x)‖
W

‖x‖
V

+
‖T (x)‖

W

‖x‖
V

for all x ∈ V

hence ‖S + T‖o ≤ ‖S‖o + ‖T‖o so the triangle inequality holds.
Now linear transformations A ∈ L(Rm,Rn) are described by matrices A ∈

Rn×m, and when these matrices are viewed as vectors in Rnm the `1, `2 and `∞
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norms can be defined on these matrices just as for any vectors; for instance

‖A‖∞ = max
1≤i≤n
1≤j≤m

∣∣aij∣∣ for a matrix A = {aij} ∈ Rn×m,

and correspondingly for the `1 and `2 norms. For any vector x ∈ Rm and any
index 1 ≤ i ≤ n∣∣∣∣ m∑

j=1

aijxj

∣∣∣∣ ≤ m∑
j=1

|aij ||xj | ≤
m∑
j=1

‖A‖∞‖x‖∞ = m ‖A‖∞‖x‖∞

so

(2.21) ‖Ax‖∞ = max
1≤i≤n

∣∣∣∣ m∑
j=1

aijxj

∣∣∣∣ ≤ m‖A‖∞‖x‖∞.
Thus a matrix A as a linear transformation A ∈ L(Rm, `∞; Rn, `∞) is a
bounded linear transformation so its operator norm is well defined and has the
bound

(2.22) ‖A‖o ≤ m‖A‖∞ for A ∈ L(Rm, `∞; Rn, `∞).

On the other hand for any A ∈ L(Rm, ‖x‖∞; Rn, ‖x‖∞) it follows from the
definition of the operator norm that for any basis vector δj ∈ Rm

‖A||o ≥
‖Aδj‖∞
‖δj‖∞

= ‖Aδj‖∞ = max
1≤i≤n

|aij |

and since that is the case for all basis vectors δj it follows that conversely

(2.23) ‖A‖o ≥ ‖A‖∞ for A ∈ L(Rm, `∞; Rn, `∞).

Equations from (2.22) and (2.23) show that the operator norm on a linear trans-
formation A ∈ L(Rm, `∞; Rn, `∞) is equivalent to the `∞ norm on A; and since
the `∞ norm is equivalent to the `1 and `2 norms on any vector space it follows
that the operator norm on matrices is also equivalent to the `1 and `2 norms on
matrices.

In many situations the particular norm is not terribly relevant since any
equivalent norm could be used; if that is the case and if it is not necessary to
specify just which norm is involved, the notation ‖x‖ will be used, meaning any
one of a set of equivalent norms where that set of norms is either specified or
understood. In particular when considering the vector spaces Rm or the vector
spaces L(Rm,Rn) the notation ‖x‖ stands for any of the various equivalent
norms. Some care must be taken, of course, for in some calculations the precise
relations between the norms is significant; in particular ‖x‖ should have the
same meaning in any single equation, or usually throughout any single proof,
for quite obvious reasons.
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PROBLEMS, GROUP I:

(1) Show that in a normed vector space
∣∣∣‖x‖ − ‖y‖∣∣∣ ≤ ‖x− y||.

(2) Show that if ‖x‖V is a norm on a vector space V and ‖y‖W is a norm
on a vector space W then both ‖(x,y)‖ = ‖x‖V + ‖y‖W and ‖(x,y)‖∞ =
max (‖x‖V , ‖y‖W ) are norms on the direct sum vector space V ⊕W , and the
two norms are equivalent.

(3) Show that if V is a normed vector space then in the vector space L(V, V )
with the operator norm ‖‖o
(i) ‖I‖o = 1 for the identity mapping I ∈ L(V, V ) and
(ii) ‖ST‖o ≤ ‖S‖o‖T‖o for any S, T ∈ L(V, V ).
(iii) Find an example in which ‖ST‖o < ‖S‖o‖T‖o.

(4) Show that the closed unit ball B(0, 1) in a normed vector space is a convex
set, in the sense that if a ∈ B(0, 1) and b ∈ B(0, 1) then the entire line segment

`(a,b) = { (1− t)a + tb | 0 ≤ t ≤ 1 }
from the point a to the point b is contained in B(0, 1).

PROBLEMS, GROUP II:

(5) (i) Show that a norm ‖x‖ on vectors in Rn can be defined by an inner
product (x1, x2) on Rn, in the sense that there is an inner product for which
‖x‖2 = (x, x), if and only if the norm satisfies the parallelogram law:

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

(ii) As a consequence, show that the `1 and `∞ norms on Rn cannot be defined
by inner products.

(6) The set of all real polynomials in a single variable x is naturally a real
vector space P; although it is not a vector space of finite dimension, nonetheless
it is possible to define norms on this vector space.
(i) Show that the expressions ‖p(x)‖∞ and ‖p(x)‖c defined for a polynomial
p(x) = a0 + a1x+ · · ·+ anx

n of any degree n by

‖p(x)‖∞ = sup
− 1

2≤x≤
1
2

|p(x)| and ‖p(x)‖c = max
(
|a0|, |a1|, . . . , |an|

)
are norms on the vector space P.
(ii) Show that the norms ‖p(x)‖∞ and ‖p(x)‖c on P are not equivalent norms.

(7) Show that if ‖x‖ is any norm on Rn there is a real constant M > 0 such
that ‖x‖ ≤M‖x‖∞ for all x ∈ Rn.
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(8) Show that ‖x‖ 1
2

=
(
|x1|

1
2 + |x2|

1
2

)2

does not define a norm in R2. [Sugges-

tion: Consider the result of problem (4). Comment: Compare this definition
with that in the next problem. ]

(9) The `p norm on Rn for any p ≥ 1 is defined by ‖x‖p =
(∑n

j=1 |xj |p
) 1
p

.

(i) Assuming the inequality xy ≤ xp

p + yq

q for x > 0, y > 0 and for p ≥ 1, q ≥ 1

where 1
p + 1

q = 1, demonstrate Hölder’s inequality∣∣∣(x,y)
∣∣∣ ≤ ‖x‖p‖y‖q if p, q ≥ 1,

1

p
+

1

q
= 1

where (x,y) =
∑n
j=1 xjyj . [Comment: This is just the Cauchy-Schwarz in-

equality in the special case that p = q = 2, so in a sense it is a generalization of
that inequality to the more general case of the `p norm.]
(ii) Show that ‖x‖p is actually a norm on Rn, in particular that

‖cx‖p = |c| ‖x‖p, and ‖x + y‖p ≤ ‖x‖p + ‖y‖p

for any x,y ∈ Rn and c ∈ R. [Suggestion: |xj |p = |xj ||xj |p−1 to which the
Hölder inequality can be applied.]
(iii) Show that ‖x‖∞ = limp→∞ ‖x‖p for any fixed point x ∈ Rn, thus in a sense
explaining the notation for the supremum norm.
(iv)∗ As a purely optional problem, in case you are interested in trying a chal-

lenge, prove the inequality xy ≤ xp

p + yq

q for x, y > 0, p, q > 1, and 1
p + 1

q = 1.
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2.2 Metric Spaces

In a normed vector space the norm ‖x − y‖ can be interpreted as the dis-
tance between the two vectors x and y; and the basic properties of norms can
be translated into basic properties for the notion of the distance between two
vectors. The notion of distance between points is important in more general
sets than just normed vector spaces, and it is convenient to axiomatize that
notion and to derive the general properties that are applicable in a wide range
of particular cases. For this purpose a metric on a set S is traditionally defined
to be a mapping ρ : S × S −→ R with the following properties:

(i) positivity, ρ(x, y) ≥ 0 and ρ(x, y) = 0 if and only if x = y;
(ii) symmetry, ρ(x, y) = ρ(y, x); and
(iii) the triangle inequality, ρ(x, y) ≤ ρ(x, z) + ρ(z, y).

A metric space is a set S together with a metric ρ defined on it; a metric space
does not involve just a set but also a specified metric on that set. In particular
a normed vector space V with a norm ‖x‖ is a metric space with the norm
metric defined by

(2.24) ρ(x,y) = ‖x− y‖;

the positivity and symmetry of the mapping ρ follow immediately from the pos-
itivity and homogeneity of the norm, and the triangle inequality of the mapping
ρ follows equally immediately from that of the norm. However metrics can be
defined on a wide range of sets other than vector spaces, and not even all metrics
on a vector space are derived from norms on that vector space. For instance the
discrete metric is defined on an arbitrary set S by

(2.25) ρd(x, y) =

 0 if x = y,

1 if x 6= y;

it is clear that this satisfies the conditions necessary to define a metric on S,
but that if S = Rn this metric does not arise from any norm on Rn, since for a
norm metric ρ(cx, cy) = |c|ρ(x,y) for any scalar c ∈ R. Any subset R ⊂ S of a
metric space S clearly also is a metric space under the restriction of the metric
on S. The metric subspace R is said to be dense in S if for any point s ∈ S and
any ε > 0 there is a point r ∈ R such that ρ(r, s) < ε. For example, the set R
of real numbers is a metric space with the metric defined by the absolute value
norm; the subset Q ⊂ R of rational numbers is dense in R with this metric. It
is occasionally the case that a metric subspace is easier to describe or to work
with than the full metric space; and if the metric subspace is dense it in turn
can be used to describe the full metric space.

It is possible to define a metric on a set S more generally as a mapping ρ :
S×S −→ F for any ordered field F , such as the field Q of rational numbers, with
the three basic properties of positivity, symmetry and the triangle inequality;
the order in F defines positivity and therefore what is meant by inequalities.
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The results to be discussed in this section hold for metrics defined as mappings
to arbitrary ordered fields, unless specifically restricted to real metric spaces, as
in Theorem 2.7 for instance; but since the principal interest here is analytical,
the discussion will continue to be expressed in terms of real metrics, with fairly
little note of the more general situation.

Some spaces are naturally equipped with a mapping ρ : S × S −→ R that
satisfies all of the conditions for a metric except possibly that ρ(x, y) = 0 for
some elements x, y ∈ S for which x 6= y; such a mapping is called a pseudomet-
ric, and a set equipped with such a mapping is called a pseudometric space.
On any such space it is possible to introduce an equivalence relation by setting
x � y whenever ρ(x, y) = 0. It is clear that this relation satisfies the reflexivity
and symmetry conditions for an equivalence relation. If x � y and y � z so that
ρ(x, y) = ρ(y, z) = 0 then by the triangle inequality ρ(x, z) ≤ ρ(x, y) +ρ(y, z) =
0 hence ρ(x, z) = 0 so x � z; thus this relation also satisfies the transitivity
condition, hence it is an equivalence relation. If x � x′ and y � y′ then by the
triangle inequality ρ(x′, y′) ≤ ρ(x′, x) +ρ(x, y) +ρ(y, y′) = ρ(x, y); reversing the
roles of x, y and x′, y′ yields the reverse inequality, so that ρ(x′, y′) = ρ(x, y).
Consequently it is possible to define a mapping ρ∗ : S∗ × S∗ −→ R by setting
ρ∗(x∗, y∗) = ρ(x, y) for any x ∈ S representing the equivalence class x∗ and any
y ∈ S representing the equivalence class y∗. It is easy to see that this defines
a metric on the space S∗; and in this way there is a metric space S∗ that is
naturally associated to any pseudometric space S, and it often can be used in
place of the pseudometric space S.

A space of course can have several metrics, just as normed vector spaces can
have several different norms. In parallel to the discussion of norms, there is a
notion of equivalence of two metrics ρa and ρb on a set S, defined by

ρa � ρb if there are constants ca > 0, cb > 0 such that(2.26)

ρa(x, y) ≤ ca ρb(x, y) and ρb(x, y) ≤ cb ρa(x, y) for all x, y ∈ S.

It is obvious from this definition and (2.15) that equivalent norms on a vector
space V determine equivalent metrics on the set V ; and it is fairly obvious
that the discrete metric is not equivalent to the metric defined by a norm on a
normed vector space. On the other hand different spaces can have essentially
the same metric. A mapping φ : S −→ T from a metric space S with the
metric ρS to a metric space T with the metric ρT is said to be an isometry
if ρT

(
φ(x), φ(y)

)
= ρS(x, y) for all points x, y ∈ S; clearly any isometry is an

injective mapping. Two metric spaces S and T are said to be isometric if there
is a bijective isometry φ : S −→ T ; and in that case clearly the inverse mapping
is a bijective isometry φ−1 : T −→ S. As far as the structure of a metric space
is concerned, isometric metric spaces are essentially the same metric space.

A sequence in a metric space S is a set of points of S indexed by the natural
numbers; thus a sequence in S is an indexed set such as {a1, a2, a3, . . .} where
aν ∈ S, often written as a set {aν} of points aν ∈ S for all ν ∈ N. A sequence
{aν} does not necessarily consist of distinct points; for instance setting aν = a
for all ν yields a perfectly acceptable sequence. A sequence {aν} converges
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to a or has the limit a, indicated by writing limν→∞ aν = a, if for any ε > 0
there is a number N = N(ε) depending on ε such that ρ(aν , a) < ε whenever
ν > N(ε) where ρ is the metric in S. It is easy to see that if a sequence aν
converges to a in terms of a metric ρ then it also converges to a in terms of
any metric equivalent to ρ. A sequence does not necessarily converge or have a
limit; for example in the metric space R with the metric defined by the norm
|x| the sequence of real numbers given by aν = ν does not converge, nor does
the sequence of real numbers given by aν = (−1)ν . However if a sequence has a
limit that limit is unique; for if a′ and a′′ are both limits of a sequence aν then
for any ε > 0 there is a number N such that ρ(aν , a

′) < ε and ρ(aν , a
′′) < ε

whenever ν > N , and for any such ν it follows from the triangle inequality that
ρ(a′, a′′) ≤ ρ(a′, aν) + ρ(aν , a

′′) < 2ε, which holds for all ε > 0 so ρ(a′, a′′) = 0
hence a′ = a′′. The sequence of the form aν = a clearly has the limit a and the
sequence of real numbers aν = 1/ν clearly has the limit 0. It is easy to see that
if {aν} and {bν} are two convergent sequences then the sequence {aν + bν} is
also convergent and limν→∞(aν + bν) = limν→∞ aν + limν→∞ bν ; and if aν ≤ bν
for all ν then limν→∞ aν ≤ limν→∞ bν .

As might be expected, the question whether a sequence converges or not
may be quite difficult to answer for some sequences1. For that reason it is
important to have tests to see whether sequences converge or not that do not
involve knowing or conjecturing what the limit of the sequence is. A sequence aν
is a Cauchy sequence if for any ε > 0 there is a number N(ε) depending on ε
such that ρ(aµ, aν) < ε whenever µ, ν > N(ε). It is easy to see that if a sequence
aν is a Cauchy sequence in terms of a metric ρ then it is also a Cauchy sequence
in terms of any metric equivalent to ρ. It is clear that any convergent sequence
is a Cauchy sequence; for if limn→∞ aν = a then for any ε > 0 there is a number
N such that ρ(aν , a) < ε/2 whenever ν > N , and therefore by the triangle
inequality ρ(aµ, aν) ≤ ρ(aµ, a) + ρ(aν , a) < ε/2 + ε/2 = ε whenever µ, ν > N .
It is not necessarily the case though that a Cauchy sequence is convergent. For
example the set S of real numbers x for which 0 < x ≤ 1 is a metric space with
the metric defined by the absolute value norm; the sequence 1, 1/2, 1/3, 1/4, . . .
is clearly a Cauchy sequence, but it converges to the real number 0 which is not
a point of S so the sequence does not converge in S. For a more interesting
example, the set Q of rational numbers with the metric defined by the absolute
value norm is also a metric space; it was demonstrated earlier that

√
2 can be

expressed as the supremum of a collection of rational numbers, so it is possible

1A well known sequence begins by setting a1 = n for any natural number n and defining
the further terms inductively by setting aν+1 = aν/2 if aν is even and aν+1 = 3aν + 1 if aν
is odd; the conjecture, first made by Luther Collatz in 1937, is that no matter what natural
number n is chosen the sequence eventually reaches the value 1, and then the sequence is
periodic: 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, .... That has not yet been proved, at the time this is being
written, although it had been verified for all values n ≤ 5 × 1018 and 1, 4, 2, 1, 4, . . . is the
only known cycle. More information can be found in the On-Line Encyclopedia of Integer
Sequences founded by N. J. A. Sloane, with the web address oeis.org. There are extensions
of the Collatz construction for which actually it is not provable that the sequence continues
forever; see the discussion by John Conway, “On Unsettleable Arithmetical Problems” in The
American Mathematical Monthly, vol 120 (2013), pp. 192-198.
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to choose a sequence of rational numbers aν converging to
√

2; but since
√

2 is
not a rational number the sequence aν does not converge in Q.

Two Cauchy sequences {aν} and {bν} are said to be equivalent Cauchy
sequences, indicated by writing {aν} � {bν}, if for any ε > 0 there is a number
N(ε) depending on ε such that ρ(aν , bµ) < ε whenever ν, µ > N(ε). The equiv-
alence of Cauchy sequences can be characterized alternatively, and equivalent
Cauchy sequences have the same basic convergence properties.

Theorem 2.4 Let S be a metric space with the metric ρ.
(i) Two Cauchy sequences {aν} and {bµ} in S are equivalent if and only if

(2.27) lim
ν→∞

ρ(aν , bν) = 0.

(ii) If {aν} and {bµ} are equivalent Cauchy sequences in S then {aν} converges
if and only if {bµ} converges and the two sequences then have the same limit.

Proof: (i) If two Cauchy sequences {aν} and {bµ} are equivalent then for any
ε > 0 there is a number N(ε) depending on ε such that ρ(aν , bµ) < ε when-
ever ν, µ > N(ε); for ν = µ in particular ρ(aν , bν) < ε whenever ν > N(ε),
hence (2.27) holds. Conversely if two Cauchy sequences {aν} and {bµ} satisfy
(2.27) then for any ε > 0 there is a number N1(ε) such that ρ(aν , bν) < ε/2
for all ν > N1(ε); and since the sequence aν is Cauchy there is also a num-
ber N2(ε) so that ρ(aν , aµ) < ε/2 whenever ν, µ > N2(ε). Consequently if
N(ε) = max

(
N1(ε), N2(ε)

)
then for any µ, ν > N(ε) by the triangle inequality

ρ(aν , bµ) ≤ ρ(aν , aµ) + ρ(aµ, bµ) < ε showing that {aν} � {bµ}.
(ii) If two Cauchy sequences {aν} and {bµ} are equivalent then (2.27) holds;
and if {aν} converges to a then limν→∞ ρ(aν , a) = 0, so by the triangle in-
equality limν→∞ ρ(bν , a) ≤ limν→∞

(
ρ(bν , aν) + ρ(aν , a)

)
≤ limν→∞ ρ(bν , aν) +

limν→∞ ρ(aν , a) = 0 hence the sequence bν also converges to a, and that suffices
for the proof.

The ordered field of real numbers is a metric space with the absolute value
norm, and provides nice examples of Cauchy sequences and of equivalent Cauchy
sequences. For any positive real number r > 0 let n0 ∈ N ∪ {0} be the largest
non-negative integer less than or equal to r, so that r = n0+r0 where 0 ≤ r0 < 1.
If the interval from 0 to 1 is split into 10 equal intervals of length 1/10 by points
n/10 for n = 0, 1, . . . , 9, the real number r0 will be contained in at least one of
these subintervals; if n1/10 ≤ r0 < (n1 + 1)/10 then r = n0 + n1/10 + r1 where
0 ≤ r1 < 1/10. Then if the interval from 0 to 1/10 is split into 10 equal intervals
of length 1/102 by points n/102 for n = 0, 1, . . . , 9, the real number r1 will be
contained in at least one of these subintervals; if n2/102 ≤ r1 < (n2 + 1)/102

then r = n0 + n1/10 + n2/102 + r2 where 0 ≤ r2 < 1/102. The process can be
continued, so the real number r can be written as the sum r = aν + rν of the
rational number aν = n0+n1/10+n2/102+· · ·+nν/10ν , customarily abbreviated
as aν = n0.n1n2 · · ·nν , plus a real number rν in the interval 0 ≤ rν < 1/10ν .
The rational numbers aν thus defined are an increasing sequence of rational
numbers bounded above, so by the completeness property of the real numbers
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the sequence {aν} converges to a real limit, which of course is just r itself. This
convergent sequence is customarily abbreviated as

(2.28) r = n0.n1n2n3 · · · where ni = 0, 1, 2, . . . , 8, 9 for i > 0

and is called the decimal expansion of the real number r, There is an al-
ternative construction in which the subintervals in which the remainders are
constrained have the form nν/10ν < rν−1 ≤ (nν + 1)/10ν , providing a different
Cauchy sequence converging to the same real number r, hence an equivalent
Cauchy sequence. The two constructions for the real number 1.234 lead to
the two Cauchy sequences 1.2340000000 . . . and 1.2339999999 . . . describing the
same real number, so to two distinct but equivalent Cauchy sequences of ratio-
nal numbers. The corresponding construction can be used for decompositions
of the interval into n equal segments for values of n other than 10, leading to
the an expansion in the base n of any real number. For example

√
2 can be

expressed as a Cauchy sequence of the form
√

2 = 1.0110101000001001111 . . .

in an expansion in the base 2.
A metric space S is said to be complete if every Cauchy sequence in S

converges. It was already noted that the space Q of rational numbers with the
absolute value metric is not a complete metric space. On the other hand the
space R of real numbers with the absolute value metric is a complete metric
space, as will be demonstrated. Before doing so, perhaps it should be recalled
that for ordered fields such as Q and R two distinct meanings have been asso-
ciated to the adjective “complete”: on the one hand a complete ordered field
was defined as an ordered field in which any set of field elements bounded above
has a least upper bound, while on the other hand an ordered field is a met-
ric space with the absolute value metric and is a complete metric space if every
Cauchy sequence converges. The two notions are virtually equivalent, so the use
of the term “ complete” is somewhat justified. The proof though requires that
the fields involved satisfy the archimedean property, that there are no positive
numbers in the field that are greater than any integer or less than any quotient
1/n for positive integers n, as discussed on page 26; as in that discussion, the
field of real numbers is an archimedean field.

Theorem 2.5 An ordered archimedean2 field is a complete ordered field if and
only if it is a complete metric space in the absolute value metric.

Proof: Suppose first that F is a complete ordered field and that aν is a Cauchy
sequence in F for the absolute value norm. If there are only finitely many

2There is a slightly subtle point here. It was demonstrated in Theorem 1.6 that an ordered
field that is complete, in the sense that there exist least upper bounds, is archimedean: there
are no positive elements r of the field such that r > n or r < 1/n for all integers n > 0;
but there are nonarchimedean fields that are complete metric spaces in terms of the metric
defined by the absolute value. However for archimedean ordered fields the two notions of
completeness are equivalent.
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distinct points among the points aν it is clear that the sequence converges;
so suppose that there are infinitely many distinct points. Since aν is a Cauchy
sequence then there is a number N such that |aν−aµ| < 1 for all µ, ν > N ; so all
these points, together with the finitely many points aν for ν ≤ N , are contained
in some finite interval [x1, y1] ⊂ F . Split this interval by its midpoint into two
subintervals. At least one of these halves will contain infinitely many points aν ,
so label that interval [x2, y2], noting that x1 ≤ x2 ≤ y2 ≤ y1. Continuing this
process leads to a sequence of intervals [xi, yi] each containing infinitely many
points aν , where xi ≤ xi+1 ≤ yi+1 ≤ y1. The points xi are all bounded above by
any yj , so since F is a complete ordered field this set of points has a least upper
bound x∞ = supxi ≤ yj ; and similarly the points yi are bounded below by xj
so they have a greatest lower bound y∞ = inf yi ≥ xj , and xi ≤ x∞ ≤ y∞ ≤ yi
for any i. By construction |yi−xi| ≤ |y1−x1|/2i−1. The archimedean property
shows that the quotients 1/2i−1 tend to 0 in the field, and consequently x∞ =
y∞ = a. Each interval [xi, yi] contains points aν for arbitrarily large indices
ν, since the interval contains infinitely many points of the sequence; and since
|aµ − aν | < yi − xi for all µ, ν sufficiently large it is evident that the sequence
aν converges to the value x∞ = y∞ = a, thus demonstrating that a complete
ordered field is a complete metric space with the metric defined by the absolute
value.

Conversely suppose that F is an ordered field that is a complete metric space
with the absolute value metric. If a subset S ⊂ F is bounded above by M1, so
that a ≤M1 for any a ∈ S, choose a point a1 ∈ S. Then either there is a point
a2 ∈ S such that a1+ 1

2 (M1−a1) < a2 ≤M1 or a ≤ a1+ 1
2 (M1−a1) for all a ∈ S.

In the first case take the point a2 and set M2 = M1, while in the second case
set a2 = a1 and M2 = a1 + 1

2 (M1− a1); thus in either case a1 ≤ a2 ≤M2 ≤M1

and (M2 − a2) ≤ 1
2 (M1 − a1). Repeating this construction leads to sequences

aν and Mν which are Cauchy sequences with the same limit point, again using
the archimedean property; thus A = limν→∞ aν = limν→∞Mν , and it is clear
that A = supS.

Corollary 2.6 For any n ∈ N the vector space Rn is a complete metric space
in terms of any of the equivalent standard norms `1, `2, `∞.

Proof: For the special case n = 1 this follows from the preceding theorem,
where the field R is defined as a complete ordered field. More generally for
the vector space Rn, if {Aν} is a Cauchy sequence in the `∞ norm, where
Aν = {a1ν , a2ν , . . . , anν} ∈ Rn, then the sequence {aiν} for each fixed i is a
Cauchy sequence in R since |aiµ − aiν | ≤ ‖Aµ − Aν‖∞, so the sequence {aiν}
converges to a real number ai by the first part of the proof; and then the
Cauchy sequence {Aν} clearly converges to the vector A = {a1, a2, . . . , an},
which suffices for the proof.

Theorem 2.7 For any real metric space S there exists a canonical3 isometry

3That the isometry is canonical means that it is explicitly and uniquely defined in terms
of the metric on the space S.
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φ : S −→ S∗∗ into a complete real metric space S∗∗; and the image φ(S) ⊂ S∗∗
is a dense subspace of S∗∗.

Proof: To any real metric space S associate the set S∗ of all Cauchy sequences
in S. If A = {aν}, B = {bν} ∈ S∗ then

ρ(aµ, bµ) ≤ ρ(aµ, aν) + ρ(aν , bν) + ρ(bν , bµ)

and consequently

ρ(aµ, bµ)− ρ(aν , bν) ≤ ρ(aµ, aν) + ρ(bν , bµ);

interchanging the roles of µ and ν leads to the corresponding inequality with
the left-hand side reversed, hence

(2.29) |ρ(aµ, bµ)− ρ(aν , bν)| ≤ ρ(aµ, aν) + ρ(bν , bµ).

Since A and B are Cauchy sequences then for any ε > 0 there is a number N(ε)
such that ρ(aµ, aν) < ε/2 and ρ(bµ, bν) < ε/2 whenever µ, ν > N(ε), hence from
(2.29) that |ρ(aµ, bµ) − ρ(aν , bν)| < ε whenever µ, ν > N(ε); thus {ρ(aν , bν)}
is a Cauchy sequence of real numbers, and since the real field is complete this
Cauchy sequence has a limit

(2.30) ρ∗(A,B) = lim
ν→∞

ρ(aν , bν).

The function ρ∗(A,B) on S∗ × S∗ clearly satisfies all the conditions of a metric
on S∗ except that possibly ρ∗(A,B) = 0 for some sequences A 6= B in S∗;
thus S∗ is at least a pseudometric space, and as noted earlier the space S∗∗ of
equivalence classes of elements of S∗, where two elements A,B are equivalent
if and only if ρ∗(A,B) = 0, is a metric space with metric naturally induced by
ρ∗. The mapping φ : S −→ S∗∗ that associates to any a ∈ S the equivalence
class of the constant Cauchy sequence S(a) for which aν = a for all ν is an
isometry since ρ∗

(
S(a), S(b)

)
= ρ(a, b) as an immediate consequence of (2.30).

The metric space S∗∗ and the isometry φ : S −→ S∗∗ are defined canonically
and uniquely in terms of the metric space S.

To show that φ(S) is a dense subspace of S∗∗, consider an equivalence class
A ∈ S∗∗ of Cauchy sequences A = {aν} ∈ S∗ . For any Cauchy sequence
A ∈ A and any ε > 0 there is a number N(ε) > 0 such that ρ(aµ, aν) < ε
whenever µ, ν > N(ε). For any fixed value µ0 > N(ε) the constant Cauchy

sequence S(aµ0) satisfies ρ∗
(
S(aµ0), A

)
= limν→∞ ρ(aµ0 , aν) < ε. It follows

that ρ∗
(
φ(aµ0

), A
)
< ε, showing that φ(S) is dense in S∗∗. Note that the proof

also shows that for any A ∈ S∗∗ and any Cauchy sequence A = {aν} ∈ A the
sequence {φ(aν)} ∈ S∗∗ converges to A.

Finally the preceding observations can be combined to show that S∗∗ is a
complete metric space. If An ∈ S∗∗ are elements of S∗∗ that form a Cauchy se-
quence {An} then for any ε > 0 there is a numberN(ε) such that ρ∗(Am, An) < ε
whenever µ, ν > N(ε). Since φ(S) is dense in S∗∗ there are bn ∈ S such that
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ρ∗(An, φ(bn)) < 1
n . It follows from the triangle inequality that ρ(bm, bn) =

ρ∗
(
φ(bm), φ(bn)

)
≤
(
ρ∗
(
φ(bm), Am) + ρ∗(Am, An) + φ∗(An, bn)

)
≤ ε + 1

m + 1
n

so {bn} is a Cauchy sequence in S; and as noted in the preceding paragraph
the image sequence φ(bn) converges to some B ∈ S∗∗. Since ρ∗(An, B) ≤
ρ∗
(
An, φ(bn)

)
+ ρ
(
φ(bn), B

)
it follows that limn→∞An = B, and that suffices

for the proof.

It was discovered during the development of topology that many of the basic
results did not really require the use of a norm or metric but only the use of the
notion of nearness provided by a norm or metric. That notion is based on the
concept of an ε-neighborhood Na(ε) of a point a in a metric space S with a
metric ρ(x, y), a subset of S defined by

(2.31) Na(ε) =
{
x ∈ S

∣∣∣ ρ(a, x) < ε
}

where ε > 0.

An open set in the metric space S is defined in terms of these ε-neighborhoods
as a subset U ⊂ S such that for each point a ∈ U there is an ε > 0 such
that Na(ε) ⊂ U ; intuitively an open set is one that contains with any point a
all points that are sufficiently near a. For example an open ε-neighborhood
Na(ε) of a point a ∈ S is an open set; indeed if b ∈ Na(ε) then ρ(a, b) < ε, and
if x ∈ Nb(ε′) where ε′ < ε − ρ(a, b) then by the triangle inequality ρ(a, x) ≤
ρ(a, b) + ρ(b, x) < ρ(a, b) + ε′ < ε so that Nb(ε′) ⊂ Na(ε).

Theorem 2.8 If T is the collection of all open subsets in a metric space S
then:
(i) ∅ ∈ T and S ∈ T ;
(ii) if Uα ∈ T then

⋃
α Uα ∈ T ;

(iii) if Ui ∈ T for 1 ≤ i ≤ N then
⋂N
i=1 Ui ∈ T .

Proof: (i) The entire set S of course is open; and the condition that for each
a ∈ ∅ there is an ε > 0 such that Na(εi) ⊂ ∅ is fulfilled vacuously since there
are no points a ∈ ∅.
(ii) If Uα are open sets and a ∈ U =

⋃
α Uα then a ∈ Uα0 for some set Uα0 ; and

since Uα0 is open there is an ε > 0 so that a ∈ Na(ε) ⊂ Uα ⊂ U hence U is
open.
(iii) If Ui are open sets and a ∈ U =

⋂N
i=1 Ui then for each i there is an εi > 0

such that Na(εi) ⊂ Ui ⊂ U ; so if ε = min εi then ε > 0 and Na(ε) ⊂ Na(εi) ⊂ Ui
for all Ui hence Na(ε) ⊂ U so U is open. That argument fails if there are
infinitely many such sets Ui since in that case there does not necessarily exist
an ε > 0 such that ε ≤ εi for all i.

The properties listed in the preceding theorem can be summarized as the
assertion that the empty set and the entire space are open and that the union
and finite intersection of open sets are open. It is easy to see that equivalent
metrics on a metric space S determine the same collection of open subsets of
S. Indeed if ρ1 and ρ2 are equivalent metrics on a set S then by definition
there are constants c1 > 0 and c2 > 0 such that ρ1(a, b) ≤ c1 ρ2(a, b) and
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ρ2(a, b) ≤ c2 ρ1(a, b) for all points a, b ∈ S. If U ⊂ S is an open subset in the
topology defined by the metric ρ1 then for any point a ∈ U there is an ε > 0 such
that Na(ε) =

{
x ∈ S

∣∣ ρ1(a, x) < ε
}
⊂ U . Then Na(ε/c1) =

{
x ∈ S

∣∣ ρ2(a, x) <

ε/c1
}
⊂ U so that U is also an open set in terms of the metric ρ2. The converse

results follows upon reversing the roles of the two metrics ρ1 and ρ2, so the two
metrics determine the same open sets.

The normed vector spaces considered in Section 2.1 provide illustrative ex-
amples of metric spaces. The ε-neighborhoods of the origin 0 ∈ Rn in the `1,
`2, and `∞ norms are the subsets sketched in Figure 2.2, and are open sets in
the metric topology defined by any of these norms. It is clear from the sketch
that any one of these neighborhoods of the origin can be fit into another one by
choosing a sufficiently small ε, and that is the geometric content of the assertion
that these metrics are equivalent. An r-neighborhood of a point a ∈ Rn in the `2
norm is also called an open ball of radius r centered at the point a ∈ Rn and is
commonly denoted by Br(a); here r is not expected to be particularly small, as
distinct from the general expectation for ε-neighborhoods. The corresponding
sets in an arbitrary metric space S are the sets

(2.32) Br(a) =
{
x ∈ S

∣∣∣ ρ(a, x) < r
}

defined in terms of the metric ρ on S. In place of the ε-neighborhoods in the
`∞ norm in Rn though it is more common to consider slightly more generally
the open cells in Rn, subsets of the form

(2.33) ∆ =
{

x = {xj} ∈ Rn
∣∣∣ aj < xj < bj for 1 ≤ j ≤ n

}
for arbitrary real numbers aj < bj . In particular in R1 a cell is just the set of
points x ∈ R such that a < x < b, also called an open interval and denoted
by (a, b). In this notation (a,∞) stands for the set of points x ∈ R for which
x > a while (−∞, b) stands for the set of points x ∈ R for which x < b. It is also
traditional to use notation such as this for intervals other than open intervals;
thus [a, b) denotes the set of points x ∈ R for which a ≤ x < b while (a, b]
denotes the set of points x ∈ R for which a < x ≤ b and [a, b] denotes the set of
points x ∈ R for which a ≤ x ≤ b. It is clear that these latter three sets are not
open sets. In general open sets can be quite complicated sets with no simple
general description as cells or balls; the exception though is the special case of
the vector space R1, when all the open sets can be described quite simply.

Theorem 2.9 An open subset U ⊂ R1 is a disjoint union of a countable number
of open intervals.

Proof: If U ⊂ R1 is an open set and a ∈ U let E =
{
x ∈ R

∣∣∣ (a, x) ⊂ U
}

.

Clearly E 6= ∅, as a consequence of the assumption that U is open. If the set E
is not bounded above then (a,∞) ⊂ U . If the set E is bounded above and a+ =
sup(E), where the supremum exists as a consequence of the completeness of the
real number system, then clearly (a, a+) ⊂ U . If a+ ∈ U then (a+, a+ + ε) ⊂ U
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since U is open, so there are points x ∈ E for which x > a+, which is impossible
since a+ = sup(E); hence a+ /∈ U . The corresponding argument shows that
there is a value a− so that (a−, a+) ⊂ U but a− /∈ U . Thus the open interval
(a−, a+) is contained in U and is disjoint from the complement U ∼ (a−, a+).
The same argument can be applied to any other point in U outside the interval
(a−, a+), so U is the union of a disjoint collection of open intervals. Choosing
a rational number in each of these intervals maps the set of intervals injectively
to a subset of Q, so the set of intervals is countable, and that suffices for the
proof.

APPENDIX: CONSTRUCTION OF THE REAL NUMBERS

The field of real numbers was defined axiomatically as a complete ordered
field, which sufficed to examine its basic properties. There remained the ques-
tions whether there actually exists such a field, and whether it is unique up to
isomorphism. Since the completeness of an archimedean ordered field is equiv-
alent to its completeness as a metric space with the absolute value metric, by
Theorem 2.5, it might be expected that the process of completing a metric space
could be applied to defining the real numbers; but the proof of Theorem 2.7 only
handled the completion of a real metric space, assuming the existence of the real
numbers. A modification of that proof does yield the existence of the reals and
is included as the following appendix.

To proceed, then, let R denote the set of rational Cauchy sequences, Cauchy
sequences A = {aν} where aν ∈ Q; and let R∗ denote the set of equivalence
classes of rational Cauchy sequences, where the equivalence A � B of Cauchy
sequences is as defined on page 74. The equivalence class of a Cauchy sequence
A ∈ R will be denoted by A∗ ∈ R∗. The map φ : Q −→ R that associates
to a rational a ∈ Q the Cauchy sequence φ(a) ∈ R for which aν = a for all
ν ∈ N clearly is an injective mapping; and it is easily seen that the sequences
φ(a) and φ(b) are equivalent if and only if a = b, so the mapping φ induces an
injective mapping φ∗ : Q −→ R∗. The algebraic operations in Q readily extend
to the corresponding algebraic operations in R, upon defining for any Cauchy
sequences A = {aν} and B = {bν} their sum and product to be the sequences
A + B = {aν + bν} and AB = {aνbν}; it is easy to see that these are indeed
Cauchy sequences, which is quite apparent for the sum while for the product

(2.34) |aµbµ−aνbν | = |aµ(bµ−bν)+(aµ−aν)bν | ≤ |aµ|·|bµ−bν |+|aµ−aν |·|bν |

and the terms |aµ| and |bν | are bounded for any two Cauchy sequences. It
is also easy to see that if A � A′ and B � B′ for any Cauchy sequences
A,A′, B,B′ ∈ R then (A+B) � (A′ +B′) and (AB) � (A′B′), using (2.34) in
case of the product; thus the operations of addition and multiplication are well
defined in the set R∗ of equivalence classes of rational Cauchy sequences. These
operations are derived from the corresponding operations in Q so have the same
properties as the operations in Q, giving R∗ the structure of a commutative
ring where the additive identity φ∗(0) is the equivalence class represented by
the Cauchy sequence φ(0) and the multiplicative identity φ∗(1) is the equivalence
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class represented by the Cauchy sequence φ(1); the mapping φ∗ : Q −→ R∗ is
an injective ring homomorphism.

Lemma 2.10 A Cauchy sequence A = {aν} ∈ R is not equivalent to the
Cauchy sequence φ(0) if and only if there are a natural number N ∈ N and
a rational number ε > 0 so that either
(i) aν > ε for all indices ν > N or
(ii) −aν > ε for all ν > N .

Proof: By definition a Cauchy sequence A = {aν} ∈ R is equivalent to the
Cauchy sequence φ(0) if and only if for any rational number ε > 0 there is
a natural number N such that |aν | < ε for all ν > N ; hence the Cauchy
sequence A = {aν} is not equivalent to the Cauchy sequence φ(0) if and only
if there is a rational number ε > 0 such that |aν | > ε for infinitely many
indices ν. Since A is a Cauchy sequence there is a natural number N such that
|aµ−aν | < ε/2 for all µ, ν > N , so if |aν0

| > ε for some particular index ν0 > N
then |aν | ≥ |aν0 | − |aν0 − aν | > ε/2 for all ν > N . That is equivalent to the
condition (i) if aν0 > 0 and condition (ii) if aν0 < 0, and that suffices for the
proof.

As a first application of the preceding lemma, if a Cauchy sequence A =
{aν} ∈ R is not equivalent to the Cauchy sequence φ(0), so that by the lemma
there are a natural number N ∈ N and a rational number ε > 0 so that |aν | > ε
if ν > N , then the sequence B obtained by replacing aν by bν = 1 if ν ≤ N and
by bν = 1/aν for all ν > N is a Cauchy sequence, since∣∣∣∣ 1

aµ
− 1

aν

∣∣∣∣ =

∣∣∣∣aν − aµaµaν

∣∣∣∣ < 1

ε2
|aν − aµ|;

and it is clear from the definition of the Cauchy sequence AB that AB � 1, so
it follows that the equivalence class B∗ ∈ R∗ is inverse to the equivalence class
A∗ ∈ R∗, showing that R∗ is actually a field. As a second application of the
preceding lemma, if P ⊂ R is the set of those Cauchy sequences A = {aν} ∈ R
for which there are a natural number N ∈ N and a rational number ε > 0
such that aν > ε for all ν > N , then it follows from the lemma that for any
Cauchy sequence A ∈ R either A ∈ P or −A ∈ P or A � φ(0). Since it is
clear that any Cauchy sequence that is equivalent to a sequence in the subset
P also is contained in P, it follows that if P∗ ⊂ R∗ is the set of equivalence
classes of Cauchy sequences that are contained in P then for any A∗ ∈ R∗
either A∗ ∈ P∗ or −A∗ ∈ P∗ or A∗ = φ∗(0). Clearly A∗ + B∗ ∈ P∗ and
A∗B∗ ∈ P∗ whenever A∗ ∈ P∗ and B∗ ∈ P∗, so the field R∗ is an ordered
field if P∗ is taken as the set of positive elements. The inequality A∗ ≤ B∗

for two equivalence classes A∗, B∗ ∈ R∗ then is defined as the condition that
B∗−A∗ ∈ P∗ or B∗−A∗ = φ∗(0), and the absolute value |A∗| of an equivalence
class A∗ ∈ R∗ is defined by

(2.35) |A∗| =

 A∗ if A∗ ∈ P∗ or A∗ = φ∗(0),

−A∗ if −A∗ ∈ P∗.
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The field R∗ can be viewed as a vector space over the field of rationals, and the
absolute value |A∗| is a norm on this vector space; indeed the absolute value as
defined in (2.35) is defined in the same way as the absolute value of the real
numbers was in (2.2), and the argument used to show the latter is a norm carries
over to the norm (2.35).

Lemma 2.11 For any A∗ ∈ R∗ and E∗ ∈ P∗ there is a rational number q ∈ Q
such that |A∗ − φ∗(q)| < E∗.

Proof: Choose Cauchy sequences A = {aν} ∈ R and E = {eν} ∈ P that
represent the equivalence classes A∗ and E∗. By the definition of the set P there
are a rational number ε > 0 and a natural number N such that eν > ε for all
ν > N . Since A is a Cauchy sequence then if N is sufficiently large it is also the
case that |aµ−aν | < ε/2 for all µ, ν > N . Let q = aN+1 ∈ Q; then for all ν > N
it follows that |aν−q| < ε/2 so eν−±(aν−q) ≥ eν−|aν−q| ≥ ε−ε/2 ≥ ε/2 > 0
showing that E > |A− φ(q)|, which suffices for the proof.

To complete the construction it is only necessary to show that the ordered
field R∗ is a complete archimedean field and that it is uniquely determined. It
follows from Lemma 2.11 that the field is archimedean, by taking E∗ = φ∗(1)
in the lemma and multiplying φ∗(q) + φ∗(1) by a suitable positive integer. If
{A∗i } ∈ R∗ is a Cauchy sequence, if {Ai} ∈ R is a representative Cauchy
sequence and if ε ∈ Q then |Ai − Aj | < φ(ε) whenever i, j are sufficiently
large, or equivalently |aiν − ajν | < ε for all sufficiently large ν whenever i, j are
sufficiently large. It follows from the preceding Lemma 2.11 that for any index
i there is a rational qi ∈ Q such that |Ai − φ(qi)| < φ(1/i) or equivalently such
that |aiν − qi| < 1/i whenever ν is sufficiently large. Then whenever i < j and
i is sufficiently large

|qi − qj | ≤ |qi − aiν |+ |aiν − ajν |+ |ajν − qj | ≤ 1/i+ |aiν − ajν |+ 1/j;

and since |aiν − ajν | < ε whenever ν is sufficiently large it follows that

|qi − qj | ≤ 1/i+ ε+ 1/j for any ε ∈ Q

and consequently that

|qi − qj | ≤ 2/i whenever i is sufficiently large and j > i.

That shows that Q = {qν} is a Cauchy sequence Q ∈ R; and since for sufficiently
large ν > i

|aiν − qν | ≤ |aiν − qi|+ |qi − qν | < 3/i,

which means that |Ai − Q| ≤ 3/i for sufficiently large i, it follows that the
Cauchy sequence {A∗i } converges to the Cauchy sequence Q∗. Therefore R∗ is a
complete ordered field. Since every complete ordered field contains the rational
numbers Q as a subfield, and every element in the field is a limit of rationals, it
further follows that there is indeed a unique complete ordered field, as desired.
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That any real number can be represented as the limit of the sequence of sums
of a decimal expansion was discussed earlier; and that conversely the sequence
of sums of any decimal expansion converges to a real number follows from the
result of Theorem 2.5, showing that a complete archimedean field is a complete
metric space. Thus the field R of real numbers can be described alternatively
as the set of equivalence classes of the Cauchy sequences formed by the sums of
decimal expansions, which is perhaps the usual elementary way in which the real
numbers are traditionally described. Of course the field R can be characterized
as well in terms of binary or other expansions.



84 CHAPTER 2. TOPOLOGICAL FUNDAMENTALS

PROBLEMS, GROUP I:

(1) Show that if a sequence aν in a metric space S converges in terms of a
metric ρ then it coverges in terms of any metric equivalent to ρ. Show that if
the sequence is Cauchy for the metric ρ then it is Cauchy for any metric equiv-
alent to ρ. Show that if the metric space S is complete in terms of a metric ρ
then it is complete in terms of any metric equivalent to ρ.

(2) Show that a Cauchy sequence aν in a metric space S is bounded, in the
sense that for any point a ∈ S there is a number Na such that ρ(aν , a) < Na
for all aν .

(3) Show that ρ(x, y) =
∣∣∣ 1x − 1

y

∣∣∣ is a metric on the set S of strictly positive

real numbers. Is it equivalent to the usual metric |x| on the set S? Why? Are
there sequences of positive real numbers that are Cauchy for the metric ρ but
not for the usual metric? If there are, give examples; if not, say why.

(4) Describe the Cauchy sequences in the discrete metric on a set S. Is S a
complete metric space in this metric? Why?

(5) Show that on the vector space of n×n real matrices the function ρ(A,B) =
rank(A−B) is a metric that is equivalent to the discrete metric.

(6) Show that if ρ1 and ρ2 are two metrics on a set S then σ(x, y) = ρ1(x, y) +

ρ2(x, y) and τ(x, y) = max
(
ρ1(x, y), ρ2(x, y)

)
are also metrics on S. Are the

metrics σ and τ equivalent? Why?

(7) (i) Suppose that aν is a sequence of real numbers such that
|aν+1 − aν | ≤ r|aν − aν−1| for all ν ≥ 2. Is this a Cauchy sequence if

0 < r < 1? Why? Is this a Cauchy sequence if r = 1? Why?
(ii) Suppose aν is a sequence of real numbers such that for any ε > 0 there is a
natural number N for which |aν+1 − aν | < ε whenever ν > N . Is this sequence
a Cauchy sequence? Why?
(iii) Suppose that aν is a sequence of real numbers such that 0 ≤ aν ≤ aν+1 and
aν ≤ 1010 for all ν. Is this sequence a Cauchy sequence? Why?

PROBLEMS, GROUP II:

(8) Let S be the set consisting of all sequences of positive integers, and if
A = {ai} and B = {bi} are such sequences set

ρ(A,B) =

{
0 if ai = bi for i ≥ 1,
1
n if a1 = b1, a2 = b2, . . . , an−1 = bn−1, an 6= bn.

Show that this is a metric on S. What are the Cauchy sequences in this metric?
Is S a complete space in terms of this metric?
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(9) If ρ is a metric on a set S show that σ(x, y) = ρ(x,y)
1+ρ(x,y) and τ(x, y) =

min
(
1, ρ(x, y)

)
also are metrics on S, and that both are bounded metrics in the

sense that σ(x, y) ≤ 1 and τ(x, y) ≤ 1 for all x, y ∈ S. Are the metrics σ and τ
necessarily equivalent? Why?

(10) Show that the set of bounded sequences (sequences of real numbers aν
such that supν |aν | < ∞ ) is a metric space with the metric ρ({aν}, {bν}) =
supν |aν−bν |. Is this a complete metric space? Why? Is the subspace consisting
of sequences that are Cauchy sequences a complete metric space under the same
metric? Why?

(11) Define a sequence xn of real numbers by choosing x0 and x1 arbitrarily
and setting xn = 1

2 (xn−1 + xn−2) for all n ≥ 2. What can you say about the
convergence of this sequence?

(12) Define a sequence xn of real numbers by choosing x1 > 0 arbitrarily and
setting xn =

√
a+ xn−1 for n ≥ 2, where a > 0. Show that the sequence xn

converges to a real number ξ > 0 for which ξ2 − ξ − a = 0.

(13) Let S be a metric space with the metric ρ.
(i) Show that the set of all bounded real-valued functions on S (mappings from
S to R, each of which is bounded) form a vector space V , where the sum f+g of
two functions f, g is the function (f+g)(x) = f(x)+g(x) and the scalar product
rf of the function f and a real number r is the function (rf)(x) = rf(x) for all
x ∈ S.
(ii) Show that vector space V is a normed vector space under the norm ‖f‖∞ =
supx∈S |f(x)|, where the condition that a function f be bounded is interpreted
as meaning that ‖f‖∞ is finite.
(iii) Fix an s0 ∈ S and for any point a ∈ S let fa(x) = ρ(a, x)− ρ(s0, x) for any
x ∈ S. Show that fa(x) is bounded and fa(x) ∈ V .
(iv) Show that ρ(a, b) = ‖fa − fb‖∞ for any points a, b ∈ S.
(v) Show that the mapping φ : a −→ fa is an isometric mapping from the metric
space S into the metric space V , where the metric on V is that defined by the
norm ‖f‖∞ on V .
(Comment: The preceding argument shows that any metric space can be real-
ized as a subset of a normed vector space).
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2.3 Topological Spaces

A topological space is defined to be a set S together with a collection T
of subsets of S such that:

(i) if Uα ∈ T then
⋃
α Uα ∈ T ;

(ii) if Ui ∈ T for 1 ≤ i ≤ N then
⋂N
i=1 Ui ∈ T ;

(iii) ∅ ∈ T and S ∈ T .

The sets in T are called the open sets in the topology T ; thus in a topological
space any union or finite intersection of open sets is open, and the empty set
∅ and the full set S are open. The open sets in a metric space S provide a
topology on S, called the metric topology; but there are many other possible
topologies on a metric space. Any set S can be given the discrete or maximal
topology, for which T contains all the subsets of S, or the indiscrete or mini-
mal topology, for which T contains just the empty set ∅ and the set S itself. It
is customary to say that one topology T1 is larger than another topology T2 if
every open set in T2 is open in T1, that is, if T2 ⊂ T1 ; in that sense the discrete
topology is the largest topology on any set. Correspondingly a topology T1 is
smaller than another topology T2 if every open set in T1 is open in T2, that is,
if T1 ⊂ T2 ; in that sense the indiscrete topology is the smallest, which explains
the alternate terminology. It is possible to introduce topologies on any set of
points. For instance on the set S consisting of two points 0 and 1 in addition to
the discrete and indiscrete topologies there is an additional topology in which
there are 3 open sets, the sets ∅, {0}, {0, 1}; this is the simplest case in which
there is a topology other than the discrete and indiscrete topologies on a set.
The set of two points with this topology is called the Sierpinski space. In
general an open subset of a topological space S containing a point a is called an
open neighborhood, or sometimes just a neighborhood of the point a, and
often will be denoted by Na. An ε-neighborhood Na(ε) of a point a in a metric
space is an open neighborhood of a; but there are considerably more general
open neighborhoods of any point in a metric space. In the Sierpinski topology
the point 0 is an open neighborhood of itself, while the only open neighborhood
of the point 1 is the entire space {0, 1}. In a sense, open neighborhoods in
a general topological space play the role of ε-neighborhoods in a metric space
with the metric topology; however metric spaces really are a special category
of topological spaces, with some quite special properties, so caution is required
when attempting to extend properties of metric spaces to general topological
spaces.

The complements of the open subsets in a topological space S are called
the closed sets of S. It follows immediately from the defining properties of a
topology that the collection C of closed sets in a topological space S has the
following properties:

(i) if Uα ∈ C then
⋂
α Uα ∈ C;

(ii) if Ui ∈ C for 1 ≤ i ≤ N then
⋃N
i=1 Ui ∈ C;

(iii) ∅ ∈ C and S ∈ C.
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Thus in a topological space an arbitrary intersection and a finite union of closed
sets are closed, and the empty set ∅ and the full set S are closed; but an arbitrary
union of closed sets is not necessarily closed. A topology on a space can be
defined alternatively by specifying the collection of closed sets and defining the
open sets to be the complements of the closed sets; however it is customary to
define topologies in terms of the open sets.

For any subset E of a topological space S the interior of E is defined to be
the set

(2.36) Eo =
⋃

U open,
U⊂E

U,

the union of all open subsets of S contained in E; this is obviously an open subset
of S such that Eo ⊂ E, indeed is the largest open subset of S contained in E
since it is apparent from the definition that if U is any open set for which U ⊂ E
then U ⊂ Eo. It is clear that E is open if and only if E = Eo; indeed if E = Eo

then E is open since Eo is open, and conversely if E is open it can be taken as
one of the sets U in the definition (2.36) hence E = Eo. Correspondingly the
closure of E is defined to be the set

(2.37) E =
⋂

C closed,
C⊃E

C,

the intersection of all closed subsets of S containing E; this is obviously a closed
subset of S such that E ⊂ E, indeed is the smallest closed subset of S containing
E since it is apparent from the definition that if C is any closed set for which
E ⊂ C then E ⊂ C. It is clear that E is closed if and only if E = E; indeed if
E = E then E is closed since E is closed, and conversely if E is closed it can be
taken as one of the sets C in the definition (2.37) hence E = E. Thus any subset
E ⊂ S of a topological space is naturally bounded by an open and a closed set,
in the sense that Eo ⊂ E ⊂ E, and these are the best possible bounds. One
extreme subset E ⊂ S is that in which the closure of E is the entire space S,
so that E = S; such a subset E is said to be dense, or sometimes dense in
S to be quite precise. For example the set Qn of vectors consisting entirely of
rational numbers is dense in the vector space Rn of real numbers with the metric
topology. A topological space such as Rn that has a countable dense subset is
called a separable topological space. The other extreme subset E ⊂ S is that
in which the interior of E is empty, so that Eo = ∅; such a subset E is said to
be sparse. For example the set Qn of rational vectors is sparse in the vector
space Rn with the metric topology, even though it is dense in the space Rn.

For some purposes, in particular for dealing with compositions of the oper-
ations of taking the complements, interiors and closures of sets, it is clearer to
use an alternative notation, setting

(2.38) int (E) = Eo and clo (E) = E
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for the interior and closure of a set E. The complement of (2.36) is the equation

∼ Eo =
⋂

U open,
U⊂E

∼ U =
⋂

(∼U) closed,
(∼U)⊃(∼E)

∼ U,

and comparing this and (2.37) shows that

(2.39) ∼ Eo = ∼ E or more clearly ∼ int (E) = clo(∼ E),

since the alternative notation exhibits more clearly the order of the composition
of the steps in the description of this set. This shows that the operations of
interior and closure are dual through complementation, so that one of these
operators can be written in terms of the other as

(2.40) int(E) = ∼ clo(∼ E) or equivalently clo(E) = ∼ int(∼ E).

These two operations also can be described in terms of their effect on individual
points. It is evident from the definition (2.36) that the set Eo = int(E) can be
described as

(2.41) int(E) =
{
a ∈ S

∣∣∣Na ⊂ E for some open neighborhood Na of a
}
.

Therefore the complement ∼ int(E) is the set of points a ∈ S such that no
open neighborhood Na of a is entirely contained in E, hence such that any open
neighborhood Na of a must contain some points in the complement of E; thus
(2.42)

∼ int(E) =
{
a ∈ S

∣∣∣Na ∩ (∼ E) 6= ∅ for any open neighborhood Na of a
}
.

In view of (2.40) the preceding equation applied to ∼ E yields the description

(2.43) clo(E) =
{
a ∈ S

∣∣∣Na ∩E 6= ∅ for any open neighborhood Na of a
}
.

The characterizations (2.41) and (2.43) are often the easiest ways of handling
the interiors and closures of sets, and should be kept in mind as very useful
tools.

The boundary of a subset E of a topological space S is the set defined by

(2.44) ∂E = E ∩ ∼ E = clo(E) ∩ clo(∼ E);

and it is evident from this and (2.40) that

(2.45) ∼ ∂E = (∼ E)o ∪ Eo = int(∼ E) ∪ int(E).

It is clear from the definition (2.44) that the boundary of any set is a closed set
and that

(2.46) ∂E = ∂(∼ E).
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It follows from (2.45) that

E ∩ ∼ ∂E = E ∩
(

int(E) ∪ int(∼ E)
)

=
(
E ∩ int(E)

)
∪
(
E ∩ int(∼ E)

)
and since E ∩ int(E) = int(E) and E ∩ int(∼ E) ⊂ E ∩ (∼ E) = ∅ it follows
that

(2.47) int(E) = E ∩ ∼ ∂E

From (2.40) and (2.47) it follows that

clo(E) = ∼ int(∼ E) = ∼ (∼ E ∩ ∼ ∂ ∼ E) = E ∪ (∂ ∼ E),

so in view of (2.46)

(2.48) clo(E) = E ∪ ∂E.

From the characterization (2.43) of the closure of a set it follows immediately
that the boundary ∂E can be described alternatively as

∂E =
{
a ∈ S

∣∣∣Na ∩ E 6= ∅ and Na ∩ (∼ E) 6= ∅(2.49)

for any open neighborhood Na of a
}
.

This is perhaps the most natural and useful description of the boundary of a
set. It is sometimes useful to note that

(2.50) ∂E = ∅ if and only if E is both open and closed.

Indeed if ∂E = ∅ then clo(E) = E by (2.48) so E is closed, and since ∂E =
∂(∼ E) the complement ∼ E is also closed so E is both open and closed; and
conversely if E is both open and closed then both E and ∼ E are closed so
∂E = clo(E) ∩ clo(∼ E) = E ∩ ∼ E = ∅.

For some examples, in the metric space Rn the open ball Br(a) of radius
r centered at a point a ∈ Rn as defined in (2.32) is an open set in the metric
topology, and it is clear from (2.43) that if r > 0 its closure is just the set

(2.51) Br(a) =
{
x ∈ Rn

∣∣∣ ρ(a, x) ≤ r
}
.

The set defined by (2.51) of course is called the closed ball of radius r centered
at the point a ∈ Rn. The closed ball B0(a) of radius 0 is just the point a itself,
while the open ball B0(a) of radius 0 is the empty set, so in that special case
the closure of the open ball of radius 0 is not the closed ball of radius 0. It is
equally clear from (2.49) that the boundary of either the open or closed ball of
radius r > 0 is

(2.52) ∂Br(a) = ∂Br(a) =
{
x ∈ S

∣∣∣ ρ(a, x) = r
}
.
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Similarly the open cell ∆ defined in (2.33) is an open set, and its closure is the
closed cell, formally defined by

(2.53) ∆ =
{

x = {xj} ∈ Rn
∣∣∣ aj ≤ xj ≤ bj for 1 ≤ j ≤ n

}
.

For the special case n = 1 the open cell is the open interval (a, b) and the closed
cell is the closed interval [a, b], while ∂(a, b) = ∂[a, b] = {a, b}. Note that in the
case of a closed cell it is always possible that a = b, in which case the set still is
called a closed cell; but in that case its interior is the empty set.

Any subset R ⊂ S of a topological space S can be given the induced
topology or relative topology by defining the open sets in the topology of R
to be the intersections R∩U of the subset R ⊂ S with the open subsets U of the
topological space S. It is quite obvious that the collection of these intersections
does satisfy the conditions to define a topology on R, and that the closed sets in
the relative topology of a subset R ⊂ S can be described as the intersections of
the subset R with the closed sets of S. In particular if S is a metric space with
the metric ρ and the metric topology and if R ⊂ S is any subset then R inherits
a topology from the topology of S; it is easy to see that this topology is the
metric topology on R in terms of the restriction to R of the metric on S. What
can be a bit confusing is that although the open or closed sets in R ⊂ S are
subsets of S they are not necessarily open sets or closed sets in S. For example,
if S = R2 and R = { (x1, x2) ∈ R2 | x2 = 0 } then the relatively open subsets of
R are just the open subsets of the x1 axis viewed as the set R1; but these sets
of course are not open subsets of R2. For another example, the subset Q ⊂ R of
rational numbers inherits from the metric topology on R a topology that is the
metric topology for the metric associated to the norm |x| on the rationals. The
set of rationals in an interval (a, b) is an open subset of Q but of course is not
an open subset of R. The interval (

√
2,
√

3) is an open subset of the space R
but not a closed subset. The same interval viewed as a subset of Q is an open
subset of Q; but it is also a closed subset of Q, since its complement is the union
of the open subset (

√
3,∞) and the open subset (−∞,

√
2) of Q. It must be

kept in mind that the end points describing this interval really are not points of
the space Q itself, although they describe an interval in Q quite satisfactorily.

A topological space S is said to be connected if the only subsets of S that
are both open and closed are the empty set ∅ and the entire set S. A subset
E ⊂ S is said to be connected if it is a connected set in the relative topology. Any
topological space with the indiscrete topology is connected; but a topological
space with the discrete topology is not connected if it contains at least two
points. Since the subset (

√
2,
√

3) ⊂ Q of the rationals was just observed to be
both open and closed in the induced topology it follows that the set of rational
numbers Q with the topology induced from the metric topology on R is not a
connected topological space. To show that a subset E of a topological space S is
not connected it suffices to exhibit a subset of E that is both open and closed in
the induced topology; but it is often easier to express this condition just in terms
of the topology of the ambient topological space S. For this purpose two subsets
A,B of a topological space S are said to be separated if A ∩ B = A ∩ B = ∅;
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and this property can be used as follows.

Lemma 2.12 If A and B are nonempty separated subsets of a topological space
S then the union A ∪B is not a connected subset of S.

Proof: If A∩B = A∩B = ∅ then since B is a closed subset of S its complement
S ∼ B is an open subset of S hence the intersection (S ∼ B)∩(A∪B) = A is an
open subset of A∪B in the relative topology of that subset. The corresponding
argument shows that B also is an open subset of A∪B in the relative topology
of that subset. Therefore A and B are both open and closed subsets of A ∪ B
in the relative topology of that subset, so A∪B is not connected. That suffices
for the proof.

For instance in the real line R with the metric topology the sets A = (0, 1)
and B = (1, 2) are separated as well as disjoint while the sets A = (0, 1) and
B = [1, 2] are disjoint but not separated. The union E = A∪B is not connected,
by the preceding lemma; but the union F = A∪B is the set F = (0, 2] which will
be shown in the following Theorem 2.13 to be connected. Showing that a space
is connected is in many ways harder than showing a space is not connected.

Theorem 2.13 Any nonempty interval (with or without the end points) of the
set R of real numbers, with the topology induced from the usual metric topology
on R, is a connected set.

Proof: If an interval I ⊂ R is not connected then it contains a subset U ⊂ I
other than the empty set ∅ or the entire interval I such that U is both open
and closed in the induced topology on I; hence I = U ∪ V where V = I ∼ U
also is both open and closed and U ∩ V = ∅. The sets U and V are nonempty,
so choose a point a ∈ U and a point b ∈ V ; it can be assumed that a < b, after
relabelling the sets U and V if necessary. The subset E = U ∩ [a, b] then is a
nonempty set of real numbers, since a ∈ E, and E is bounded above by b, since
E ⊂ [a, b]; so by the basic property of the real number system the set E has a
least upper bound c = supE. If c ∈ U then c < b, for otherwise c ∈ U ∩ V = ∅,
and since U is open there is an ε > 0 such that I ∩ (c− ε, c+ ε) ⊂ U ; but then
the points in I ∩ (c, c + ε) are also in U , which is impossible since c = supE.
On the other hand if c ∈ V then a < c similarly, and since V is open there is
an ε > 0 such that I ∩ (c− ε, c+ ε) ⊂ V ; but then the points in I ∩ (c− ε, c) are
also in V hence are not in E and consequently c − ε is an upper bound for E,
which is impossible since c = supE. Thus there can be no such point c, so the
assumption that I is not connected rules out, and that suffices for the proof.

The preceding observation can be used to show that various other sets also
are connected. For this purpose, a subset E ⊂ Rn is said to be convex if
whenever a,b ∈ E for two points a,b ∈ Rn then `(a,b) ⊂ E where

(2.54) `(a,b) =
{

x = ta + (1− t)b ∈ Rn
∣∣∣ 0 ≤ t ≤ 1

}
is the line segment joining these two points. For example the set of points
x ∈ Rn such that ‖x‖ < r for some real number r > 0 is a convex set for any
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norm on Rn; indeed if ‖a‖ < r and ‖b‖ < r for any points a,b ∈ Rn then for
any real number t in the interval 0 ≤ t ≤ 1 it follows from the triangle inequality
for norms that ‖ta + (1 − t)b‖ ≤ t‖a‖ + (1 − t)‖b‖ < tr + (1 − t)r = r. In
particular any ball in Rn, open or closed, and any cell in Rn, open or closed, is
a convex subset, so by the following corollary each also is a connected subset of
Rn in the usual topology.

Corollary 2.14 Any nonempty convex subset of Rn is connected in the topology
induced by the metric topology of Rn.

Proof: If E is a nonempty convex subset of Rn and E is not connected then
there is a nonempty subset U ⊂ E other than the entire set E that is both open
and closed; and the complement V = E ∼ U then also is both open and closed.
For any points a ∈ U and b ∈ V the line segment `(a,b) is also contained in E.
This line segment can be identified with the closed interval [0, 1] ⊂ R through
the parametrization (2.54); and the intersections U ∩ `(a,b) and V ∩ `(a,b) are
then disjoint open subsets of `(a,b) whose union is `(a,b), which is impossible
since by the preceding theorem the interval `(a,b) is connected. That suffices
for the proof.

Special topological spaces, those with special regularity properties, occur
frequently in analysis and topology. A topological space is called a Hausdorff
space, or sometimes a T2 space4, if for any two distinct points a, b ∈ S there are
disjoint open subsets Ua, Ub of S such that a ∈ Ua and b ∈ Ub. The Sierpinski
space and any topological space S with the indiscrete topology and with at least
two points are examples of topological spaces that are not Hausdorff. Many of
the standard topological spaces are Hausdorff though, as will be apparent as
the discussion continues. Indeed the Hausdorff condition is so natural and con-
venient that most of the subsequent discussion here will consider just Hausdorff
spaces.

Theorem 2.15 A metric space S with the metric topology is a Hausdorff space.

Proof: If a, b ∈ S are two distinct points in a metric space S with the metric
ρ then ρ(a, b) = 2ε for some real number ε > 0; and the ε neighborhoods Na(ε)
and Nb(ε) are disjoint open sets for which a ∈ Na(ε) and b ∈ Nb(ε), which
suffices for the proof.

Theorem 2.16 Any point in a Hausdorff space is a closed set.

Proof: If S is a Hausdorff space and a ∈ S is a point in S then for any point
b 6= a in S there is an open subset Ub ⊂ S such that a /∈ Ub. The union

4Felix Hausdorff (1868 - 1942) was one of the founders of modern topoplogy; his book
Principles of Set Theory surveyed the field and also contained a number of major contributions
to modern set theory. A standard list of regularity properties were labelled T1 through T6 in
honor of Andrey Tychonoff (1906 - 1993) who was also a major figure in the development of
topology.
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U =
⋃
b∈S∼{a} Ub is then an open subset of S, and since {a} = S ∼ U it follows

that {a} is a closed set. That suffices for the proof.

A point a in toplogical space S is contained in the closure of a subset E ⊂ S
if and only if Na ∩ E 6= ∅ for any open neighborhood Na of the point a, as in
the characterization (2.43) of the closure of a set. A closely related condition
is very useful in the study of properties of topological spaces. A point a ∈ S is
said to be a limit point of a subset E ⊂ S if (Na ∼ {a})∩E 6= ∅ for any open
neighborhood Na of the point a, or equivalently if any open neighborhood Na
of the point a contains a point of E other than a. The set of limit points of a
subset E ⊂ S is denoted by E′ and is called the derived set of the set E. For
example in the real line R with the metric topology defined by the absolute value
norm the set of limit points of the open interval E = (a, b) is the closed interval
E′ = [a, b] so E′ = E; on the other hand the subset E = Z ⊂ R is a closed
subset of R but none of its points is a limit point so E′ = ∅ although E = E.
Sets E for which E′ = E are called perfect sets and play an interesting role in
topology. The real line, and any closed interval in the real line R are examples
of perfect sets, while the closed subset Z ⊂ R is not a perfect set. In general
the relations between the closure E and the set of limit points E′ of a subset of
a topological space can be summarized as follows.

Theorem 2.17 For any subset E of a topological space S

(2.55) E′ ⊂ E

and

(2.56) E = E ∪ E′

hence

(2.57) E is closed if and only if E′ ⊂ E.

Proof: It is evident from (2.43) and the definition of a limit point that E′ ⊂ E,
which is (2.55). Since E ⊂ E and E′ ⊂ E as just demonstrated it follows that
E∪E′ ⊂ E; so in order to prove (2.56) it is enough just to show that E ⊂ E∪E′.
If a ∈ E then Na ∩ E 6= ∅ for any open neighborhood Na of the point a; and if
a /∈ E then a /∈ (Na ∩E) so it must be the case that (Na ∼ {a})∩E 6= ∅, which
is just the condition that a ∈ E′. That shows that E ⊂ E ∪ E′ and thereby
demonstrates (2.56). Since E is closed if and only if E = E = E ∪ E′ it is
evident from (2.56) that E is closed if and only if E′ ⊂ E, and that suffices for
the proof of the theorem.

Any point a in a topological space S with the indiscrete topology is a limit
point of any nonempty subset E 6= {a} of S; and no point in a topological space
with the discrete topology is a limit point of any subset. Limit points and the
derived sets thus are not of much interest in these extreme topologies, but are
of particular use in Hausdorff spaces.
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Theorem 2.18 A point a in a Hausdorff space S is a limit point of a subset
E ⊂ S if and only if every open neighborhood Na of a contains infinitely many
distinct points of E.

Proof: Suppose that a is a limit point of E and U is an open neighborhood
of a. It will be demonstrated by induction on n that the intersection U ∩ E
contains at least n distinct points other than a for any integer n > 0. First
since a is a limit point of E the intersection U ∩ E contains a point a1 6= a,
which establishes the initial case n = 1. Assume then that there are n distinct
points a1, a2, . . . , an other than a in U ∩ E. Since S is Hausdorff each point
is closed, hence so is any finite union of points; so Un = U ∼ {a1, . . . , an} is
an open neighborhood of a, and since a is a limit point of E it follows that
(Un ∼ {a}) ∩ E 6= ∅ so there is another point an+1 ∈ (U ∩ E) distinct from the
points a, a1, . . . , an, and that suffices for the proof.

It is evident that the proof of the preceding theorem really only required
that each point in the space S be a closed set. That is the case for any Haus-
dorff space, by Theorem 2.16; but there are more general topological spaces,
traditionally called T1 spaces, for which the preceding theorem therefore also
holds. A standard example of a topological space that is T1 but not Hausdorff
is an infinite set S with the topology in which the open subsets are the entire
set, the empty set and any set E for which the complement S ∼ E is finite.
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PROBLEMS, GROUP I:

(1) Find a subset of R with exactly 3 limit points, in the standard topology.

(2) Prove that the following assertions are true for subsets E,F of any topolog-
ical space:
(i) int(E ∪ F ) ⊃ int(E) ∪ int(F ) but this may be a proper inclusion;
(ii) int(E ∩ F ) = int(E) ∩ int(F );
(iii) clo(E ∪ F ) = clo(E) ∪ clo(F );
(iv) clo(E ∩ F ) ⊂ clo(E) ∩ clo(F ) but this may be a proper inclusion;
(v) ∂(E ∪ F ) ⊂ ∂E ∪ ∂F ;
(vi) ∂(E ∩ F ) ⊂ ∂E ∪ ∂F .

(3) Show that ∂∂E ⊂ ∂E in any topological space. Find an example in which
∂∂E 6= ∂E.

(4) If a set E in a topological space is connected is E necessarily connected? Is
Eo necessarily connected?

(5) (i) Show that in a Hausdorff space the derived set E′ of any set E is closed.
(ii) Is (E′)′ = E′ in any topological space?

(6) Prove that equivalent metrics define the same topology. Two metrics ρ
and σ on a set are said to be weakly equivalent if and only if for any ball
Bρ,r(a) in terms of the metric ρ there is a ball Bσ,s(a) in terms of the metric σ
such that Bσ,s(a) ⊂ Bρ,r(a), and conversely for any ball Bσ,s(a) there is a ball
Bρ,r(a) such that Bρ,r(a) ⊂ Bσ,s(a). Show that two metrics on a set S deter-
mine the same topology if and only if they are weakly equivalent. Show that
two metrics that are equivalent are weakly equivalent, but that the converse
does not necessarily hold.

PROBLEMS, GROUP II:

(7) Show that if A ⊂ R is any closed subset in the standard topology there
is a subset E ⊂ R such that A = E′.

(8) (i) Let T be the collection of subsets of R consisting of R itself, the empty
set ∅, and all sets of the form (−∞, a) for any a ∈ R. Show that this collection
of sets defines a topology on R.
(ii) Show that with this topology the set R is not a Hausdorff space.
(iii) Show that with this topology the derived set E′ of the set E consisting just
of the point 0 is not a closed set.
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(9) In a set S with a specified point s let T be the collection of subsets of S
consisting of S itself and of all subsets E ⊂ S that do not contain the point
s. Show that this is a topology on the set S. Describe the closed sets in this
topology. Is this topological space Hausdorff? Show that if S contains at least
two points there are sets that are closed but not open.

(10) Let T be a subset of a topological space S and give T the induced topol-
ogy from that of S. The closure of a subset X ⊂ T ⊂ S can mean either the
closure cloT (X) of X when that set is viewed as a subset of the topological
space T , or alternatively the closure cloS(X) of X when that set is viewed as
a subset of the topological space S, and similarly for the interior of X. Show
that cloT (X) = T ∩ cloS(X). Show that intT (X) ⊃ T ∩ intS(X) and give an
example to show that the inclusion may be a proper inclusion.

(11) The cofinite topology in an infinite set S is that for which a subset
E ⊂ S is open if and only if either E = ∅ or ∼ E is finite. Show that points are
closed in this topology. Show that S is not Hausdorff in this topology. Show
that the only closed sets are S or finite subsets of S.

(12) Suppose that T1 and T2 are two topologies on a set S where T1 ⊂ T2,
so that any open set in the topology T1 is also an open set in the topology T2.
(i) Show that clo1(A) ⊃ clo2(A) for any subset A ⊂ S, where clo1(A) denotes
the closure of the subset A in the topology T1 and clo2(A) denotes the closure
of the subset A in the topology T2.
(ii) Show that int1(A) ⊂ int2(A), with the corresponding notation.

(13) Suppose that S1, S2 are topological spaces with the topologies T1, T2 re-
spectively; and let T be the collection of all unions of products U1 × U2 where
U1 ∈ T1 and U2 ∈ T2.
(i) Show that T defines a topology on S1 × S2. (This is called the product
topology on the product S1 × S2.)
Show that for any subsets E1 ⊂ S1 and E2 ⊂ S2

(ii) int(E1 × E2) = int(E1)× int(E2),
(iii) clo(E1 × E2) = clo(E1)× clo(E2),

(iv) ∂(E1 × E2) =
(
∂E1 × clo(E2)

)
∪
(

clo(E1)× ∂E2

)
.
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2.4 Compact Sets

A particularly useful special class of subsets of a topological space has a
somewhat subtle and indirect definition, and is rather harder to understand
than the classes of subsets described thus far; but it is a very important class of
subsets with a wide range of uses. For the purposes of this definition, an open
covering of a subset E ⊂ S of a topological space S is a collection of open
subsets Uα ⊂ S such that E ⊂

⋃
α Uα. If some of the sets Uα are redundant

they can be eliminated and the remaining sets are also an open covering of E,
called a subcovering of the set E. A subset E ⊂ S is said to be compact
if every open covering of E has a finite subcovering, that is, if for any open
covering {Uα} of E finitely many of the sets Uα actually cover all of E. To show
that a set E is not compact it suffices to find a single open covering {Uα} of
E such that no finite collection of the sets Uα can cover E; but to show that
E is compact it is necessary to show that for any open covering {Uα} of E
finitely many of the sets Uα already cover E. Examples of noncompact sets are
quite easy: for instance R with its usual topology is not compact, since it is
contained in the union of all the open intervals (−n, n) but not in any any finite
set of these intervals. Even a finite interval (−m,m) is not compact, since it is
contained in the union of all the open intervals (−m+ 1

k ,m−
1
k ) for all positive

integers k but again it is not contained in any finite collection of these intervals.
Of course any single point and any finite set of points are obviously compact
sets. It is more difficult to demonstrate that other sets are compact, since it is
necessary to show that any open covering has a finite subcovering. The basic
nontrivial example of a compact set is a closed cell in Rn; and the proof that a
cell is compact rests on the completeness property of the real numbers. Just for
the purposes of the proof the edgesize of the cell ∆ = {x ∈ Rn |ai ≤ xi ≤ bi } is
defined to be the real number e(∆) = maxi(bi−ai); thus e(∆) ≥ 0 and e(∆) = 0
if and only if the cell is just the single point (a1 = b1, a2 = b2, . . . , an = bn).

Lemma 2.19 If ∆ν ⊂ Rn are closed cells in Rn for ν = 1, 2, . . . such that
∆ν+1 ⊂ ∆ν and limν→∞ e(∆ν) = 0 then

⋂
ν ∆ν is a single point of Rn.

Proof: If ∆ν = { x = {xj}
∣∣ aνj ≤ xj ≤ bνj } then for each j clearly aν+1

j ≥ aνj
and bν+1

j ≤ bνj ; and since ∆ν ⊂ ∆1 it is also the case that aνj ≤ b1j and bνj ≥ a1
j .

The basic completeness property of the real number system implies that any
increasing sequence of real numbers bounded from above and any decreasing
sequence of real numbers bounded from below have limiting values; therefore
limν→∞ aνj = aj and limν→∞ bνj = bj for some uniquely determined real numbers
aj , bj . Since aµj ≤ bνj for any µ, ν it follows that aj ≤ bνj for any ν, and from this

in turn that aj ≤ bj . Clearly the cell ∆ = {x = {xj}
∣∣aj ≤ xj ≤ bj } is contained

in the intersection
⋂
ν ∆ν . On the other hand since (bj−aj) ≤ (bνj −aνj ) ≤ e(∆ν)

and limν→∞ e(∆ν) = 0 then actually bj = aj so the limiting cell ∆ is just a
single point of Rn, and that concludes the proof.
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Theorem 2.20 A closed cell in Rn is compact.

Proof: If a closed cell ∆ = {x = {xj}
∣∣aj ≤ xj ≤ bj } is not compact there is an

open covering {Uα} of ∆ that does not admit any finite subcovering. The cell ∆
can be written as the union of the closed cells arising from bisecting each of its
sides. If finitely many of the sets {Uα} covered each of the subcells then finitely
many would cover the entire set ∆, which is not the case; hence at least one of
the subcells cannot be covered by finitely many of the sets {Uα}. Then bisect
each of the sides of that subcell, and repeat the process. The result is that there
is a collection of closed cells ∆ν which cannot be covered by finitely many of the
open sets {Uα} and for which ∆ν+1 ⊂ ∆ν ⊂ ∆, and limν→∞ e(∆ν) = 0. It then
follows from the preceding lemma that

⋂
ν ∆ν = {a}, a single point in Rn. This

point must be contained within one of the sets {Uα0}, and if ν is sufficiently
large then ∆ν ⊂ Uα0

as well; but that is a contradiction, since the cells ∆ν were
chosen so that none of them could be covered by finitely many of the sets {Uα}.
That contradiction shows that the cell ∆ must be compact, which concludes the
proof.

Several basic and extemely useful properties of compact sets follow rather
directly from the definition.

Theorem 2.21 (Compactness Theorem) For any topological space S:
(i) A closed subset of a compact subset in S is compact.
(ii) If Kn ⊂ S are nonempty closed subsets of S for n ≥ 0, if at least one of
them is compact and if Kn+1 ⊂ Kn for all n then

⋂
nKn 6= ∅.

(iii) If Kα are closed subsets of S, not necessarily just countably many sets, and
if one of these sets is compact and any finite number of them have a nonempty
intersection then

⋂
αKα 6= ∅.

(iv) If R ⊂ S is a subset of S then a subset K ⊂ R is compact when viewed as
a subset of R in the induced topology if and only if K is compact when viewed
as a subset of the topological space S.

Proof: (i) If F ⊂ K ⊂ S where F is closed and K is compact and if Uα ⊂ S
are open subsets of S such that F ⊂

⋃
α Uα then the sets Uα together with

U = S ∼ F form an open covering of K, so finitely many of these sets serve to
cover K and hence also serve to cover F ; these finitely many sets, excluding the
set U , are then finitely many of the sets Uα that cover F , hence F is compact.
(ii) It can be assumed that K0 is compact, by ignoring the earlier sets Kn. If to
the contrary

⋂
nKn = ∅ then the sets Un = S ∼ Kn for n ≥ 0 are open subsets

of S such that ⋃
Un =

⋃
(S ∼ Kn) = S ∼

⋂
Kn = S ∼ ∅ = S,

so the sets Un are an open covering of K0. By assumption K0 is compact so
finitely many of these open sets cover K0, and since Un ⊂ Un+1 it must be
the case that K0 ⊂ UN = S ∼ KN for some N ; but since KN ⊂ K0 then
KN ⊂ (S ∼ KN ) so that KN = ∅, contradicting the hypothesis that these sets
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are nonempty. That contradiction shows that the intersection of all the sets
must be nonempty.
(iii) Suppose to the contrary of the desired result that

⋂
αKα = ∅; then the sets

Uα = S ∼ Kα are open subsets of S such that⋃
α

Uα =
⋃
α

(S ∼ Kα) = S ∼
⋂
α

Kα = S ∼ ∅ = S,

so they form an open covering of S. If Kα0
is compact then since it is covered

by the sets Uα it must be covered by finitely many of these sets, so that

Kα0 ⊂
m⋃
i=1

Uαi =

m⋃
i=1

(S ∼ Kαi) = S ∼
m⋂
i=1

Kαi ,

and consequently Kα0
∩
⋂m
i=1Kαi = ∅, contradicting the hypothesis that any

intersection of finitely many of the sets Ki is nonempty. That contradiction
serves to prove the initial assertion.
(iv) If K ⊂ R is compact in the induced topology and if Uα are open sets in S
that cover K then the intersections Uα∩R are open sets in the relative topology
of R that cover K so finitely many of these intersections serve to cover K; hence
finitely many of the sets Uα also serve to cover K, so K is compact as a subset
of S. Conversely if K is a compact subset of S and K ⊂ R, and if Uα are
relatively open sets in R that cover K, there will be open subsets Vα ⊂ S for
which Uα = Vα ∩ R; the sets Vα of course cover K, so finitely many of them
will cover K since K is compact in S and consequently finitely many of the sets
Uα will cover K as well, so K is a compact subset of R in the relative topology.
That concludes the proof of the theorem.

In the preceding theorem (ii) is really a special case of (iii) but it is listed
separately since it is a very common form in which (iii) is applied. It was already
noted that if R is a subset of a topological space S then open subsets of R in
the induced topology need not be open subsets when viewed as subsets of S,
and correspondingly for closed sets; thus the condition that a subset E ⊂ R be
open or closed can be quite different depending on whether that subset is viewed
as a subset of S with the topology of S or as a subset of R with the induced
topology of R. However (iv) of the preceding theorem shows that compactness
is really an absolute property, in the sense that a subset K ⊂ R is compact
in the relative topology of R if and only if it is compact as a subset of S. Of
course that does not imply that the restriction of a compact subset of S to
R is necessarily a compact subset of R. As might be expected, for Hausdorff
spaces such as Rn compact subsets have a number of further properties, as in
the following theorem; but not though that these results are only demonstrated
for Hausdorff spaces so cannot be assumed to hold in more general topological
spaces.

Theorem 2.22 (Compactness Theorem for Hausdorff Spaces) Compact
sets in a Hausdorff topological space S have the following properties:
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(i) Any compact subset of S is closed.
(ii) If K ⊂ S is compact then any infinite subset E ⊂ K has a limit point in K.
(iii) If K1,K2 ⊂ S are disjoint compact subsets then there are disjoint open
subsets U1, U2 ⊂ S such that K1 ⊂ U1 and K2 ⊂ U2.

Proof: (i) If K ⊂ S is compact and a ∈ (S ∼ K) then since S is Hausdorff
for any point b ∈ K there are disjoint open neighborhoods Ub of b and Ub,a of
a. The collection of open sets Ub for all points b ∈ K then cover the compact
set K, so finitely many of these sets Ubi already serve to cover K. The finite
intersection U =

⋂
i Ubi,a is then an open neighborhood of a that is disjoint from

K and hence is an open neighborhood of a that is contained in S ∼ K; and
since that is true for any point a it follows that S ∼ K is open and consequently
that K is closed.
(ii) Suppose E ⊂ K is an infinite subset of the compact subset K ⊂ S and E
has no limit points in K. Then E has no limit points at all, since any limit
point of E is a limit point of K and hence must be contained in K since K is
closed by (i); so in particular E is a closed subset of S, and as a closed subset
of the compact set K it follows that E also is compact. Every point a ∈ E has
an open neighborhood Ua that does not contain any of the other points of E.
The collection of these sets Ua is an open covering of the compact set E, which
must have a finite subcovering; but that is impossible, since no finite collection
of the sets Ua can cover the entire infinite set E. Therefore E must have limit
points in K.
(iii) Suppose first that K2 = {a} consists of a single point and is compact.
Since S is Hausdorff then for any point b ∈ K1 there are disjoint open subsets
Ub, Ua,b ⊂ S such that b ∈ Ub and a ∈ Ua,b. The collection of open sets Ub for
all b ∈ K1 form an open covering of the compact set K1, so finitely many of
these sets Ubi already serve to cover K1. The union U1 =

⋃
i Ubi is an open

set containing K1 and the intersection U2 =
⋂
i Ua,bi is an open set containing

a and U1 ∩ U2 = ∅ as desired. Next if K2 is any compact set it follows from
the special case just demonstrated that for any point a ∈ K2 there are disjoint
open set U1,a and Ua such that K1 ⊂ U1,a and a ⊂ Ua. The sets Ua for all
a ∈ K2 form an open covering of K2, and since K2 is compact finitely many Uai
of these sets already serve to cover K2. Then as before the sets U1 =

⋂
i U1,ai

and U2 =
⋃
i Uai are disjoint open subsets of S such that K1 ⊂ U1 and K2 ⊂ U2.

The following two basic theorems characterize compact subsets of Rn; in the
statement of the first of them a subset E ⊂ Rn is said to be bounded if it is
contained in a cell ∆ ⊂ Rn, or equivalently of course, if it is contained in a ball
Br(a) centered at a point a ∈ Rn.

Theorem 2.23 (Heine-Borel Theorem) A subset E ⊂ Rn is compact if and
only if it is closed and bounded.

Proof: If E is a bounded closed subset of Rn then since it is bounded it is
contained in some closed cell; since a closed cell is compact by Theorem 2.20
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it follows from Theorem 2.21 (i) that the set E is compact. Conversely if E is
a compact subset of Rn it follows from Theorem 2.22 (i) that E is closed since
Rn is Hausdorff. If E is not bounded it can be covered by the open balls Br(0)
of radius r for r = 1, 2, 3, . . . but not by any finite subset of these balls, so E is
not compact. That suffices for the proof.

Theorem 2.24 (Bolzano-Weierstrass Theorem) A subset E ⊂ Rn is com-
pact if and only if every infinite subset of E has a limit point in E.

Proof: If a subset E ⊂ Rn is compact then by Theorem 2.22 (ii) every sequence
of distinct points in E has a limit point in E. To show conversely that if any
infinite subset of E has a limit point in E then E is compact, it is equivalent
to show that if E ⊂ Rn is not compact then it contains an infinite set of points
with no limit point in E. If E ⊂ Rn is not compact then by the Heine-Borel
Theorem either E is not bounded or E is not closed. If E is not bounded it
must contain points aν such that ‖aν‖ ≥ ν, and it is clear that this set of points
has no limit point. If E is not closed then at least one of its limit points is not
contained in E. That suffices to conclude the proof.

Compactness is useful in establishing the properties of some nontrivial and
perhaps surprising examples of the topology of subsets of vector spaces Rn; these
illustrate some of the complications that are possible, so are useful to keep in
mind in order not to leap to conclusions that may seem intuitively obvious but
that are in fact false. The first example is the rational neighborhood. It
was noted in Theorem 2.9 that open subsets of R1 consist of countably many
disjoint open intervals (a, b), which sounds somewhat simpler than it may be in
some cases. The rationals are countable, so list them as a1, a2, a3, . . .. Let S
be the union S =

⋃
i Ii where Ii is the open interval centered at the point ai

and of length ε/2i. The set S thus is an open subset of R1 that contains all
the rationals; but nonetheless it does not cover the entire real line. Indeed if
S covered the closed interval I = [0, 1] for instance then since that interval is
compact finitely many N of the intervals Ii would serve to cover I; but the total

length of these intervals is at most ε
(

1
2 + (1

2 )2 + (1
2 )3 + · · ·+ (1

2 )N
)
< ε so they

cannot cover I. The complement K = R ∼ S is thus a nontrivial closed subset
of R that omits an open neighborhood of each rational number.

An even more interesting example is the Cantor set, one of the classical
examples of a surprising set. Let I0 be the closed unit interval I0 = [0, 1]; let
I1 ⊂ I0 be the set that arises from I0 by removing the open middle third ( 1

3 ,
2
3 )

of I0; let I2 be the set that arises from I1 by removing the open middle third
of each segment of I1; and continue that process. The result is a collection of
nonempty compact subsets In ⊂ I0 such that I0 ⊃ I1 ⊃ I2 ⊃ · · · . The Cantor
set is the intersection C =

⋂
n In, which is a nonempty compact subset of the

unit interval I0 by Theorem 2.21 (i) and (ii). The end points of the segments
in each set In belong to the Cantor set, since they are never removed during
the course of the construction; any point in the Cantor set thus is a limit point
of the set of these end points, so the Cantor set is an example of a perfect set.
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The Cantor set though contains no open or closed intervals, since the lengths
of the intervals in each set In are equal to 3−n. When the real numbers in the
interval [0, 1] are described by their ternary expansions, expansions to the base
3, it is clear that the Cantor set consists of those real numbers in [0, 1] with a
ternary expansion .a1a2a3a4 . . . where ai = 0 or 2, so a ternary expansion for
which ai 6= 1.

The vector spaces Rn themselves are not compact; but by Theorem 2.23
any closed bounded subset of Rn is compact, so any point of Rn is contained
in an open neighborhood which if small enough has a compact closure. That
is the key to a number of properties of these vector spaces. More generally
a topological space S is said to be locally compact if each point in S is an
interior point of a compact subset of S. Locally compact Hausdorff spaces have
a number of important special properties. Before discussing these properties
though it is worth establishing a useful alternative characterization of locally
compact Hausdorff spaces.

Lemma 2.25 A Hausdorff space S is locally compact if and only if for any
point a ∈ S and any open neighborhood U of the point a there is an open set V
in S such that a ∈ V ⊂ V ⊂ U and V is compact.

Proof: If S satisfies the condition as in the statement of the lemma then S
clearly is locally compact. Conversely suppose that S is a locally compact
Hausdorff space, that a ∈ S is a point in the interior Ko of a compact subset
K of S, and that U is an open neighborhood of a. Then a ∈ (U ∩ Ko), and
since the point a and the boundary ∂(U ∩ Ko) are disjoint closed subsets of
the compact set K they are also compact sets and by Theorem 2.22(iii) there
are disjoint open subsets X, W in S for which a ∈ X and ∂(U ∩ Ko) ⊂ W .
The intersection V = X ∩ (U ∩Ko) is an open neighborhood of a contained in
U ∩Ko, and since V ∩W = ∅ it follows that V ⊂ V ⊂ (U ∩Ko) ⊂ U ; and as a
closed subset of the compact set K the set V is compact. That suffices for the
proof.

Lemma 2.26 Any open or closed subset of a locally compact Hausdorff space
is a locally compact Hausdorff space in the relative topology.

Proof: If S is a locally compact Hausdorff space then any subset of S is
clearly a Hausdorff space in the relative topology. It is clear from the pre-
ceding Lemma 2.25 that an open subset of S is locally compact in the relative
topology. On the other hand if F ⊂ S is a closed subset of S then for each point
a ∈ F there is a compact set K in S such that a ∈ Ko; then a ∈ Ko∩F ⊂ K∩F ,
and K ∩F is a closed subset of K hence is compact. That suffices for the proof.

Theorem 2.27 (Baire’s Category Theorem) The intersection of a count-
able number of dense open subsets of a locally compact Hausdorff space S is
dense in S.
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Proof: Suppose that En are dense open subsets of the locally compact Haus-
dorff space S for all n ≥ 1, so that En = S; and let E =

⋂∞
n=1En. What is to

be proved is that for any open subset U ⊂ S there is a point a ∈ U ∩ E. For
the proof it will be demonstrated by induction on n that for all n ≥ 1 there are
nonempty open subsets Un ⊂ S for which

(2.58) Un ⊂ Un ⊂ (Un−1 ∩ En) and Un is compact;

where U0 = U . First U ∩E1 6= ∅ since E1 is dense; and by Lemma 2.25 there is
a nonempty open subset U1 ⊂ S such that U1 ⊂ (U ∩ E1) and U1 is compact.
For the inductive step, suppose that there are sets U1, . . . , Un satisfying (2.58).
Since En+1 is dense then Un∩En+1 6= ∅; and by Lemma 2.25 there is a nonempty
open subset Un+1 ⊂ S such that Un+1 ⊂ (Un ∩ En+1) and Un+1 is compact,
which is (2.58) for the case n + 1. Then by Theorem 2.21 (ii) the intersection
K =

⋂∞
n=1 Un is a nonempty subset of U . If a ∈ K then a ∈ Un ⊂ (Un−1 ∩En)

for all n ≥ 1 so a ∈ U ∩ E, and that suffices for the proof.

The preceding result has a wide variety of applications in analysis. Some
of the first applications were phrased by René-Louis Baire in other terms that
have since become quite standard; that may serve to explain why the preceding
theorem is called Baire’s Category Theorem. A sparse subset of a topological
space was defined earlier as a subset E ⊂ S for which int(E) = ∅. An even
smaller subset, a nowhere dense subset E ⊂ S, is defined as a subset for
which int

(
clo (E)

)
= ∅, so as a subset that has a sparse closure.

Lemma 2.28 A subset E of a topological space is nowhere dense if and only if
the complement of its closure is a dense open subset of S.

Proof: Let E ⊂ S be a subset of the topological space S and let G = S ∼ E
be the closure of its complement, so G is an open subset of S. If E is nowhere
dense then by definition its closure E contains no open subsets of S; so any
open neighborhood U of a point a ∈ S must contain some point b ∈ G, hence
a ∈ G so that G is dense in S. On the other hand if E is not nowhere dense
then its closure E must contain an open neighborhood U of some point a ∈ S;
this neighborhood then is not contained in G, so the point a cannot be a limit
point of G showing that G is not dense, which suffices for the proof.

The rationals Q and the integers Z are both sparse subsets of the real line R;
the integers are nowhere dense but the rationals are not, although the rationals
can be written as a countable union of the sets 1

nZ for all n ∈ N thus as a
countable union of nowhere dense subsets. A subset E ⊂ S of a Hausdorff space
S is said to be a set of the first category if it can be written as a countable
union of nowhere dense subsets; the set of rational numbers thus is an example
of a set of the first category. It is perhaps natural then to ask whether the set
of real numbers R is a set of the first category; that is actually not the case, but
not altogether easy to demonstrate. Subsets of a topological space that are not
sets of the first category are called sets of the second category; and Baire’s
Category Theorem is the key to establishing the existence of such subsets.
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Corollary 2.29 A locally compact Hausdorff space S is a set of the second
category.

Proof: Suppose to the contrary that S is of the first category, so that S =⋃∞
ν=1Eν for some nowhere dense subset Eν ⊂ S. Then

⋂
ν(S ∼ Eν) = ∅.

However the preceding Lemma 2.28 shows that the complements S ∼ Eν are
dense open subsets of S, and the Baire Category Theorem shows that their
intersection cannot be the empty set, indeed that their intersection is a dense
subset of S. That contradiction serves to conclude the proof.

A simple application of the preceding corollary is the following possibly
surprising result, the usefulness of which will be apparent later.

Corollary 2.30 The set of rational numbers cannot be written as an intersec-
tion of countably many open subsets of R.

Proof: Suppose that Q =
⋂
Ui for some open subsets Ui ⊂ R, so that set I

of irrationals can be written as the union I =
⋃
i(R ∼ Ui) of the countably

many closed sets R ∼ Ui; these sets must be nowhere dense, for if R ∼ Ui
has a nonempty interior the union I would also contain an open subset of R.
Then R = Q ∪

⋃
i(R ∼ Ui) is a representation of the real numbers R as a

countable union of nowhere dense sets, so R would be a set of the first category in
contradiction to the preceding corollary. That contradiction suffices to conclude
the proof.

A traditional terminology is to say that a subset of a topological space is an
Fσ set if it can be written as a countable union of closed sets, and that a subset
is a Gδ set if it can be written as a countable intersection of open sets. Of course
any Hausdorff topological space can be written as a union of closed sets, since
it is the union of its points and points of a Hausdorff space are closed sets. The
question whether a topological space or a subset of a topological space is an Fσ
set or a Gδ when the space is uncountable can be both difficult and interesting.
The preceding corollary can be rephrased as the assertion that Q is not a Gδ
subset of R. Another consequence of the Baire category theorem can be used
to establishes a basic result about the real number system.

Theorem 2.31 A nonempty perfect set in a locally compact Hausdorff space
contains uncountably many points.

Proof: Suppose that E is a nonempty perfect subset of a locally compact
Hausdorff space S, a set such that E′ = E. Since E′ 6= ∅ the set E contains
infinitely many points by Theorem 2.18. Suppose though in contradiction to the
desired result that E contains only countably many distinct points a1, a2, . . ..
Each individual point is a closed subset {ai} ⊂ S, indeed is a nowhere dense set
since otherwise it would be both open and closed hence would be a component
of S and therefore not a limit point of S, which is impossible since S is perfect.
The set E =

⋃∞
i=1{ai} thus is a countable union of nowhere dense sets so is a

set of the first category in S. On the other hand E is a closed subset of S, so
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by Lemma 2.26 it is a locally compact Hausdorff space in the relative topology;
but then it is a set of the second category by Corollary 2.29. That contradiction
that serves to conclude the proof.

Corollary 2.32 The field R of real numbers is uncountable5.

Proof: Since R is a perfect locally compact Hausdorff space this corollary is an
immediate consequence of the preceding theorem.

5An old question was whether there are subsets of the set R of real numbers that have
cardinality strictly greater than that of the set Q of the rationals but strictly less than that
of the entire set R of real numbers, or equivalently whether there are subsets S of the set of
real numbers such that ℵ0 < #(S) < #(R); that is the continuum hypothesis, going back to
the work of Georg Cantor. Kurt Gödel showed in 1940 that it is consistent with the rest of
mathematics to assume that there are no such sets, and Paul Cohen showed in 1963 that it is
consistent with the rest of mathematics to assume that there are such sets.
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PROBLEMS, GROUP I:

(1) If K ⊂ E1 ∪ E2, where K is compact and E1, E2 are disjoint open sub-
sets of a topological space, is K ∩E1 compact? Is that always the case if E1, E2

are not disjoint?

(2) Find an example of a metric space in which the Heine-Borel theorem is
not true.

(3) Find an example of a topological space in which there is a compact set
that is not closed.

(4) If K is a compact subset of a topological space is clo(K) also compact?

(5) Suppose that T1 and T2 are two topologies on a set S where T1 ⊂ T2,
so that any open set in the topology T1 is also an open set in the topology T2.
(i) If K is a subset of S that is compact in the topology T1 is it necessarily
compact in the topology T2? Why?
(ii) If K is a subset of S that is compact in the topology T2 is it necessarily
compact in the topology T1? Why?

(6) Show that if A and B are disjoint compact subsets of a metric space S
with a metric ρ then there are points a ∈ A and b ∈ B such that ρ(a, b) =
infx∈A,y∈B ρ(x, y). (This limit is usually denoted by ρ(A,B)).

(7) What are the compact subsets of Q with the usual metric topology?

PROBLEMS, GROUP II:

(8) The sum A + B of any two subsets A,B ⊂ R of the real line is the subset
defined by A+B = { a+ b | a ∈ A, b ∈ B }
(i) If A and B are open is A+B open? Why?
(ii) If A and B are closed is A+B closed? Why?
(iii) If A and B are compact is A+B closed? Why?
(iv) If A and B are compact is A+B compact? Why?
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(9) Show that the empty set and the collection of subsets of R having compact
complements form a topology on R. Is R with this topology compact? Haus-
dorff? Connected?

(10) Show that if S is a locally compact Hausdorff space then for any point
a ∈ S and any closed subset C ⊂ S not containing the point a there exist
disjoint open subsets U, V in S such that a ∈ U and C ⊂ V . (A topological
space is said to be regular or T3 if any point and closed set not containing that
point are contained in disjoint open subsets; thus any locally compact Hausdorff
space is regular.)

(11) If Kn are nonempty compact subsets of a Hausdorff space S such that
Kn+1 ⊂ Kn and

⋂
nKn ⊂ U for some open subset U ⊂ S show that there is

some number N such that Kn ⊂ U for all n > N .

(12) Show that in a complete metric space S the intersection of any sequence of
dense open subsets is dense. [Suggestion: Examine the proof given earlier here
of the corresponding result for locally compact Hausdorff spaces.]

(13) Show that a nonempty perfect set in a complete metric space contains
uncountably many points. [Suggestion: consider the proof of Theorem ref5.perf.]

(14) Show that a compact metric space is complete.
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Chapter 3

Mappings

3.1 Continuous Mappings

A mapping f : S −→ T from a set S to a set T associates to each point
x ∈ S a point f(x) = y ∈ T . A good deal of analysis deals with mappings
f : S −→ R from a set S to the real numbers; it is traditional to call such a
mapping a function on the set S, or a real-valued function on the set S since
complex-valued functions often also are considered. The mappings involved
usually have some regularity properties, either continuity or differentiablity for
instance. If S and T are metric spaces, with metrics ρS and ρT , a mapping
f : S −→ T is defined to be continuous at a point a ∈ S if for any ε > 0
there is a δ > 0 such that

(3.1) ρT
(
f(x), f(a)

)
< ε whenever ρS(x, a) < δ;

and it is said to be continuous in S if it is continuous at each point a ∈ S. In
particular, if S and T are normed vector spaces with the metrics associated to
norms ‖x‖S and ‖x‖T , a mapping f : S −→ T is continuous at a point a ∈ S if
for any ε > 0 there is a δ > 0 such that

(3.2) ‖f(x)− f(a)‖T < ε whenever ‖x− a‖S < δ.

The simplest normed space is the real line R where the norm on R is the absolute
value; a mapping f : R −→ R is a real valued function of a real variable, and it
is continuous at a point a ∈ R if for any ε > 0 there is a δ > 0 such that

(3.3) |f(x)− f(a)| < ε whenever |x− a| < δ,

undoubtedly the most familiar form of the definition (3.2).
For example, a constant mapping f : R −→ R defined by f(x) = b ∈ R for all

x ∈ R is continuous in R since for any point a ∈ R clearly |f(x)− f(a)| = 0 < ε
whenever |x−a| < δ for any δ. The mapping f(x) = xn for any integer n ≥ 0 is
continuous in R, since for any point a ∈ R it is easy to see that |f(x)− f(a)| =

109
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|xn − an| = |x − a| · |p(x)| where p(x) is a polynomial in x; if |x − a| < 1 then
|p(x)| < M for some constant M > 0 so |f(x) − f(a)| < ε whenever |x − a| <
min(ε/M, 1). The sum of two continuous mappings f, g : R −→ R is continuous
at any point a ∈ R, since |f(x)−f(a)| < ε/2 if |x−a| < δf for some δf since f is
continuous and |g(x)−g(a)| < ε/2 if |x−a| < δg for some δg since g is continuous,
so |f(x) + g(x) − f(a) − g(a)| < ε whenver |x − a| < min(δf , δg). A mapping
f : R1 −→ R1 for which f(x) = 1/x is continuous at any point a 6= 0; for if
|x−a| < min( 1

2 |a|,
1
2 |a|

2ε) then |x| > 1
2 |a| and |f(x)− f(a)| = |ax|−1|x−a| < ε.

On the other hand the mapping f : R −→ R defined by

(3.4) f(x) =

{
0 if x ≤ 0,
1 if x > 0,

is continuous at each point x ∈ R except for the origin, at which it is not
continuous since

|f(x)− f(0)| =
{

0 if x ≤ 0,
1 if x > 0.

Slightly less obviously, the real-valued function

(3.5) f(x) =

 0 if x is rational,

1 if x is irrational

is continuous at no point; and considerably less obviously, the real-valued func-
tion

(3.6) g(x) =


0 if x is irrational,

1
q if x = p

q for coprime p, q

is continuous at all irrational numbers but is not continuous at any rational
number.

If a mapping f : Rm −→ Rn is continuous in terms of some norms on
the normed vector spaces Rm and Rn it is clearly continuous in terms of any
equivalent norms on these vector spaces; so it is customary to assume without
further mention that if Rm is viewed as a normed space it is with respect to
any one of the standard equivalent norms discussed in Section 2.1, the `1 or `2
or `∞ norm. A mapping f : Rm −→ Rn is described by its coordinate functions
fi(x), where f(x) = {fi(x)} for 1 ≤ i ≤ n; and the mapping f is easily seen to
be continuous at a point a ∈ S if and only if the coordinate functions fi(x) are
continuous at that point, since for instance ‖f(x)−f(a)‖∞ = maxi |fi(x)−fi(a)|.
As a consequence it is often possible to reduce questions and proofs about
mappings f : Rm −→ Rn to the special case of mappings f : Rm −→ R.
Mappings f : Rn −→ R can fail to be continuous for more complicated reasons
than those discussed in the examples for real valued functions of a single real
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variable. For instance the mapping h : R2 −→ R

(3.7) h(x1, x2) =


x1x2

x2
1 + x2

2

if |x1|+ |x2| 6= 0

0 if x1 = x2 = 0

is continuous at every point (x1, x2) ∈ R2 except at the origin; but the restriction
h(x1, cx1) = c

1+c2 of this function to a line through the origin described by a
nonzero constant c also is a nonzero constant depending on the choice of c except
at the origin, where by definition the function takes the value 0, so the function
fails to be continuous at the origin. Of course the mappings naturally expected
to be continuous are indeed continuous. A linear function f(x) =

∑m
i=1 cixi is

continuous at any point a, since

|f(x)− f(a)| =

∣∣∣∣∣
m∑
i=1

ci(xi − ai)

∣∣∣∣∣ ≤ m‖c‖∞‖x− a‖∞;

if ‖c‖ = 0 the mapping is constant hence continuous while on the other hand if
||c‖ 6= 0 then |f(x)− f(a)| < ε whenever ‖x−a‖∞ < ε/m‖c‖∞ so the mapping
is also continuous. That holds at any point a ∈ Rm so a linear transformation
T : Rm −→ Rn is continuous in Rm. A mapping f : R2 −→ R1 for which
f(x1, x2) = x1x2 is continuous at any point (a1, a2), since if ε < 1

|f(x1, x2)− f(a1, a2)| = |(x1 − a1)(x2 − a2) + a1(x2 − a2) + a2(x1 − a1)|
≤ |x1 − a1||x2 − a2|+ |a1||x2 − a2|+ |a2||x1 − a1| < ε

whenever |xi − ai| < 1
3εmin

(
1, (1 + |a1|)−1, (1 + |a2|)−1

)
.

Theorem 3.1 (i) If S is a normed vector space with the norm ‖x‖ the function
f(x) = ‖x|| is a continuous function on S.
(ii) If S is a metric space with the metric ρ(x, y) then for any fixed point b ∈ S
the function f(x) = ρ(x, b) is a continuous function on S.

Proof: (i) For any norm ‖x‖ on S by the triangle inequality ‖x‖ ≤ ‖x−a‖+‖a‖
so ‖x‖ − ‖a‖ ≤ ‖a − x‖; the same result holds when the variables a and x are
exchanged so actually

(3.8)
∣∣∣‖x‖ − ‖a‖∣∣∣ ≤ ‖a− x‖.

Therefore the function f(x) = ‖x‖ satisfies |f(x)−f(a)| < ε whenever ‖x−a‖ <
δ = ε, hence f(x) is continuous at any point a ∈ S.
(ii) For any metric ρ by the triangle inequality ρ(x, b) ≤ ρ(x, a) + ρ(a, b) hence
ρ(x, b)− ρ(a, b) ≤ ρ(x, a); the same result holds when the variables a and b are
reversed, hence the function f(x) = ρ(x, b) satisfies

(3.9) |f(x)− f(a)| = |ρ(x, b)− ρ(a, b)| ≤ ρ(x, a).
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Consequently |f(x) − f(a)| < ε whenever ρ(x, a) < δ = ε showing that f(x) =
ρ(x, b) is continuous at any point a ∈ S. That suffices for the proof.

The definition (3.1) of continuity, usually called the ε, δ definition of conti-
nuity, is often the most convenient to use in explicit calculations, and is basic in
discussing additional aspects of continuity such as uniform continuity. However
simple continuity actually is a property of the underlying topological structure,
a result of fundamental importance as well as of convenience for establishing
some general properties of continuous functions.

Theorem 3.2 A mapping f : S −→ T between two metric spaces is continuous
at a point a ∈ S if and only if a is an interior point of the inverse image f−1(Nb)
of any open neighborhood Nb of the point b = f(a) ∈ T , that is, if and only if
a ∈ int

(
f−1(Nf(a))

)
for any open neighborhood Nf(a) of the point f(a) ∈ T .

Proof: The definition (3.1) of a continuous mapping at a point a ∈ S can be
rephrased in terms of ε-neighborhoods of the points in these metric spaces as
the condition that for any ε > 0 there is a δ > 0 such that f

(
Na(δ)

)
⊂ Nb(ε)

where b = f(a), or equivalently, such that Na(δ) ⊂ f−1
(
Nb(ε)

)
. If f : S −→ T

is a continuous mapping at a point a ∈ S and Nb is any open neighborood of
the image b = f(a) then Nb(ε) ⊂ Nb for a sufficiently small ε hence Na(δ) ⊂
f−1

(
Nb(ε)

)
⊂ f−1(Nb) so a is an interior point of f−1(Nb). On the other hand if

a is an interior point of the inverse image f−1(Nb) of any open neighborhood Nb
of the image b = f(a) then in particular for the open neighborhood Nb = Nb(ε)
the point a must be an interior point of f−1

(
Nb(ε)

)
hence Na(δ) ⊂ f−1

(
Nb(ε)

)
for some sufficiently small δ so the mapping f is continuous at the point a. That
suffices for the proof.

In view of Theorem 3.2 a mapping f : S −→ T between two arbitrary
topological spaces, not necessarily metric spaces, is defined to be continuous
at a point a ∈ S if

(3.10) a ∈ int
(
f−1(Nf(a))

)
for any open neighborhood Nf(a) of f(a).

Theorem 3.2 amounts to the assertion that for metric spaces the criterion (3.10)
for continuity is equivalent to the criterion (3.1). The mapping f : S −→ T is
defined to be continuous in S if it is continuous at each point a ∈ S; that
condition can be rephrased equivalently as follows.

Theorem 3.3 A mapping f : S −→ T between two topological spaces is contin-
uous in S if and only if f−1(E) is an open subset of S for any open subset E of
T , or equivalently, if and only if f−1(E) is a closed subset of S for any closed
subset E of T .

Proof: If f : S −→ T is a continuous mapping it follows immediately from the
definition (3.10) that any point a ∈ f−1(E) is an interior point of f−1(E) for
any open subset E ⊂ T hence that f−1(E) ⊂ S is open whenever E ⊂ T is
open; and conversely if f−1(E) is an open subset of S for any open subset E of
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T then any point a ∈ f−1(E) is an interior point for any open subset E ⊂ T so
f is continuous at a. Since f−1(T ∼ E) = S ∼ f−1(E) it follows that for any
mapping f : S −→ T and any subset E ⊂ T the inverse image f−1(E) of any
closed subset E ⊂ T is closed if and only if the inverse image f−1(T ∼ E) of
any open subset T ∼ E is open, which is just the condition that f : S −→ T is
a continuous mapping. That suffices for the proof.

An illustration of the convenience of the characterization (3.10) of continuity
of mappings is in the proof of the following standard property of continuous
mappings.

Theorem 3.4 If R,S, T are topological spaces, if a mapping f : R −→ S is
continuous at a point a ∈ R, and if a mapping g : S −→ T is continuous at the
point b = f(a) ∈ S, then the composition h = g ◦ f : R −→ T is continuous at
the point a ∈ R; and if mappings f : R −→ S and g : S −→ T are continuous
then their composition g ◦ f : R −→ T is continuous.

Proof: Since g is continuous at the point b = f(a) ∈ S, if Nc is an open
neighborhood of c = g(b) then b ∈ int

(
g−1(Nc)

)
so there is an open subset

Nb ⊂ S such that b ∈ Nb ⊂ g−1(Nc). Since f is continuous at the point
a ∈ R then a ∈ int

(
f−1(Nb)

)
so there is an open subset Na ⊂ R such that

a ∈ Na ⊂ f−1(Nb) ⊂ h−1(Nc) hence that a ∈ int
(
h−1(Nc)), showing that h is

continuous at the point a. The second statement of the theorem is an immediate
consequence, in view of the preceding theorem, and that suffices for the proof.

As an application of the preceding theorem, if mappings f, g : S −→ R from
a topological space S to the real numbers are continuous then their sum f + g
is continuous since it is the composition f + g = s◦ t of the continuous mapping
t : S −→ R2 for which t(x) =

(
f(x), g(x)

)
and the the continuous mapping

s : R2 −→ R1 for which s(x1, x2) = x1 + x2; their product fg is continuous
since it is the composition fg = p ◦ t of the continuous mapping t : S −→ R2

and the continuous mapping p : R2 −→ R for which p(x1, x2) = x1x2; and
the mapping 1/f is continuous at any point a ∈ S at which f(a) 6= 0 since it
is the composition of the continuous mapping f : S −→ R and the continuous
mapping i : R ∼ {0} −→ R for which i(x) = 1/x. In particular any polynomial is
continuous, since it is a composition of addition and multiplication of continuous
functions beginning with the function x; and any quotient of polynomials is
continuous, so long as the denominator is nonzero.

The continuity of a mapping f : S −→ T between two topological spaces is
characterized by the condition that the inverse image of an open set is open, or
alternatively by the condition that the inverse image of a closed set is closed.
However the image of an open set need not be open, and the image of a closed set
need not be closed. For example if S = [0, 1) ∪ [2, 3] with the induced topology
as a subset of R1 the mapping f : S −→ [0, 3] defined by

(3.11) f(x) =

 2x if 0 ≤ x < 1

x if 2 ≤ x ≤ 3
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clearly is a continuous mapping. The subset [2, 3] ⊂ S is open in S but its image
[2, 3] is closed in [0, 3] ; and the subset [0, 1) ⊂ S is closed in S but its image [0, 2)
is open in [0, 3]. However compactness is preserved under continuous mappings
rather than under their inverses.

Theorem 3.5 The image of a compact subset K ⊂ S under a continuous map-
ping f : S −→ T is compact.

Proof: If K ⊂ S is compact and f(K) is contained in a union of open sets
Uα then K is contained in the union of the open sets f−1(Uα); and since K is
compact it is contained in a union of finitely many of the sets f−1(Uα), hence
f(K) is contained in the union of the images f

(
f−1(Uα)

)
⊂ Uα of these finitely

many open sets. That suffices for the proof.

However the inverse image of a compact set under a continuous mapping
need not be compact; indeed for the continuous mapping (3.11) the inverse
image f−1([0, 2]) = [0, 1) ∪ {2} of the compact set [0, 2] is not compact. This
result has a number of applications, only two of which will be discussed here.

Corollary 3.6 (Maximum-Minimum Theorem) If f : S −→ R is a con-
tinuous real-valued function on a compact topological space S then there are
points a, b ∈ S for which

(3.12) f(a) = sup
x∈S

f(x) and f(b) = inf
x∈S

f(x).

Proof: The image f(S) ⊂ R is compact by the preceding theorem, hence is a
closed set; so if α = supx∈S f(x) then since α is a limit point of the set f(S) it
must be contained in the set f(S) hence α = f(a) for some point a ∈ S, and
correspondingly for β = infx∈S f(x). That suffices for the proof.

Corollary 3.7 All norms on a finite dimensional real vector space are equiva-
lent.

Proof: It was already observed in Section 2.1 that the three standard norms
on the vector space Rn, the `1, `2 and `∞ norms, are equivalent; so it is only
necessary to show that any other norm ‖x‖ on Rn is equivalent to one of these
norms, for instance to the `∞ norm. When Rn is viewed as a normed vector
space with the `∞ norm the set

S =
{

x ∈ Rn
∣∣∣ ‖x‖∞ = 1 }

is a closed set, since ‖x‖∞ is a continuous function by Theorem 3.1 (i), and is
a bounded subset of Rn, from the definition of the norm; hence S is a compact
subset, by the Heine-Borel Theorem. In terms of the canonical basis δ1, . . . , δn
for the vector space Rn any vector x ∈ Rn can be written as the sum x =
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∑n
i=1 xiδi and ‖x‖∞ = max1≤i≤n |xi|. In addition if M = maxi ‖δi‖ it follows

from homogeneity and the triangle inequality that

‖x‖ ≤
n∑
i=1

‖xiδi‖ ≤
n∑
i=1

|xi|M ≤Mn max
1≤i≤n

|xi| = Mn‖x‖∞ ;

from the preceding inequality and (3.8) it follows that∣∣∣‖x‖ − ‖a||∣∣∣ ≤ ‖x− a‖ ≤Mn‖x− a‖∞

hence the function f(x) = ‖x‖ is continuous on Rn in terms of the `∞ norm.
By Corollary 3.6 if C = supx∈S ‖x‖ and c = infx∈S ‖x‖ these values are taken
at some points of S so are finite and

c ≤ f(x) ≤ C for any point x ∈ S.

If x 6= 0 then x/‖x‖∞ ∈ S so the preceding equation shows that

c ≤ f
(

x

‖x‖∞

)
=

f(x)

‖x‖∞
≤ C for any point x ∈ S,

or equivalently c‖x‖∞ ≤ f(x) ≤ C‖x‖∞, showing that the norms ‖x‖ = f(x)
and ‖x‖∞ are equivalent and thereby concluding the proof.

It follows that all real normed vector spaces of a finite dimension n are
isomorphic, so that there is basically only one such space. That is definitely
not the case for vector spaces of infinite dimension though, and the study of
various such spaces is an important topic in analysis. Connectivity as well as
compactness is preserved under continuous mappings rather than under their
inverses.

Theorem 3.8 The image of a connected topological space S under a continuous
mapping f : S −→ T is connected.

Proof: If the image f(S) is not connected then it contains a nonempty proper
subset E ⊂ f(S) that is both open and closed; the inverse image f−1(E) ⊂ S
then is a nonempty proper subset of S that is also both open and closed, which
is impossible since S is assumed connected. That suffices for the proof.

The inverse image of a connected topological space under a continuous map-
ping need not be connected however; indeed the mapping (3.11) once again is a
continuous bijective mapping from the set S that is not connected to the con-
nected set [0, 3], so the inverse image of the connected set [0, 3] is not connected.
The preceding theorem has a very commonly used corollary.

Corollary 3.9 (Intermediate Value Theorem) If f : [a, b] −→ R is a con-
tinuous function in the interval [a, b] ⊂ R where f(a) = A < f(b) = B then any
C ∈ [A,B] is the image C = f(c) of some point c ∈ [a, b].
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Proof: Suppose to the contrary that there is some value C such that A <
C < B but f(x) 6= C for all a ≤ x ≤ b. The sets E− = f−1(−∞, C) and
E+ = f−1(C,∞) are nonempty disjoint open subsets of the interval [a, b] for
which [a, b] = E− ∪E+, since there are no points x ∈ [a, b] such that f(x) = C;
but these sets then closed as well as open, which is impossible since [a, b] is
connected. That contradiction suffices to conclude the proof.

A bijective continuous mapping f : S −→ T between two topological spaces
is called a homeomorphism if its inverse mapping g = f−1 : T −→ S also is
continuous; two topological spaces S and T are said to be homeomorphic if
there is a homeomorphism f : S −→ T , or equivalently of course if there is a
homeomorphiosm g : T −→ S. It is worth pointing out that the inverse of a
bijective continuous mapping between two topological spaces is not necessarily
a continuous mapping; for example the mapping (3.11) is a continuous bijective
mapping but its inverse fails to be continuous, since the inverse mapping does not
map the interval [0, 3] to a connected set. Thus a critical part of the definition
of homeomorphism is that the inverse mapping is required to be continuous.
In some cases however the inverse of a continuous bijective mapping actually is
automatically continuous.

Theorem 3.10 A bijective continuous mapping f : S −→ T from a compact
Hausdorff space S onto a Hausdorff space T is a homeomorphism.

Proof: If the mapping f : S −→ T is bijective it has a well defined inverse
mapping g : T −→ S. To show that g is continuous it suffices to show that
g−1(E) is closed for any closed subset E ⊂ S. If E is closed then by The-
orem 2.21 (i) it is compact, since S is compact; and then g−1(E) = f(E) is
compact by Theorem 3.5, hence is closed by Theorem 2.22 (i), and that suffices
for the proof.

It is evident from the definition that a homeomorphism f : S −→ T es-
tablishes a bijective correspondence between the open subsets of S and those
of T : the inverse image of any open subset of T is an open subset of S and
the image of any open subset of S is the inverse image of that set under the
continuous mapping f−1 so is an open subset of T . The corresponding asser-
tion holds for closed sets, or for compact sets or for connected sets; so the two
spaces S and T really can be identified as far as their structure of a topological
space is concerned. Homeomorphism is an equivalence relation among topolog-
ical spaces. In particular any two isometric metric spaces are homeomorphic as
topological spaces with the metric topology; but on the other hand homeomor-
phic metric spaces are not necessarily isometric, since for example the mapping
f : (0,∞) −→ (0,∞) defined by f(x) = x2 is a homeomorphism, with the
inverse mapping g : (0,∞) −→ (0,∞) given by g(x) =

√
x with the positive

square root, but obviously it is not an isometry. Some homeomorphisms are
perhaps not entirely obvious; for example if

(3.13) f(x) =
1

1 + ‖x‖
x and g(x) =

1

1− ‖x‖
x
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in terms of a norm ‖x‖ on Rn then f(x) is well defined for all x ∈ Rn and
‖f(x)‖ < 1 so that f is a continuous mapping f : Rn −→ D where D =

{
x ∈

Rn
∣∣ ‖x‖ < 1 }, and g(x) is well defined so long as ‖x‖ < 1 so is a continuous

mapping g : D −→ Rn. If y = f(x) then (1 + ‖x‖)y = x so (1 + ‖x‖)‖y‖ = ‖x‖
and consequently ‖x‖ = (1− ‖y‖)−1‖y‖; therefore

x = (1 + ‖x‖)y = (1− ‖y‖)−1y = g(y),

showing that f and g are inverse to one another hence are homeomorphisms.
Thus the topological spaces Rn and D ⊂ Rn are homeomorphic; in particular
D is the unit ball in Rn for the `2 norm and a unit cell for the `∞ norms, and
at first glance these two subsets may not seem to be homeomorphic to the full
space Rn.

There are convenient alternative approaches to continuity in the special case
of metric spaces; although some results extend to more general topological
spaces, for the later applications here it is sufficient just to consider metric
spaces. A mapping f : S −→ T between two metric spaces S and T with the
metrics ρS and ρT is said to have the limit b at a point a ∈ S′, indicated by
writing limx→a f(x) = b, if for any ε > 0 there is a δ > 0 so that

(3.14) ρT (f(x), b) < ε whenever 0 < ρ(x, a) < δ.

It is important to keep the inequality 0 < ρ(x, a) clearly in mind in the preceding
definition; the actual value f(a) does not play any role in the definition. For
points that are not limit points of the set S the limit is undefined. This definition
of limit is reminiscent of the earlier definition (3.1) of continuity; indeed the two
concepts are closely related.

Theorem 3.11 A mapping f : S −→ T between two metric spaces S is contin-
uous at a point a ∈ S′ if and only if limx→a f(x) = f(a).

Proof: This result follows immediately upon comparing the definition (3.1) of
continuity with the definition (3.14) of limit, so no further proof is needed.

Although the preceding theorem has a trivial proof, the result is sufficiently
important and useful to merit being pointed out explicitly; and it is a standard
alternative definition of continuity. It is perhaps worth noting that for an iso-
lated point of S, a point a ∈ S ∼ S′, the previous definitions imply that any
function is automatically continuous at that point. A mapping f : S −→ T
between two metric spaces does not necessarily have a limit at all points of S′;
for example the mapping f : R −→ R defined by (3.5) does not have a limit at
any point a ∈ R. On the other hand the mapping g : R −→ R defined by (3.6)
has the limit limx→a g(x) = 0 at all points a ∈ R; and as observed earlier g(x)
is continuous precisely at those points a ∈ R at which g(a) = 0, which are the
irrational numbers. Another characterization of the limit of a mapping is the fol-
lowing, which is occasionally useful in providing an alternative characterization
of continuity.
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Theorem 3.12 If f : S −→ T is a mapping between two metric spaces S and
T then limx→a f(x) = b at a point a ∈ S‘ if and only if limn→∞ f(an) = b for
any sequence of points an ∈ S such that an 6= a and limn→∞ an = a.

Proof: If limx→a f(x) = b then by definition for any ε > 0 there is a δ > 0
such that ρT (f(x), b) < ε whenever x 6= a and ρS(x, a) < δ. If an ∈ S is a
sequence of points for which an 6= a and limn→∞ an = a there is a number N
such that 0 < ρS(an, a) < δ for all n > N and then ρT (f(an), b) < ε; therefore
limn→∞ f(an) = b. On the other hand if it is not the case that limx→a f(x) = b
then by definition there is an ε > 0 such that for all δ > 0 there are points x 6= a
for which ρS(x, a) < δ; but ρT (f(x), b) > ε. In particular then there are points
an 6= a for which 0 < ρS(an, a) < 1/n but ρT (f(an), b) > ε, hence for which it
is not the case that limn→∞ f(an) = b. That suffices for the proof.

Corollary 3.13 If f : S −→ T is a mapping between two metric spaces S and
T then f is continuous at a point a ∈ S′ if and only if limn→∞ f(an) = f(a)
for any sequence of points an ∈ S such that an 6= a and limn→∞ an = a.

Proof: By Theorem 3.11 the mapping f is continuous at a ∈ S if and only if
limx→a f(x) = f(a); and by Theorem 3.12 limx→a f(x) = f(a) if and only if
limn→∞ f(an) = f(a) for any sequence of points an ∈ S such that an 6= a and
limn→∞ an = a. That suffices for the proof.

For the special case of mappings f : S −→ R from a metric space to the
real numbers, that is, for real-valued functions on a metric space, there is still
another useful characterization of continuity; it will play a significant role in the
later discussion of integration. If a function f : S −→ R is bounded in S its
oscillation in any subset E ⊂ S is defined by

(3.15) of (E) = sup
x∈E

f(x)− inf
x∈E

f(x).

It is evident that if E1 ⊂ E2 then of (E1) ≤ of (E2). In particular if a function
f is defined and bounded in an open neighborhood Na(r) of a point a ∈ S then
of
(
Na(r1)

)
≤ of

(
Na(r2)

)
whenever r1 ≤ r2 ≤ r and it is then clear that the

limit

(3.16) of (a) = lim
r→0

of
(
Na(r)

)
exists; it is called the oscillation of the function f(x) at the point a.

Theorem 3.14 A bounded function f in an open neighborhood of a point a in
a metric space S is continuous at the point a if and only if of (a) = 0.

Proof: If of (a) = 0 then for any ε > 0 there is a δ > 0 such that of
(
Na(δ)

)
< ε,

so in particular |f(x) − f(a)| < ε whenever x ∈ Na(δ) and consequently f is
continuous at the point a. Conversely if f is continuous at a then for any ε > 0
there is a δ > 0 such that |f(x) − f(a)| < 1

2ε whenever x ∈ Na(δ); therefore
f(a) − 1

2ε < f(x) < f(a) + 1
2ε for any x ∈ Na(δ), hence of

(
Na(δ)

)
≤ ε and

consequently of (a) = 0. That suffices for the proof.
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Lemma 3.15 If f is a bounded function in a subset S of a metric space then

E =
{
x ∈ S

∣∣∣ of (x) < ε
}

is an open subset of S for any ε > 0.

Proof: If a ∈ E then of (a) < ε so of
(
Na(δ) ∩ S

)
< ε if δ is sufficiently small.

If b ∈ Na(δ) ∩ S and δ0 is chosen sufficiently small that Nb(δ0) ⊂ Na(δ) then

of
(
Nb(δ0)∩S

)
≤ of

(
Na(δ)∩S

)
< ε therefore b ∈ E and hence

(
Na(δ)∩S

)
⊂ E.

That shows that E is an open subset of S and thereby concludes the proof.

Theorem 3.16 If f is a bounded function in a metric space S then the set of
those points of S at which f is continuous is a Gδ set.

Proof: By the preceding Lemma 3.15 the set

En =
{
x ∈ S

∣∣∣ of (x) <
1

n

}
is an open subset of S for any natural number n. The intersection E =

⋂
n∈NEn

is consequently a Gδ set, a countable intersection of open sets. Clearly x ∈ E
if and only if of (x) = 0, which is just the condition that f is continuous at the
point x ∈ S by Theorem 3.14, and that suffices for the proof.

Corollary 3.17 There does not exist a function that is continuous at the ra-
tional numbers and discontinuous at the irrational numbers.

Proof: It was demonstrated in Corollary 2.30 as an application of Baire’s Cat-
egory Theorem that the rational numbers do not form a Gδ subset of the real
numbers; therefore it follows from the preceding theorem that there are no
functions that are continuous precisely at the rationals, which suffices for the
proof.

Some aspects of continuity on metric spaces are not purely topological prop-
erties but are really metric properties, in the sense that they cannot be stated
just in terms of open and closed sets but essentially involve the metrics used to
define the topology. A mapping f : S −→ T between two metric spaces S and
T with metrics ρS and ρT is continuous at a point a ∈ S if and only if for every
ε > 0 there is a δ > 0 such that ρT

(
f(a), f(x)

)
< ε whenever ρS(x, a) < δ; and

the mapping f is continuous in S if it is continuous at each point a ∈ S, that
is, if for each point a ∈ S and every ε > 0 there is a δa > 0, which may depend
on the point a, such that ρT

(
f(a), f(x)

)
< ε whenever ρS(x, a) < δ. The map-

ping f is said to be uniformly continuous in S if it is possible to find values
δa > 0 that are independent of the point a ∈ S, or equivalently if for any ε > 0
there exists δ > 0 such that ρT

(
f(x), f(y)

)
< ε for all points x, y ∈ S for which

ρS(x, y) < δ. The metrics permit a detailed comparison of the properties of a
mapping f : S −→ T at different points of the spaces S and T , a uniformity of
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the topology in a sense, that is not possible on general topological spaces. A
bounded linear mapping f : S −→ T between two normed vector spaces is uni-
formly continuous, since ‖f(x)− f(y)‖T = ‖f(x−y)‖T ≤ ‖f‖o‖x−y‖S in terms
of the operator norm ‖f‖o of the linear mapping f , so ‖f(x)− f(y)‖T < ε when-
ever ‖x−y‖S < ε/‖f‖o. In general the function f(x) = ‖x‖ on a normed vector
space is uniformly continuous, by equation (3.8); and the function f(x) = ρ(a, x)
for a fixed point a in a metric space S with the metric ρ is uniformly continu-
ous, by equation (3.9). Not all continuous mappings are uniformly continuous
though; for example the mapping f : R −→ R defined by f(x) = x2 is easily
seen not to be uniformly continuous.

Theorem 3.18 Any continuous mapping f : S −→ T from a compact metric
space S to a metric space T is uniformly continuous.

Proof: If f : S −→ T is a continuous mapping and ε > 0 then for any point
a ∈ S there is a δa > 0 such that ρT

(
f(a), f(x)

)
< 1

2ε whenever x ∈ Na(δa).
The collection of open sets Na(δa/2) for all points a ∈ S covers the compact
space S, so finitely many of these neighborhoods Ni = Nai(δai/2) for some
points ai ∈ S for 1 ≤ i ≤ N already suffice to cover S. If δ = mini δai then
δ > 0; and if x, y ∈ S are any two points such that ρS(x, y) < 1

2δ, then x ∈ Ni
for one of these finitely many neighborhoods, and since ρS(x, y) < 1

2δ then

ρS(ai, y) ≤ ρS(ai, x) + ρS(x, y) < δ

so y ∈ Nai(δai) as well. It follows that

ρT
(
f(x), f(y)

)
≤ ρT

(
f(x), f(ai)

)
+ ρT

(
f(ai), f(y)

)
≤ 1

2ε+ 1
2ε = ε,

so f is uniformly continuous and that concludes the proof.

Uniformity properties are of particular importance when considering families
of mappings between metric spaces. A sequence of mappings fn : S −→ T
between two metric spaces is said to converge at a point a ∈ S if the sequence
of points fn(a) ∈ T converges to a point of T . The sequence is said to converge
pointwise in S, or for short just to converge in S, if it converges at each point
of S; and in that case the limit of the sequence is the function f(x) for which
f(x) = limn→∞ fn(x) for all points x ∈ S. The limit of a convergent sequence
of continuous mappings is not necessarily continuous; for instance the functions
fn(x) = xn are continuous in the interval [0, 1] ⊂ R and converge to the limit
function

f(x) = lim
n→∞

xn =

 0 if 0 ≤ x < 1,

1 if x = 1,

which fails to be continuous at the point x = 1. More interesting, though, is
the limit

(3.17) f(x) = lim
m→∞

lim
n→∞

(
cos(m!πx)

)2n

;
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if x is rational then m!πx is an integral multiple of π whenever m is suffi-
ciently large, so cos(m!πx) = ±1 and hence f(x) = 1, but if x is irrational
then | cos(m!πx)| < 1, so f(x) = 0, and consequently f(x) is the function (3.5)
which is continuous at no point. However there is a finer notion of convergence
which ensures that limits of continuous functions are continuous. A sequence
of mappings fn : S −→ T from a topological space S to a metric space T with
the metric ρ is said to be uniformly convergent to a mapping f : S −→ T if
for any ε > 0 there is a number N such that ρ

(
fn(x), f(x)

)
< ε for all x ∈ S

whenever n > N . A sequence of points in a complete metric space converges if
and only if it is a Cauchy sequence; it follows immediately that a sequence of
mappings fn : S −→ T from a topological space S to a complete metric space
T converges in S if and only if the sequence {fn(x)} is a Cauchy sequence at
each point x ∈ S. A sequence of mappings fn from a topological space S to a
complete metric space T with the metric ρ is said to be a uniformly Cauchy
sequence if for any ε > 0 there is a number N such that ρ

(
fm(x), fn(x)

)
< ε

for all x ∈ S whenever m,n > N .

Theorem 3.19 A sequence of mappings fn from a topological space S to a
complete metric space T is uniformly convergent if and only if it is uniformly
Cauchy.

Proof: If the sequence of mappings fn : S −→ T is uniformly convergent it is
clearly uniformly Cauchy. Conversely if the sequence of mappings fn : S −→ T
is uniformly Cauchy sequence then for any ε > 0 there is a number N such that
ρ
(
fm(x), fn(x)

)
< ε for all x ∈ S whenever m,n > N . In particular for any

point x ∈ S the sequence {fn(x)} is a Cauchy sequence, so it converges to some
value f(x); hence there is some index Mx > N such that ρ(f(x), fMx(x)) < ε.
Since also ρ(fn(x), fMx(x)) < ε for any n > N it follows from the triangle
inequality that

ρ
(
f(x), fn(x)

)
≤ ρ
(
f(x), fMx(x)

)
+ ρ
(
fMx(x), fn(x)

)
< 2ε

for any n > N , showing that the sequence fn(x) converges uniformly to f(x),
to conclude the proof.

Theorem 3.20 (Uniform Convergence Theorem) The limit of a uniformly
convergent sequence of continuous mappings from a topological space to a metric
space is a continuous mapping.

Proof: Suppose that the sequence of continuous mappings fn : S −→ T from a
topological space S to a metric space T with the metric ρ converges uniformly to
a mapping f ; so for any ε > 0 there is a number N such that ρ

(
fN (x), f(x)

)
< ε

for all points x ∈ S. For any point a ∈ S the function fN is continuous at a so
there is an open neighborhood U of the point a in S such that ρ

(
fN (x), fN (a)

)
<

ε for all points x ∈ U . Then for all x ∈ U it follows from the triangle inequality
that

ρ
(
f(x), f(a)

)
≤ ρ
(
f(x), fN (x)

)
+ ρ
(
fN (x), fN (a)

)
+ ρ
(
fN (a), f(a)

)
< ε+ ε+ ε = 3ε,
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which shows that the limit mapping is continuous at the point a. That holds
for any a ∈ S so the limit mapping is continuous in S, which suffices for the
proof.

Questions involving the interchange of orders of limits in sequences of map-
pings, such as whether limn→∞ limx→a fn(x) is actually equal to the other order
of the limits limx→a limn→∞ fn(x), arise frequently in analysis. In general some
caution is advisable, since it is not always possible to interchange the orders in
which the limits are taken. For example

lim
n→∞

lim
x→0

1

1 + nx
= 1 but lim

x→0
lim
n→∞

1

1 + nx
= 0.

However if the sequences of mappings converge uniformly then such interchanges
of limits is possible; this result has a great many uses so should be kept firmly
in mind, not only for its usefulness but also as a warning that limits cannot
always be interchanged.

Theorem 3.21 If a sequence of mappings fn : S −→ T from a topological space
S to a complete metric space T converges uniformly to a mapping f : S −→ T ,
and if the limits limx→a fn(x) = bn ∈ T exist, then the points bn converge to a
point b ∈ T and limx→a f(x) = b, or equivalently

(3.18) lim
n→∞

lim
x→a

fn(x) = lim
x→a

lim
n→∞

fn(x).

Proof: Since the sequence of mappings {fn} is uniformly convergent it is uni-
formly Cauchy; so for any ε > 0 there is an N such that

(3.19) ρ
(
fm(x), fn(x)

)
< ε for all m,n ≥ N, x ∈ S.

The function ρ(x, y) is continuous in both variables, as an obvious consequence
of Theorem 3.1 (ii); so since bn = limx→a fn(x) it follows upon taking the limit
as x tends to a in (3.19) that

(3.20) ρ
(
bm, bn

)
≤ ε for all m,n ≥ N.

Thus {bn} is a Cauchy sequence, so limn→∞ bn = b for a point b ∈ T ; and it
follows upon taking the limit as m tends to ∞ in (3.20) for the particular value
n = N that

(3.21) ρ(b, bN ) ≤ ε.

Then returning to (3.19) again, since limm→∞ fm(x) = f(x) for all points x ∈ S
taking the limit in (3.19) as m tends to infinity for the fixed value n = N it
follows as well that

(3.22) ρ
(
f(x), fN (x)

)
≤ ε for all x ∈ S.

Finally since limx→a fN (x) = bN there is a δ > 0 so that

(3.23) ρ
(
fN (x), bN

)
≤ ε if 0 < ρ(x, a) < δ.
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Using the triangle inequality and combining the three inequalities (3.21), (3.22),
and (3.23) show that

ρ
(
f(x), b

)
≤ ρ
(
f(x), fN (x)

)
+ ρ
(
fN (x), bN

)
+ ρ
(
bN , b

)
≤ 3ε

whenever 0 < ρ(x, a) < δ. Therefore limx→a f(x) = b and that suffices for the
proof.

The uniform convergence of a sequence of mappings is actually a surprisingly
strict condition on the mappings appearing in the sequence. A collection F of
mappings f : S −→ T between two metric spaces with the metrics ρS , ρT is
said to be a uniformly equicontinuous family of mappings if for any ε > 0
there is a δ > 0 such that ρT

(
f(x), f(y)

)
< ε whenever ρS(x, y) < δ for any

mapping f ∈ F and any points x, y ∈ S. Thus each function f ∈ F is uniformly
continuous, so that for a given ε > 0 there is a δ > 0 that is independent of
the choice of the points x, y ∈ S; but moreover δ is even independent of the
particular function f ∈ F .

Theorem 3.22 If fn : S −→ T is a uniformly convergent sequence of continu-
ous mappings from a compact metric space S to a metric space T then the set
of mappings fn form a uniformly equicontinuous family of mappings.

Proof: By the Uniform Convergence Theorem, Theorem 3.20, the limit map-
ping f = limn→∞ fn is continuous in S; and since S is compact then by Theo-
rem 3.18 the mapping f is also uniformly continuous in S. Thus for any ε > 0
there is a δ0 > 0 such that ρT

(
f(x), f(y)

)
< 1

3ε for any points x, y ∈ S for which
ρS(x, y) < δ0. Now since the mappings fn converge uniformly there is a number
N such that ρT

(
fn(x), f(x)

)
< 1

3ε for all x ∈ S for all n > N . Combining the
two preceding results shows that
(3.24)
ρT
(
fn(x), fn(y)

)
≤ ρT

(
fn(x), f(x)

)
+ ρT

(
f(x), f(y)

)
+ ρT

(
f(y), fn(y)

)
< ε

for any points x, y ∈ S for which ρS(x, y) < δ0 and for all n > N . Each of the
mappings fn : S −→ T is also uniformly continuous by Theorem 3.18; so for each
n there is a δn > 0 so that ρT

(
fn(x), fn(y)

)
< ε for any points x, y ∈ S for which

ρS(x, y) < δn. If δ = min(δ0, δ1, . . . δN ) then δ > 0 and ρT
(
fn(x), fn(y)

)
< ε for

any points x, y ∈ S for which ρS(x, y) < δ and for all n, and that suffices for
the proof.

What is possibly even more interesting is that there is a rough converse to
the preceding result. For the statement of this result, a subsequence of a
sequence {fn} of mappings fn : S −→ T between two sets is a subset fni of
these mappings for indices 1 ≤ n1 < n2 < n3 < . . ..

Lemma 3.23 A compact metric space S has a countable dense set of points.

Proof: For any number n the set of open neighborhoods Na( 1
n ) of all points

a ∈ S covers S; so since S is compact there are finitely many points ai,n ∈ S
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so that the open neighborhoods Nai,n( 1
n ) for these finitely many indices i also

cover S. The collection of all these points {ai,n} is countable, since it is the
union over the countably many indices n of finite sets, and is clearly a dense
subset of S, which suffices for the proof.

Theorem 3.24 (Ascoli’s Theorem) If F is a uniformly equicontinuous fam-
ily of mappings from a compact metric space S to a compact metric space T then
any sequence of mappings fn ∈ F has a uniformly convergent subsequence.

Proof: Consider a sequence of mappings fn ∈ F . The preceding Lemma 3.23
shows that there is a countable dense set of points ai ∈ S. If the images fn(a1) ∈
T for all indices n are an infinite set then since T is compact this infinite set
of points will have a limit point, hence a suitable subsequence fn,1(a1) ∈ T will
converge. If there are only finite many image points then a suitable subsequence
fn,1(a1) ∈ T will consist just of the same point repeated, so also a convergent
subsequence of points. In either case there is a subsequence fn,1 of the mappings
fn such that the sequence fn,1(a1) converges. The argument can be repeated
for the sequence fn,1(a2); so there is a subsequence fn,2 of the sequence fn,1 so
that the subsequences fn,2(a1) and fn,2(a2) both converge, and the process can
be continued. Then as in Cantor’s diagonalization construction the sequence
consisting of the first mapping in fn,1, the second mapping in fn,2, the third
mapping in fn,3, and so on, will be a subsequence gn of the mappings fn so that
for each point ai the sequence gn(ai) converges.

Since every compact metric space is complete, the theorem will be demon-
strated by showing that the sequence of mappings gn is uniformly Cauchy,
hence is uniformly convergent, in S. For any ε > 0 there will be a δ > 0
so that ρT

(
f(x), f(y)

)
< 1

3ε for any f ∈ F and any points x, y ∈ S for which
ρS(x, y) < δ; in particular that is the case for any of the mappings gn, since these
mappings are contained in F . The open neighborhoodsNai(δ) of the dense set of
points ai are an open covering of S; so since S is compact finitely many of these
neighborhoods, say the neighborhoods Nai(δ) for indices 1 ≤ i ≤ M , cover S.
For each of these points ai the subsequence gn(ai) converges, so for some Ni suit-
ably large ρ

(
gn(ai), gm(ai)

)
< 1

3ε for all m,n > Ni; then set N = max1≤i≤M Ni.
Now any point x ∈ S is contained in one of the neighborhoods Nai(δ); and for
any m,n > N it follows that

ρ
(
gn(x), gm(x)

)
≤ ρ
(
gn(x), gn(ai)

)
+ ρ
(
gn(ai), gm(ai)

)
+ ρ
(
gm(ai), gm(x)

)
≤ 1

3
ε+

1

3
ε+

1

3
ε = ε,

which shows that the sequence gn is uniformly Cauchy in S, thereby concluding
the proof.

APPENDIX: THE FUNDAMENTAL THEOREM OF ALGEBRA

One of the basic results of algebra, often called the fundamental theo-
rem of algebra, is the assertion that any nonconstant complex polynomial
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P (z) has a root, a complex number a such that P (a) = 0. Actually this is not
really an algebaic theorem since it involves the complex, hence real, number
system and that number system is really a topological rather than purely alge-
braic construction; hence the proofs of the fundamental theorem of algebra are
necessarily topological rather than algebraic. The proof included here rests on
compactness and simple geometric constructions, so can be viewed as another
example of the usefulness of the notion of compactness. There are versions of
this proof that appear much simpler, involving properties of analytic functions
rather than real estimates.

Theorem 3.25 (Fundamental Theorem of Algebra) Any nonconstant com-
plex polynomial has a root.

Proof: Suppose to the contrary that P (z) is a complex polynomial of degree
n > 0 that has no roots, so that |P (z)| > 0 for all points z ∈ C. If the polynomal
P (z) is written out explicitly as

P (z) = a0 + a1z + · · ·+ anz
n = zn

(
an + an−1

1

z
+ · · ·+ a0

1

zn

)
where an 6= 0 then

∣∣an + an−1
1
z + · · ·+ a0

1
zn

∣∣ > 1
2 |an| whenever |z| ≥ R for a

sufficiently large value of R so |P (z)| > 1
2 |an||z|

n whenever |z| ≥ R; in particular
if R is chosen sufficiently large so that also 1

2 |an|R
n > |P (0)| then actually

|P (z)| > |P (0)| whenever |z| ≥ R. The restriction of the continuous function
|P (z)| to the compact disc |z| ≤ R for such a choice of R thus does not take its
minimal value on the boundary |z| = R, since |P (0)| is smaller than its value
on that boundary, so |P (z)| must take its minimal value at some point z0 for
which |z0| < R. The polynomial P (z) can be rewritten

P (z) = b0 + bk(z − z0)k + · · ·+ bn(z − z0)n for some index k

where bk 6= 0 and b0 = P (z0) 6= 0; and if Q(z) = b0 + bk(z − z0)k then for some
positive constants M and r∣∣∣∣P (z)−Q(z)

(z − z0)k+1

∣∣∣∣ =
∣∣bk+1 + · · ·+ bn(z − z0)n−k−1

∣∣ ≤M whenever |z − z0| ≤ r

and consequently

|P (z)| ≤ |Q(z)|+M |z − z0|k+1 whenever |z − z0| ≤ r.

Now if t is real and t > 0, and if ζ is any k-th root of −b0/bk, then

|Q(z0 + tζ)| =
∣∣b0 + bk(tζ)k

∣∣ = |b0|
∣∣∣∣1 +

bk
b0

(tζ)k
∣∣∣∣ = |b0|(1− tk);

hence if t is sufficiently small

|P (z0 + tζ)| ≤ |Q(z0 + tζ)|+M |tζ|k+1

≤ |b0|(1− tk) +M |ζ|k+1tk+1 = |b0| − |b0|tk(1−M ′t).
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where M ′ = M |ζ|k+1/|b0| > 0. If t is sufficiently small that (1 − M ′t) > 0
then |P (z0 + tζ)| < |b0| = |P (z0)|, which is a contradiction since |P (z0)| is the
minimal value of |P (z)|; and that contradiction suffices to conclude the proof.
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PROBLEMS, GROUP I:
(Note: In these problems the topology on R is the usual metric topology unless
explicitly stated otherwise.)

(1) Is the mapping f : Q −→ Q, defined by f(x) = 0 if x2 < 2 and f(x) = 1 if
x2 ≥ 2, a continuous mapping, where the rationals have the induced topology
as a subset of R? Why?

(2) Show that if f : S −→ R is a continuous real-valued function on a com-
pact topological space S then either there is a point a ∈ S for which f(a) = 0
or there is a positive number δ > 0 such that |f(x)| ≥ δ for all x ∈ S.

(3) What are the continuous mappings f : R −→ S between two topological
spaces R and S in the four cases in which each space has either the discrete or
indiscrete topology. (One case is that in which both have the discrete topology,
and so on.)

(4) (i) If f : R −→ S is a continuous surjective mapping between two topo-
logical spaces and E ⊂ R is a dense subset of R show that f(E) is a dense
subset of S.
(ii) If f, g : R −→ S are two continuous mappings between two topological
spaces where S is Hausdorff, and if g(a) = f(a) for all a ∈ E where E is a dense
subset of R, show that actually g(x) = f(x) for all x ∈ R.

(5) Show that if f, g : X −→ Y are continuous mappings between two topolog-
ical spaces where Y is Hausdorff then { x ∈ X | f(x) = g(x) } is closed. Is that
necessarily the case if Y is not Hausdorff?

PROBLEMS, GROUP II:

(6) Show that if f : [0, 1] −→ [0, 1] is a continuous surjective mapping there
is at least one point a ∈ [0, 1] for which f(a) = a.

(7) If E ⊂ R is a closed subset show that there is a continuous real-valued
function on R such that f(x) = 0 if and only if x ∈ E.

(8) Show that if f : R −→ S is a mapping between two topological spaces
and A ⊂ R it is not true that the restriction f |A : A −→ S of the mapping
f to A is continuous in the induced topology on A if and only if the mapping
f : R −→ S is continuous at each point a ∈ A. What is true (and relevant)?

(9) Show that if f : R −→ R is a mapping that is continuous at the point
0 ∈ R and satisfies f(x + y) = f(x) + f(y) for all x, y ∈ R then there is a real
constant c such that f(x) = cx for all x ∈ R.
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(10) (i) Show that f : R −→ S is a continuous mapping between two topological
spaces if and only if f

(
clo(E)

)
⊂ clo

(
f(E)

)
for all subsets E ⊂ R.

(ii) Show that f : R −→ S is a continuous mapping between two topological
spaces if and only if f−1

(
clo(E)

)
⊃ clo

(
f−1(E)

)
for all subsets E ⊂ S.

(iii) Show that f : R −→ S is a continuous and closed mapping between two
topological spaces if and only if f

(
clo(E)

)
= clo

(
f(E)

)
for all subsets E ⊂ R,

where a mapping f is said to be closed if the image of any closed set is a closed
set.

(11) Show that if a subset A ⊂ R has the property that any continuous real-
valued function f : A −→ R is bounded then A is a compact set.

(12) Show that there is no continuous mapping f : [0, 1] −→ [0, 1] such that
for each point x ∈ [0, 1] the inverse image f−1(x) is either the empty set or con-
tains exactly two points of [0, 1]. Show however that there are such mappings
if they are not required to be continuous.

(13) Show that if f : [0, 1] −→ R is a monotonically increasing function for
which f([0, 1]) = [a, b] for some interval [a, b] ⊂ R then f is a continuous func-
tion in [0, 1].
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3.2 Differentiable Mappings

A mapping f : U −→ Rn from an open subset U ⊂ Rm into Rn is said to be
differentiable at a point a ∈ U if there is a linear mapping A : Rm −→ Rn,
described by an n ×m matrix A, such that for all h in an open neighborhood
of the origin in Rm

(3.25) f(a + h) = f(a) +Ah + ε(h) where lim
h→0

||ε(h)||
||h||

= 0;

here ‖ ‖ is the `∞ norm or any equivalent norm on Rm and Rn. Note that
in the quotient ||ε(h)||/||h|| the vectors and hence the norms involved are from
two different vector spaces. It is easy to see that equivalent norms on the vector
spaces Rm and Rn yield the same condition of differentiability. Differentiability
can be viewed as asserting that the change in the value of the mapping f ef-
fected by a small change in the variable is approximately linear aside from the
error ε(∆x); to emphasize that interpretation the definition (3.25) is sometimes
written

(3.26) ∆f(x) = f(x + ∆x)− f(x) = A∆x + ε(∆x),

where ∆f(x) indicates a change in the value of f(x) resulting from a change ∆x
in the variable x and the error function ε(∆x) satisfies

(3.27) lim
∆x→0

‖ε(∆x)‖
‖∆x‖

= 0.

Theorem 3.26 If a mapping f : Rm −→ Rn is differentiable at a point a ∈ Rm
then it is continuous at that point.

Proof: If (3.25) holds and ‖A‖o is the operator norm of the linear transforma-
tion A then for any ε > 0 it follows from the triangle inequality that

||f(a + h)− f(a)‖ = ‖Ah + ε(h)‖ ≤ ‖Ah‖+ ‖ε(h)‖ ≤ ‖A‖o‖h‖+ ‖ε(h)‖ < ε

whenever ‖h‖ is sufficiently small, which suffices for the proof.

The simplest case is that of mappings f : R1 −→ R1, functions of a real
variable; in that case the norm is just the absolute value of a real number and
it is possible to divide equation (3.25) by the real number h so long as h 6= 0, so

|ε(h)|
|h|

=

∣∣∣∣f(a+ h)− f(a)

h
−A

∣∣∣∣ for h 6= 0;

consequently the function f(x) is differentiable at the point a precisely when

(3.28) lim
h→0
h6=0

f(a+ h)− f(a)

h
= A for some A ∈ R.
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Since the limit is uniquely defined, it follows that the constant A is uniquely
determined; it is called the derivative of the function f at the point a and is
denoted by f ′(a). The case m = 3 and n = 2, that of a mapping f : R3 → R2,
illustrates the general form of the criterion (3.25) for differentiability, which in
this case takes the form

(3.29)

(
f1(a + h)
f2(a + h)

)
=

(
f1(a)
f2(a)

)
+

(
a11 a12 a13

a21 a22 a23

)h1

h2

h3

+

(
ε1(h)
ε2(h)

)
.

Some simple mappings are easily seen to be differentiable. For example a con-
stant mapping f : Rm −→ Rn is differentiable at any point a ∈ Rm since
f(a + h) = f(a), which is (3.25) for A = 0 and ε(h) = 0. A linear trans-
formation f(x) = Ax for a matrix A ∈ Rn×m is differentiable at any point
a ∈ Rm since f(a + h) = A(a + h) = f(a) + Ah, which is (3.25) for the
matrix A with ε(h) = 0. If f(x) = cxn for some natural number n then
f(a + h) − f(a) = c(a + h)n − can = cnan−1h + h2P (h) for some polynomial
P (h) in the variable h, and consequently f(x) is differentiable at any point a ∈ R
and its derivative is f ′(a) = cnan−1.

Theorem 3.27 A mapping f : Rm −→ Rn is differentiable at a point a if and
only if each of the coordinate functions fi of the mapping f is differentiable at
that point.

Proof: If f is a differentiable mapping it follows from (3.25) that each coordinate
function fi satisfies

(3.30) fi(a + h) = fi(a) +

m∑
j=1

aijhj + εi(h) where limh→0
|εi(h)|
‖h‖ = 0,

since |εi(h)|
‖h‖∞ ≤

‖ε(h)‖∞
‖h‖∞ ; and this is just the condition that each of the coordinate

functions fi of the mapping f is differentiable at the point a. Conversely if each
of the coordinate mappings fi is differentiable at the point a then (3.30) holds
for 1 ≤ i ≤ n. The collection of these n equations taken together is the equation

(3.25) in which ε(h) = {εi(h)}; and since ‖ε(h)‖∞
‖h‖∞ = max1≤i≤n

|εi(h)|
‖h‖∞ it follows

that limh→0
‖ε(h)‖∞
‖h‖∞ = 0, so the mapping f is differentiable. That concludes the

proof.

For the special case of a vector h = {0, . . . , 0, hk, 0, . . . , 0} having all com-
ponents zero except for the k-th component hk equation (3.30) takes the form

fi(a1, . . . , ak + hk, . . . , am) = fi(a1, . . . , ak, . . . , am) + aikhk + εi(hk)

where limhk→0
|εi(hk)|
|hk| = 0; that is just the condition that fi(x), viewed as a

function of the variable xk alone for fixed values xj = aj for the remaining
variables for j 6= k, is a differentiable function of the variable xk and that its
derivative at the point xk = ak is the real number aik. The constant aik is
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called the partial derivative of the function fi with respect to the variable
xk at the point a, and is denoted by aik = ∂kfi(a). It follows that the entries
in the matrix A = {aik} are the uniquely determined partial derivatives of the
coordinate functions of the mapping, so the matrix A is uniquely determined;
it is called the derivative of the mapping f at the point a and is denoted by
f ′(a). The derivative thus is an n×m matrix with the entries

(3.31) f ′(a) =
{
aik = ∂kfi(a)

∣∣∣ 1 ≤ k ≤ m, 1 ≤ i ≤ n
}
.

It is evident from (3.25) that a sum f1 + f2 of two differentiable mappings f1, f2
is also differentiable and that (f1 + f2)′(a) = f ′1(a) + f ′2(a); and it is also evident
from (3.25) that if f : Rl −→ Rm is differentiable and T : Rm −→ Rn is a
linear transformation then T f : Rl −→ Rn is differentiable and (T f)′(a) =
T f ′(a). In particular for the special case of functions f : Rm −→ R1 any
linear combination c1f1(x) + c2f2(x) of differentiable functions is differentiable
and (c1f1 + c2f2)′(a) = c1f

′
1(a) + c2f

′
2(a), so in that sense differentiation is

a linear operator. There are various alternative notations for derivatives and
partial derivatives of functions of several variables that are in common use. For

instance Df(a) is often used in place of f ′(a), and Dkf(a) or
∂f

∂xk
(a) in place of

∂kf(a), when f(x) is a real-valued function of the variable x ∈ Rn; and when
the mapping f : Rm −→ Rn is viewed as giving the coordinates yi of a point
y ∈ Rn as functions yi = fi(x) of the coordinates xj of points x ∈ Rm the

notation
∂yi
∂xj

is quite commonly used in place of ∂jfi.

One of many useful properties of the derivative is its role in detemining local
maxima or minima of functions. A real-valued function f : U −→ R1 defined in
an open subset U ⊂ Rm has a local minimum at a point a ∈ U if there is an
open neighborhood Ua ⊂ U of the point a in U such that f(x) ≥ f(a) for all
points x ∈ Ua; the notion of a local maximum is defined correspondingly of
course, and a local extremum is either a local minimum or a local maximum.
A point a ∈ U is called a critical point of the function f if f ′(a) = 0.

Theorem 3.28 If f : U −→ R1 is a function in an open subset U ⊂ Rm, and
if f has a local extremum at a point a ∈ U and is differentiable at that point,
then f ′(a) = 0 so a is a critical point of the function f .

Proof: First for the special case of a function of a single variable, if f(x) has
a local minimum at a point a then (f(a + h) − f(a))/h ≥ 0 for h > 0 so the
limit (3.28) for h ≥ 0 is non-negative; but (f(a+ h)− f(a))/h ≤ 0 for h < 0 so
the limit (3.28) for h ≤ 0 is non-positive. Since the limits are the same whether
h > 0 or h < 0 it follows that f ′(a) = 0. The corresponding argument gives
the same result at a local maximum. Next for the case of a function of several
variables, when all the variables except the j-th are held fixed the function f(x)
as a function of the single variable xj has an extremum at the point xj = aj so
by the result established in the special case it follows that ∂jf(a) = 0; and since
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that holds for each variable xj it follows that all the partial derivatives are 0 at
the point a so f ′(a) = 0, which suffices for the proof.

Of course a critical point of a function need not be a local maximum or min-
imum of the function; for instance the origin is a critical point for the function
f(x) = x3 on the real line, but it is neither a local maximum nor minimum of the
function. However if a function f : U −→ R is differentiable in an open subset
U ⊂ Rm then a search for local extrema normally begins by finding the critical
points of that function, in the subset U and examining each to see whether or
not it is a local maximum or minimum. Sometimes it is quite clear that a partic-
ular critical point is a local maximum or minimum, while at other times it may
take more careful examination; a simple general test that is sometimes useful
involves second derivatives, which will be discussed in the following Section 3.3,
and Sylvester’s Criterion, Theorem 4.19 which will be discussed in Section 4.2.
Another consequence of Theorem 3.28 is a rather theoretical result that is used
mostly for functions of a single variable.

Theorem 3.29 (Mean Value Theorem) If f and g are continuous func-
tions in a closed interval [a, b] and are differentiable in the open interval (a, b)
then

(3.32)
(
f(b)− f(a)

)
g′(c) =

(
g(b)− g(a)

)
f ′(c)

for some point c ∈ (a, b). In particular

(3.33)
(
f(b)− f(a)

)
= (b− a)f ′(c)

for some point c ∈ (a, b).

Proof: Introduce the function h(x) defined in the interval [a, b] by

h(x) =
(
f(b)− f(a)

)
g(x)−

(
g(b)− g(a)

)
f(x).

A direct calculation shows that h(a) = h(b) = f(b)g(a)− g(b)f(a). The conclu-
sion of the theorem is just the statement that h′(x) = 0 at a point x ∈ (a, b).
Since h is a continuous function on the compact set [a, b] it takes a maximum
value at some point x1 ∈ [a, b] and a minimum value at some point x2 ∈ [a, b].
If both points x1, x2 are end points of the interval then h(x) is constant, since
h(a) = h(b), and then h′(x) = 0 for all points x ∈ (a, b). If at least one of the
points x1, x2, say the point xi, is an interior point of (a, b) then the function
h(x) is differentiable at that point xi and h′(xi) = 0 by the preceding theorem,
which establishes (3.32). Since (3.33) is just the special case of (3.32) for which
g(x) = x that suffices for the proof.

It is perhaps worth considering the preceding theorem a bit more closely.
The hypotheses are that the function is continuous in the closed interval [a, b]
but is differentiable only in the open subinterval (a, b), so not necessarily at the
end points a, b; and the point c is contained in the open subinterval (a, b), so is
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not one of the end points. It is quite easy to remember equation (3.33), since
that equation is rather like the defining equation (3.25) for the derivative, and
is even more so if (3.33) is rewritten in the form

(3.34) f(a+ h) = f(a) + f ′(c)h for a point c between a and a+ h.

The theorem is in some senses basically about functions of a single variable, for
the statement really involves the behavior of a function in an interval [a, b] ⊂ R;
the direct extension of the theorem to functions of several variables in the sub-
sequent Theorem 3.36 and its corollary really amounts to applying the theorem
to the restriction of a function to intervals of line segments in the space of sev-
eral variables. The Mean Value Theorem is surprisingly important, but is often
ignored; it should be kept firmly in mind though as a possibly very useful tool
in proofs, as illustrated in the following corollaries.

Corollary 3.30 If f : (a, b) −→ R is a differentiable mapping in the interval
(a, b) ⊂ R and if f ′(x) = 0 at each point x ∈ (a, b) then f is constant in the
interval (a, b).

Proof: If a < x1 < x2 < b then it follows from the Mean Value Theorem
that there is a point x3 in the interval (x1, x2) for which

(
f(x2) − f(x1)

)
=

f ′(x3)(x2 − x1) = 0, showing that f(x1) = f(x2) and thereby concluding the
proof.

Corollary 3.31 If f : (a, b) −→ R is a differentiable mapping in the interval
(a, b) ⊂ R and if f ′(x) > 0 at each point x ∈ (a, b) then f is strictly monotoni-
cally increasing in the interval (a, b), while if f ′(x) < 0 at each point x ∈ (a, b)
then f is strictly monotonically decreasing in the interval (a, b) .

Proof: If f ′(x) > 0 then for any points a < x1 < x2 < b it follows from the
Mean Value Theorem that there is a point x3 in the interval x1 < x3 < x2 for
which

(
f(x2)−f(x1)

)
= f ′(x3)(x2−x1) > 0; and that is just the condition that

f is strictly monotonically increasing. The same formula when f ′(x) < 0 shows
that f is monotonically decreasing, and that suffices for the proof.

Corollary 3.32 (L’Hôpital’s Rule) If f and g are continuous functions in
an open neighborhood U of the origin 0 ∈ R, if they are differentiable in the com-
plement U ∼ {0}, if f(0) = g(0) = 0, if the limits limx→0 f

′(x) and limx→0 g
′(x)

exist and limx→0 g
′(x) 6= 0, then

(3.35) lim
x→0

f(x)

g(x)
= lim
x→0

f ′(x)

g′(x)
=

limx→0 f
′(x)

limx→0 g′(x)
.

Proof: For any sufficiently small δ > 0 the open interval (−δ, δ) will be con-
tained in the neighborhood U . The functions f and g then are continuous in
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(−δ, δ) and are differentiable there except possibly at the origin 0. An appli-
cation of the mean value theorem to the appropriate interval (−δ, 0) or (0, δ)
shows that if 0 < |x| < δ then

(3.36)
f(x)

g(x)
=
f(x)− f(0)

g(x)− g(0)
=
f ′(x0)

g′(x0)

for some x0 for which 0 < |x0| < |x| < δ. By hypothesis the limits F =
limx→0 f

′(x) and G = limx→0 g
′(x) exist, so the functions f ′(x) and g′(x) can

be extended by continuity to the origin 0; since G is nonzero and a quotient of
two continuous functions is continuous if the denominator is nonzero it follows
that

lim
x0→0

f ′(x0)

g′(x0)
=

limx0→0 f
′(x0)

limx0→0 g′(x0)
=
F

G
,

which denonstrates (3.35) and thereby concludes the proof.

If a mapping f : Rm −→ Rn is differentiable at a point a ∈ Rm then it
has partial derivatives ∂jfi(a) with respect to each variable xj at that point;
but it is not true that conversely if the coordinate functions of a mapping f
have partial derivatives at a point a with respect to each variable xj then f is a
differentiable mapping. For example the mapping f : R2 −→ R defined by

(3.37) f(x) =


x1x2

x2
1 + x2

2

if x 6= 0,

0 if x = 0

vanishes identically in the variable x2 if x1 = 0, so ∂2f(0, 0) = 0, and similarly
∂1f(0, 0) = 0. This function is not even continuous at the origin, since for
instance it takes the value 1

2 whenever x1 = x2 except at the origin where it
takes the value 0; hence it is not differentiable at the origin. However if the
partial derivatives of a mapping not only exist but also are continuous then the
mapping is differentiable, by another application of the mean value theorem.

Theorem 3.33 If the partial derivatives of a mapping f : Rm → Rn exist in
an open neighborhood of a point a ∈ Rm and are continuous at that point then
the mapping f is differentiable at a.

Proof: In view of Theorem 3.27 it is enough to prove this for the special case
that n = 1 so that f : Rm → R is just a real valued function; and for convenience
only the case m = 2 will be demonstrated in detail, since it is easier to follow
the proof in that simple case and all the essential ideas are present. Assume
that the partial derivatives ∂jf(x) exist at all points in an open ball Br(a) of
radius r centered at the point a, and consider a vector h = {hj} ∈ R2 for
which ‖h‖2 < r. The function f(x1, a2) as a function of the variable x1 alone
is differentiable in the variable x1 in the interval from a1 to a1 + h1, since that
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segment is contained in the ball Br(a), so the mean value theorem can be applied
to this function, showing that

f(a1 + h1, a2)− f(a1, a2) = h1 ∂1f(α1, a2)

for some value α1 between a1 and a1 + h1; and similarly

f(a1 + h1, a2 + h2)− f(a1 + h1, a2) = h2 ∂2f(a1 + h1, α2)

for some value α2 between a2 and a2 + h2. From these two results it follows
that

f(a + h)− f(a) = f(a1 + h1, a2 + h2)− f(a1, a2)

=
(
f(a1 + h1, a2 + h2)− f(a1 + h1, a2)

)
+
(
f(a1 + h1, a2)− f(a1, a2)

)
= h2 ∂2f(a1 + h1, α2) + h1 ∂1f(α1, a2)

hence that

(3.38) f(a + h)− f(a) = h2 ∂2f(a1, a2) + h1 ∂1f(a1, a2) + ε(h)

where

ε(h) = h2

(
∂2f(a1 + h1, α2)− ∂2f(a1, a2)

)
+ h1

(
∂1f(α1, a2)− ∂1f(a1, a2)

)
.

By the triangle inequality

|ε(h)|
‖h‖2

≤
∣∣∣∂2f(a1 + h1, α2)− ∂2f(a1, a2)

∣∣∣+
∣∣∣∂1f(α1, a2)− ∂1f(a1, a2)

∣∣∣
since |h1|

‖h‖2 ≤ 1 and |h2|
‖h‖2 ≤ 1; by assumption the partial derivatives are con-

tinuous at the point a, so for any given ε > 0 there is a radius r sufficiently
small that the points (a1 + h1, α2) and (α1, a2) are near enough to (a1, a2) that
ε(h)/‖h‖2 < ε, showing that

(3.39) lim
h→0

|ε(h)|
‖h‖2

= 0.

The combination of equations (3.38) and (3.39) shows that the function f(x) is
differentiable at the point a, which concludes the proof.

The differentiability of a function implies that its partial derivatives exist,
but does not imply that they are continuous, as will be demonstrated by ex-
amples later in the discussion; and the existence of the partial derivatives does
not imply differentiability unless it is also assumed that the partial derivatives
are continuous, as illustrated by the example (3.37). There can be some confu-
sion about this point, so care should be taken to distinguish carefully between
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the differentiability of a mapping, as defined in (3.25), and the existence of the
partial derivatives of the mapping. A mapping f : U −→ Rn in an open subset
U ⊂ Rm is said to be continuously differentiable or of class C1 in an open
subset U ⊂ Rm if the partial derivatives of its coordinate functions exist and
are continuous throughout the set U . If a mapping is continuously differentiable
then it is differentiable in the sense of (3.25); but if a mapping is differentiable
in the sense of (3.25) it is not necessarily continuously differentiable.

There is a useful standard notation dealing with differentiable functions of
several variables. Points in Rn are customarily viewed as column vectors; but
the derivative f ′(x) of a function is naturally presented as a row vector, so in
order to treat a derivative f ′(x) as a standard vector in Rn it is necessary to
consider instead its transpose tf ′(x). To clarify the situation that transpose
is often denoted by ∇f(x), or alternatively by gradf(x), and is called the
gradient of the function f(x); thus by definition

(3.40) ∇f(x) = gradf(x) =


∂1f(x)
∂2f(x)
· · ·

∂nf(x)

 = tf ′(x).

The gradient of a function in Rn thus is a vector of the same form as any
other vector in Rn, so is possible to consider for example the vector x +∇f(x)
or a linear transform A ∇f(x) described by a matrix A ∈ Rn×n. Although
this is really a rather trivial point the gradient notation is frequently used and
frequently useful.

Another approach to the derivative f ′(x) of a function of several variables
is to avoid the question whether it is a row or column vector by writing it as an
explicit linear combination of basis vectors in the vector space Rm. If f(x) = xj
then

f ′(x) =
(
0, · · · , 0, 1, 0, · · · , 0

)
,

where the entry 1 is in column j; thus f ′(x) is independent of x and actually
is one of the standard basis vectors for the vector space Rm. It is tempting to
avoid introducing a separate notation and to denote this function just by xj ;
the derivative of this function then normally would be denoted by x′j , which is
somewhat confusing since x′j commonly is used to denote another set of variables
in Rn. It is clearer and rather more customary to denote the derivative of the
function xj by dxj , so that

(3.41) dxj =
(
0, · · · , 0, 1, 0, · · · , 0

)
,

where the entry in column j is 1 and all other entries are 0. With this nota-
tion the vector f ′(x) for an arbitrary differentiable function f is denoted cor-
respondingly by df(x) and is written in terms of the basis (3.41) as the linear
combination

(3.42) df(x) =

m∑
j=1

∂jf(x) dxj .



3.2. DIFFERENTIABLE MAPPINGS 137

This expression for the derivative f ′(x) is called a differential form, or to
be more explicit, a differential form of degree 1. More generally a mapping
f : U −→ Rm when viewed as associating to a point x ∈ Rm a vector also of
dimension m is called a vector field on the subset U ⊂ Rm; this is familiar from
physics, for the electric, magnetic and gravitational fields. A vector field f in an
open subset U ⊂ Rm with the coordinate functions fj(x) also can be written as
a linear combination of the standard basis vectors in Rm and consequently can
be viewed as the differential form of degree 1

(3.43) ωf (x) =

m∑
j=1

fj(x) dxj .

There is an extensive use of this and higher order differential forms that will be
discussed in Chapter 7.

The differentiation of functions that arise through the composition of several
other functions can be reduced to the differentiation of the various factors in
the composition; but the calculation can be somewhat complicated. The basic
situation is that of the composition of a mapping g : U −→ Rm defined in an
open neighborhood U of a point a ∈ Rl and a mapping f : V −→ Rn defined
in an open neighborhood V of the point b = g(a) ∈ Rm, where g(U) ⊂ V ; the
composition φ = f ◦ g : U −→ Rn is the mapping defined by φ(x) = f

(
g(x)

)
for any x ∈ U , as in the following diagram.

(3.44)

Rl Rm Rn⋃ ⋃ ⋃
U

g−−−−→ V
f−−−−→ W φ = f ◦ g

ι

x ι

x ι

x
a

g−−−−→ b = g(a)
f−−−−→ f(b) = φ(a)

where the mappings ι are simply inclusions of the indicated points in the corre-
sponding subsets.

Theorem 3.34 (Chain Rule) With the notation as in the preceding diagram,
if the mapping g is differentiable at the point a and the mapping f is differen-
tiable at the point b = g(a) then the composite mapping φ = f◦g is differentiable
at the point a and its derivative is φ′(a) = f ′

(
g(a)

)
· g′(a).

Proof: Since the mapping f is differentiable at the point b

(3.45) f(b + h) = f(b) + f ′(b)h + εf (h) where lim
h→0

‖εf (h)‖∞
‖h‖∞

= 0,

and since the mapping g is differentiable at the point a

(3.46) g(a + k) = g(a)︸︷︷︸
b

+ g′(a)k + εg(k)︸ ︷︷ ︸
h

where lim
k→0

‖εg(k)‖∞
‖k‖∞

= 0.
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Substituting (3.46) into (3.45) where b = g(a) and h = g′(a)k + εg(k) leads to
the result that

φ(a + k) = f
(
g(a + k)

)
= f
(
b + h

)
= f(b) + f ′(b)h + εf (h)

= φ(a) + f ′(b)
(
g′(a)k + εg(k)

)
+ εf (h)

hence that

(3.47) φ(a + k) = φ(a) + f ′(b)g′(a)k + ε(k)

where ε(k) = f ′(b)εg(k) + εf (h). From the triangle inequality it follows that
for k 6= 0, if h 6= 0

‖ε(k)‖∞
‖k‖∞

≤ ‖f
′(b)εg(k)‖∞
‖k‖∞

+
‖εf (h)‖∞
‖h‖∞

· ‖g
′(a)k + εg(k)‖∞
‖k‖∞

≤ ‖f
′(b)‖o‖εg(k)‖∞
‖k‖∞

+
‖εf (h)‖∞
‖h‖∞

·

(
‖ g′(a)‖o‖k‖∞
‖k‖∞

+
‖εg(k)‖∞
‖k‖∞

)
in terms of the operator norms of the matrices, while if h = 0

‖ε(k)‖∞
‖k‖∞

=
‖f ′(b)εg(k)‖∞
‖k‖∞

≤ ‖f
′(b)‖o‖εg(k)‖∞
‖k‖∞

,

also in terms of the operator norms of the matrices. Since limk→0
‖εg(k)‖∞
‖k‖∞ = 0

and limh→0
‖εf (h)‖∞
‖h‖∞ = 0 while limk→0 h = 0 it follows from the preceding

equation that limk→0
‖ε(k)‖∞
‖k‖∞ = 0, and it then follows from (3.47) that φ = f ◦g

is differentiable at the point a and that φ′(a) = f ′
(
g(a)

)
·g′(a), which concludes

the proof.

In particular if l = m = n = 1, so all the vector spaces involved are one-
dimensional, then f and g are real-valued functions as is their composition
h(x) = f

(
g(x)

)
; and the conclusion of the preceding theorem takes the simpler

form

(3.48) h′(x) = f ′
(
g(x)

)
· g′(x) where h(x) = f

(
g(x)

)
.

For a slightly more complicated example, since the function g(y1, y2) = y1y2

is differentiable at any point (y1, y2) ∈ R and g′(y1, y2) = (y2 y1) it follows
that for any differentiable mapping f = {f1, f2} : U −→ R2 in an open subset
U ⊂ Rm the composition φ = g ◦ f : U −→ R is a differentiable mapping and

φ′(x) = g′
(
f(x)

)
f ′(x) =

(
f2(x) f1(x)

)
·
(
f ′1(x)
f ′2(x)

)
= f2(x)f ′1(x) + f1(x)f ′2(x);

since φ(x) = f1(x)f2(x) the preceding amounts to a formula for the derivative
of the product of two functions of several variables, which in terms of partial
derivatives takes the form

(3.49) ∂k
(
f1(x)f2(x)

)
= f2(x)∂kf1(x) + f1(x)∂kf2(x).
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The corresponding argument shows that the quotient ψ(x) = f1(x)/f2(x) =
f1(x)f2(x)−1 of two differentiable functions is differentiable at any point x at
which f2(x) 6= 0 and that

(3.50) ∂k

(
f1(x)

f2(x)

)
=
f2(x)∂kf1(x)− f1(x)∂kf2(x)

f2(x)2
.

Yet another application of the chain rule establishes the following observation,
which will be considered further in Chapter 5.

Lemma 3.35 If f : U −→ V is a bijective differentiable mapping between two
open subsets U, V ⊂ Rm and if the inverse mapping f−1 = g : V −→ U is
also differentiable then f ′(x) is an invertible matrix at each point x ∈ U and
g′
(
f(x)

)
= f ′(x)−1 at each point x ∈ U .

Proof: The composition g ◦ f : U −→ U is the identity mapping (g ◦ f)(x) = x
so (g ◦ f)′(x) = I where I is the m ×m identity matrix; and by the chain rule
g′
(
f(x)

)
· f ′(x) = (g ◦ f)′(x) = I so the matrix g′

(
f(x)

)
is the inverse of the

matrix f ′(x) at each point x ∈ U , and that suffices for the proof.

An alternative notation for the chain rule is suggestive and sometimes quite
useful. When mappings g : Rl −→ Rm and f : Rm −→ Rn are described in
terms of the coordinates t = {t1, . . . , tl} ∈ Rl, x = {x1, . . . , xm} ∈ Rm and
y = {y1, . . . , yn} ∈ Rn, the coordinate functions of the mappings f , g and
φ = f ◦ g have the form yi = fi(x) = φi(t) and xj = gj(t). The partial
derivatives are sometimes denoted by

(φ′)ik = ∂kφi(x) =
∂yi
∂tk

, (f ′)ij = ∂jfi(x) =
∂yi
∂xj

, (g′)jk = ∂kgj(t) =
∂xj
∂tk

.

By the preceding theorem the derivative of the composite function φ = f ◦ g is
the matrix product φ′ = f ′g′, which in terms of the entries of these matrices is
(φ′)ik =

∑m
j=1(f ′)ij(g

′)jk or equivalently ∂kφi =
∑m
j=1 ∂jfi · ∂kgj ; and in the

alternative notation this takes the form

(3.51)
∂yi
∂tk

=

m∑
j=1

∂yi
∂xj
· ∂xj
∂tk

.

This is the extension to mappings in several variables of the traditional formula-
tion of the chain rule for functions of a single variable as the identity dy

dt = dy
dx ·

dx
dt ;

this form of the chain rule is in some ways easier to remember, and with some
caution, easier to use, than the version of the chain rule in the preceding the-
orem. It is customary in this notation though to omit any explicit mention of
the points at which the derivatives are taken; so some care must be taken to
remember that the derivative ∂yi

∂xj
is evaluated at the point x while the deriva-

tives ∂yi
∂tk

and
∂xj
∂tk

are evaluated at the point t. This lack of clarity means that
some caution must be taken when this notation is used. In particular when
considering an expression such as

∂

∂x1
f
(
x1, x2, x3

)
where x3 = g(x1, x2);
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it is not clear whether this means the derivative of the function f with respect to
its first variable or the derivative of the composite function of the two variables
x1, x2 with respect to the variable x1; the notation ∂1f(x1, x2, x3) where x3 =
g(x1, x2) is less ambiguous.

With practice the chain rule for differentiation can be applied without going
through the step of writing a function as an explicit composition of mappings.
For instance if f(y1, y2, y3) is a differentiable function of three variables and
gi(x1, x2) for 1 ≤ i ≤ 3 are three differentiable functions of two variables the
composition

h(x1, x2) = f
(
g1(x1, x2), g2(x1, x2), g3(x1, x2)

)
is a well defined differentiable function of two variables. This function is the
composition h(x) = f

(
G(x)

)
of the mapping f : R3 −→ R1 and the mapping

G : R2 −→ R3 for which

G(x) =

g1(x)
g2(x)
g3(x)

 where x =

(
x1

x2

)
;

so by the chain rule

h′(x) = f ′
(
G(x)

)
·G′(x)

=

(
∂1f
(
G(x)

)
∂2f
(
G(x)

)
∂3f
(
G(x)

))

∂1g1(x) ∂2g1(x)

∂1g2(x) ∂2g2(x)

∂1g3(x) ∂2g3(x)


=

(∑3
i=1 ∂if

(
G(x)

)
∂1gi(x)

∑3
i=1 ∂if

(
G(x)

)
∂2gi(x)

)
.

Thus for instance

∂1h(x) = ∂1f
(
g1(x), g2(x), g3(x)

)
∂1g1(x)+

+ ∂2f
(
g1(x), g2(x), g3(x))

)
∂1g2(x)+

+ ∂3f
(
g1(x), g2(x), g3(x)

)
∂1g3(x);

this formula can be interpreted as asserting that the partial derivative with re-
spect to the first variable of the composite function h(x) = f

(
g1(x), g2(x), g3(x)

)
can be calculated by taking the partial derivative of the function f with respect
to its i-th variable, evaluated at the point G(x), multiplied by the partial deriva-
tive with respect to the variable x1 of the function gi(x) that is substituted for
the i-th variable, and adding the results for i = 1, 2, 3. With that in mind, it
is possible to write the preceding formula down directly, without going through
the explicit calculation of the derivatives of the individual mappings involved.
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As another example, if φ(x1, x2) = f
(
x1, x2, g(x1, x2)

)
for a differentiable func-

tion f(x1, x2, x3) of three variables and a differentiable function g(x1, x2) of two
variables, the partial derivatives of the composite function φ(x1, x2) are

∂1φ(x) = ∂1f
(
x1, x2, g(x1, x2)

)
+ ∂3f

(
x1, x2, g(x1, x2)

)
∂1g(x),

∂2φ(x) = ∂2f
(
x1, x2, g(x1, x2)

)
+ ∂3f

(
x1, x2, g(x1, x2)

)
∂2g(x).

If there is any question about the application of this technique of calculation, it
can always be checked by writing the composition as an explicit combination of
mappings and applying the chain rule as stated in the preceding theorem. For
instance the function φ(x1, x2) = f

(
x1, x2, g(x1, x2)

)
is the composition φ(x) =

f
(
G(x)

)
where G : R2 −→ R3 is the mapping G(x1, x2) =

(
x1, x2, g(x1, x2)

)
,

and the preceding formula can be derived from a straightforward application of
the chain rule formula to this composition.

The chain rule also is useful in deriving information about the derivatives of
functions that are defined only implicitly. For example if a function f(x1, x2)
satisfies the equation

f(x1, x2)5 + x1f(x1, x2) + f(x1, x2) = 2x1 + 3x2

and the initial condition that f(0, 0) = 0 then the values of that function are
determined implicitly but not explicitly by the preceding equation. This equa-
tion is the condition that the composition of the mapping F : R2 −→ R3 defined
by F (x1, x2) =

(
x1, x2, f(x1, x2)

)
and the mapping G : R3 −→ R defined by

G(x1, x2, y) = y5 +x1y+ y− 2x1− 3x2 is the trivial mapping G ◦F (x1, x2) = 0,
so that (G ◦ F )′(0, 0) = 0; and if the function f is differentiable it follows from
the chain rule that

∂1(G◦F ) = 5f(x1, x2)4∂1f(x1, x2)+x1∂1f(x1, x2)+f(x1, x2)+∂1f(x1, x2)−2,

so since ∂1(G ◦ F ) = 0 and f(0, 0) = 0 the preceding equation reduces to
∂1f(0, 0) = 2. A similar calculation yields the value of ∂2f(0, 0). Thus although
an implicit description of a function can be quite difficult to solve explicitly, it
is often quite easy to obtain a good deal of information about the derivative
of that function by an application of the chain rule; one might just say that
differentiation linearizes functions.

For another application of the chain rule, a straight line through a point
a ∈ Rm in the direction of a unit vector u can be described parametrically as
the set of points x = G(t) for t ∈ R, where G : R −→ Rm is the mapping
G(t) = a+ tu. If f : U −→ R is a differentiable function in an open set U ⊂ Rm
containing the point a the restriction of f to this straight line can be viewed as
a function (f ◦ G)(t) = f(a + tu) of the parameter t ∈ R near the origin. The
derivative at t = 0 of this restriction is called the directional derivative of the
function f at the point a in the direction of the unit vector u, and is denoted by
∂uf(a). It follows from the chain rule that ∂uf(a) = f ′(a)G′(0); the coordinate
functions of the mapping G(t) are gj(t) = aj +ujt so the derivative G′(0) is just
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the m× 1 matrix or vector G′(0) = {uj}, hence

(3.52) ∂uf(a) =

m∑
j=1

∂jf(a)uj .

The preceding equation describes the directional derivative as the sum of the
products of the entries in the matrix f ′(x) and the vector u; and when ex-
pressed in terms of the transposed matrix tf ′(x) = ∇f(x) that equation can be
interpreted in vector terms as the dot product of two vectors, so as

(3.53) ∂uf(a) =
(
∇f(a)

)
· u.

This is one way in which the gradient notation is useful; it expresses the direc-
tional derivative in terms of operations on ordinary vectors in the vector space
Rm. When the dot product is described in terms of the angle between two
vectors as in (2.11) the preceding equation can be written alternatively as

(3.54) ∂uf(a) = ‖∇f(a)‖2 cos θ (∇f(a),u)

where θ (∇f(a),u) is the angle between the vectors∇f(a) and u, since ‖u‖2 = 1.
Thus the largest value of the directional derivative of the function f is in the
direction of the gradient vector ∇f(a), and the actual value of the directional
derivative in that direction is ‖∇f(a)‖2; and the smallest value of the directional
derivative is in the opposite direction, in which the actual value of the directional
derivative is − ‖∇f(a)‖2. The directional derivative vanishes in the directions
perpendicular to the gradient vector ∇f(a).

Theorem 3.36 (Mean Value Theorem) If f : U −→ R is a differentiable
function in an open set U ⊂ Rm and if two points a,b and the line λ joining
them lie in U then

(3.55) f(b)− f(a) = ∇f(c) · (b− a)

for some point c between a and b on the line λ joining these two points.

Proof: The function g(t) = f
(
a + t(b − a)

)
is a differentiable function of the

variable t in an open neighborhood of the interval [0, 1], and by the mean value
theorem for functions of one variable g(1)− g(0) = g′(τ) for a point τ ∈ (0, 1).
Since g(1) = f(b) and g(0) = f(a), while by the chain rule

g′(t) =

m∑
j=1

∂jf
(
a + t(b− a)

)
(bj − aj),

it follows that

f(b)− f(a) = g(1)− g(0) = g′(τ) =

m∑
j=1

∂jf
(
a + τ(b− a)

)
(bj − aj)

=

m∑
j=1

∂jf(c)(bj − aj) = ∇f(c) · (b− a)
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where c = a + τ(a− b), and that suffices for the proof.

Although the preceding theorem can be applied to each coordinate function
of the mapping f : U −→ Rn for n > 1, the points at which the derivatives of
the different coordinate functions are evaluated may be different. However for
some purposes an estimate is useful enough and that problem can be avoided.

Corollary 3.37 (Mean Value Inequality) If f : U −→ Rn is a differentiable
mapping in an open set U ⊂ Rm and if two points a,b and the line λ joining
them lie in U then

(3.56) ‖f(b)− f(a)‖2 ≤ ‖f ′(c)‖o‖b− a‖2

for some point c between a and b on the line λ, where ‖‖o is the operator norm.

Proof: For any vector u ∈ Rn for which ‖u‖2 = 1 the dot product fu(x) =
u · f(x) is a real-valued function to which the Mean Value Theorem can be
applied, so

fu(b)− fu(a) = ∇fu(c) · (b− a) =

m∑
j=1

∂j(u · f)(c) (bj − aj)

=

n∑
i=1

m∑
j=1

ui∂jfi(c)(bj − aj) =

n∑
i=1

m∑
j=1

ui · f ′(c)ij(bj − aj)

= u ·
(
f ′(c)(b− a)

)
for some point c between a and b on the line λ joining these two points. If the
unit vector u is chosen to lie in the direction of the vector f(b)− f(a) then

‖f(b)− f(a)‖2 = |fu(b)− fu(a)| =
∣∣∣u · (f ′(c)(b− a)

)∣∣∣
≤ ‖f ′(c)(b− a)‖2 ≤ ‖f ′(c)‖o‖(b− a)‖2

by the Cauchy-Schwarz inequality, which suffices for the proof.

Of course there is an analogous result in terms of any norms equivalent to
the `2 norm, for the appropriate operator norm and a suitable constant factor.
The constant factor is irrelevant for many applications, such as the following.

Theorem 3.38 If f : ∆ −→ Rn is a differentiable mapping in a cell ∆ ⊂
Rm such that ‖f ′(x)‖o ≤ M for all x ∈ ∆ then the mapping f is uniformly
continuous in ∆.

Proof: If ‖f ′(x)‖o ≤ M for all x ∈ ∆ then for any two points x,y ∈ ∆ the
line joining them is contained in ∆ so it follows from the Mean Value Inequality
that

‖f(x)− f(y)‖∞ ≤M ′‖x− y‖∞,
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for some constant M ′, hence the mapping f is uniformly continuous in ∆ and
thereby concludes the proof.

It was noted in the preceding Section that while the limit of a sequence
of continuous functions is not necessarily continuous, that is the case if the
sequence converges uniformly; there is a corresponding result for sequences of
differentiable functions.

Theorem 3.39 If {fn} is a sequence of differentiable functions in the open
interval (a, b), if the derivatives f ′n converge uniformly in (a, b) to a function
g, and if the functions fn converge at least at one point c ∈ (a, b), then the
sequence of functions fn is uniformly convergent to a differentiable function f
in (a, b) and f ′(x) = g(x) at all points x ∈ (a, b).

Proof: For any points x, y ∈ (a, b) it follows from the Mean Value Theorem
that (

fm(y)− fn(y)
)
−
(
fm(x)− fn(x)

)
= (y − x)

(
f ′m(t)− f ′n(t)

)
for some point t ∈ (a, b) between x and y, hence that

(3.57)
∣∣∣(fm(y)− fm(x)

)
−
(
fn(y)− fn(x)

)∣∣∣ ≤ |y − x|∣∣∣f ′m(t)− f ′n(t)
∣∣∣

where |y − x| ≤ |b − a|. The derivatives f ′n converge uniformly in (a, b), so for

any ε > 0 there is a number N such that
∣∣∣f ′m(t) − f ′n(t)

∣∣∣ < ε for all t ∈ (a, b)

whenever m,n > N , hence such that

(3.58)
∣∣∣(fm(y)− fm(x)

)
−
(
fn(y)− fn(x)

)∣∣∣ ≤ |b− a|ε whenever m,n > N.

Thus the sequence of functions fn(y) − fn(x) is uniformly Cauchy in (a, b) so
it converges uniformly in (a, b); and since the sequence fn(c) converges then for
y = c it follows that the sequence of functions fn(x) converges uniformly in
(a, b) to a function f(x), which by Theorem 3.20 is at least continuous in (a, b).
Now for any fixed point x ∈ (a, b) let δ be sufficiently small that Nx(δ) ⊂ (a, b);
it then follows from (3.57) for x + h in place of y that for any ε > 0 there is a
number N such that∣∣∣∣fm(x+ h)− fm(x)

h
− fn(x+ h)− fn(x)

h

∣∣∣∣ ≤ |f ′m(t)− f ′n(t)| < ε

if −δ < h < δ , h 6= 0 and m,n > N . Consequently the sequence of functions
fn(x+h)−fn(x)

h of the variable h ∈ (−δ, δ) ∼ {0} is uniformly Cauchy and

lim
n→∞

fn(x+ h)− fn(x)

h
=
f(x+ h)− f(x)

h

uniformly in h ∈ (−δ, δ) ∼ {0}. It then follows from Theorem 3.21 that

lim
n→∞

lim
h→0

fn(x+ h)− fn(x)

h
= lim
h→0

lim
n→∞

fn(x+ h)− fn(x)

h
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hence that

g(x) = lim
n→∞

f ′n(x) = lim
h→0

f(x+ h)− f(x)

h
= f ′(x),

which concludes the proof.
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PROBLEMS, GROUP I:

(1) Find the derivatives of the following mappings:
(i) f : R4 −→ R1 where f(x) =

(
x2

1 + x3
2 + x3x4

)
(ii) f : R3 −→ R3 where f(x) =

x1 + x2

x3
2 + x2

3

x1x3


(2) Consider the function f : R2 −→ R defined by

f(x) =
2x1 − x2

1 + x2
1 + x2

2

.

Find the points in R2 where f has a local maximum or minimum and the values
of f at those points.

(3) If f1, f2 are differentiable functions defined in an open neighborhood of
the point (2, 1) in R2 such that f1(2, 1) = 4, that f2(2, 1) = 3 and that

f2
1 + f2

2 + 4 = 29 and
f2

1

x2
1

+
f2

2

x2
2

+ 4 = 17,

find ∂1f2(2, 1) and ∂2f1(2, 1).

(4) If g is a C1 real-valued function in R2 and

f(x1, x2, x3) = g
(
x1, g(x1, g(x2, x3))

)
,

find the derivative of the function f in terms of the partial derivatives of the
function g.

(5) Find the directional derivative at the point (1,−2) and in the direction
( 3

5 ,
4
5 ) for the function f(x) = (x1 + 2x2 − 4)/(7x1 + 3x2) .

PROBLEMS, GROUP II:

(6) If f : R → R is a differentiable function such that |f ′(x)| < (x2 + 1)−1

prove that f(x) is bounded.

(7) (i) Show that the function f(x) =
√
|x1x2| (for the positive square root) is

not differentiable at the origin.
(ii) Show that if f(x) is a real-valued function defined in an open neighborhood
of the origin in R2 and if |f(x)| ≤ ‖x‖22 then f(x) is differentiable at the origin.
What is its derivative at the origin?
(iii) If f(x) is a real-valued function defined in an open neighborhood of the
origin in R2 and if |f(x)| ≤ ‖x‖2 in that neighborhood is f(x) necessarily dif-
ferentiable at the origin? Why?
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(8) Show that if f(x) is a real-valued continuous function on [0,∞) ⊂ R such
that f(0) = 0, if f(x) is differentiable on (0,∞), and if its derivative f ′(x)
is monotonically increasing, then g(x) = f(x)/x is a monotonically increasing
function on (0,∞).

(9) Find all C1 functions f(x) on the real line for which f(0) = 0 and |f ′(x)| ≤
|f(x)| for all x ∈ R.

(10) Show that there is a unique real number c such that for any function f that
is differentiable on [0, 1] and that takes the values f(0) = 0 and f(1) = 1 there
is some point x ∈ (0, 1) (depending on the function f) such that f ′(x) = cx.

(11) If f(x) is a continuous real-valued function on R, if f is differentiable
at all points except the origin, and if limx→0 f

′(x) = 3, is f(x) differentiable at
the origin? Why?

(12) Show that the function

f(x) =


x1|x2|√
x2

1 + x2
2

if (x1, x2) 6= (0, 0), positive square root

0 if (x1, x2) = (0, 0),

has a well defined directional derivative in each direction at the origin but is
not differentiable at the origin.

(13) The derivative of a mapping f : R2 −→ R2 is a matrix f ′(x) = {∂jfi(x)} ∈
R2×2. For any real algebra A ⊂ R2×2 (as defined in Section 1.3) let SA be the
collection of differentiable mappings from open subsets of R2 into R2 such that
f ′(x) ∈ A at all points at which the mapping is defined. This thus is a set of
mappings satisfying some linear partial differential equations.
(i) Show that SA is a real vector space, that is, that the sum and scalar product
of any elements of SA belong to SA.
(ii) Show that if f ,g ∈ SA then g ◦ f ∈ SA. (Collections of mappings satisfying
this condition are said to form a pseudogroup.)
(iii) Describe as explicitly as you can the pseudogroups SA0

and SA1
for the

algebras A0 and A1.
(iv) When a mapping f : R2 −→ R2 is identified with a mapping f̃ : C −→ C,
by associating to any vector ( xy ) ∈ R2 the complex number x + iy ∈ C, show
that the pseudogroup SA−1

associated to the algebra A−1 can be identified

with the set of those mappings f̃ that are differentiable mappings as functions
of a complex variable, in the sense that f̃(a + h) = f̃(a) + ch + ε(h) where

a, c, h, ε(h), and f̃(a) ∈ C and limh→0
|ε(h)|
|h| = 0. (These are called holomorphic

or complex analytic functions.)
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3.3 Real Analytic Mappings and Series Expan-
sions

If f : U −→ R is a function defined in an open set U ⊂ R2, and if the
partial derivative ∂j1f(x) exists at all points x ∈ U , the function ∂j1f(x) may
itself have partial derivatives, such as ∂j2

(
∂j1f(x)

)
, which for convenience is

shortened to ∂j2∂j1f(x); and the process can continue, leading to ∂j3∂j2∂j1f(x)
and so on. The order in which successive derivatives are taken may be signifi-
cant; for example, a straightforward calculation shows that ∂1∂2f(0, 0) = 1 but
∂2∂1f(0, 0) = −1 for the function

f(x1, x2) =


x1x2(x2

1 − x2
2)

x2
1 + x2

2

if (x1, x2) 6= (0, 0),

0 if (x1, x2) = (0, 0)

However for continuously differentiable functions the order of differentiation is
irrelevant.

Theorem 3.40 If f : U −→ R is a function in open subset U ⊂ R2, if the
partial derivatives ∂1f(x), ∂2f(x), ∂1∂2f(x), ∂2∂1f(x) exist at all points x ∈ U ,
and if the mixed partial derivatives ∂1∂2f(x), ∂2∂1f(x) are continuous at a point
a ∈ U , then ∂1∂2f(a) = ∂2∂1f(a).

Proof: For points h = (h1, h2) ∈ R2 near the origin note that

∆ =
(
f(a1 + h1, a2 + h2)− f(a1 + h1, a2)

)
−
(
f(a1, a2 + h2)− f(a1, a2)

)
= φ(a1 + h1)− φ(a1) where φ(x1) = f(x1, a2 + h2)− f(x1, a2)

= φ′(a′1)h1 where a′1 is between a1 and a1 + h1,

obtained by applying the mean value theorem for functions of one variable to
the function φ(x); and when φ′(a′1) = ∂1f(a′1, a2 + h2) − ∂1f(a′1, a2) is viewed
as a function of the variable a2 then by applying the mean value theorem for
functions of one variable to this function it follows that

φ′(a′1) = ∂2∂1f(a′1, a
′
2)h2 where a′2 is between a2 and a2 + h2,

so altogether
∆ = ∂2∂1f(a′1, a

′
2)h2h1.

On the other hand it is possible to group the terms in the equation for ∆ in
another way, so that

∆ =
(
f(a1 + h1, a2 + h2)− f(a1, a2 + h2)

)
−
(
f(a1 + h1, a2)− f(a1, a2)

)
.

The same argument used for the first grouping when applied to this grouping
amounts to interchanging the roles of the two variables, which leads to the result
that

∆ = ∂1∂2f(a′′1 , a
′′
2)h1h2
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for some points a′′1 between a1 and a1 + h1 and a′′2 between a2 and a2 + h2; the
points a′′1 and a′′2 are not necessarily the same as the points a′1 and a′2 since they
are derived by different applications of the mean value theorem in one variable.
Comparing the two expressions for ∆ and dividing by h1h2 shows that

∂2∂1f(a′1, a
′
2) = ∂1∂2f(a′′1 , a

′′
2).

Since the functions ∂1∂2f(x1, x2) and ∂2∂1f(x1, x2) are continuous at the point
a = (a1, a2) and a′1 and a′′1 both approach a1 as h1 tends to 0 while a′2 and a′′2
both approach a2 as h2 tends to 0 it follows in the limit that ∂2∂1f(a1, a2) =
∂1∂2f(a1, a2), which suffices to conclude the proof.

The preceding result of course applies to functions defined in open subsets
of Rn for any n, since it just involves a change in the order of differentiation
for a pair of variables; and it applies to higher derivatives of any orders, for the
same reason. Consequently for functions that are continuously differentiable of
the appropriate orders the notation can be simplified, for example by writing
∂2

1∂2f(x) in place of ∂1∂2∂1f(x) or ∂2∂1∂1f(x), or by writing ∂j1j2f(x) in place
of ∂j1∂j2f(x). It is sometimes convenient to use the multi-index notation, in
which ∂If(x) where I = (3, 2, 1) stands for ∂3

1∂
2
2∂3f(x) for instance. Another

notation frequently used is

∂3f(x)

∂x2
1∂x2

= ∂2
1∂2f(x).

For a function f(x) of a single variable the derivative f ′(x) is another function of
a single variable; and its derivative, the second derivative of the initial function
f(x) is denoted by f ′′(x) or f (2)(x); the derivative of this function in turn is
denoted by f ′′′(x) or f (3)(x). A traditional alternative notation, paralleling the
notation for partial derivatives, is

df

dx
=

d

dx
f(x) = f ′(x) and

d2f

dx2
=

d2

dx2
f(x) = f ′′(x).

The definition (3.25) of differentiability involved an approximation of the func-
tion f(a + h) of the auxiliary variable h by a polynomial of degree 1 in that
variable. The existence of derivatives of higher orders can be interpreted corre-
spondingly as involving an approximation of the function f(x + h) by polyno-
mials in h of higher degree.

Theorem 3.41 (Taylor series in one variable) If f : U −→ R1 is a func-
tion with derivatives up to order k + 1 in an open neighborhood U ⊂ R1 of a
point a ∈ R1 then for any h ∈ R1 sufficiently small

(3.59) f(a+ h) = f(a) + f ′(a)h+
1

2!
f ′′(a)h2 +

1

3!
f ′′′(a)h3 + . . .

· · ·+ 1

k!
f (k)(a)hk +

1

(k + 1)!
f (k+1)(α)hk+1

where α is between a and a+ h.
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Proof: If h is sufficiently small that [a, a+ h] ⊂ U let

(3.60) R(x) = f(a+ x)− f(a)− f ′(a)x− 1

2!
f ′′(a)x2 − 1

3!
f ′′′(a)x3 − . . .

· · · − 1

k!
f (k)(a)xk − 1

(k + 1)!
cxk+1

for any x ∈ [0, h], where c ∈ R is chosen so that R(h) = 0. Clearly R(0) = 0 as
well so by the mean value theorem for functions of a single variable R′(α1) = 0
for some value α1 between 0 and h. Note that

(3.61) R′(x) = f ′(a+ x)− f ′(a)− f ′′(a)x− 1

2!
f ′′′(a)x2−

· · · − 1

(k − 1)!
f (k−1)(a)xk−1 − 1

k!
cxk,

which is much the same as (3.60) but for the index k − 1 in place of the index
k. In particular R′(0) = 0, and since R′(α1) = 0 as well it follows from the
mean value theorem for functions of a single variable that R′′(α2) = 0 for some
α2 between 0 and α1. The process continues, with further differentiation of the
expression (3.60), yielding a sequence of points {α1, α2, . . . , αk+1} where αi+1

is between 0 and αi, hence is between 0 and h, and R(i)(αi) = 0. Finally for
the case i = k + 1 it follows that

R(k+1)(x) = f (k+1)(a+ x)− c,

and since R(k+1)(αk+1) = 0 it follows that c = f (k+1)(a + αk+1) = f (k+1)(α)
where α = a + αk+1. That demonstrates the desired result for the case that
h > 0; the corresponding argument holds for h < 0, so that suffices for the
proof.

It may clarify the preceding proof to write out the special case k = 2 in
detail. The corresponding result in several variables can be deduced from the
result in a single variable by an application of the chain rule.

Theorem 3.42 (Taylor series in several variables) If f : U −→ R has
continuous partial derivatives up to order k+1 in an open neighborhood U ⊂ Rm
of a point a ∈ Rm then for any h = {hj} ∈ Rm sufficiently small

(3.62) f(a + h) = f(a) +

m∑
j=1

∂jf(a)hj +
1

2!

m∑
j1,j2=1

∂j1j2f(a)hj1hj2 + · · ·

· · ·+ 1

k!

m∑
j1,...,jk=1

∂j1...jkf(a)hj1 . . . hjk

+
1

(k + 1)!

m∑
j1,...,jk+1=1

∂j1...jk+1
f(α)hj1 . . . hjk+1

where α is between a and a + h on the line segment connecting them.
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Proof: Let φ(t) = a+th for any t ∈ R and consider the function g(t) = f(φ(t)),
for which g(0) = f

(
φ(0)

)
= f(a) and g(1) = f

(
φ(1)

)
= f(a + h). The Taylor

series (3.59) of the function g(t) has the form

(3.63) g(1) = g(0) + g′(0) +
1

2!
g′′(0) + . . .+

1

k!
g(k)(0) +

1

(k + 1)!
g(k+1)(τ)

for some τ ∈ (0, 1). Since φ′(t) = d
dt (a + th) = h = t(h1, h2, . . . , hm) repeated

applications of the chain rule show that

g′(t) =

m∑
j1=1

∂j1f(a + th)hj1 ,

g′′(t) =

m∑
j1,j2=1

∂j1j2f(a + th)hj1hj2

and in general

g(ν)(t) =

m∑
j1,j2,...,jν=1

∂j1j2···jνf(a + th)hj1hj2 · · ·hjν ;

substituting these values into (3.63) for t = 0 yields (3.62) for α = a + τh and
thereby concludes the proof.

If f(x) is a C∞ function at a point a ∈ R, a function defined in an open
neighborhood of a that has derivatives of all orders at the point a then for any
N the Taylor series (3.59) provides an approximation

(3.64) f(a+ x) = PN (x) + εN (x)

by the polynomial

(3.65) PN (x) = c0 + c1x+ c2x
2 + · · ·+ cNx

N ,

where cn = 1
n!f

(n)(a) for 0 ≤ n ≤ N , with the error given by

(3.66) εN (x) =
1

(N + 1)!
f (N+1)

(
α(x)

)
xN+1

for some point α(x) between a and a+ x depending on x. There are a number
of alternative expressions for the error in this polynomial approximation; but
for present purposes the form used here will suffice. The collection of these
polynomial approximations (3.65) for all N is the Taylor series of the function
f at the point a, the formal infinite series

(3.67) f(a+ x) ∼
∞∑
n=0

cnx
n where cn =

1

n!
f (n)(a).
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The partial sums of the Taylor series for functions of a single variable are the
approximating polynomials

(3.68) PN (x) =

N∑
n=0

cnx
n.

If limN→∞ εN (x) = 0 for all points x ∈ N0 for some open neighborhood N0 of
the origin then the function f(a + x) is the limit f(a + x) = limN→∞ PN (x)
of the partial sums PN (x) in the neighborhood N0; the Taylor series is said
to converge to the function f(a + x) or to have the sum f(a + x), which is
indicated by writing

(3.69) f(a+ x) =
∞∑
n=0

cnx
n for all x ∈ N0.

In that case the function f is said to be real analytic at the point a; and if the
function f is real analytic at each point in an open set U ⊂ R it is said to be
real analytic in U . Every real analytic function of course is a C∞ function, but
it is not always the case that a C∞ function is real analytic. Indeed for some
C∞ functions the Taylor series does not converge; and even if the Taylor series
of a C∞ function f converges it does not necessarily converge1 to the function
f . The further investigation of real analytic functions requires a more detailed
examination of the convergence of series.

More generally, a power series in a single variable is a formal sum

(3.70)

∞∑
n=0

cnx
n;

it is a real power series if cn ∈ R for all n, and is a complex power series if cn ∈ C
for all n. The partial sums of the power series (3.70) are the polynomials

(3.71) PN (x) =

N∑
n=0

cnx
n,

viewed as a polynomial in the real variable x ∈ R for a real power series and as a
polynomial in the complex variable x ∈ C for a complex power series, although
in the latter case the variable is traditionally denoted by z. The power series
is said to converge to a function f(x) in a subset U in R or C, or to have the
sum f(x) in U , if f(x) = limN→∞ PN (x) for each point x ∈ U ; that also is
indicated by writing

(3.72) f(x) =

∞∑
n=0

cnx
n for x ∈ U.

1A standard example of this sort of behavior is illustrated in Problem 13 at the end of this
Section.
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The series is said to converge uniformly in U if the partial sums PN (x)
converge uniformly in the set U ⊂ R. The corresponding definitions hold for
power series in several variables.

Even more generally, any sequence of real or complex numbers cn can be
viewed as describing a formal series

∑∞
n=0 cn, with the partial sums SN =∑N

n=0 cn. The series is said to converge to S, or to have the sum S, if
limN→∞ SN = S; that is indicated by writing

∑∞
n=0 cn = S. It is clear that

whether a series converges or not is quite independent of any finite number of
initial terms of the series; the sum of the series of course depends on all the
terms of the series. The simplest series are real series

∑∞
n=0 cn for which cn ≥ 0

for all n; they are usually called positive series, with the caution that in a
positive series it is not necessarily the case that cn > 0 for all n rather just
that cn ≥ 0 for all n. For a positive series the sequence of partial suns SN
is monotonically increasing; so clearly the series converges if and only if the
sequence of partial sums is bounded, and in that case the sum can be described
alternatively as S = sup{SN}. Note that if

∑∞
n=0 c

′
n and

∑∞
n=0 c

′′
n are posi-

tive series with the partial sums S′N and S′′N respectively, and if the first series
converges while c′n ≥ c′′n for all n, then the second series also converges, since
sup{S′′N} ≤ sup{S′N}.

There are actually two rather more precise forms of the notion of the con-
vergence of a series. Some series are inherently convergent: those are the easiest
series to handle and they have the most convenient and useful properties. Some
series are only accidentally convergent though: whether they converge or not,
and the limit to which they converge, depend on the particular order of the
terms in the series. To be more precise, a series

∑∞
n=0 cn of real or complex

terms is said to be absolutely convergent if the associated positive series∑∞
n=0 |cn| is convergent. Of course a positive series is absolutely convergent if

and only if it is convergent. A series of complex terms can be viewed as a pair of
series of real terms, the real and imaginary parts of the series. Since a complex
series converges if and only if both the real and imaginary parts converge, and
a complex series converges absolutely if and only if both the real and imaginary
parts converge absolutely, it follows that for the most part it is sufficient to con-
sider just real series in detail. Clearly if

∑∞
n=0 c

′
n is an absolutely convergent

real or complex series and if |c′′n| ≤ |c′n| for all n then the series
∑∞
n=0 c

′′
n is also

absolutely convergent.

Theorem 3.43 (i) If a series of real or complex numbers is absolutely conver-
gent then it is convergent.
(ii) If a series of real or complex numbers is absolutely convergent then all re-
arrangements2 of the series are convergent and have the same sum.

2The terms in a series
∑∞
n=0 cn are naturally ordered by the indices n. A rearrangement

of the series
∑∞
n=0 cn is a series

∑∞
n=0 c

′
n where c′n = cφ(n) for some bijective mapping

φ : Z+ −→ Z+ of the nonnegative integers Z+; thus the coefficients c′n are a rearrangement
of the coefficients cn . In the older literature a rearrangement of a series is sometimes called
a derangement of the series.
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Proof: (i) That the series
∑∞
n=0 cn is absolutely convergent means that the

partial sums S∗N =
∑N
n=0 |cn| of the positive series

∑∞
n=0 |cn| converge. The

series
∑∞
n=0

(
cn+ |cn|

)
is also a positive series, and since

∣∣∣cn+ |cn|
∣∣∣ ≤ 2|cn| this

series also converges so its partial sums S∗∗N converge. Since SN = S∗∗N − S∗N
where SN =

∑N
n=0 cn it follows that the partial sums SN converge, so the series∑∞

n=0 cn is convergent.

(ii) If S =
∑∞
n=0 cn is a convergent positive series and if S′M =

∑M
m=0 c

′
m are

the partial sums of a rearrangement of that series then since all the entries c′m
are among the entries cn clearly S′M ≤ S for all M . On the other hand for any
ε > 0 there is a number N for which SN > S − ε; and for any M sufficiently
large the entries c′m of the partial sum

∑M
m=0 c

′
m include all the entries cn of the

partial sum
∑N
n=0 cn so

∑M
m=0 c

′
m ≥

∑N
n=0 cn > S − ε. Thus S − ε < S′M ≤ S

for sufficiently large M and consequently limM→∞ S′M = S so the rearranged
series has the same sum as the original series.
Next if S =

∑∞
n=0 cn is an absolutely convergent real series then S∗ =

∑∞
n=0 |cn|

and S∗∗ =
∑∞
n=0 (cn + |cn|) are convergent positive series, so by part (i) any

rearrangements of these series converge to the same sum as the initial series; it
follows that the same rearrangements of these two series yields a rearragement of
the series S =

∑∞
n=0 cn =

∑∞
n=0(cn + |cn|)−

∑∞
n=0 |cn| which also converges to

the same sum as the initital series. If S =
∑∞
n=0 cn is an absolutely convergent

complex series then the real and imaginary parts are absolutely convergent real
series, which converge for any rearrangement to the sum of the initial series,
and that suffices for the proof.

A series
∑∞
n=0 cn where cn ∈ R or C is convergent if it is absolutely conver-

gent, by the preceding theorem; however it may be convergent but not absolutely
convergent, in which case it is said to be conditionally convergent. Thus any
convergent real or complex series is either absolutely convergent or conditionally
convergent, and none are both. If a convergent real series

∑∞
n=0 cn is absolutely

convergent then the series formed from just the non-negative terms cn is also
convergent, since the partial sums of this series are bounded by the partial sums
of the series

∑∞
n=0 |cn|. Conversely if a real series

∑∞
n=0 cn is convergent and

the series formed from just the non-negative terms cn is convergent then the
series formed from the negative terms cn clearly also is convergent hence the
series

∑∞
n=0 cn is absolutely convergent. It follows that if a real series

∑∞
n=0 cn

is conditionally convergent then the series formed from the non-negative terms
cn is divergent, and of course similarly the series formed from the negative terms
cn also is divergent. A classical example of a conditionally convergent series is
the alternating harmonic series

(3.73) 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · .

That this series is convergent is quite easy to see; indeed more generally the
following is true.



3.3. SERIES 155

Theorem 3.44 If cn is a monontonically decreasing sequence of non-negative
real numbers, so that cn ≥ cn+1 ≥ 0, and if limn→∞ cn = 0, then the series

(3.74) c1 − c2 + c3 − c4 + c5 − c6 + · · ·

is convergent.

Proof: If SN is the partial sum of the series (3.74) then

S2N = (c1 − c2)︸ ︷︷ ︸
≥0

+ (c3 − c4)︸ ︷︷ ︸
≥0

+ · · ·+ (c
2N−1

− c
2N

)︸ ︷︷ ︸
≥0

,

so clearly S2N is an increasing sequence of real numbers. On the other hand

S2N = c1−(c2 − c3)︸ ︷︷ ︸
≤0

−(c4 − c5)︸ ︷︷ ︸
≤0

· · · −(c
2N−2

− c
2N−1

)︸ ︷︷ ︸
≤0

−c2N︸ ︷︷ ︸
≤0

,

so clearly S2N ≤ c1. Therefore the sequence S2N converges, since its partial
sums are a monotonically increasing sequence of real numbers bounded above.
Since |S2N −S2N−1| = |c2N | and by assumption limN→∞ c2N = 0 it follows that
the sequence S2N−1 also converges and has the same limit as the sequence S2N ;
therefore the sequence SN converges, which suffices for the proof.

In particular the alternating harmonic series converges; but it does not con-
verge absolutely since the harmonic series, the series

∑∞
n=1 1/n, can be de-

composed as

(3.75)

∞∑
n=1

1

n
= 1 +

1

2
+

(
1

3
+

1

4

)
︸ ︷︷ ︸
≥ 1

2

+

(
1

5
+

1

6
+

1

7
+

1

8

)
︸ ︷︷ ︸

≥ 1
2

+ · · ·

where
1

2n + 1
+

1

2n + 2
+ · · ·+ 1

2n+1
≥ 2n

1

2n+1
=

1

2

for all n so it is a divergent series. Therefore the alternating harmonic series
is conditionally convergent; the series consisting of just the odd terms diverges,
and its partial sums increase without limit, while the series consisting of just
the even terms also diverges, and its partial sums decrease without limit.

Riemann showed that by rearranging the order of the terms of any con-
ditionally convergent series it can be made to diverge or to converge to any
chosen limit. Indeed the subseries consisting just of the positive terms and that
consisting just of the negative terms both diverge. Take enough positive terms
so that the partial sum of these is greater than N , then take enough negative
terms so that the whole partial sum is between N/2 and N , then take enough
positive terms so that the whole partial sum is greater than 2N , and so on;
the rearranged series then diverges. On the other hand to rearrange the series
to convergse to

√
2 for example, take enough positive terms so that the partial
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sum is just greater than
√

2, then take enough negative terms to bring the sum
to just less than

√
2, then take enough positive terms to bring the partial sum

to just greater than
√

2, and so on; and since the terms cn of the series satisfy
limn→∞ cn = 0 the resulting oscillation of the partial sums converges to

√
2.

Thus a real series is absolutely convergent if and only if all rearrangements of
the series converge to the same limit; but of course that is not a very effective
test for absolute convergence.

The preceding discussion focused on Taylor series in a single variable or the
corresponding series

∑∞
n=0 cn for real or complex numbers cn. The study of Tay-

lor series in several variables or the corresponding series
∑∞
n1,n2,...,nr=0 cn1n2...nr

for real or complex numbers cn1n2...nr is important for many purposes, but will
not be pursued extensively here; however some results about series in several
variables are sufficiently useful even in considering functions of a single variable
that a few words about them are perhaps in order here. For present purposes
it is sufficient just to consider double series, those of the form

∑∞
n1,n2=0 cn1n2

for some real or complex constants cn1n2
. The partial sums

(3.76) SN1N2
=

∑
0≤n1≤N1
0≤n2≤N2

cn1n2

are simply sums of a finite collection of numbers, so the order in which the
summation is carried out is irrelevant; but in an expression

∑∞
n1,n2=0 cn1n2

it
is not at all clear what is meant, since there are infinitely many numbers cn1n2

and the order in which the summation is carried out may be quite relevant
indeed. However with the Taylor series in mind it is natural to say that a
double series converges3 to the sum S =

∑∞
n1,n2=0 cn1n2

if for any ε > 0 there
is a number M such that the partial sums (3.76) satisfy |S − SN1N2

| < ε for all
N1 > M and N2 > M . If that is not the case the series is said to diverge.
A positive double series is defined to be a double series

∑∞
n1,n2=0 cn1n2 for

which cn1n2 ≥ 0 for all n1, n2. If a positive double series converges then the
partial sums SN1N2

are bounded, since by definition there is a number M such
that SN1N2

< S + ε whenever N1 > M and N2 > M while Sn1n2
≤ SN1N2

whenever n1 ≤ N1 and n2 ≤ N2 since the partial sums are monotonically
increasing. Conversely if the partial sums of a positive double series are bounded
and S = sup{SN1N2} then the series converges to the sum S since SN1N2 ≤ S
for all N1, N2 while for any ε > 0 there is some partial sum SM1M2 for which
SM1M2

> S − ε and SN1N2
≥ SM1M2

> S − ε whenever N1 > M1 and N2 > M2.
A double series

∑∞
n1,n2=0 cn1n2

is said to converge absolutely if the positive

double series
∑∞
n1,n2=0 |cn1n2

| converges.

Theorem 3.45 If a double series of real or complex numbers is absolutely con-
vergent then it is convergent.

3This definition, which goes back to Pringsheim in the 1870’s, seems to be the most com-
monly used one; but there are some alternatives that are used from time to time, so when
reading about double series some care should be taken to be sure which definition acually is
being used.
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Proof: That the double series
∑∞
n1,n2=0 cn1n2 is absolutely convergent means

that the positive double series
∑∞
n1,n2=0 |cn1n2

| converges to a sum S∗; thus for
any ε > 0 there exists a number M∗ so that the partial sums

S∗N1N2
=

∑
0≤n1≤N1
0≤n2≤N2

|cn1n2
|

satisfy |S∗N1N2
− S∗| < ε whenever N1, N2 > M∗. The terms of the positive

double series
∑∞
n1,n2=0

(
cn1n2

+ |cn1n2
|
)

satisfy
∣∣∣cn1n2

+ |cn1n2
|
∣∣∣ ≤ 2|cn1n2

| so

its partial sums S∗∗N1N2
are bounded and hence this series converges to a sum

S∗∗; thus there exists a number M∗∗ so that the partial sums

S∗∗N1N2
=

∑
0≤n1≤N1
0≤n2≤N2

(
cn1n2 + |cn1n2 |

)

satisfy |S∗∗N1N2
− S∗∗| < ε whenever N1, N2 > M∗∗. The partial sums

SN1N2 =
∑

0≤n1≤N1
0≤n2≤N2

cn1n2

of the original series are SN1N2
= S∗∗N1N2

−S∗N1N2
, so if N1, N2 > max(M∗,M∗∗)

then

|SN1,N2
− (S∗∗ − S∗)| = |(S∗∗N1,N2

− S∗N1,N2
)− (S∗∗ − S∗)|

≤ |S∗∗N1,N2
− S∗∗|+ |S∗N1,N2

)− S∗| < 2ε

so the series
∑∞
n1,n2=0 cn1n2

is convergent to the sum S = S∗∗−S∗. This applies
to the real and imaginary double series associated to any complex double series,
and that suffices for the proof.

One way to simplify the examination of double series is to rewrite the double
series as a single series by ordering the terms of the series appropriately; for
example the Cantor diagonalization of the double series

∑∞
n1,n2=0 cn1n2

is the

single series
∑∞
n=0 c̃n where

c̃0 = c00, c̃1 = c10, c̃2 = c01, c̃3 = c20, c̃4 = c11, c̃5 = c02, c̃6 = c30, . . .

as in Cantor’s diagonalization theorem.

Theorem 3.46 A real or complex double series is absolutely convergent if and
only if its Cantor diagonalization is absolutely convergent; and the double series
and its Cantor diagonalization have the same sum.

Proof: If S̃N =
∑N
n=0 c̃n is a partial sum of the Cantor diagonalization of a

convergent positive double series with the sum S =
∑∞
n1,n2=0 cn1n2

then since

all the entries c̃n in S̃N occur among the entries cn1n2
in the double series it



158 CHAPTER 3. MAPPINGS

follows that S̃N ≤ S. That is true for all N so the Cantor diagonalization con-
verges to a sum S̃ ≤ S. The corresponding argument in the converse direction
completes the proof in this special case.
If SN =

∑N
n1,n2=0 cn1n2

is a partial sum of real double series then S∗N =∑N
n1,n2=0 |cn1n2

| and S∗∗N =
∑∞
n1,n2=0

(
|cn1n2

| + cn1n2

)
are the partial sums

of positive double series. By (i) the positive double series with partial sums
S∗N and S∗∗N converge if and only if their Cantor diagonalizations converge,
and the sums of the double series are the same as the sums of their Cantor
diagonalizations. That must then also be the case for the real double series
S∗∗−S∗ =

∑∞
n1n2=0 cn1n2

, which yields the proof in this case. Complex double
series correspond to a pair of real double series, and that suffices for the proof.

Of course there are many other diagonalizations of double series in addi-
tion to the Cantor diagonalization. Another standard diagonalization arises by
grouping the terms cn1n2

according to the sum n1 + n2 and then in each group
ordering the terms by the first index n1, the summation around the borders
of squares of increasing sizes. Any diagonalization can be viewed as an rear-
rangement of the Cantor diagonalization, so it follows from Theorem 3.43 that
any diagonalization of an absolutely convergent double series is convergent to
the same sum as the double series. There is another approach to double series
that is even more common; it involves summing over the two separate indices
separately. Thus for any double series

∑∞
n1,n2=0 cn1n2

with the partial sums
SN1N2

it is traditional to introduce the summation

(3.77)

∞∑
n1=0

∞∑
n2=0

cn1n2
= lim
N1→∞

lim
N2→∞

SN1N2

or in the other order

(3.78)

∞∑
n2=0

∞∑
n1=0

cn1n2 = lim
N2→∞

lim
N1→∞

SN1N2 ;

if these limits exist they are called the iterated sums of the double series.
Even if the limits exist, though, they may not be equal; for, as observed in
the earlier discussion of limits, exchanges of the orders of double limits do not
always preserve the values of the limits.

Theorem 3.47 (i) The iterated sums of an absolutely convergent double series
exist and are equal to the sum of the double series,
(ii) If one iterated sum of a double series is absolutely convergent then the double
series itselfis absolutely convergent.

Proof: (i) First if a positive double series converges to a sum S =
∑∞
n1n2=0 cn1n2

then
N1∑
n1=0

N2∑
n2=0

cn1n2
≤ S
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for any N1, N2. For each index n1 the preceding inequality holds for any N2

hence
N1∑
n1=0

∞∑
n2=0

cn1n2 ≤ S;

and since that is the case for all N1 it follows that

∞∑
n1=0

∞∑
n2=0

cn1n2
≤ S,

so the iterated sums of the positive double series exist and are at most the sum
S of the series. On the other hand for any ε > 0 there are some values N1N2 so
that

N1∑
n1=0

N2∑
n2=0

cn1n2 ≥ S − ε,

since for finite values N1, N2 the iterated sums are also the corresponding sums
of the double series. This inequality continues to hold for any fixed N1 as N2

tends to infinity, and then as N1 tends to infinity, so

∞∑
n1=0

∞∑
n2=0

cn1n2
≥ S − ε

and since that is the case for evey ε > 0 it follows that

∞∑
n1=0

∞∑
n2=0

cn1n2 ≥ S,

which shows that the iterated sum is equal to the sum of the double series.
Next if

∑∞
n1n2=0 cn1n2 is an absolutely convergent double series with partial

sums SN1N1 and sum S then the two positive double series
∑∞
n1,n2=0 |cn1n2 | and∑∞

n1,n2=0

(
cn1n2

+ |cn1n2
|
)

are convergent, with the partial sums S∗N1N2
and

S∗∗N1N2
and the sums S∗ and S∗∗ respectively. The results already established

apply to these series, so the iterated sums of both series exist and have the same
value as the sums of the series. Since SN1N2

= S∗∗N1N2
− S∗N1N2

and the iterated
sums of the series S∗N1N2

and S∗∗N1N2
converge it follows that the iterated limits

of these two series exist and are equal to the sum of the series. That is the case
for the real and imaginary parts of complex series.
(ii) If the iterated sum

∑∞
n1=0

∑∞
n2=0 |cn1n2 | = S exists then the partial sums

satisfy S∗N1N2
=
∑N1

n1=0

∑N2

n2=0 |cn1n2 | ≤ S for all N1, N2, so the double series
is absolutely convergent, and the rest of the theorem then follows from (i), to
conclude the proof.

A possibly surprising amount of the study of the convergence of series rests
on the properties of just one special series, the geometric series

∑∞
n=0 z

n

where z is either a real or a complex number. Since

(3.79) (1− z)
(
1 + z + z2 + · · ·+ zN

)
= 1− zN+1
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it follows that

1 + z + z2 + · · ·+ zN =
1

1− z
− zN+1

1− z
;

if |z| ≤ r < 1 then
∣∣∣ zN+1

1−z

∣∣∣ ≤ rN+1

1−r and consequently limN→∞
zN+1

1−z = 0 so

(3.80)
1

1− z
=

∞∑
n=0

zn for z ∈ C, |z| < 1,

and this series is absolutely convergent, since the same formula holds for |z| in
place of z. The series is not convergent for |z| > 1 since the individual terms
increase in absolute value so the partial sums do not converge. For real values
of the variable z this is the Taylor series of the function 1

1−x , as can be verified

by calculating the value of the derivative d
dx (1− x)−1 at the origin x = 0; thus

that particular Taylor series converges only in the interval |x| < 1, although the
function 1/(1 − x) is well defined for values x > 1. The following criteria for
convergence of general series rest on the convergence of the geometric series.

Theorem 3.48 (Convergence Tests) Consider an infinite series

(3.81)

∞∑
n=0

cn where cn ∈ R or C.

(i) A necessary but not sufficient condition for the series (3.81) to converge is
that limn→∞ |cn| = 0.
(ii) Comparison Test If |cn| ≤ Cn for all large n, where Cn ≥ 0 and

∑∞
n=0 Cn

converges, then the series (3.81) is absolutely convergent.
(iii) Root Test If |cn| ≤Mrn for all large n, where M ≥ 0 and r < 1, then the
series (3.81) is absolutely convergent.
(iv) Ratio Test If |cn+1/cn| ≤ r for all large n, where 0 ≤ r < 1, then the
series (3.81) is absolutely convergent.

Proof: (i) If the series (3.81) converges then the partial sums PN form a Cauchy
sequence, so limN→∞

∣∣PN − PN−1

∣∣ = limN→∞ |cN | = 0; but that is not suffi-
cient to guarantee that the series converges, since for instance the terms of the
harmonic series (3.75) tend to zero but the series does not converge.
(ii) If QN are the partial sums of the series

∑∞
n=0 |cn| then for any ε > 0

|QN −QM | ≤
N∑

n=M+1

|cn| ≤
N∑

n=M+1

Cn < ε

whenever M,N are sufficiently large, since the series
∑∞
n=0 Cn converges; thus

the partial sums QN of the series
∑∞
n=0 |cn| are a Cauchy sequence so that series

converges.
(iii) The series M

∑∞
n=0 r

n converges by (3.80), hence the series
∑∞
n=0 |cn| con-

verges by (ii), the comparison test.
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(iv) If |cn+1/cn| ≤ r < 1 for all n ≥ N it follows immediately by induction on n
that |cN+n| ≤ |cN |rn, hence the series converges by (iii), the root test.

The tests (iii) and (iv) in the preceding theorem are the most commonly
used simple tests for the convergence of series. It should be noted though that
they only test for the absolute convergence of series; a series may well converge
even if it does not converge absolutely. It should also be noted that these tests
are sufficient but are not necessary for absolute convergence; so if a series is
absolutely convergent it does not necessarily satisfy the conditions either of the
root or the ratio test. When the entries cn in a series are sufficiently simple
functions of the index n the root and ratio tests can be rephrased and extended
as follows.

Corollary 3.49 Consider an infinite series
∑∞
n=0 cn where cn ∈ R or C.

(i) Root Test
If the limit ρ = limn→∞

n
√
|cn| exists the series is absolutely convergent if ρ < 1

and divergent if ρ > 1.
(ii) Ratio Test

If the limit ρ = limn→∞

∣∣∣ cn+1

cn

∣∣∣ exists the series is absolutely convergent if ρ < 1

and divergent if ρ > 1.

Proof: (i) If limn→∞
n
√
|cn| < 1 then n

√
|cn| ≤ r < 1 for all large n so |cn| < rn

and the series converges by Theorem 3.48 (iii), while if limn→∞
g
√
|cn| > 1 then

n
√
|cn| ≥ r > 1 for all large n so the terms cn do not tend to zero and the series

diverges by Theorem 3.48(i).
(ii) If limn→∞ |cn+1/cn| < 1 then |cn+1/cn| ≤ r < 1 for all large n and the series

converges by Theorem 3.48 (iv), while if limn→∞
g
√
|cn| > 1 then

∣∣∣ cn+1

cn

∣∣∣ ≥ r > 1

for all large n so the terms cn do not tend to zero and the series diverges by
Theorem 3.48 (i). That suffices for the proof.

As in the case of the preceding Theorem 3.48 the convergence tests in Corol-
lary 3.49 only test for absolute convergence, and they are sufficient but not
necessary tests for convergence. In particular if ρ = 1 the tests are not appli-
cable so the series may or may not converge. For example the series

∑∞
n=1 cn

diverges if cn = n−1 as already observed but converges if cn = n−2, as will be

discussed next; but limn→∞
n
√
|cn| = limn→∞

∣∣∣ cn+1

cn

∣∣∣ = 1 for both series. The

ratio test is perhaps the easiest to use, since it does not require taking the n-th
roots of the coefficients; however it is a weaker test than the root test, since for
example it does not demonstrate that the series 1

2 + 1
2 + 1

4 + 1
4 + 1

8 + 1
8 + · · ·

converges while the root test does. There are more sophisticated tests that
sometimes provide information in cases in which the root and ratio tests fail.

Theorem 3.50 (Raabe’s test) For any series
∑∞
n=0 cn where cn ∈ R or C

and cn 6= 0 for all n let

(3.82) Rn = n

(
1− |cn+1|

|cn|

)
.
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If there is a number N0 such that Rn ≥ R > 1 for all n ≥ N0 then the series is
absolutely convergent.

Proof: To simplify the notation replace |cn| by cn, so it can be assumed that
cn > 0 for all n. From the definition (3.82) it follows that

(3.83) Rn − 1 = n− 1− ncn+1

cn
=

1

cn

(
(n− 1)cn − ncn+1

)
.

If n ≥ N0 then Rn− 1 ≥ R− 1 > 0 and consequently from (3.83) it follows that

(3.84) 0 < cn =
Pn

Rn − 1
≤ Pn
R− 1

where Pn = (n− 1)cn − ncn+1.

Thus Pn > 0, so by the comparison test in order to show that the series
∑∞
n=1 cn

converges it is sufficient to show that the series
∑∞
n=1 Pn converges. That Pn >

0 means that (n − 1)cn > ncn+1, so the sequence ncn+1 is a monotonically
decreasing sequence of nonnegative real numbers when n ≥ N0; hence the limit
A = limn→∞ ncn+1 exists. For any N > N0

N∑
n=N0

Pn =

N∑
n=N0

(
(n− 1)cn − ncn+1

)
= (N0 − 1) cN0

−N cN+1

in view of the obvious cancellations in successive terms in this series; conse-
quently

lim
N→∞

N∑
n=N0

Pn = lim
N→∞

(
(N0 − 1)cN0

−NcN+1

)
= (N0 − 1)cN0

−A.

Therefore the series
∑N
n=1 Pn converges, and that suffices for the proof.

As for the earlier tests for convergence, Raabe’s test can be rephrased and
extended when the entries cn are sufficiently simple.

Corollary 3.51 (Raabe’s test) If
∑∞
n=0 cn is a series of real or complex num-

bers where cn 6= 0 for all n, if

(3.85) Rn = n

(
1− |cn+1|

|cn|

)
and if the limit ρ = limn→∞Rn exists then the series is absolutely convergent if
ρ > 1 and is divergent if ρ < 1.

Proof: Again to simplify the notation assume that cn > 0 for all n. If ρ > 1
then there is a number N0 sufficiently large that Rn ≥ R > 1 for all n > N0, and
it follows from the preceding theorem that the series converges. On the other
hand if ρ < 1 then there is a number N0 sufficiently large that Rn−1 ≤ 0 for all
n ≥ N0, so from (3.83) in the preceding theorem (n− 1)cn − ncn+1 ≤ 0 for all
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n ≥ N0. Therefore the sequence ncn+1 is monotonically increasing for n ≥ N0.
so in particular ncn+1 ≥ N0cN0+1 for n ≥ N0, or equivalently cn+1 ≥ 1

nN0cN0+1

for n ≥ N0. The harmonic series 1
n diverges, as noted in (3.75); thus the partial

sums increase without limit hence the series
∑∞
n=1 cn diverges as well, and that

suffices for the proof.

Note that Raabe’s test, as for the root and ratio tests, is not applicable if the
limit ρ = 1, so in that case the series may or may not converge. That Raabe’s
test is stronger than the ratio test is evident from considering the series for
which cn = 1

n2 . The ratio test conveys no information about the convergence of
that series, as observed on page 161; however for Raabe’s test

lim
n→∞

n

(
1− cn+1

cn

)
= lim
n→∞

n

(
1− n2

(n+ 1)2

)
= lim
n→∞

n(2n+ 1)

(n+ 1)2
= 2

so the series converges.
The preceding tests of course can be applied to power series, or more gen-

erally to series
∑∞
n=0 fn(x) of functions in a subset U of Rn or Cn, by consid-

ering the corresponding series of constants for each fixed point x ∈ U . How-
ever for series of functions another question of interest is whether the series
is uniformly convergnt in U , meaning that the sequence of partial sums
PN (x) =

∑N
n=0 fn(x) converges uniformly in U . That is equivalent to the con-

dition that the sequence of partial sums is uniformly Cauchy, by Theorem 3.19.
A standard test for this is the Weierstrass M-test, really a special case of the
comparison test.

Corollary 3.52 A sequence
∑∞
n=0 fn(x) of functions fn(x) in a subset U of

Rn or Cn is uniformly convergent in U if |fn(x)| ≤ Cn for all x ∈ U , where∑∞
n=0 Cn is a convergent sequence of real numbers Cn ≥ 0.

Proof: If |fn(x)| ≤ Cn then the partial sums PN (x) =
∑N
n=0 fn(x) sat-

isfy |PN (x) − PM (x)| ≤
∑N
n=M+1 |fn(x)| ≤

∑N
n=M+1 Cn; and since the series∑∞

n=0 Cn is convergent then for any ε > 0 there is a number N0 such that

|PN (x)− PM (x)| ≤
∑N
n=M+1 Cn < ε for all x ∈ U whenever M,N ≥ N0, show-

ing that the partial sums PN (x) are a uniformly Cauchy sequence hence that
they converge uniformly in U and thereby concluding the proof.

Theorem 3.53 If a power series
∑∞
n=0 cnz

n converges for a particular value
z0 ∈ C then it converges absolutely whenever |z| < |z0| and it converges uni-
formly in the set of points z ∈ C for which |z| ≤ r for any r < |z0|.

Proof: If the power series converges for z = z0 then limn→∞ |cnzn0 | = 0 so
|cnzn0 | ≤ C for some C > 0 and all n ≥ 0, hence |cnzn| ≤ C (|z|/|z0|)n for all
n ≥ 0. If |z| < |z0| then |z|/|z0| < 1 so the series

∑∞
n=0 C (|z|/|z0|)n converges

by the root test hence the series
∑∞
n=0 cnz

n converges absolutely by the com-
parison test. Actually |cnzn| ≤ C(r/|z0|)n in the entire region |z| ≤ r for any
r < |z0|; then (r/|z0|) < 1 so the series

∑∞
n=0 C (|z|/|z0|)n converges by the
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root test hence the series
∑∞
n=0 cnz

n converges uniformly in that region by the
Weierstrass M-test, Corollary 3.52, and that suffices for the proof.

Note particularly that in the preceding theorem the power series is only as-
sumed to converge at z0; so it may converge conditionally rather than absolutely
at that point. For any real or complex power series there is a unique value R,
called the radius of convergence of the series, such that the series converges
whenever |z| < R and diverges whenever |z| > R; indeed R is just the supre-
mum of the values |z| for which the series converges at the point z, as an evident
consequence of the preceding theorem. Of course it is possible that R = 0 so
the series converges only when z = 0, or that R = ∞ so the series converges
absolutely for any z. For a finite value of R the series converges absolutely at
all points z in the open disc DR = { z ∈ C

∣∣ |z| < R } and converges uniformly

in any compact subset Dr ⊂ DR for r < R, so the limit function is continu-
ous in the entire open set DR. The behavior of the function at the boundary
∂DR = { z ∈ C

∣∣ |z| = R } of the region of convergence is a rather complicated
question in general; but the situation for real power series is much simpler. A
real power series with radius of convergence R for instance is continuous in the
open interval (−R,R); it may converge at both end-points of the interval, just
at one end-point, or at neither end-point. The power series

∑∞
n=1

1
n2x

n will be
shown later in this section to have the radius of converge R = 1 and to converge
at both end points x = ±1. The power series

∑∞
n=1

1
nx

n has the radius of con-
vergence R = 1 and converges (although not absolutely) at the point x = −1
but diverges at the point x = 1, as already noted. The power series

∑∞
n=1 nx

n

has the radius of convergence R = 1 but obviously diverges at both end points
x = ±1. An interesting and often useful result is that if a real power series with
radius of convergence R converges at the end-point R then its sum actually is
a continous function in the closed interval [0, R], and correspondingly of course
at the other end-point.

Theorem 3.54 (Abel’s Theorem) If a real power series f(x) =
∑∞
n=0 cnx

n

converges at a point x = R > 0 then it converges uniformly in the interval [0, R]
so its sum is a continuous function on the interval [0, R] and consequently

(3.86) f(R) = lim
x→R

f(x).

Proof: To simplify the notation assume R = 1. Since the series converges
at x = 1, if AN = c0 + c1 + · · · + cN are the partial sums at x = 1 then
f(1) = limN→∞AN ; hence for any ε > 0 there is a number M such that

(3.87) |f(1)−AN | < ε whenever N > M.

Now following Abel set

cnx
n = (An −An−1)xn =

(
f(1)−An−1

)
xn −

(
f(1)−An

)
xn
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for all n, with the convention that A−1 = 0; then

ν∑
n=µ

cnx
n =

ν∑
n=µ

(
f(1)−An−1

)
xn −

ν∑
n=µ

(
f(1)−An

)
xn

=

ν−1∑
n=µ−1

(
f(1)−An

)
xn+1 −

ν∑
n=µ

(
f(1)−An

)
xn

=

ν−1∑
n=µ

(
f(1)−An

)(
xn+1 − xn

)
+

+
(
f(1)−Aµ−1

)
xµ −

(
f(1)−Aν

)
xν

so that
(3.88)∣∣∣∣∣
ν∑

n=µ

cnx
n

∣∣∣∣∣ ≤
ν−1∑
n=µ

∣∣∣f(1)−An
∣∣∣|xn+1 − xn|+

∣∣∣f(1)−Aµ−1

∣∣∣|xµ|+ ∣∣∣f(1)−Aν
∣∣∣|xν |.

If µ > M + 1 then |f(1)−An| < ε and |f(1)−Aµ−1| < ε and |f(1)−Aν | < ε by
(3.87); and since 0 ≤ x ≤ 1 it follows that |x| ≤ 1 and

∣∣xn+1 − xn
∣∣ = xn− xn+1

so by the obvious cancellation of terms

ν−1∑
n=µ

∣∣xn+1 − xn
∣∣ =

ν−1∑
n=µ

(xn − xn+1) = xµ − xν ≤ 1.

Substituting these observations in (3.88) shows that∣∣∣∣∣
ν∑

n=µ

cnx
n

∣∣∣∣∣ ≤ ε
ν−1∑
n=µ

∣∣xn+1 − xn
∣∣+ ε|x|µ + ε|x|ν ≤ 3ε,

so the partial sums of the series
∑∞
n=0 cnx

n are a uniformly Cauchy sequence
in the interval [0, 1] hence the series converges uniformly in that interval and
therefore its sum is continuous in that interval. That suffices for the proof.

For a complex power series
∑∞
n=0 cnz

n with the radius of convergence R the
preceding theorem can be applied to the restriction of that power series to a
straight line segment from the origin in the direction of a complex number ζ
with |ζ| = 1, that is, to the series

∑∞
n=0 cnζ

n rn viewed as a power series in
the real variable r. If that power series converges at the end point r = R then
by the preceding theorem f(ζR) = limr→R f(ζr) ; in that sense the sum f(z)
converges to its boundary value along each radius of the circle of convergence.
That does not imply that the function f(z) actually converges to its boundary
value as the point z approaches the boundary point ζ in any other way; the
situation is rather more complicated, and is examined rather extensively in
the more detailed study of holomorphic functions. On the other hand if a real
power series converges in an interval −R < x < R then its sum is a continuously



166 CHAPTER 3. MAPPINGS

differentiable function in that interval, and its derivative is given by a power
series that converges in the same interval.

Theorem 3.55 If f(x) =
∑∞
n=0 cnx

n in the interval −R < x < R then f(x) is
a differentiable function in that interval and its derivative has the power series
expansion

(3.89) f ′(x) =

∞∑
n=1

n cnx
n−1 for −R < x < R

in which

(3.90) cn = f (n)(0)/n! for all n.

Proof: The individual terms cnx
n in the power series can be differentiated, and

their derivatives can be taken to define the formal power series

(3.91)

∞∑
n=1

ncnx
n−1 =

∞∑
n=0

(n+ 1)cn+1x
n.

Since the original power series converges at the point x = r for any value
r ∈ (0, R) it follows that limn→∞ |cn|rn = 0 hence that |cn|rn < C for some
constant C > 0 and all n. Then for any value r1 ∈ (0, r)

(3.92) (n+ 1)|cn+1|rn1 =
1

r
(n+ 1)|cn+1|rn+1

(r1

r

)n
≤ 1

r
C(n+ 1)εn

where ε = r1/r < 1. The power series
∑∞
n=0

1
rC(n+ 1)εn converges by the ratio

test, since

lim
n→∞

(n+ 2)εn+1

(n+ 1)εn
= lim
n→∞

n+ 2

n+ 1
ε = ε < 1.

In view of (3.92) the comparison test shows that the power series (3.91) also
converges at x = r1, hence it converges uniformly in the interval (−r1, r1) . It
then follows from Theorem 3.39 that this series converges to the derivative f ′(x)
of the function f(x). That is the case for any r1 < R, so the function f(x) is
differentiable in the full interval (−R,R) and its derivative has the power series
expansion (3.89). It is easy to see by induction on k that

(3.93) f (k)(x) =

∞∑
n=k

n(n− 1) · · · (n− k + 1) cnx
n−k for any k ≥ 1.

Indeed (3.89) is the case k = 1; and applying the preceding theorem to the series
(3.93) shows that

f (k+1)(x) =

∞∑
n=k+1

n(n− 1) · · · (n− k + 1)(n− k) cnx
n−k−1,

which is equation (3.93) for the case k+ 1. Setting x = 0 in (3.93) yields (3.90),
and that suffices for the proof.
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Corollary 3.56 If f(x) =
∑∞
n=0 cnx

n in the interval −R < x < R then f(x)
is a C∞ function in that interval.

Proof: The preceding theorem shows that the derivative of any function f(x)
given by a power series is again a differentiable function given by a power series;
the theorem can be applied to the derivative, showing that it too is a differ-
entiable function given by a power series, and by induction it follows that the
function f(x) has derivatives of all orders. That suffices for the proof.

Any C∞ function f(x) has a unique formal Taylor series (3.67); but that
power series is not necessarily convergent4 , and even if it is convergent its sum
is not necessarily equal to the function f(x). One of the problems at the end
of this section leads to an example of a nontrivial C∞ function f0(x) for which

f
(n)
0 (0) = 0 for all n ≥ 0; so although the Taylor series converges quite trivially

in that case, its sum is not the function f0(x) but rather the function that is
identically zero. If f(x) is any C∞ function then the function f(x) + f0(x) is
another C∞ function with the same Taylor expansion is f(x). A real analytic
function in a region U was defined earlier as a C∞ function in U that is equal
to its Taylor series in a neighborhood of each point of U . The sum of any
convergent power series in a region U is actually a real analytic function in U ,
as a consequence of the following observation.

Theorem 3.57 If f(x) =
∑∞
n=0 cnx

n in the interval −R < x < R then for any
point a ∈ (−R,R) the function f(a+ x) has a power series expansion

(3.94) f(a+ x) =

∞∑
n=0

bnx
n where bn = f (n)(a)/n! ;

and this power series converges absolutely in the interval |x| < R− |a|.

Proof: The function f(a+ x) has the power series expansion

(3.95) f(a+ x) =

∞∑
n=0

cn(a+ x)n,

and this power series converges absolutely in the region |a+x| < R hence in the
interval |x| < R− |a|. For values a > 0, x > 0 the corresponding power series

(3.96) f̃(x) =

∞∑
n=0

|cn|(a+ x)n

is a convergent series of non negative numbers; and when the binomial expansion

|cn|(a+ x)n =

n∑
m=0

|cn|
(
n
m

)
an−mxm,

4A Theorem of Émile Borel, in “Sur quelques points de la théorie des functions”, Ann.
Sci. L’École Norm Sup., vol. 12 (1895), pp 9 - 55, asserts that for any real sequence cν there
is a C∞ function f(x) for which f (ν)(0) = cνν!; so any power series is the Taylor series of
some C∞ function at the origin.



168 CHAPTER 3. MAPPINGS

which is a finite sum of non negative numbers, is substituted into the series
(3.96) the effect is that of replacing each of the non negative terms in the
convergent series by a finite sum of non negative terms, so the resulting series
is a convergent series

f̃(x) =

∞∑
n=0

n∑
m=0

|cn|
(
n
m

)
an−mxm

(3.97)

= |c0|
(

0
0

)
+ |c1|

(
1
0

)
a+ |c1|

(
1
0

)
x+ |c2|

(
2
0

)
a2 + |c2|

(
2
1

)
ax+ |c2|

(
2
2

)
x2

+ · · ·

of non negative terms. It follows that the corresponding series

f(a+ x) =

∞∑
n=0

n∑
m=0

cn

(
n
m

)
an−mxm

(3.98)

= c0

(
0
0

)
+ c1

(
1
0

)
a+ c1

(
1
0

)
x+ c2

(
2
0

)
a2 + c2

(
2
1

)
ax+ c2

(
2
2

)
x2

+ · · · ,

is an absolutely convergent series. This can be viewed as an absolutely con-

vergent iterated sum of a double series, since the binomial coefficients

(
n
m

)
vanish for n < m; and since by Theorem 3.47 (ii) the order of summation of an
absolutely convergent double series can be reversed without changing the sum
it follows that

f(a+ x) =

∞∑
m=0

∞∑
n=m

cn

(
n
m

)
an−mxm =

∞∑
m=0

bnx
n

where

bm =

∞∑
n=m

cn

(
n
m

)
an−m,

and that suffices for the proof.

Some of the most common functions in everyday use are defined by power
series expansions so are real analytic functions; some examples will indicate the
role that the power series expansions have in examining these functions. Con-
sider first the problem of finding differentiable functions h(x) of a real variable
x, if there are any, that are solutions of the differential equation h′(x) = h(x),
one of the most basic of differential equations. If there is such a function and
it is normalized by requiring that h(0) = 1 then all its derivatives also satisfy
h(n)(0) = 1 so it has the Taylor series h(x) ∼

∑∞
n=0 x

n/n! at the origin. It
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follows immediately from the ratio test that this power series has a radius of
convergence ∞, hence it converges to a C∞ function

(3.99) e(x) =

∞∑
n=0

1

n!
xn for all x ∈ R.

By Theorem 3.55 this power series can be differentiated term-by-term; and its
derivative is easily seen to be the same power series, so e′(x) = e(x). Thus
the function e(x) defined by the power series expansion (3.99) is a C∞ function
on R that satisfies the differential equation e′(x) = e(x) and the normalizing
condition that e(0) = 1; it is called the exponential function.

It follows from the series expansion (3.99) that e(x) ≥ 1 + x for all points
x ≥ 0, so in particular e(x) > 0 for all points x > 0. The function f(x) =
e(x + a)e(−x) is differentiable and clearly f ′(x) = 0, so actually f(x) is a
constant; since f(−a) = e(a) it follows that e(x+ a)e(−x) = f(−a) = e(a), and
in particular for a = 0 since e(0) = 1

(3.100) e(x)e(−x) = 1 for all x ∈ R

so

(3.101) e(x) > 0 and e(x)−1 = e(−x) for all x ∈ R.

Then from the explicit form of the function f(x) for a = y and the preceding
equation it follows that

(3.102) e(x+ y) = e(x)e(y) for all x, y ∈ R.

A simple consequence of the preceding observations is that e(x) is the only
differentiable function on R1 satisfying e′(x) = e(x) and e(0) = 1. Indeed if
f(x) is a differentiable function on R such that f ′(x) = f(x) and and f(0) =
1 then g(x) = f(x)e(−x) is also a differentiable function on R and g′(x) =
f ′(x)e(−x)−f(x)e′(−x) = 0 for all x ∈ R, so g(x) = c is a constant; in particular
c = g(0) = f(0)e(0) = 1 hence f(x) = g(x). Moreover since e(x) > 1 for x > 0
it follows from (3.101) that e(x) < 1 for x < 0; and since e′(x) = e(x) > 0 the
exponential function is a monotonic increasing function on R, as sketched in
the accompanying Figure 3.1. All the terms in the series expansion (3.99) are
positive so for n > 0 and x > 0

(3.103)
e(x)

xn
≥ xn+1

xn(n+ 1)!
=

x

(n+ 1)!
hence lim

x→∞
e(x)/xn =∞

showing that the function e(x) increases faster than any power of x as x tends
to ∞; equivalently of course limx→∞ xne(x)−1 = 0, showing that the function
e(−x) = e(x)−1 tends to 0 faster than any power x−n as x tends to ∞.

The value e(1) is an important natural invariant, usually denoted just by
e; its explicit value can be calculated approximately, to any desired degree of
accuracy, from the power series expansion (3.99), so that for instance

(3.104) e = 2.71828 18284 59045 23536 02874 . . .
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Figure 3.1: The exponential function

with accuracy up to 25 decimal places5. Equation (3.101) implies that e(n) =
e(1 + 1 + · · ·+ 1) = e(1)n = en for any positive integer n; and further it implies

that e(1) = e
(

1
n + 1

n + · · ·+ 1
n

)
= e( 1

n )n so e( 1
n ) = e

1
n , the positive n-th root of

the real number e; therefore actually e(r) = er for any rational number r. Any
real number α can be written as a limit α = limn→∞ rn of rational numbers
rn, and by the continuity of the exponential function e(α) = limn→∞ e(rn) =
limn→∞ ern ; for this reason the the exponential function is customarily denoted
by ex = e(x) for any real number x ∈ R. For some purposes, such as considering
the composition of functions, it may be clearer to use the notation e(x) though;
so both will be used as convenient.

Since the continuous function e(x) is monotonically strictly increasing while
limx→−∞ e(x) = 0 and limx→∞ e(x) =∞ it follows that the mapping x −→ e(x)
is a homeomorphism e : R −→ R+, where R+ = { x ∈ R | x > 0 }; consequently
that mapping has a well defined inverse mapping R+ −→ R, which is called the
logarithm function and is usually denoted by log y. Thus the continuous real-
valued function log y defined for all y ∈ R+ is characterized by the conditions
that

(3.105) log ex = x for all x ∈ R and elog y = y for all y > 0;

and log 1 = 0 since e(0) = 1. If e(x) = y and e(x + h) = y + k then log y = x
and log(y + k) = x+ h hence

log(y + k)− log y

k
=

h

e(x+ h)− e(x)
;

and since by continuity h tends to 0 as k tends to 0 it follows in the limit that
the function log y is differentiable and

(3.106) log′ y =
1

e′(x)
=

1

e(x)
=

1

y
= y−1 for all y > 0.

5See the On-Line Encyclopedia of Integer Sequences (OEIS), also cited as Sloane’s Ency-
clopedia of Integer Sequences, number A001113, for more extensive approximations.
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Of course if it is assumed or proved that the function log y is differentiable the
preceding result can be obtained just by differentiating the second identity in
(3.105). Equation (3.106) shows that log′ y is a differentiable function, indeed
actually is a C∞ function, hence so is the function log y itself.

It is usually convenient at least notationally to discuss the local behavior of
functions at the origin; so for the local behavior of the logarithm function it
is customary to focus on the function log(1 + x), which is a C∞ function in a
neighborhood of the origin. Applying the chain rule to (3.106) shows that

(3.107)
d

dy
log(1 + y) = (1 + y)−1;

and differentiating this identity further it follows by the obvious induction that

(3.108)
dn

dyn
log(1 + y) = (−1)n−1 (n− 1)!

(1 + y)n
,

hence there results the Taylor series

(3.109) log(1 + y) ∼
∞∑
n=1

(−1)n−1 1

n
yn = y − 1

2
y2 +

1

3
y3 − · · · .

This power series converges in the interval −1 < y ≤ 1 and diverges for y = −1,
by comparison with the alternating harmonic series (3.73) and the harmonic
series (3.75), so its radius of convergence is R = 1; and the derivative of this
power series in the interval −1 < y < 1 is

d

dy

∞∑
n=1

(−1)n−1 1

n
yn =

∞∑
n=1

(−1)n−1yn−1 =
1

1 + y
,

which is summed as a geometric series. Thus the power series appearing in
(3.109) and the function log(1 + y) have the same derivative, and consequently
the power series appearing in (3.109) is equal to the function log(1 + y) near
the origin, aside from an additive constant. The power series and the function
log(1 + y) both take the value 0 when y = 0 and therefore the power series
actually is equal to log(1 + y) so that

(3.110) log(1 + y) =
∞∑
n=1

(−1)n−1 1

n
yn = y − 1

2
y2 +

1

3
y3 − · · · for |y| < 1.

Since the power series converges at y = 1 it follows from Abel’s Theorem,
Theorem 3.54, that log 2 = limy→1 log(1 + y) is the value of the power series at
y = 1, yielding one of the classical formulas

(3.111) log 2 = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · .

As for the logarithm function itself, if e(h) = x and e(k) = y then h = log x and
k = log y so e(h+ k) = e(h)e(k) = xy hence

(3.112) log(xy) = log x+ log y for all x, y > 0.
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From this it follows by induction on n that log xn = n log x, and upon setting
y = xn it then follows that log y1/n = 1

n log y; altogether then log xα = α log x
for any rational α > 0 and any x > 0, and consequently xα = e

(
log xα

)
=

e
(
α log x

)
for any x > 0 and any rational α > 0, which also holds for rational

α < 0 by noting that log(x−1) = − log x for x > 0 as a consequence of (3.112).
In view of this it is customary to define real powers of positive real numbers by

(3.113) xy = e
(
y log x

)
= ey log x for all x, y ∈ R, x > 0.

Rational powers of positive rationals can be defined by the algebraic operations
of powers and roots, so since any real numbers x, y ∈ R can be expressed as
limits x = limm→∞ αm and y = limn→∞ βn for rational numbers αm, βn then by
continuity xy = limm,n→∞(αm)βn so the formal definition (3.113) is compatible
with the usual notion for rational numbers. The function of two variables xy

is a differentiable function in both variables, as the composition xy = e(y log x)
of the differentiable exponential and logarithm functions; and it follows in a
straightforward manner from the chain rule for differentiation that

(3.114)
∂

∂x
xy = yxy−1 and

∂

∂y
xy = xy log x.

As an occasionally useful application of the relation between the exponential
and logarithm functions, the exponential function can be described alternatively
by

(3.115) ex = lim
n→∞

(
1 +

x

n

)n
for all x ∈ R.

Indeed limn→∞
(
1 + x

n

)n
= limn→∞ e

(
n log(1 + x

n )
)

= e
(
limn→∞ n log(1 + x

n )
)

since the exponential is a continuous function; and if t = 1/n then by L’Hôpital’s
rule

lim
n→∞

n log
(

1 +
x

n

)
= lim
t→0

log(1 + tx)

t
= lim
t→0

x

(1 + tx)
= x,

where the limit exists for all x ∈ R.
The function ex is defined by a Taylor series that converges absolutely for all

real values of the variable x. The series also converges absolutely for all complex
values z of the variable, since |z| ∈ R, so by Theorem 3.43 it converges for all
z ∈ C, thus providing an extension of the exponential function to a complex
valued function ez of the complex variable z ∈ C. In the identity ex+y = ex ey

the partial sums of the Taylor series of the two sides are equal polynomials so
they have the same value when the variables x, y take complex values; therefore

(3.116) ew+z = ew ez for all w, z ∈ C.

When restricted to complex numbers of the form z = it for real values t, the
real part of eit is a well-defined function usually denoted by cos t and called
the cosine function, while the imaginary part of eit is a well-defined function
usually denoted by sin t and called the sine function; thus

(3.117) eit = cos t+ i sin t.
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When the odd and even terms in the Taylor series (3.99) are separated it follows
that

(3.118) eit =

∞∑
n=0

(it)n

n!
=

∞∑
k=0

(it)2k

(2k)!
+

∞∑
k=0

(it)2k+1

(2k + 1)!

and consequently that

(3.119) cos t =

∞∑
k=0

(−1)kt2k

(2k)!
= 1− t2

2!
+
t4

4!
− t6

6!
+ · · ·

and

(3.120) sin t =

∞∑
k=0

(−1)kt2k+1

(2k + 1)!
= t− t3

3!
+
t5

5!
− t7

7!
+ · · · .

Upon differentiating the preceding two Taylor series or alternatively differenti-
ating (3.117) it follows readily that

(3.121) cos′ t = − sin t and sin′ t = cos t.

These functions are differentiable in turn, so actually both the sine and cosine
are C∞ functions; and by differentiating again it follows that they satisfy the
differential equations

(3.122) sin′′ t = − sin t and cos′′ t = − cos t.

It is an interesting exercise to show that any C∞ function f(t) that is a solution of
the differential equation f ′′(t) = −f(t) must be of the form f(t) = a sin t+b cos t
for some real constants a, b.

Since the coefficients of the Taylor series of the exponential function are real
numbers it follows that e(it) = e(−it), and consequently |e(it)|2 = e(it)e(it) =
e(it)e(−it) = e(it− it) = 1 so that

(3.123) |eit|2 = sin2 t+ cos2 t = 1 for all t ∈ R;

thus the complex numbers eit for all t ∈ R lie on the unit circle |z| = 1 in the
complex plane, as sketched in Figure 3.2. That identifies the sine and cosine with
the familiar trigonometric interpretations as the lengths of the sides of a right
triangle with hypotenuse of length 1. From the power series (3.119) it follows
that cos 0 = 1 and sin 0 = 0, and from (3.121) it follows that sin′ 0 = cos 0 = 1
so that sin t is an increasing function of t near the origin; geometrically that
means that eit is the point (1, 0) when t = 0 and as t increases the imaginary
part sin t increases hence the real part cos t decreases. That continues until the
first value of t at which cos t = 0 so that eit = (0, 1); that particular value
of t is customarily denoted by π/2, so that eπi/2 = i while sinπ/2 = 1 and
cosπ/2 = 0. Then since ei(t+π/2) = eit eπi/2 = ieit the path traversed by e(it)
for π/2 ≤ t ≤ π is just the product of the path traversed by eit for 0 ≤ t ≤ π/2
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Figure 3.2: e(iy) = c(y) + i s(y)

multiplied by i, so is the next quadrant of the circle in Figure 3.2. Continuing
that argument shows that the point eit traverses the full circle in Figure 3.2 in
the counterclockwise direction as t runs through the interval 0 ≤ t ≤ 2π, so that
e2πi = 1 and consequently

(3.124) ez+2πi = ez e2πi = ez for all z ∈ C,

so as t increases further the point eit continues to traverse the unit circle, once
in each interval of length 2π in the parameter. Thus the exponential function
is a periodic function of the complex variable with the period 2πi, so its real
and imaginary parts satisfy

(3.125) sin(z + 2π) = sin z and cos(z + 2π) = cos z for all z ∈ C.

For an arbitrary complex number z = s + it it follows from the functional
equation (3.116) that es+it = es eit for all s, t ∈ R; thus for any fixed s the point
es+it traverses a circle of radius es > 0 as the paramter t varies on the real line,
while for any fixed t the point es+it traverses a straight line segment from (but
not including) the origin through the point eit on the unit circle and then ever
onwards. The mapping e : z −→ ez for z ∈ C thus describes a mapping from
the complex plane C onto the complement of the origin in the complex plane C,
where the points z + 2πi n for all n ∈ Z have the same image but the otherwise
distinct points have distinct images. The inverse mapping log : C× −→ C, the
natural extension of the logarithm to a complex valued function of a complex
variable, then is a multiple-valued mapping from the complement of the origin
in C onto the entire complex plane C, which is locally single-valued but with
the property that when a point z ∈ C× continues along a path that encircles the
origin once in a counterclockwise direction and then returns to the same location
the image log z changes to log z + 2πi. For many purposes it is convenient to
describe points in the complex plane in the form z = es+it for real numbers s, t,
the analogue of polar coordinates in the plane; traditionally |z| = es is called



3.3. SERIES 175

the modulus of the complex number z = es+it and t is called the argument
of z and often is viewed as an angle. With this notation the operation of raising
the complex number z = es+it to a power zn = ens+int for some integer n ∈ Z
is to replace the modulus |z| = es by its n-th power |z|n = ens and to replace
the argument t by its n-th multiple nt. Thus a circle |z| = r centered at the
origin is replaced by the circle |z| = rn and the argument of points in the circle
is replaced by n times the argument, so the mapping z −→ zn maps each circle
centered at the orign n times to its image. Thus any point z 6= 0 is the image
of n distinct points under the mapping z −→ zn, while of course the origin is
mapped to itself; so every nonzero complex number has precisely n distinct n-th
roots.

Another power series expansion that arises quite commonly merits consid-
eration here, as another basic function in analysis. For any real number α the
binomial function

(3.126) (1 + t)α = eα log(1+t)

is a well defined function of the variable t ∈ R so long as 1 + t > 0, hence
in the interval −1 < t < ∞. From the chain rule and the formulas for the
derivatives of the exponential and logarithm function it follows readily that
d
dt (1 + t)α = α(1 + t)α−1; iterating this formula shows by induction on n that

(3.127)
dn

dtn
(1 + t)α = α(α− 1) · · · (α− n+ 1)(1 + t)α−n for all n ≥ 1.

The Taylor series associated to this function hence is given by

(3.128) (1 + t)α ∼
∞∑
n=0

α(α− 1) · · · (α− n+ 1)

n!
tn.

The coefficients in this Taylor series are called the binomial coefficients and
usually denoted by

(3.129)

(
α

n

)
=
α(α− 1) · · · (α− n+ 1)

n!
for any real α;

if α is an integer this reduces to the usual binomial coefficient

(3.130)

(
α

n

)
=

α!

(α− n)!n!
.

With this notation the Taylor series (3.128) can be written equivalently as

(3.131) (1 + t)α ∼
∞∑
n=0

(
α

n

)
tn.

If α is a non-negative integer the function (3.126) is a polynomial, as is the
Taylor series since the binomial coefficients are zero whenever n ≥ α + 1; and
the Taylor series is a classical polynomial identity. If α is not a positive integer
however the binomial series is an infinite series; and that raises the question of
its radius of convergence.
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Theorem 3.58 For any real number α the binomial series (3.128) converges
absolutely in the open interval (−1, 1); and if α > 0 it converges absolutely and
uniformly in the closed interval [−1, 1] as well.

Proof: Setting cn =
(
α
n

)
for convenience, it follows directly from the definition

of the binomial coefficients in (3.129) that∣∣∣∣cn+1t
n+1

cntn

∣∣∣∣ =
|α− n|
n+ 1

|t|,

and since limn→∞
|α−n|
n+1 = 1 for all real α it follows from the ratio test that the

series converges absolutely for −1 < t < 1. For the special case that |t| = 1 and
α > 0 it follows from the preceding equation that

(3.132)

∣∣∣∣cn+1

cn

∣∣∣∣ =
n− α
n+ 1

if n > α

hence

lim
n→∞

n

(
1− n− α

n+ 1

)
= lim
n→∞

n(1 + α)

n+ 1
= 1 + α > 1

so by Raabe’s test the series converges at t = ±1; and by Abel’s Theorem,
Theorem 3.54, it converges uniformly in the closed interval [−1.1], which suffices
for the proof.

It follows from the preceding theorem that for all real α the Taylor series
(3.131) converges to some function f(t) for |t| < 1; but that is not enough yet
to show that f(t) = (1 + t)α. However substituting the result that

(n+ 1)

(
α

n+ 1

)
= (n+ 1)

α(α− 1) · · · (α− n)

1 · 2 · · · · · · (n+ 1)
= (α− n)

(
α

n

)
,

into the derivative of the power series expansion of f(t) shows that

f ′(t) =

∞∑
n=1

n

(
α

n

)
tn−1 =

∞∑
n=0

(n+1)

(
α

n+ 1

)
tn =

∞∑
n=0

(α−n)

(
α

n

)
tn = αf(t)−tf ′(t)

so that (1 + t)f ′(t) = αf(t) and consequently

d

dt
log f(t) =

f ′(t)

f(t)
=

α

1 + t
= α

d

dt
log(1 + t) =

d

dt
log(1 + t)α

which implies that f(t) = c(1 + t)α for some constant c; and setting t = 0 shows
that 1 = c, so altogether there is the power series expansion

(3.133) (1 + t)α =

∞∑
n=0

(
α

n

)
tn for − 1 < t < 1,

and if α > 0 it converges uniformly in the closed interval [−1, 1].
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For an interesting application of the preceding observations, the sine function
sinx is a monotonically strictly increasing function in the interval (−π2 ,

π
2 ),

varying from sin(−π/2) = −1 to sin(π/2) = +1. It follows that it has a well
defined inverse function f(x) in the interval (−1,+1), for which f

(
sinx

)
= x

and f(0) = 0. The Inverse Mapping Theorem, to be discussed in Section 5.1,
shows that this function f also is differentiable; it then follows from the chain
rule that f ′

(
sinx

)
cosx = 1, so setting sinx = t since cos2 x = 1 − sin2 x it

follows that

(3.134) f ′(t) = (1− t2)−1/2 and f(0) = 0.

Therefore by the binomial expansion

f ′(t) =

∞∑
n=0

(
− 1

2

n

)
(−t2)n.

and since f(0) = 0 the function f(t) itself is given by

f(t) =

∞∑
n=0

(−1)n
(
− 1

2

n

)
t2n+1

2n+ 1
(3.135)

= t+
1

2
· t

3

3
+

1 · 3
2 · 4

· t
5

5
+

1 · 3 · 5
2 · 4 · 6

· t
7

7
+ · · · .

This function is called the arcsine function, and is denoted either by arcsin t or
sin−1 t. This series also converges at t = 1 by Raabe’s test, and since arcsin 1 =
π
2 an application of Abel’s Theorem, Theorem 3.54, yields the amusing formula

(3.136)
π

2
= 1 +

1

2
· 1

3
+

1 · 3
2 · 4

· 1

5
+

1 · 3 · 5
2 · 4 · 6

· 1

7
+ · · · .

There are of course many other applications of the binomial series.

There are a number of representations of functions by series other than power
series, and these other representations also play important roles in mathematics
and its applications. One example is the generalized harmonic series.

Theorem 3.59 The generalized harmonic series
∑∞
n=1

1
nα for a real number

α converges if α > 1 and diverges if α ≤ 1. The generalized harmonic series∑∞
n=1

1
nz for a complex number z = x + iy ∈ C is absolutely convergent for

x > 1 and divergent if x < 1.

Proof: When α = 1 the generalized harmonic series reduces to the usual har-
monic series, which diverges as in the discussion on page 155; and since 1

nα >
1
n

if α < 1 the generalized harmonic series diverges for α < 1 by the comparison
test. If cn = 1

nα then setting t = 1
n and applying l’Hopital’s rule shows that

lim
n→∞

n

(
1− cn+1

cn

)
= lim
n→∞

n
(n+ 1)α − nα

(n+ 1)α
= lim
t→0

(1 + t)α − 1

t(1 + t)α

= lim
t→0

α(1 + t)α−1

(1 + t)α + tα(1 + t)α−1
= α;
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so if α > 1 the series is absolutely convergent by Raabe’s test, and that suffices
for the proof.

The power series expansion of functions is immensely useful, but holds only
for real analytic functions. However any continuous function can be approx-
imated arbitrarily closely by polynomials, although the resulting sequence of
approximating polynomials does not have the form of a power series. The basic
result for functions of a real variable was established by Weierstrass, and an ex-
tensive generalization was proved by Marshall Stone. The following very simple
example of Weierstrass’s theorem is basic to the general case and illustrates the
sort of result that is possible.

Theorem 3.60 For any ε > 0 there is a polynomial p(x) in the variable x ∈ R
such that

∣∣∣p(x)− |x|
∣∣∣ < ε whenever |x| ≤M .

Proof: By Theorem 3.58 the binomial series f(x) = (1 − x)1/2 =
∑∞
n=0 cnx

n

for the positive square root converges absolutely and uniformly in [−1, 1], so for
any ε > 0 there is a suitable partial sum that is a polynomial p(x) for which∣∣∣p(x)− (1−x)1/2

∣∣∣ < ε whenever |x| ≤ 1. Upon setting x = 1− t2 it follows that∣∣∣p(1− t2)− (t2)1/2
∣∣∣ < ε for |t| ≤ 1.

For the positive square root (t2)1/2 = |t| so the preceding equation yields the
desired polynomial approximation in the interval |t| ≤ 1; and setting t = x/M
and replacing ε by Mε provides the desired polynomial approximation in the
interval |x| ≤M , which suffices for the proof.

To generalize this, following the ideas of Stone, consider the vector space
C(S) of continuous real-valued functions on a compact topological space S. The
functions in C(S) are all bounded on S, so C(S) is a complete normed vector
space under the `∞ norm ‖f‖∞ = supx∈S |f(x)|, since convergence in this norm
is just uniform convergence on S. Since this is the only norm that will be
considered here, the notation will be simplified by denoting this norm just by
‖f‖. A vector subspace A ⊂ C(S) is called a function algebra if it includes
the constant functions and the product fg of any two functions f, g ∈ A. For
example if S = [0, 1] ⊂ R the set of all real polynomials is a function algebra. A
function algebra is an algebra, as defined in Section 1.3, where the operations
of addition and multiplication are the ordinary sum and product of functions;
but it is not necessarily a finite-dimensional algebra. The closure of the vector
subspace A ⊂ C(S) of the normed space is a well defined closed vector subspace
A ⊂ C(S); of course it also contains the constant functions, and it is easy to
see that it includes the product fg of any two functions f, g ∈ A, so it too is
a function algebra on the space S. The quite surprising result is that if it is
assumed that the algebra A separates points on S, meaning that for any two
distinct points a, b ∈ S there is a function f ∈ A such that f(a) 6= f(b), then
actually A = C(S).
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Theorem 3.61 (Stone-Weierstrass Theorem) If A ⊂ C(S) is a real func-
tion algebra on a compact topological space S and A separates points on S then
A = C(S).

Proof: A preliminary observation is that if f ∈ A then |f | ∈ A as well. To
demonstrate this let M = ‖f‖ and note that by Theorem 3.60 there is a poly-
nomial p(t) such that

∣∣ p(t)− |t| ∣∣ < ε whenever |t| ≤M . Since |f(x)| ≤M for

any point x ∈ S it follows that
∣∣∣ p(f(x)

)
− |f(x)|

∣∣∣ < ε for all x ∈ S, or equiva-

lently that ‖p(f) − |f | ‖ < ε. By the definition of an algebra clearly p(f) ∈ A
whenever f ∈ A; thus |f | ∈ C(S) is the limit of points in the closed subspace
A ⊂ C(S) hence |f | ∈ A.

If f, g ∈ A then f±g ∈ A and it follows from the preceding observation that
|f ± g| ∈ A as well; so since the constant function 1/2 ∈ A it further follows
that

max(f, g) =
1

2
(f + g) +

1

2
|f − g| ∈ A, and

min(f, g) =
1

2
(f + g)− 1

2
|f − g| ∈ A.

If c1, c2 are any two distinct points in S by assumption there is a function g ∈ A
for which g(c1) 6= g(c2); and for any specified real numbers a1, a2 the function
f defined by

f(x) =
g(x)− g(c2)

g(c1)− g(c2)
a1 +

g(x)− g(c1)

g(c2)− g(c1)
a2

clearly belongs to the algera A and satisfies f(c1) = a1 and f(c2) = a2.
With these preliminary observations out of the way, consider a continuous

function h ∈ C(S) and a real number ε > 0. First for any two points a, b ∈ S
there is a function fa,b ∈ A such that fa,b(a) = h(a) and fa,b(b) = h(b), as in the
preceding paragraph if a 6= b and trivially if a = b. Since fa,b(b) = h(b) > h(b)−ε
then by continuity fa,b(x) > h(x)− ε for all points x in a sufficiently small open
neighborhood Ub of the point b ∈ S. The same construction can be carried out
for any point b ∈ S, and the open neighborhoods Ub in this construction form
an open covering of S. Since S is compact finitely many Ub1 , . . . Ubn of these
neighborhoods will serve to cover S. Then define a function fa(x) by

fa = max
(
fa,b1 , . . . fa,bn

)
;

this is a function in A, also as observed in the preceding paragraph, and it
satisfies fa(a) = h(a) and fa(x) > h(x) − ε for all points x ∈ S. As in the
preceding argument since fa(a) = h(a) < h(a) + ε it follows by continuity that
fa(x) < h(x) + ε for all points x in a sufficiently small open neighborhood Va
of the point a. The same construction can be carried out for any point a ∈ S,
and the open neighborhoods Va in this construction form an open covering of S.
Since S is compact finitely many Vc1 , . . . Vcm of these neighborhoods will serve
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to cover S. Then define a function f by

f = min
(
fc1 , . . . , fcm

)
;

this is a function in A, as observed in the preceding paragraph, and by con-
struction f(x) > h(x) − ε and f(x) < h(x) + ε for any points x ∈ S, so that
‖f − h‖ < ε. That is the case for any ε > 0, so that h is a limit of functions
f ∈ A and consequently h ∈ A, thereby concluding the proof.

The extension of the preceding theorem to algebras of complex valued func-
tions requires an additional assumption, that the algebra is self-adjoint, mean-
ing that whenever f belongs to the algebra then so does its complex conjugate
f .

Corollary 3.62 If A ⊂ C(S) is a self-adjoint complex function algebra on a
compact topological space S and A separates points on S then A = C(S).

Proof: Let B be the set of real-valued functions in the algebra A. If f ∈ A and
f = u+ i v then 2u = f + f ∈ A, since A is self-adjoint, hence the real part of
f is a function u ∈ B. The real function algebra B also separates points, since
for any distinct points a, b ∈ S there is a function f ∈ A such that f(a) = 0
and f(b) = 1, and consequently if f = u + i v then u ∈ B and u(a) = 0 while
u(b) = 1. Thus the algebra B satisfies the hypothesis of the preceding theorem so
its closure is the algebra of real-valued continuous functions on S. In particular
if f = u+ i v is any continuous complex-valued function on S then u, v ∈ B ⊂ A
and consequently f = u+ i v ∈ A, which suffices for the proof.

Since the algebra of real-valued polynomials in any compact subset S ⊂ Rn
clearly separates points, it follows from the Stone-Weierstrass Theorem that
for any continuous function f on a compact subset S ⊂ Rn and any ε > 0
there is a polynomial p(x) such that |f(x) − p(x)| < ε for all x ∈ S. The
Stone-Weierstrass theorem however does not imply that these approximating
polynomials for successively smaller values of ε can be arranged as the partial
sums of an infinite sequence of polynomials that sum to the function f(x) on
the set S, much as in the case of power series; that caution should be kept in
mind.

Another very important application of the Stone-Weierstrass theorem is to
periodic functions. A function f on the real line is periodic with period 1 if
f(x + 1) = f(x) for all x ∈ R. The function e2πix is an example of a periodic
function with period 1, as are its real and imaginary parts cos 2πx and sin 2πx.
The function e2πix maps the real line R to the unit circle S1 in the complex plane
in such a way that the interval [0, 1] is mapped onto the unit circle S1, with the
end points 0 and 1 in R both mapped to the same point 1 ∈ S1 on the unit circle
and the open subset (0, 1) being mapped bijectively to the complement S1 ∼ {1}
of the point 1 on the unit circle; thus this mapping identifies the quotient R/ �
of the real axis by the equivalence relation �, where x � y whenever x− y ∈ Z,
with a circle. The unit circle is a compact space, with the induced topology
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from that of the complex plane, so the Stone-Weierstrass can be applied to
the normed vector space C(S1) of continuous functions on the unit circle, or
equivalently, to the normed vector space of continuous periodic functions on
the real line R. The single function e2πix separates points on the circle, hence
of course so does the complex algebra generated by this function, the algebra
A consisting of all finite linear combinations of the functions e2πinx for n ≥ 0.
This algebra is not self-adjoint, since e2πinx = e2πi(−n)x; but the algebra A∗
consisting of all finite linear combinations of the functions e2πinx for n ∈ Z is a
self-adjoint algebra, which of course also separates points on S1. It then follows
from the Stone-Weierstrass theorem that for any continuous periodic function
f(x) on R with the period 1 and for any ε > 0 there are complex constants
cn ∈ C such that

(3.137)

∣∣∣∣∣f(x)−
N∑

n=−N
cne

2πinx

∣∣∣∣∣ < ε.

These are the finite Fourier series. The Stone-Weierstrass theorem does not
ensure though that these finite Fourier series for increasingly small ε can be
constructed to have the same initial terms, so that the function f(x) is the sum
of an infinite series of the form (3.137); that is quite a different matter and will
not be pursued further here.
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PROBLEMS, GROUP I:

(1) Either determine the following limits, or show that they do not exist:

(i) lim
x→0

ex − cosx

sinx
. (ii) lim

n→∞

1− e1/n

sin(1/n)
. (iii) lim

n→∞

1− cos(1/n)

e1/n2 − 1
.

(2) Determine which of the following series converge:

(i)

∞∑
n=1

n

2n
, (ii)

∞∑
n=1

1√
n(n+ 1)

, (iii)

∞∑
n=2

1

(log n)(logn)
, (iv)

∞∑
n=1

nn

3nn!
.

(3) Find the radius of convergence of each of the following complex power series:

(i)

∞∑
n=2

1

log n
zn, (ii)

∞∑
n=1

2n

n!
zn, (iii)

∞∑
n=1

2n

n2
zn, (iv)

∞∑
n=1

n!

2n2 z
n.

(4) Find explicit expressions for the sums of the following series in the regions
in which they converge:

(i)

∞∑
n=1

n2xn, (ii)

∞∑
n=1

1

n
xn, (iii)

∞∑
n=1

n2e−nx

(5) Show that the series (3.136) converges.

(6) Show that if a power series has integer coefficients, infinitely many of which
are nonzero, then its radius of convergence is at most 1.

(7) Find an example of two convergent real series
∑
xk and

∑
yk such that∑

xkykis divergent. Is there such an example if at least one of the series
∑
xk

or
∑
yk is absolutely convergent? Why?

PROBLEMS, GROUP II:

(8). If cn ≥ 0 and the series
∑∞
n=1 cn converges does the series

∑∞
n=1 c

2
n neces-

sarily converge? Does the series
∑∞
n=1

√
cn necessarily converge?

(9) Find the subsets of R on which sequences (i) and (ii) and series (iii) converge,
and the subsets on which the convergence is uniform:

(i)
x2n

1 + x2
, (ii)

x2

1 + nx4
, (iii)

∞∑
n=1

x2

(1 + x2)n
.
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(10) (i) Show that there are no real numbers z for which ez = z, but that there
are complex numbers z with that property.
(ii) For what complex numbers z ∈ C can the value of log z be chosen to be a
negative real number?

(11) If the power series
∑∞
n=1 cnx

n has the radius of convergence R what can
you say about the radius of convergence of each of the following power series?

(i)
∑∞
n=1 cnx

2n, (ii)
∑∞
n=1 c2nx

n, (iii)
∑∞
n=1 cnx

n2

.

(12) By the method used in this book to find the Taylor series of the arc-
sine function, find the Taylor series at the origin of the arctan function, the
inverse of the function tanx = sin x

cos x ; and by using that expansion show that
π
4 = 1− 1

3 + 1
5 −

1
7 + · · · .

(13) Let φ(x) =

{
0 for x = 0

e−1/x2

for x 6= 0
and ψ(x) =

{
0 for x ≤ 0

e−1/x2

for x > 0.
(i) Find φ′(0).
(ii) Find the Taylor series of f(x) = sinx+ ψ(x) at the origin.
(iii) Does the Taylor series of f(x) converge to f(x)?

(14) Show that any continuous real valued function f(x) in the closed inter-
val [−R,R] ⊂ R can be approximated within any chosen ε > 0 by a function of

the form h(x) =
∑N
n=0 cne

νnx where cn ∈ R and νn ∈ Z, νn ≥ 0.

(15) Show that if f(x) =
∑∞
n=0 cnx

n is a real power series that converges in
the interval (−1, 1), and if f(xn) = 0 for an infinite sequence of distinct points
xn > 0 such that limn→∞ xn = 0, then f(x) = 0 in (−1, 1).

(16) Consider the Taylor series x
ex−1 =

∑∞
n=0

1
n!Bnx

n where Bn are defined
by this expansion. (The numbers Bn, called the Bernoulli numbers, are fas-
cinating numbers with no simple explicit defining formula but a great many
applications; for example, B14 = 7

6 , B24 = − 236,364,091
2,730 , B26 = 8,553,103

6 .)

(i) By examining the relation (ex − 1)(B0 + B1x + 1
2!B2x

2 + · · · ) = x find ex-
plicitly the first four values B0, B1, B2, B3, and find a recursive formula for the
Bernoulli numbers.
(ii) Show that B2n+1 = 0 for n > 1.

(iii) Show that x cotx =
∑∞
n=0(−1)nB2n

22n

(2n)!x
2n where cot(x) = cos x

sin x .
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Chapter 4

Linear Mappings

4.1 Endomorphisms of Vector Spaces

In Section 1.3 matrices were used to describe linear mappings A : V −→W
between vector spaces V and W over a field F in terms of bases for the two
vector spaces V and W ; two matrices describing the same mapping but in terms
of different bases for V and for W were called equivalent matrices, thereby
introducing a useful and natural equivalence relation among matrices over F .
The Equivalence Theorem, Corollary 1.17, demonstrated that two n×m matri-
ces over F are equivalent if and only if they have the same rank, thereby showing
that the rank of a matrix is the unique invariant classifying the equivalence of
matrices, and obtained normal forms for each equivalence class of matrices.

The special case of linear mappings A : V −→ V from a vector space V to
itself, called endomorphisms of the vector space V , leads to a different and
rather more complicated equivalence relations between matrices. Any endomor-
phism A of course can be described by a matrix in terms of any basis for the
vector space V ; but since the mapping is from the vector space V to itself it is
only natural to use the same basis for V whether it is viewed as the domain or
range of the mapping A. If {ui} is a basis for the n-dimensional vector space
V over a field F then an endomorphism A : V −→ V takes the basis vector uj
to the vector Auj =

∑n
i=1 aijui for some elements aij ∈ F ; so in terms of this

basis the endormorphism is described by the n×n matrix A = {aij}, where for
convenience the same letter customarily is used both for a matrix and for the
linear transformation described by that matrix. If vj is any other basis for the
vector space V then uj =

∑n
i=1 sijvi for a nonsingular matrix S = {sij}, and

185
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conversely vj =
∑n
i=1 ŝijui for the inverse matrix S−1 = {ŝij}. Therefore

Avj = A

(
n∑
i=1

ŝijui

)
=

n∑
i=1

ŝijAui =

n∑
i,k=1

ŝijakiuk =

n∑
i,k,l=1

ŝijakislkvl(4.1)

=

n∑
l=1

bljvl where blj =

n∑
i,k=1

slkakiŝij or B = SAS−1.

Matrices A and B related by B = SAS−1 for a nonsingular matrix S are
said to be similar matrices; this is clearly an equivalence relation between
n × n matrices over the field F . In these terms the matrices representing an
endomorphism of a vector space V in terms of all bases of that vector spaces are
an equivalence class of similar matrices. It is clear that similar n × n matrices
have the same determinant and rank; but two n × n matrices of the same
determinant and rank are not necessarily similar, as will become apparent in
the subsequent discussion.

If T : V −→ V is an endomorphism of a vector space V over a field F , a
nonzero vector v ∈ V is said to be an eigenvector, or alternatively a char-
acteristic vector, of the linear transformation T if Tv = λv for some λ ∈ F ;
the value λ ∈ F is called the eigenvalue, or alternatively the characteristic
value, of the eigenvector v. The set of all eigenvectors for T with the eigen-
value λ, together with the zero vector, form a linear subspace Vλ ⊂ V ; for if
v1,v2 ∈ Vλ it follows that T (v1 + v2) = λ(v1 + v2) and T (cv) = c(Tv) = λ · cv
by the linearity of T , hence v1 +v2 ∈ Vλ and cv ∈ Vλ. The subspace Vλ is called
the eigenspace of T for the eigenvalue λ. The eigenspaces for distinct eigen-
values are linearly independent subspaces of V ; for if λ1 6= λ2 and v ∈ Vλ1 ∩Vλ2

then Tv = λ1v = λ2v hence (λ1 − λ2)v = 0 so v = 0. The dimension of the
eigenspace for an eigenvalue λ is called the multiplicity of the eigenvalue λ,
and the set of all eigenvalues for T is called the spectrum of the linear trans-
formation T . Note that the eigenspace for the eigenvalue 0 is just the kernel of
the endomorphism T .

An n× n matrix over a field F describes an endomorphism A : Fn −→ Fn,
and the eigenvectors and eigenvalues of this endomorphism are called the eigen-
vectors and eigenvalues of the matrix A. They can be calculated quite directly
in terms of the matrix A by considering the characteristic polynomial of
that matrix, the polynomial in the variable λ defined by

(4.2) χA(λ) = det(λI −A)

where I is the n × n identity matrix. It is clear that similar matrices have the
same characteristic polynomial, since if B = S AS−1 for a nonsingular matrix

S then χB(λ) = det(λI − B) = det(λI − S AS−1) = det
(
S(λI − A)S−1

)
=

det(λI − A) = χA(λ); thus the characteristic polynomial of an endomorphism
T can be defined as the characterisic polynomial of any matrix that describes
this endomophism in terms of some basis for the vector space.
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Lemma 4.1 The spectrum of the linear transformation described by a matrix
A over a field F is the set of roots, or zeros, of the characteristic polynomial χA
of that matrix.

Proof: If the linear transformation described by a matrix A has the nontrivial
eigenvector v for the eigenvalue λ then Av = λv, or equivalently (λI−A)v = 0;
hence the matrix λI − A is necessarily a singular matrix, therefore χA(λ) =
det(λI − A) = 0 so λ is a root of the polynomial χA. Conversely if χA(λ) =
det(λI −A) = 0 for some λ ∈ F then the matrix λI −A is singular, so there is
a nontrivial vector v such that (λI −A)v = 0, showing that λ is the eigenvalue
of the eigenvector v. That suffices for the proof.

For some simple examples, the 5× 5 real matrix

A =


0 1 0 0 0
−1 0 0 0 0
0 0 2 0 0
0 0 0 3 3
0 0 0 0 3


has the characteristic polynomial

χA(λ) = det


λ −1 0 0 0
1 λ 0 0 0
0 0 λ− 2 0 0
0 0 0 λ− 3 −3
0 0 0 0 λ− 3

 = (λ2 + 1)(λ− 2)(λ− 3)2.

The spectrum of this linear transformation viewed as a real linear transformation
consists of the two distinct real roots {2, 3} of the characteristic polynomial;
however the spectrum of this linear transformation viewed as a complex linear
transformation consists of the four distinct complex roots {i,−i, 2, 3} of the
characteristic polynomial. The eigenspace for the eigenvalue 3 consists of those
vectors x such that

0 =


3 −1 0 0 0
1 3 0 0 0
0 0 1 0 0
0 0 0 0 −3
0 0 0 0 0



x1

x2

x3

x4

x5

 =


3x1 − x2

x1 + 3x2

x3

−3x5

0


hence such that the coefficients satisfy 3x1 − x2 = x1 + 3x2 = x3 = −3x5 = 0;
this is a set of equations in the variables x1, x2, x3, x4, x5 for which the only
nontrivial solutions yield the vectors (0, 0, 0, x4, 0) for any value of x4. Thus the
eigenspace is the one-dimensional linear subspace of R5 spanned by the basis
vector

δ4 where δ4 = t
(
0 0 0 1 0

)
∈ R5.

The corresponding calculation shows that the eigenspace for the eigenvalue 2
is the one-dimensional linear subspace of R5 spanned by the basis vector δ3
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while the eigenspace for the eigenvalue i is the one-dimensional subspace of C5

spanned by the vector

δ1 + iδ2 = t
(
1 i 0 0 0

)
∈ C5

and the eigenspace for the eigenvalue −i is the one-dimensional subspace of C5

spanned by the vector

iδ1 + δ2 = t
(
i 1 0 0 0

)
∈ C5.

For examples in the reverse direction, in a sense, if A is a 2 × 2 matrix with
the characteristic polynomial χA(λ) = (λ − a1)(λ − a2) and the eigenvalues
a1, a2 are distinct then to each of these eigenvalues ai there corresponds an
eigenvector vi; the two eigenvectors are linearly independent since they lie in
distinct eigenspaces of A, so the 2 × 2 matrix P = (v1 v2) formed with these
column vectors is a nonsingular matrix. Then

AP = A (v1 v2) = (a1v1 a2v2) = (v1 v2)

(
a1 0
0 a2

)
= P

(
a1 0
0 a2

)

so P−1AP =

(
a1 0
0 a2

)
, showing that the matrix A is similar to a diagonal

matrix. A matrix that is similar to a diagonal matrix is said to be a diago-
nalizable matrix. The obvious extension of this example shows that if the
characteristic polynomial of an n× n matrix has n distinct roots then that ma-

trix is diagonalizable. On the other hand the matrices

(
a 1
0 a

)
and

(
a 0
0 a

)
both have the characteristic polynomial (λ− a)2; the first is not diagonalizable,
since it is easily seen to have but a single eigenvector, while the second one
is already diagonal. Thus the condition that the characteristic polynomial of
an n × n matrix A has n distinct roots is a sufficient but not necessary condi-
tion that the matrix is diagonalizable; a condition that is both necessary and
sufficient will be given later in the Diagonalizability Theorem, Corollary 4.8.

If p(λ) ∈ F [λ], so p(λ) =
∑N
j=0 cjλ

j for some cj ∈ F , then p(A) for any n×n
matrix A with coefficients in the field F is defined by p(A) =

∑N
j=0 cjA

j ; thus
p(A) is another n×n matrix with coefficients in the field F . Any relation involv-
ing sums and products of polynomials p(λ) yields in this way the corresponding
relation among the matrices p(A). Some care must be taken when considering
polynomials in several different variables though; for instance xyx = x2y for
any elements x, y in a field, but XYX 6= X2Y for some matrices, for instance
for X = ( 0 1

0 0 ) and Y = ( 0 1
1 0 ). However so long as the matrices X and Y com-

mute, meaning that XY = Y X, polynomial identities also hold for polynomials
in these matrices.

Lemma 4.2 If A is an n×n matrix with coefficients in a field F and Av = λv
then p(A)v = p(λ)v for any polynomial p with coefficients in F .
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Proof: If p(λ) =
∑N
j=0 cjλ

j and Av = λv then since Anv = λnv it follows that

p(A)v =
∑N
j=0 cjA

jv =
∑N
j=0 cjλ

jv = p(λ)v, which suffices for the proof.

The preceding result is really rather simple, but worth listing as a separate
lemma for emphasis since it is quite commonly used. The value of a polynomial
in a scalar λ ∈ F when λ is replaced by a matrix is rather clear; but there
also arise situations in which the coefficients of polynomials are matrices. If
P (λ) =

∑
i Piλ

i and Q(λ) =
∑
iQjλ

j are two matrices in a scalar λ ∈ F ,
where the coefficients Pi, Qj are n× n matrices, then the product of these two
polynomials is defined to be the polynomial R(λ) = P (λ)Q(λ) =

∑
i,j PiQjλ

i+j ;
note that it is not necessarily the case that P (λ)Q(λ) = Q(λ)P (λ), since it
is quite possible that PiQj 6= QjPi for some indices i, j. When the variable
λ is replaced by a matrix A some care must be taken when considering the
product P (A)Q(A), since it is not necessarily the case that P (A)Q(A) = R(A).
However if the matrix A commutes with all of the matrices Qj then it is clear
that P (A)Q(A) = R(A). With this in mind it is possible to turn to the following
result, which will play a significant role in the subsequent discussion.

Theorem 4.3 (Cayley-Hamilton Theorem) If A is an n×n matrix over a
field F then χA(A) = 0.

Proof: As in the discussion of Cramer’s Rule on page 52, the adjugate X† of
an n× n matrix X is an n× n matrix, the entries of which are polynomials in
the entries of the matrix X; and it has the property that (detX) I = X† ·X.
In particular for the matrix X = λI−A for which detX = χA(λ) this takes the
form

(4.3) χA(λ) I = (λI −A)† · (λI −A).

The entries in the matrix B(λ) = (λI − A)† are polynomials in λ, so that
matrix can be written out explicitly as a sum of terms of the form Bjλ

j for
some matrices Bj ; then (4.3) takes the form of the polynomial identity

χA(λ) I =

∑
j

Bjλ
j

 (λI −A).

When λ is replaced by the matrix A this reduces to

χA(A) I =

∑
j

BjA
j

 (A−A) = 0,

by the discussion in the preceding paragraph, and that suffices for the proof.

The preceding result actually is more complicated, and somewhat more sur-
prising, than might be expected from the simplicity of the proof; an example

might illustrate that. The characteristic polynomial for the matrix A =

(
a b
c d

)
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over a field F is χA(λ) = det

(
λ− a −b
−c λ− d

)
= λ2 − (a + d)λ + (ad− bc) and

consequently χA(A) = A2 − (a + d)A + (ad − bc)I, which when written out
explicitly has the form

χA(A) =

(
a2 + bc (a+ d)b
(a+ d)c bc+ d2

)
− (a+ d)

(
a b
c d

)
+ (ad− bc)

(
1 0
0 1

)
.

A straightforward calculation shows that actually χA(A) = 0. It is clear that
a corresponding explicit calculation in the general case would be rather a chal-
lenge; and it is evident that it is really not so obvious that χA(A) = 0.

In the further discussion of endomorphisms, polynomials other than the
characteristic polynomial play significant roles; and it is necessary to discuss
some further general properties of polynomials that are used in that discussion.
The set of polynomials in a variable x with coefficients in a field F traditionally
is denoted by F [x]; clearly F [x] is a ring. Particularly convenient for many
purposes are monic polynomials, polynomials of the form xn + an−1x

n−1 +
· · ·+a1x+a0, that is, polynomials with leading coefficient 1. If f(x) = amx

m+
· · · and p(x) = bnx

n + · · · are polynomials of degrees m ≥ n then f(x) −
am
bn
xm−np(x) = r1(x) is a polynomial of degree at most m− 1; if deg r1(x) ≥ n

the same process can be applied to the polynomial r1(x), and so on, so that
eventually f(x) = p(x)q(x) + r(x) for uniquely determined polynomials q(x)
and r(x) where the degree of r(x) is strictly less than the degree of p(x) or
r(x) = 0. This is the classical division algorithm for polynomials over a
field1. A polynomial p(x) is said to divide a polynomial f(x), or equivalently
f(x) is said to be divisible by p(x), if f(x) = p(x)q(x) for some polynomial
q(x); that p(x) divides f(x) is denoted by p(x)|f(x). Note that p(x)|f(x) if and
only if the remainder r(x) = 0 in the division algorithm f(x) = p(x)q(x) + r(x).
A nonconstant polynomial p(x) is said to be reducible if it can be written as the
product p(x) = f(x)g(x) of two nonconstant polynomials; and a nonconstant
polynomial that is not reducible is said to be irreducible, so a nonconstant
polynomial p(x) is irreducible if and only if it cannot be written as a product
p(x) = f(x)g(x) of two nonconstant polynomials. For example the polynomial
x + 1 is irreducible over any field; the polynomial x2 + 1 is irreducible as a
real polynomial, but not irreducible as a complex polynomial since it can be
written as the product x2 + 1 = (x+ i)(x− i). The greatest common divisor
of two polynomials f(x), g(x) ∈ F [x] is the monic polynomial d(x) ∈ F [x] of
the greatest degree such that d(x)|f(x) and d(x)|g(x). The least common
multiple of two polynomials f(x), g(x) ∈ F [x] is the monic polynomial m(x) ∈
F [x] of least degree such that f(x)|m(x) and g(x)|m(x). A polynomial ideal
I, usually just called an ideal when it is understood that what is involved is a
collection of polynomials, is a set of polynomials such that whenever p(x), q(x) ∈
I then p(x) + q(x) ∈ I and f(x)p(x) ∈ I for any arbitrary polynomial f(x) ∈

1The division algorithm is often called the Euclidean algorithm, since it appears in
Euclid’s Elements as a tool for calculating the greatest common divisor of two integers. Rings
in which there is an analogue of the Euclidean algorithm are called Euclidean rings or
Euclidean domains and occur frequently in algebra.
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F [x]. Note carefully that this is not the condition that whenever p(x), q(x) ∈ I
then p(x) + q(x) ∈ I and p(x)q(x) ∈ I; that is the condition that the set I
is a subrng2 of the ring of polynomials. An ideal in F [x] is a subrng of the
ring F [x]; but not every subrng of F [x] is an ideal in F [x]. For example, the
polynomial x2 generates the subrng of F [x] consisting of all polynomials in x2,

hence the subrng consisting of all polynomials
∑N
n=0 anx

2n; on the other hand
x2 generates the ideal consisting of all polynomials F [x]x2, hence the ideal of all

polynomials
∑N
n=2 anx

n, all polynomials having a double zero at the origin. The
set of polynomials that vanish at a particular element a ∈ F is another standard
example of an ideal in F [x]. For any finite set of polynomials p1(x), . . . , pn(x)
with coefficients in a field F the set of all polynomials that can be written as
sums

∑m
i=1 fi(x)pi(x) for any polynomials fi(x) ∈ F [x] is another polynomial

ideal, called the polynomial ideal generated by the polynomials pi(x).

Theorem 4.4 (Basic Theorem) (i) If a polynomial ideal I ⊂ F [x] contains
a nonzero constant then I = F [x].
(ii) A nonzero polynomial ideal I contains a unique monic polynomial d(x) of
least possible degree; and d(x)|p(x) for any other polynomial p(x) ∈ I, so I is
the polynomial ideal generated by d(x).
(iii) If p(x) ∈ F [x] is irreducible and if p(x)|f(x)g(x) for some polynomials
f(x), g(x) ∈ F [x] then either p(x)|f(x) or p(x)|g(x).
(iv) Any nonconstant polynomial f(x) ∈ F [x] can be written as a product of
irreducible polynomials. This factorization is unique up to multiplication of
each factor by a nonzero scalar and up to order.

Proof: (i) If c ∈ I for some constant c 6= 0 then for any polynomial f(x) the
product cf(x) ∈ I hence f(x) = 1

c

(
cf(x)

)
∈ I also.

(ii) A nonzero polynomial ideal I necessarily contains a monic polynomial d(x)
of least possible degree. If deg d(x) = 0 so that d(x) = 1 then it follows from
(i) that I consists of all polynomials, and any polynomial p(x) is the product
p(x) = p(x) · 1. If deg d(x) > 0 and p(x) ∈ I then p(x) = q(x)d(x) + r(x)
for a unique polynomial r(x) for which deg r(x) < deg d(x) by the division al-
gorithm for polynomials. Since p(x) ∈ I and d(x) ∈ I it follows that r(x) =
p(x)− q(x)d(x) ∈ I; but since deg r(x) < deg d(x) and deg d(x) is the smallest
degree of any nonzero polynomial in I necessarily r(x) = 0, hence d(x)|p(x).
If d0(X) is another monic polynomial in I of the least possible degree then by
what has just been proved d(x)|d0(x) and d0(x)|d(x) so that d0(x) = cd(x) for
some constant c ∈ F ; and since d(x) and d0(x) are both monic polynomials
necessarily c = 1 so that d0(x) = d(x).
(iii) If p(x) is irreducible and p(x)|f(x)g(x) for some polynomials f(x) and g(x)
then f(x)g(x) = p(x)q(x) for some polynomial q(x). The polynomials p(x) and
f(x) generate a polynomial ideal I. If I does not consist of all polynomials then
by (ii) there is a nonconstant polynomial d(x) such that d(x)|p(x) and d(x)|f(x);
since p(x) is irreducible necessarily p(x) = c d(x) for some c ∈ F so that

2In the earlier discussion a subring was required to contain the identity element 1, so here
a subrng means a subring but one that does not necessarily contain the identity element 1.
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p(x)|f(x). On the other hand if I consists of all polynomials then in particular
1 ∈ I hence 1 = a(x)p(x) + b(x)f(x) for some polynomials a(x) and b(x); and
then g(x) = g(x)·1 = g(x)a(x)p(x)+g(x)b(x)f(x) = g(x)a(x)p(x)+b(x)q(x)p(x)
showing that p(x)|g(x).
(iv) If f(x) is not irreducible it can be written as a product f(x) = f1(x)f2(x) of
two nonconstant polynomials, each of which will have degree strictly less than
the degree of f(x). The same argument can be applied to each of the factors
f1(x) and f2(x), so each is either irreducible or is a product of two noncon-
stant polynomials of strictly lower degrees. In this way the initial polynomial
eventually can be written as a product f(x) = c p1(x) · · · pr(x) of irreducible
monic polynomials. If there is another such decomposition then there will be
a monic irreducible polynomial p(x) other than p1(x), . . . , pr(x) that divides
f(x). By (iii) either p(x)|p1(x), which is impossible since p(x) 6= p1(x) and both
are irreducible, or p(x)|p2(x) · · · pr(x). Repeating this argument clearly leads
eventually the conclusion that p(x) must be one of the polynomials pi(x), a
contradiction which suffices to conclude the proof.

The characteristic polynomial χA(λ) of a matrix A is a monic polynomial
such that χA(A) = 0, by the Cayley-Hamilton Theorem; and of course any
polynomial in the ideal generated by χA(λ) also vanishes at the matrix A.
However there may be still other polynomials that vanish at the matrix A.

Theorem 4.5 (Minimal Polynomial Theorem) Let A be an n × n matrix
over a field F .
(i) There is a unique monic polynomial µA(λ) ∈ F [λ] of minimal degree for
which µA(A) = 0.
(ii) A polynomial p(λ) satisfies p(A) = 0 if and only if µA(λ)|p(λ).
(iii) The roots of the monic polynomial µA(λ) are precisely the eigenvalues of
the matrix A.

Proof: (i) and (ii) It is clear that the set of all polynomials p(λ) such that
p(A) = 0 is an ideal in F [λ], which is a nonzero ideal since it contains χA(λ).
The conclusions of (i) and (ii) follow immediately from Theorem 4.4 (ii).
(iii) Finally since χA(A) = 0 by the Cayey-Hamilton Theorem it follows from
part (ii) that χA(λ) = µA(λ)q(λ) for some polynomial q(λ) and consequently
that the roots of the polynomial µA(λ) must be among the roots of the poly-
nomial χA(λ), which are the eigenvalues of the matrix A. Conversely if λ is
an eigenvalue of A then Av = λv for an eigenvector v 6= 0 and it follows from
Lemma 4.2 that µA(A)v = µA(λ)v; but µA(A) = 0 so µA(λ)v = 0, and since
v 6= 0 necessarily µA(λ) = 0, which demonstrates (iii) and thereby concludes
the proof.

The polynomial µA(λ) is called the minimal polynomial of the matrix
A. If p(A) = 0 for a polynomial p(λ) then p(C−1AC) = C−1p(A)C = 0 for
any nonsingular matrix C since for instance C−1A2C = C−1AC · C−1AC =
(C−1AC)2; hence similar matrices have the same minimal polynomial, so the
minimal polynomial of a linear transformation T on a vector space V can be
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defined to be the minimal polynomial of any matrix representing the linear
transformation T in terms of a basis for the vector space V . As a consequence of
the preceding theorem the characterisic and minimal polynomials for any matrix
A are related by µA(λ)|χA(λ). To find the minimal polynomial for a matrix A
it thus suffices just to look at those polynomials µ(λ) such that µ(λ)|χA(λ),
a finite set of polynomials, and to see for which of these polynomials µ(A) =

0. For example, the matrix A =

(
2 0
0 2

)
has the characterisic polynomial

χA(x) = (x − 2)2, so to find the minimal polynomial it suffices just to look
at the polynomials (x − 2) and (x − 2)2; and since (A − 2I) = 0 it follows

that µA(x) = (x − 2). On the other hand the matrix B =

(
2 1
0 2

)
has the

same characteristic polynomial χB(x) = (x− 2)2; but (B − 2I) =

(
0 1
0 0

)
6= 0

while (B − 2I)2 =

(
0 1
0 0

)(
0 1
0 0

)
= 0 so µB(x) = (x − 2)2. The matrices

A and B thus have the same characteristic polynomials but different minimal
polynomials; consequently they are not similar matrices.

Theorem 4.6 (Direct Sum Theorem) If C = A⊕B where A,B are square
matrices with coefficients in a field F then
(i) the characteristic polynomial χC(λ) of the matrix C is the product χC(λ) =
χA(λ)χB(λ), and
(ii) the minimal polynomial µC(λ) of the matrix C is the least common multiple
of the minimal polynomials µA(λ) and µB(λ).

Proof: (i) This follows immediately from the observation that

det
(

(λI −A)⊕ (λI −B)
)

= det(λI −A) · det(λI −B).

(ii) If C = A⊕B and f(λ) is any polynomial it is clear that f(C) = f(A)⊕f(B)
hence that f(C) = 0 if and only if f(A) = f(B) = 0, or equivalently if and only
if µA(λ)|f(λ) and µB(λ)|f(λ). Therefore the minimal polynomial µC(x) is the
monic polynomial of least degree that is divisible by both µA(λ) and µB(λ) so
µC(λ) is the least common multiple of µA(λ) and µB(λ). That suffices for the
proof.

Theorem 4.7 (Primary Decomposition Theorem) If the minimal polyno-
mial µA(λ) of a matrix A with coefficients in a field F is the product µA(λ) =∏m
i=1 pi(λ)ri for distinct irreducible polynomials pi(λ) then the matrix A is sim-

ilar to the direct sum A1⊕A2⊕· · ·⊕Am of matrices Ai where pi(λ)ri = µAi(λ)
is the minimal polynomial of the matrix Ai, and the matrices Ai are unique up
to similarity.

Proof: Let fi(λ) = µA(λ)/pi(λ)ri for 1 ≤ i ≤ m, so that fi(λ) also are poly-
nomials with coefficients in F ; and let I be the polynomial ideal generated by
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the polynomials fi(λ). Theorem 4.4 shows that I contains a polynomial d(λ) of
least degree and that d(λ)|fi(λ) for 1 ≤ i ≤ m; but since pi(λ) are m > 1 distinct
irreducible polynomials there are no polynomials of positive degree that divide
all the polynomials fi(λ), hence d(λ) = 1. Thus 1 ∈ I so 1 =

∑m
i=1 fi(λ)gi(λ)

for some polynomials gi(λ); consequently the matrices Ei = fi(A)gi(A) satisfy

(4.4) I =

m∑
i=1

Ei where I is the identity matrix.

The matrices Ei commute with one another and with the matrix A since all of
them are polynomials in the matrix A; and if i 6= j then since

fi(λ)fj(λ) =
µA(λ)µA(λ)

pi(λ)ripj(λ)rj
= µA(λ)q(λ)

for some polynomial q(λ) it follows that

(4.5) EiEj = fi(A)gi(A)fj(A)gj(A) = µA(A)q(A)gi(A)gj(A) = 0 if i 6= j.

Furthermore it follows from (4.4) and (4.5) that

(4.6) Ej = EjI =

m∑
i=1

EjEi = E2
j .

In terms of these n×n matrices Ei with coefficients in the field F introduce the
subspaces

(4.7) Vi = EiF
n =

{
Eiv

∣∣∣ v ∈ Fn } ⊂ Fn,
noting that AVi = AEiF

n = EiAF
n ⊂ EiFn = Vi so that

(4.8) AVi ⊂ Vi for 1 ≤ i ≤ m.

It follows from (4.4) that any vector v ∈ Fn can be written as a sum v =∑m
i=1Eiv of vectors Eiv ∈ Vi; and by (4.6) and (4.5) this is a unique decom-

position, since if v =
∑m
i=1Eivi =

∑m
i=1Eiwi for some vectors vi,wi then

0 =
∑m
i=1Ei(vi − wi) hence 0 = Ej

(∑m
i=1Ei(vi − wi)

)
= EjEj(vj − wj) =

Ej(vj −wj) so Ejvj = Ejwj for all j. Thus the vector space Fn is the direct
sum

(4.9) Fn =

m⊕
i=1

Vi

where the subspaces Vi are preserved under the action of A as in (4.8). Finally
from the preceding definitions it further follows that prii (A)Vi = prii (A)EiF

n =
prii (A)fi(A)gi(A)Fn = µA(A)gi(A)Fn, so since µA(A) = 0

(4.10) prii (A)Vi = 0 for 1 ≤ i ≤ m.
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These observations essentially yield the proof of the theorem. Indeed after a suit-
able nonsingular linear transformation of the vector space Fn, which amounts
to replacing the matrix A by a similar matrix which also will be labeled A to
simplify the notation, it can be assumed that the direct sum decomposition (4.9)
has the form

(4.11) Fn =


V1

V2

· · ·
Vm

 .

After this change of variables (4.8) amounts to the condition that the matrix A
has the corresponding direct sum decomposition

(4.12) A =


A1 0 · · · 0
0 A2 · · · 0

· · ·
0 0 · · · Am


and (4.10) amounts to the condition that prii (Ai) = 0, so that pi(λ)ri must be
divisible by the minimal polynomial of the matrix Ai. If prii (λ) is not itself the
minimal polynomial for the matrix Ai then the minimal polynomial must be
psii (λ) where si < ri; but then by Theorem 4.6 the minimal polynomial of the
matrix A would be

∏m
i=1 pi(λ)si , which is not the case.

Suppose there is another direct sum decomposition

(4.13) A =


A′1 0 · · · 0
0 A′2 · · · 0

· · ·
0 0 · · · A′m


satisfying the conclusions of the theorem, so that µA′i(λ) = pi(λ)ri ; and consider
the corresponding decomposition

(4.14) Fn =


V ′1
V ′2
· · ·
V ′m


of the vector space Fn. Since µA′i(λ) = pi(λ)ri then as in the preceding argu-
ment EiV

′
i = 0; therefore for any vector v′i ∈ V ′i it follows that v′i = Iv′i =∑m

j=1Ejv
′
i = Eiv

′
i ∈ Vi so that V ′i ⊂ Vi, and since dimV ′i = dimVi necessarily

V ′i = Vi, which suffices for the proof.

The preceding theorem provides a simple characterization of diagonalizable
matrices.

Corollary 4.8 (Diagonalizability Theorem) A matrix A with coefficients
in a field F is diagonalizable if and only if its minimal polynomial has the form
µA(λ) =

∏m
j=1(λ− bj) where bj are distinct elements of the field F .
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Proof: A diagonal matrix with coefficients in the field F is just the direct
sum A = ⊕iai of one-dimensional matrices ai ∈ F . It is evident from the
definitions that the characteristic and minimal polynomials of a 1 × 1 matrix
ai are equal and are explicitly χai(λ) = µai(λ) = (λ − ai). It then follows
immediately from Theorem 4.6 that the characteristic polynomial of the matrix
A =

⊕n
i=1 ai is χA(λ) =

∏n
i=1(λ − ai) and that the minimal polynomial of A

is µA(λ) =
∏m
j=1(λ − bj) where bj are the distinct terms among the diagonal

entries ai µA(λ) =
∏m
j=1(λ − bj). Conversely if the minimal polynomial of a

matrix A has the form µA(λ) =
∏m
j=1(λ− bj) where bj are distinct elements of

the field F the factors (λ − bj) are distinct irreducible polynomials, so by the
preceding theorem the matrix A is similar to the direct sum A1⊕A2⊕· · ·⊕Am
where the minimal polynomial of the matrix Ai is µai(λ) = (λ − bi); then
0 = µai(Ai) = Ai− biI so Ai = biI is a diagonal matrix, and that concludes the
proof.

Not all matrices are diagonalizable; so it is necessary to find other normal
forms to which non-diagonalizable matrices can be reduced. For the purposes
of the discussion here it is enough to consider just one special class of non-
diagonalizable matrices. A matrix N ∈ Fn×n is said to be nilpotent if Nr = 0
for some integer r > 0; the least integer r for which Nr = 0 is called the degree
of the nilpotent matrix N . It is clear that any matrix similar to a nilpotent
matrix of degree r is also a nilpotent matrix of degree r, since if Nr = 0 and P
is a nonsingular matrix then (PNP−1)r = PNrP−1 = P0P−1 = 0.

Theorem 4.9 (Nilpotent Matrix Theorem) A nilpotent n × n matrix N
with coefficients in a field F is similar to a direct sum

(4.15) N = Nρ1 ⊕Nρ2 ⊕ · · · ⊕Nρk
where Nρ is a ρ× ρ matrix of the form

(4.16) Nρ =


0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0

· · ·
0 0 0 0 · · · 0 1
0 0 0 0 · · · 0 0

 ;

the indices ρi are uniquely determined up to order, and two nilpotent n × n
matrices are similar if and only if they have the same set of indices ρi.

Proof: Note that if δi is the Kronecker basis for the vector space F ρ the
condition that a matrix N has the form (4.16) can be restated as the condition
that

(4.17) Nδ1 = 0 while Nδi = δi−1 for 2 ≤ i ≤ ρ;

it is evident from this that the matrix N is a nilpotent matrix of degree ρ, and
since a direct sum of nilpotent matrices is again nilpotent it follows that any
direct sum of matrices of the form (4.16) is nilpotent.
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To show conversely that any nilpotent matrix is similar to a direct sum of
matrices satisfying (4.17), let N be a nilpotent n × n matrix of degree r over
the field F and introduce the subspaces

(4.18) Vi = kerN i =
{

v ∈ Fn
∣∣∣N iv = 0

}
⊂ Fn for 0 ≤ i ≤ r.

Clearly

(4.19) 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vr−1 ⊂ Vr = Fn

since N0 = I and Nr = 0; and if di = dimVi it follows that 0 = d0 ≤ d1 ≤ d2 ≤
· · · ≤ dr−1 ≤ dr = n. It is also clear that NVi ⊂ Vi−1, since if v ∈ Vi then N iv =
0 hence N i−1Nv = N iv = 0 so Nv ∈ Vi−1. The principal step in the proof is
to show that if vectors v1, . . . ,vk ∈ Vi ⊂ Fn represent linearly independent vec-
tors in the quotient space Vi/Vi−1 then the vectors Nv1, . . . , Nvk ∈ Vi−1 ⊂ Fn
represent linearly independent vectors in the quotient space Vi−1/Vi−2. To
demonstrate that, suppose that vectors v1, . . . ,vk ∈ Vi represent linearly in-
dependent vectors in the quotient space Vi/Vi−1 and that

∑k
j=1 cjNvj ∈ Vi−2

for some cj ∈ F ; then 0 = N i−2
(∑k

j=1 cjNvj

)
= N i−1

(∑k
j=1 cjvj

)
hence∑k

j=1 cjvj ∈ Vi−1, so since the vectors vj represent linearly independent vec-
tors in Vi/Vi−1 necessarily cj = 0 for all indices j. Consequently the vectors
Nvj ∈ Vi−1 represent linearly independent vectors in Vi−1/Vi−2.

With these auxiliary results established, choose linearly independent vectors
vr,jr ∈ Vr = Fn for 1 ≤ jr ≤ dr − dr−1 so that

(4.20) {vr,jr} represent a basis for Vr/Vr−1.

The vectors Nvr,jr ∈ Vr−1 ⊂ Fn then represent linearly independent vectors
in the quotient space Vr−1/Vr−2; if they do not span that vector space choose
additional linearly independent vectors vr−1,jr−1

∈ Vr−1 for 1 ≤ jr−1 ≤ (dr−1−
dr−2)− (dr − dr−1) so that

(4.21) {Nvr,jr}, {vr−1,jr−1} represent a basis for Vr−1/Vr−2.

Continue this process until finally there are vectors v1,j1 ∈ V1 so that the vectors

{Nr−1vr,jr}, {Nr−2vr−1,jr−1
}, . . . , {Nv2,j2}, {v1,j1}(4.22)

represent a basis for V1/V0 = V1.

For each index jr the vectors

(4.23) vr,jr , Nvr,jr , N
2vr,jr , . . . , N

r−1vr,jr

are linearly independent. Indeed if
∑r−1
i=0 ciN

ivr,jr = 0 for some scalars ci ∈ F ,
not all of which are zero, and if s is the least integer for which cs 6= 0 then

0 = Nr−1−s
r−1∑
i=s

ciN
ivr,jr = csN

r−1vr,jr
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which is a contradiction since Nr−1vr,jr 6= 0 and cs 6= 0. The vectors (4.23)
thus are a basis for a linear subspace Wr,jr ⊂ Fn of dimension r. Relabel these
vectors by setting δi = Nr−ivr,jr ; then Nδ1 = NNr−1vr,jr = 0 while Nδi =
NNr−ivr,jr = Nr−(i−1)vr,jr = δi−1 for i > 1, which is condition (4.17) for the
restriction N |Wr,jr where ρ = r. This construction can be repeated for each of
the vectors vr,jr ; the number of such vectors is the dimension dimVr/Vr−1 =
dr − dr−1, so in terms of an appropriate basis there result dr − dr−1 separate
r × r matrix blocks of the form (4.16) for ρ = r. The process can be continued
beginning with the vectors vr−1,jr−1

to obtain a further collection of (dr−1 −
dr−2)− (dr − dr−1) separate (r − 1)× (r − 1) matrix blocks of the form (4.16),
and so on for the rest of the vectors vi,ji . This shows altogether that the matrix
N is similar to a direct sum of matrix blocks of the form (4.16); and since the
number of blocks of different sizes is determined by the dimensions di this direct
sum is uniquely determined up to the order of the separate blocks, which suffices
to conclude the proof.

For matrices over a field F with minimal polynomials which factor fully
into linear factors over that field there is a convenient normal form, the Jordan
Normal Form, that serves to provide a complete classification up to similarity.
The Jordan Normal Form is a representation of a matrix as a direct sum of
Jordan blocks, which are ρ× ρ matrices of the form

(4.24) B(ρ; a) =



a 1 0 0 · · · 0 0
0 a 1 0 · · · 0 0
0 0 a 1 · · · 0 0

. . .

. . .
0 0 0 0 . . . a 1
0 0 0 0 . . . 0 a


for a scalar a ∈ F that clearly is the eigenvalue of the matrix B(ρ; a).

Theorem 4.10 The characteristic and minimal polynomials of the Jordan block
B(ρ; a) are

χB(ρ;a)(λ) = µB(ρ;a)(λ) = (λ− a)ρ;

and the eigenspace of the Jordan block B(ρ; a) is one dimensional.

Proof: It is a straightforward calculation that a matrix B(ρ; a) of the form
(4.24) has the determinant χB(ρ;a)(λ) = detB(ρ; a) = (λ − a)ρ. Then since
B(ρ; a) − aI = N is a ρ × ρ matrix of the form (4.16) it is a nilpotent matrix
of degree ρ, so the minimal polynomial for the matrix B(ρ; a) is the polynomial
µB(ρ;a)(λ) = (λ−a)ρ. The only eigenvalue of the matrix B(ρ; a) is a, the unique
root of the polynomial χB(ρ;a)(λ); and it is another straightforward calculation
to verify that the eigenvectors of the matrix B(ρ; a) for this eigenvalue are scalar
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multiples of the vector

v =


1
0
· · ·
0

 ,

so the eigenspace for the eigenvector a is one-dimensional. That suffices for the
proof.

Theorem 4.11 (Jordan Normal Form Theorem) A matrix A over a field
F with minimal polynomial µA(λ) =

∏m
i=1(λ− ai)µi for some scalars ai ∈ F is

similar to a direct sum

(4.25) A1 ⊕A2 ⊕ · · · ⊕Am

of matrices Ai with minimal polynomials µAi(λ) = (λ− ai)µi ; and each matrix
Ai in turn is similar to a direct sum

(4.26) B(ρii ; ai)⊕B(ρi2 ; ai)⊕ · · · ⊕B(ρik(i)
; ai)

of Jordan blocks B(ρj ; ai). This decomposition is unique up to the order of the
Jordan blocks.

Proof: If the matrix A has the minimal polynomial µA(λ) =
∏m
i=1(λ − ai)µi

then by the Primary Decomposition Theorem, Theorem 4.7, the matrix A is
similar to a direct sum A1 ⊕ A2 ⊕ · · · ⊕ Am where µAi(λ) = (λ − ai)µi , and
this decomposition is unique up to similarity and to the order of the matrices
Ai. Each matrix Ai is a root of its minimal polynomial so (Ai − aiI)µi = 0;
hence the matrix Ni = Ai − aiI is a νi × νi nilpotent matrix of degree µi and
Ai = aiI + Ni. By the Nilpotent Matrix Theorem, Theorem 4.9, the matrix
Ni is similar to a direct sum Ni,ρ1 ⊕Ni,ρ2 ⊕ · · · ⊕Ni,ρk of matrices Ni,ρj of the
form (4.16). Since a scalar matrix remains a scalar matrix under similarity of
matrices it follows that the matrix Ai is similar to a direct sum of matrices of
the form B(ρ, a) = a I +Nρ, and that suffices for the proof.

The preceding theorem provides the complete classification up to similarity
of matrices for which the minimal polynomial factors completely. In particular
it provides the complete classification up to similarity of complex matrices as
a consequence of the fundamental theorem of algegbra, that any complex poly-
nomial has roots. The invariants characterizing a similarity class of matrices
are the unordered sets of pairs (ρij , ai), where each pair consists of an integer
ρij ≥ 1 and a complex number ai; and two complex matrices are similar if and
only if they have the same set of these pairs, in any order.

If A is an n× n matrix in the Jordan Normal Form (4.25) then

(4.27) n =

k∑
i=1

ρi



200 CHAPTER 4. LINEAR MAPPINGS

and by the Direct Sum Theorem, Theorem 4.6 (i), the characteristic polynomial
for the matrix A is

(4.28) χA(λ) =

k∏
i=1

(λ− ai)ρi .

The roots ai are not necessarily distinct, for several different Jordan blocks may
have the same eigenvalue. If bj for 1 ≤ j ≤ l are the distinct roots ai and if σj
is the maximum of the sizes ρi of the Jordan blocks for which ai = bj it follows
from the Direct Sum Theorem, Theorem 4.6 (ii), that the minimal polynomial
for the matrix A is

(4.29) µA(λ) =

l∏
j=1

(λ− bj)σj .

The eigenvalue of a Jordan block B(ρi, ai) is ai and the eigenspace is one di-
mensional so it is determined up to a scalar multiple by the choice of a single
eigenvector; and that vector extends to an eigenvector of the matrix A with the
eigenvalue ai. For example if

A = B(2, 3)⊕B(1, 3)⊕B(1, 4),

or more explicitly

A =


3 1 0 0
0 3 0 0
0 0 3 0
0 0 0 4

 ,

then the matrix A has the characteristic and minimal polynomials

χA(λ) = (λ− 3)3(λ− 4), and µA(λ) = (λ− 3)2(λ− 4)

so the eigenvalues are 3 and 4. The eigenvector t(1, 0) of the Jordan block B(2, 3)
extends to an eigenvector t(1, 0, 0, 0) of the matrix A with eigenvalue 3, the
eigenvector 1 of the Jordan block B(1, 3) extends to an eigenvector t(0, 0, 1, 0)
of the matrix A with the eigenvalue 3, and the eigenvector 1 of the Jordan block
B(1, 4) extends to an eigenvector t(0, 0, 0, 1) of the matrix A with the eigenvalue
4; altogether the eigenspace V3 of the matrix A with the eigenvalue 3 is the two-
dimensional linear subspace of C4 spanned by the two vectors t(1, 0, 0, 0) and
t(0, 0, 1, 0) while the eigenspace V4 of the matrix A with the eigenvalue 4 is the
one-dimensional linear subspace of C4 spanned by the vector t(0, 0, 0, 1).

To determine the normal form under similarity of a complex matrix A the
first step is to calculate the characteristic polynomial χA(λ) = det(λI −A) and
to find its roots. Calculating the roots actually is the hardest part of the deter-
mination of the normal form, and the only part that is not fairly straightforward
and mechanical. Indeed there is no simple procedure or explicit algebraic for-
mula for finding the roots of a general polynomial, and the roots usually can be
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determined only approximately. For that reason the whole procedure of find-
ing the Jordan normal form is more a theoretical than a practical calculation.
However if the roots of the characteristic polynomial can be found, that poly-
nomial can be written in terms of the distinct roots as the product (4.28); and
the minimal polynomial then is the product (4.29) for the minimal values σi for
which µA(A) = 0, a straightforward calculation. The next step is to determine
the eigenvectors for A, another straightforward algebraic calculation. The set
of eigenvectors for any particular eigenvalue a form the eigenspace Va ⊂ Cn;
and the dimension dimVa is the number of Jordan blocks with the eigenvalue
a appearing in the Jordan normal form of the matrix A. The sizes of the vari-
ous Jordan blocks are not always determined uniquely just by the minimal and
characteristic polynomials and the number of eigenvectors though, so a further
calculation is required. There are two alternative approaches to this part of
the calculation. On the one hand it is possible to proceed as in the proof of
the Jordan Normal Form Theorem, Theorem 4.11. The Primary Decomposition
Theorem, Theorem 4.7, shows that if bi are the roots of the minimal polynomial
µA(λ) then the matrix A can be decomposed into a direct sum of matrices Ai
for which the minimal polynomial is µi(λ) = (λ−bi)σi . The matrices (Ai−biI)
then are nilpotent matrices, and their normal form can be calculated as in the
proof of the Nilpotent Matrix Theorem, Theorem 4.9; and that yields the Jordan
normal form for the matix Ai. On the other hand an alternative, and in many
ways a simpler and more direct procedure, is just to work with the eigenvectors.
For a Jordan block such as

B(3, a) =

a 1 0
0 a 1
0 0 a


and for a vector x = t(x1, x2, x3) ∈ C3 since

B(3, a)x =

a 1 0
0 a 1
0 0 a

x1

x2

x3

 =

ax1 + x2

ax2 + x3

ax3


the single eigenvector for this matrix block is x1 = t(1, 0, 0), so

Ax1 = ax1.

The vector x2 = t(0, 1, 0) satisfies B(3, a)x2 = ax2 + x1 so x2 is a solution of
the equation (

B(3, a)− aI
)
x2 = x1;

and the vector x3 = t(0, 0, 1) satisfies B(3, a)x3 = ax3 + x2 so x3 is a solution
of the equation (

B(3, a)− aI
)
x3 = x2.

If B(3, a) is part of the Jordan normal form for a matrix A then the vectors
xi associated to the Jordan block B(3, a) naturally extend to vectors vi in the
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vector space on which the matrix A acts; and these extensions satisfy the system
of linear equations

(A− aI)v1 = 0(4.30)

(A− aI)v2 = v1

(A− aI)v3 = v2.

The vectors vi then span the vector space on which the matrix A acts as the
Jordan block B(3, a); so a linear change of variables transforming the vectors
vi to the Kronecker basis vectors reduces the matrix A to the Jordan normal
form. For larger or smaller Jordan blocks the corresponding results hold.

For a more explicit example of the determination of the Jordan normal form,
if

A =

 −5 9 −4
−4 8 −4

1 0 0


it is a simple calculation to verify that det(λI−A) = λ3−3λ2+4 = (λ+1)(λ−2)2;
hence the eigenvalues are −1, 2 and the eigenvectors are solutions of the system
of linear equations (A−λI)v = 0. A straightforward calculation shows that the
eigenvectors of this matrix are

v′1 = t
(
−1 0 1

)
for the eigenvalue λ = −1,

v′′1 =t
(
2 2 1

)
for the eigenvalue λ = 2.

The factor (λ+ 1) corresponds to a 1× 1 submatrix of the normal form of the
matrix A, with entry the eigenvalue −1. The factor (λ − 2)2 corresponds to a
2× 2 submatrix of the normal form of the matrix A; and since there is only one
eigenvector v′′1 for the eigenvalue λ = 2, the associated Jordan block must be of

the form

(
2 1
0 2

)
. Therefore the Jordan normal form for the matrix A thus

is

B =

 −1 0 0
0 2 1
0 0 2

 .

To reduce the matrix A to this normal form, associated to the 2× 2 block there
must be a vector v′′2 for which (A − 2I)v′′2 = v′′1 ; a straightforward calculation
shows that it is the vector

v′′2 = t
(
1 1 0

)
.

The vectors v′1,v
′′
1 ,v
′′
2 form a basis for the vectosr space, so the matrix

C = (v′1 v′′1 v′′2 ) =

 −1 2 1
0 2 1
1 1 0
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is nonsingular; and since Cδj = vj it follows that C−1AC = B. In this simple
case there is a single eigenvector for each eigenvalue so a single candidate for the
vector v1 in the set of formulas (4.30) for each eigenvalue. If the eigenspace Va
for a particular eigenvalue a has dimension dimVa > 1 then there are at least 2
different Jordan blocks with that eigenvalue and correspondingly two different
choices for the eigenvectors v1 in formulas (4.30). These choices cannot be made
randomly; it is necessary to try to solve at least the first two equations in (4.30)
simultaneously to determine the vectors to be used.

As already noted, the Jordan normal form of a matrix is not always deter-
mined uniquely just by its characteristic and minimal polynomials, although
there are only finitely many different possible Jordan normal forms with given
characteristic and minimal polynomials. For instance the two matrices

A1 =

(
a 1
0 a

)
⊕
(
a 1
0 a

)
⊕
(
a 0
0 a

)
and

A2 =

(
a 1
0 a

)
⊕
(
a 0
0 a

)
⊕
(
a 0
0 a

)
both have the charactristic polynomial χai(λ) = (λ−a)6 and the minimal poly-
nomial µai(λ) = (λ− a)2, in view of the preceding discussion and Theorem 4.6;
but they are not similar matrices since they do not have the same Jordan normal
forms, or even more simply, because they have different numbers of eigenvectors.
Actually in this example the eigenspace of the matrix A1 has dimension 4 while
the eigenspace of the matrix A2 has dimension 5, so that serves to distinguish
them.

Any real matrix M can be viewed as a complex matrix; so M is similar
to a complex matrix SMS−1 in Jordan normal form, although the matrix S
exhibiting this similarity can be a complex matrix. The eigenvalues of a real
matrix are either real, in which case the arguments can proceed as with complex
matrices, or are complex conjugate pairs, in which case it is possible to choose
normal forms that are not diagonal but are formed from 2 × 2 matrix blocks.
For instance, for any real values a, b the following two matrices are similar:(

a+ ib 0
0 a− ib

) (
a b
−b a

)
;

and generalized Jordan normal forms can be taken with diagonal terms either
real numbers or 2 × 2 real matrices of the above forms. This topic will not be
discussed any further here, though.

The discussion of Jordan normal forms of matrices is really of more theoreti-
cal than practical use; for it can be used in a theoretical examination of matrices
or in proofs of general properties of matrices, but the explicit calculation of the
roots of the characteristic polynomial is impracticable in nontrival cases. The
topic of direct calculations with large matrices is really an entirely different,
difficult, and important branch of mathematics.



204 CHAPTER 4. LINEAR MAPPINGS

PROBLEMS, GROUP I:
(1) Which of the following sets are ideals in the polynomial ring F [x] for a field
F? For each set that is an ideal find its monic generator.
(i) The set of f ∈ F [x] such that deg f ≥ 6.
(ii) The set of f ∈ F [x] such that f(2) = f(4) = 0.
(iii) The set of f ∈ F [x] such that f(x) = x2p(x) + x5q(x) for some p, q ∈ F [x].
(iv) The set of f ∈ F [x] that involve only even powers of the variable x.

(2) Show that two polynomials in C[x] have the greatest common divisor equal
to 1 if and only if the two polynomials have no common roots. Show that this
is not the case for two polynomials in R[x].

(3) Let A and B be n× n matrices over a field F .
(i) Show that AB and BA always have the same eigenvalues.
(ii) Do AB and BA always have the same characteristic polynomial?
(iii) Do AB and BA always have the same minimal polynomial?

(4) Find a 3× 3 real matrix A with the minimal polynomial µA(λ) = λ2.

(5) Show that the following matrix over a field F has the same minimal and

characteristic polynomials:

0 0 a
1 0 b
0 1 c

.

PROBLEMS, GROUP II:

(6) If A is a matrix with the characteristic polynomial
χA(λ) = (λ− 2)3(λ− 3)4

and the minimal polynomial µA(λ), how many eigenvectors can A have in the
following cases? (More precisely, describe the possible eigenspaces). Justify
your answer.
(i) deg µA(λ) = 7
(ii) deg µA(λ) = 6
(iii) deg µA(λ) = 5
(iv) deg µA(λ) = 2

(7) Find the Jordan normal form for the complex matrix

A =


2 0 1 −3
0 2 10 4
0 0 2 0
0 0 0 3

 .

and find a matrix P such that PAP−1 is the Jordan normal form.
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(8) Show that 3 × 3 complex matrices are similar if and only if they have the
same characteristic and minimal polynomials. Show that is false for 4 × 4 ma-
trices.

(9) If A : V −→ V is a linear mapping between two vector spaces over a field
show that there is a direct sum decomposition V = V1 ⊕ V2 which is preserved
by A, in the sense that AV1 ⊂ V1 and AV2 ⊂ V2, and is such that A is nilpotent
on V1 and A is nonsingular on V2.

(10) (i) If I ⊂ F [x] is the ideal in the polynomial ring over a field F gener-
ated by two polynomials f(x), g(x) ∈ F [x] and if I = F [x] d(x) for a monic
polynomial d(x) ∈ F [x] show that d(x) is the greatest common divisor of the
polynomials f(x) and g(x).
(ii) Show that the greatest common divisor d(x) of two polynomials f(x), g(x) ∈
F [x] can be written as the sum d(x) = p(x)f(x)+q(x)g(x) for some polynomials
p(x), q(x) ∈ F [x].
(iii) Show that if p(x) is the greatest common divisor and q(x) is the least com-
mon multiple of two polynomials f(x), g(x) ∈ F [x] then f(x)g(x) = cp(x)q(x)
for some c ∈ F .

(11) Let V be the vector space of n×n matrices over a field F , let T : V −→ V
be the linear mapping defined by T (X) = AX for any X ∈ V and for a fixed
matrix A ∈ V , and let A also denote the linear transformation from Fn to Fn

defined by the matrix A.
(i) Do the linear transformations A and T have the same eigenvalues?
(ii) Do the linear transformations A and T have the same characteristic poly-
nomial?
(iii) Do the linear transformations A and T have the same minimal polynomial?

(12) Show that if an n × n complex matrix A satisfies Ar = I and if A has
just one eigenvalue λ then A = λI. What are the possible values for λ?

(13) Show that det(I +N) = 1 for any nilpotent matrix N .

(14) Classify up to similarity all 3× 3 complex matrices A such that A2 = I.

(15) Show that if A is an invertible n × n matrix over a field F there is a
polynomial p(x) ∈ F [x] such that A−1 = p(A).

(16) Show that any complex matrix is similar to its transpose.
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4.2 Inner Product Spaces

There are other equivalence relations between matrices, associated to other
uses of matrices in linear algebra. A bilinear function on a finite dimensional
vector space V over a field F is defined to be a mapping f : V × V −→ F such
that f(u,v) is a linear function of the variable u ∈ V for each fixed v ∈ V and
also is a linear function of the variable v ∈ V for each fixed u ∈ V ; a bilinear
function is a special case of the multilinear functions considered on page 48. In
terms of a basis {vi} for the n-dimensional vector space V a bilinear function
f is described by the matrix A ∈ Fn×n with the entries aij = f(vi,vj); for if
u =

∑n
i=1 xivi and v =

∑n
j=1 yjvj then

(4.31) f(u,v) = f

(
n∑
i=1

xivi,

n∑
i=1

yjvj

)
=

n∑
i,j=1

xiyjf(vi,vj) =

n∑
i,j=1

aijxiyj .

When the coefficients {xi} and {yj} are viewed as describing column vectors x
and y in Fn the preceding equation can be written in matrix form as

(4.32) f(x,y) = txAy,

where tx is the transpose of the column vector x so is a row vector. Any
other basis v′i for the vector space V has the form v′i =

∑n
j=1 pijvj for some

nonsingular matrix P = {pij} ∈ Gl(n, F ); so a vector v ∈ V has the descriptions
v =

∑n
i=1 x

′
iv
′
i =

∑n
i,j=1 x

′
ipijvj =

∑n
j=1 xjvj where the coordinates are related

by xj =
∑n
i=1 x

′
ipij , or alternatively when the set of coordinates is viewed as a

column vector, by x = tPx′. Consequently the explicit descriptions (4.31) in
terms of the two bases are related by

(4.33) f(u,v) =

n∑
i,j=1

aijxiyj =

n∑
i,j,k,l=1

aij x
′
kpki y

′
lplj =

n∑
k,l=1

a′klx
′
ky
′
l

where

(4.34) a′kl =

n∑
i,j=1

aijpkiplj or in matrix terms A′ = PA tP.

Two n × n matrices A, A′ over a field F that are related as in (4.34) for a
nonsingular matrix P ∈ Gl(n, F ) are said to be congruent matrices; note
particularly that this relation involves only square matrices. It is easy to see
that this is an equivalence relation between n×n matrices over the field F . The
set of matrices describing a bilinear function f : V × V −→ F as in (4.31) for
all choices of bases for V thus is an equivalence class of congruent matrices. If
P is a nonsingular n×n matrix then rank (PX) = rank (XP ) = rankX for any
other n× n matrix X, by Theorem 1.16; it follows that all congruent matrices
have the same rank, which is defined to be the rank of the bilinear function
described by any of these congruent matrices.



4.2. INNER PRODUCT SPACES 207

A bilinear function f(x,y) on a vector space V over a field F is trivial
if f(x,y) = 0 for all x,y ∈ V , and otherwise is nontrivial. It is said to be
symmetric if f(x,y) = f(y,x) for all vectors x,y ∈ V , and is said to be
skew symmetric if f(x,y) = −f(y,x) for all vectors x,y ∈ V . If f(x,y) is a
symmetric bilinear function described by a matrix A then since aij = f(vi,vj)
for basis vectors vi,vj it follows that aij = f(vi,vj) = f(vj ,vi) = aji so A is a
symmetric matrix, in the sense that A = tA; and conversely if A is a symmetric
matrix then f(x,y) = txAy = ty tAx = tyAx = f(y,x). Correspondingly a
bilinear function f(x,y) is skew-symmetric if and only if the matrix representing
it is skew-symmetric, in the sense that A = − tA. Any matrix congruent to
a symmetric matrix is easily seen to be symmetric, while any matrix that is
congruent to a skew-symmetric matrix is easily seen to be skew-symmetric. It
is clear that any n × n matrix A over a field for which 2 6= 0 can be written
uniquely as the sum A = A′ + A′′ of the symmetric matrix A′ = 1

2 (A + tA)
and the skew-symmetric matrix A′′ = 1

2 (A − tA). On the other hand if 2 = 0
in the field then −aij = aij so a matrx is symmetric if and only if it is skew-
symmetric. The discussion in this section will be limited to the consideration
of symmetric bilinear functions over fields in which 2 6= 0. The inner or dot
product considered on page 62 is an example of a symmetric bilinear function,
and generalizations of this occur frequently in analysis. It is quite common
to simplify the notation by setting f(x,y) = (x,y) for any symmetric bilinear
function f(x,y); but when doing so it is important to keep in mind that a general
symmetric bilinear function does not necessarily satisfy the positivity condition
(2.5), so it is perhaps simpler just to continue with the notation f(x,y).

A basis {vi} for a vector space V with a symmetric bilinear function f(v,w)
is said to be an orthogonal basis if f(vi,vj) = 0 whenever i 6= j; this notion
thus depends on the choice of a symmetic bilinear function on V . It is perhaps
worth pointing out that there are no such bases for a nontrivial skew-symmetric
bilinear function, to emphasize that only symmetric bilinear functions will be
considered further here. Note that orthogonality does not specify the actual val-
ues of f(vi,vi); some may zero, although not all can be zero if the bilinear func-
tion is nontrivial. The special case of an orthogonal basis for which f(vi,vi) = 1
for all the basis vectors vi is called an orthonormal basis; alternatively an or-
thonormal basis is characterized by the condition that f(vi,vj) = δij , in terms
of the Kronecker symbol.

Lemma 4.12 If f(x,y) is a nontrivial symmetric bilinear function in a vector
space V over a field F for which 2 6= 0 then there is at least one vector v ∈ V
such that f(v,v) 6= 0.

Proof: For a bilinear function on a vector space V to be nontrivial there must be
vectors v1,v2 ∈ V for which f(v1,v2) 6= 0. It may be the case that f(v1,v1) 6= 0
or that f(v2,v2) 6= 0, in which case there is nothing to prove. However if
f(v1,v1) = f(v2,v2) = 0 then by bilinearity and symmetry f(v1+v2,v1+v2) =
f(v1,v1) + f(v1,v2) + f(v2,v1) + f(v2,v2) = 0 + 2f(v1,v2) + 0 6= 0, and that
suffices for the proof.
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It is worth noting that the assumption in the preceding lemma that 2 6= 0
is critical; indeed the bilinear function on the vector space (Z/2Z)2 over the
field Z/2Z described by the matrix ( 0 1

1 0 ) is nontrivial but f(v,v) = 0 for every
vector v. The usefulness of such vectors is clarified by the following observation.

Theorem 4.13 (Decomposition Theorem) If f(x,y) is a symmetric bilin-
ear function on a vector space V of dimension n over a field F for which 2 6= 0
and if v1 ∈ V is a vector for which f(v1,v1) 6= 0 then the vector space V has
a direct sum decomposition V = V ′ ⊕ V ′′ where V ′ ⊂ V is the one-dimensional
linear subspace spanned by the vector v1 and V ′′ ⊂ V is the (n−1) dimensional
linear subspace consisting of those vectors v′′ ∈ V for which f(v′′,v1) = 0.

Proof: If a vector v ∈ V can be written as the sum v = cv1 + v′′ for some
scalar c ∈ F where v′′ ∈ V ′′ then 0 = f(v′′,v1) = f(v − cv1,v1) = f(v,v1) −
cf(v1,v1) so it must be the case that c = f(v,v1)/f(v1,v1); and conversely if
c = f(v,v1)/f(v1,v1) then f(v − cv1,v1) = 0 so v − cv1 = v′′ ∈ V ′′. Thus
any vector v ∈ V can be written uniquely as the sum v = cv1 + v′′ for some
scalar c ∈ F where v′′ ∈ V ′′; and that is just the condition that V = V ′ ⊕ V ′′,
from which it follows further that dimV ′′ = n− 1. That suffices for the proof.

Corollary 4.14 (Gram-Schmidt Theorem) For any nontrivial symmetric
bilinear function on a finite dimensional vector space V over a field F in which
2 6= 0 there is an orthogonal basis for V .

Proof: The theorem will be demonstrated by induction on the dimension n
of the vector space V . The theorem is quite obviously true if n = 1; so let
V be a vector space of dimension n > 1 and assume that the result has been
demonstrated for all vector spaces of dimension strictly less than n. Lemma 4.12
shows that there is a vector v1 ∈ V for which f(v1,v1) 6= 0; and the preceding
theorem then shows that there is a direct sum decomposition V = V ′⊕V ′′ where
V ′ = Fv1 is the one-dimensional subspace spanned by the vector v1 and V ′′ is
the (n− 1)-dimensional subspace consisting of vectors v′′ such that f(v′′,v1) =
0. By the induction hypothesis there is an orthogonal basis v′′1 , . . . ,v

′′
n−1 for the

subspace V ′′ ⊂ V ; then v1,v
′′
1 , . . .v

′′
n−1 is a basis for the n-dimensional vector

space V , and since f(v1,v
′′
j ) = 0 for 1 ≤ j ≤ n−1 while f(v′′i ,v

′′
j ) = 0 whenever

i 6= j this is an orthogonal basis for the vector space V . That suffices for the
proof.

It is perhaps worth noting that the preceding theorem does not assert that
there is an orthonormal basis; for instance it may be the case that f(vi,vi) = 0
for all but one of the basis vectors. The decomposition of vectors in Theo-
rem 4.13 can be used to construct an explicit orthogonal basis for a vector
space beginning with any given basis u1, . . . ,un. Indeed after modifying the
first basis vector u1 as necessary it can be assumed that f(u1,u1) 6= 0, so there
is the direct sum decomposition V = Fu1+V ′′ as in Theorem 4.13. Set v1 = u1

and decompose the remaining vectors as uj = cjv1 + u′′j where u′′j ∈ V ′′ for
2 ≤ j ≤ n. Repeat the preceding process for the basis u′′2 , . . . ,u

′′
n of the vector
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space V ′′, and continue in the same manner; that leads to an orthogonal basis
for the vector space V . This procedure is known as the Gram-Schmidt Or-
thogonalization Process and is quite commonly used either theoretically or
actually explicitly.

Corollary 4.15 Any symmetric matrix over a field F in which 2 6= 0 is con-
gruent to a diagonal matrix.

Proof: To a symmetric matrix A there is associated the symmetric bilinear
function f(u,v) as in (4.31). By the preceding theorem there is an orthogonal
basis {vi} for this bilinear function, and the matrix representing the bilinear
function in terms of this basis is of the form A′ = PA tP for some nonsingular
matrix P , so is congruent to the matrix A. The entries in the matrix A′ are
a′ij = f(vi,vj) = 0 unless i = j, showing that A′ is a diagonal matrix.

The preceding corollary can be interpreted as providing a normal form for
symmetric matrices under the equivalence relation of congruence. However this
normal form is not uniquely determined, since for instance if D is a diagonal
matrix with diagonal entries di and if P is a nonsingular diagonal matrix with
entires pi then PD tP = D′ is a diagonal matrix congruent to D but with the
entries d′i = p2

i di. The further examination of congruence for general fields
leads to rather difficult algebraic questions; but only the fields R and C will
be considered in the remainder of this section. For a real diagonal matrix
D = {di} there is as just observed a congruent diagonal matrix D′ with the
entries d′i = p2

i di; and if pi = 1/
√
|di| then d′i = ±1 or 0, so any symmetric

real matrix is congruent to a diagonal matrix with entries ±1 or 0 along the
diagonal. If P is a permutation matrix then PD′ tP = D′′ is a diagonal matrix
obtained from D′ by rearranging the rows and columns, that is, by rearranging
the diagonal elements. Altogether then any real symmetric matrix is congruent
to one of the form

(4.35) D =

In+
0 0

0 −In− 0
0 0 0

 ,

where In denotes the identity n × n matrix and 0 denotes the zero matrix.
The diagonal matrix D has n+ positive diagonal elements, each of which is +1,
and n− negative diagonal elements, each of which is −1, while the remaining
diagonal elements are 0. The rank of the matrix D is r = n+ +n−, so the matrix
D is determined fully by its rank r and the difference s = n+ − n− between
the number of real and negative diagonal elements, called the signature of the
matrix D. A basic result3 of matrix theory is that two congruent symmetric
real matrices also have the same signature.

Theorem 4.16 (Sylvester’s Law of Inertia) Congruent symmetric real ma-
trices have the same rank and signature.

3This result was first proved by J. J. Sylvester in 1852, and customarily has been named
after him in this rather dramatic way.
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Proof: The theorem is equivalent to the assertion that if f(u,v) is a symmetric
bilinear function on a finite dimensional real vector space V , and if {ui} and
{vi} are two orthogonal bases for V for which the inner products f(ui,ui) and
f(vi,vi) are either +1 or −1 or 0, then the number of basis vectors for which the
inner product is +1 is the same for the two bases; for since congruent matrices
have the same rank the number of basis vector for which the inner product
is 0 will be the same for the two bases, hence the number of basis vectors
for which the inner product is −1 also will be the same for the two bases.
Relabel the basis vectors ui so that U+ ⊂ V is the subspace of V spanned
by the basis vectors u+

i for which the inner product is +1, for 1 ≤ i ≤ n+;
that U− ⊂ V is the subspace spanned by the basis vectors u−i for which the
inner product is −1, for 1 ≤ i ≤ n−; and that U0 is the subspace spanned
by the basis vectors u0

i for which the inner product is 0, for 1 ≤ i ≤ n0.
Let V+, V−, V0 be the corresponding subspaces in terms of the basis vectors vi.
The vector space V thus can be written as a direct sum of subspaces in two
ways, namely V = U+ ⊕ U− ⊕ U0 = V+ ⊕ V− ⊕ V0. If u ∈ U+ and u 6= 0

then u =
∑n+

i=1 a
+
i u+

i where not all the coefficients a+
i are zero; and since

the basis is orthogonal f(u,u) =
∑n+

i,j=1 f(a+
i u+

i , a
+
j u+

j ) =
∑n+

i=1(a+
i )2 > 0.

The corresponding argument shows that f(u,u) < 0 whenever u ∈ U− and
f(u,u) = 0 whenever u ∈ U0, and similarly for the basis {vi}. Now suppose
that contrary to what is to be proved dimU+ > dimV+; then U+∩(V−⊕V0) 6= 0,
so there will be a nontrivial vector u in that intersection. Since u ∈ U+ it
follows that f(u,u) > 0; but since u ∈ V− ⊕ V0 it also follows that f(u,u) ≤ 0,
a contradiction which concludes the proof.

Corollary 4.17 Two real symmetric matrices are congruent if and only if they
have the same rank and signature; and any real symmetric matrix is congruent
to a unique matrix of the form (4.35).

Proof: This is really a restatement of the results of Corollary 4.15 and Theo-
rem 4.16, as in the preceding discussion, so no further proof is required.

This gives the complete classification of symmetric real matrices under con-
gruence. The corresponding result for complex symmetric matrices is somewhat
simpler.

Corollary 4.18 Two complex symmetric matrices are congruent if and only if
they have the same rank; and any complex symmetric matrix is congruent to a
unique matrix of the form

(4.36) D =

(
Ir 0
0 0

)
.

Proof: As in the preceding discussion, any diagonal matrix D = {di} over a
field F is congruent to the diagonal matrix D′ = {d′i} where d′i = p2

i di for any
pi 6= 0 in that field. Since any complex number has a square root, it follows
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that when F is the field of complex numbers the diagonal entries of the matrix
D′ can be taken to be either 1 or 0; and a further congruence D′′ = PD′ tP for
a permutation matrix P can rearrange the diagonal elements, so altogether any
complex symmetric matrix is congruent to one of the form (4.36), where r is
the rank of that matrix. Since two congruent matrices have the same rank, it
follows that the rank and hence the normal form (4.36) are uniquely determined,
and that suffices for the proof.

There can be associated to any symmetric bilinear function f(u,v) on a finite
dimensional vector space over a field F the quadratic function q(v) = f(v,v).
When the bilinear function is described by a matrix A over the field F in terms
of a choice of coordinates xi the quadratic function can be written

(4.37) q(x) =

n∑
i,j=1

aijxixj ,

so it is actually a homogeneous polynomial of degree 2 in the coordinates xi.
Under changes of coordinates in Fn the matrix A is replaced by congruent
matrices, the matrices PA tP for nonsingular matrices P over the field F . Of
course for a skew-symmetric bilinear function the associated quadratic function
vanishes identically; so this is of interest only for symmetric bilinear functions.
The discussion of these quadratic functions here will be limited to real quadratic
functions, those over the field R of real numbers. In that case the quadratic
function q(x) is said to be positive definite if q(x) > 0 for any nonzero vector
x ∈ Rn and is said to be negative definite if q(x) < 0 for any nonzero vector
x ∈ Rn. If the quadratic function described by a symmetric real matrix A is
positive definite the matrix A is said to be a positive definite matrix, and
correspondingly if the quadratic function described by a symmetric real matrix
A is negative definite the matrix A is said to be a negative definite matrix.
It is evident from the definition that a matrix A is negative definite if and only
if the matrix −A is positive definite; and that a diagonal real matrix is positive
definite if and only if all its diagonal terms are strictly positive and is negative
definite if and only if all its diagonal terms are strictly negative. Since the
condition that a quadratic function be positive definite clearly is independent of
the choice of basis, a symmetric real matrix A is positive definite if and only if it
is congruent to the identity matrix, and correspondingly it is negative definite if
and only if it is congruent to the negative of the identity matrix. To determine
whether a given symmetric real matrix A is positive definite it is not necessary
to go through the whole Gram-Schmidt orthogonalization process though, for
there is a simpler test that is expressed in terms of the principal minors of the
matrix A, the determinants of the square matrices formed from the first ν rows
and columns of the matrix A for the successive values ν = 1, 2, . . . , n. Thus the
principal minors of a matrix A = {aij} are the values

(4.38) a11, det

(
a11 a12

a21 a22

)
, det

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , · · · .
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Theorem 4.19 (Sylvester’s Criterion) A symmetric real matrix A is pos-
itive definite if and only if all principal minors are strictly positive; and A is
negative definite if and only if all the odd principal minors are strictly negative
and all the even principal minors are strictly positive.

Proof: First to show that the principal minors of a positive definite real matrix
are positive, consider a symmetric positive definite n× n matrix A. By Corol-
lary 4.15 the matrix A is congruent to a diagonal matrix D, which as noted can
be assumed to be of the form (4.35); and the matrix D also is positive definite,
so it can be assumed that D is the identity matrix hence that A = tP P for a
nonsingular matrix P . Then detA = det tP · detP = (detP )2 > 0, so at least
that subdeterminant is positive. If Ar is the leading r×r minor of the matrix A

and x =

(
xr
0

)
∈ Rn where xr ∈ Rr then since the matrix A is positive definite

it follows that 0 < txAx = txrArxr; that means that the matrix Ar is positive
definite, hence in view of the special case already demonstrated it follows that
detAr > 0.

Next, it will be demonstrated by induction on n that if the principal minors
of an n × n real symmetric matrix are positive then that matrix is positive
definite; that is trivially true for n = 1, so assume it is true for some particular
n ≥ 1 and consider an (n + 1) × (n + 1) matrix A for which all the principal
minors are strictly positive. Decompose the matrix A into blocks of the form

A =

(
A0 a
ta a

)
where A0 is an n × n matrix, a ∈ Rn is a column vector and a ∈ R is a real
number. By assumption detA0 > 0 so A0 is a nonsingular matrix. Consider
then the auxiliary (n+ 1)× (n+ 1) matrices

A′ =

(
A0 0
0 a′

)
and B =

(
In 0

taA−1
0 1

)
,

where a′ = a− taA−1
0 a ∈ R and In is the n×n identity matrix. A straightforward

calculation shows that

(4.39) A = B A′ tB.

Since the principal minors of A0 are also principal minors of A, and all are
strictly positive by hypothesis, it follows from the inductive assumption that
A0 is positive definite. Clearly detB = 1 so detA = detA′ = a′ detA0, and
since detA > 0 and detA0 > 0 it follows that a′ > 0. The matrix A′ therefore
is positive definite, hence the congruent matrix A is positive definite, which
establishes the inductive step for this part of the argument, so the matrix A is
positive definite.

Finally a symmetric real matrix B is negative definite if and only if −B is
positive definite; hence it follows from the result just established for positive
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definite matrices that B is negative definite if and only if the principal minors
of the matrix −B are all positive. If Br is the leading r×r submatrix of B then
the associated principal minor is det(−Br) = (−1)r detBr, which is positive if
and only if the sign of detBr is (−1)r , and that suffices to conclude the proof.

As an application of Sylvester’s Criterion, if f(x) is a C2 function in an open
subset U ⊂ Rn and if a ∈ U is a critical point of that function then its Taylor
expansion in local coordinates centered at the point a has the form

(4.40) f(a + x) = f(a) +
1

2

n∑
i,j=1

∂ijf(ξx)xixj

where ξx is a point on the line segment connecting the point a and the point x.
The n×n matrix {∂ijf(x)} is known as the hessian or the hessian matrix of
the function f(x). If the hessian of f(x) is positive definite at the point a then
all the principal minors are positive at the point a; and since the second partial
derivatives are continuous the principal minors will remain positive in an open
neighborhood V of the point a hence the hessian itself will be positive definite
in the open neighborhood V of the point a. Consequently f(x) ≥ f(a) for all
points x ∈ V , so the point a is a local minimum of the function f(x). If the
hessian matrix is negative definite the corresponding argument shows that the
point a is a local maximum of the function f(x). It should be noted though that
this is a sufficient but not necessary condition for a local maximum or minimum,
since a local extremum may occur at a point at which all the second derivatives
vanish. For functions of a single variable the only principal minor is just f ′′(a),
so this is a simple test to see whether a critical point is a local maximum or
minimum. For functions of two variables there are just two principal minors,
the values ∂11f(a) and ∂11f(a)∂22f(a)− ∂12f(a)∂21f(a); for functions of more
variables the calculation becomes more complicated.

The special case of positive definite bilinear functions leads back to the real
inner product spaces considered in Section 2.1, a topic of particular interest in
analysis; but it is important in analysis also to consider the complex analogue
of real inner product spaces. A real inner product space was defined in (2.5) to
be a real vector space U together with a mapping which assigns to any vectors
x,y ∈ U a real number (x,y) ∈ R that satisfies the conditions of linearity,
symmetry and positivity. Analogously a complex inner product space is
defined to be a complex vector space V together with a mapping which assigns
to any vectors v,w ∈ V a complex number (v,w) ∈ C that satisfies the following
conditions:

(i) sesquilinearity: (c1v1 + c2v2, w) = c1(v1,w) + c2(v2,w)
(v, c1w1 + c2w2) = c1(v,w1) + c2(v,w2)

for any c1, c2 ∈ C,
(ii) hermitian symmetry: (v,w) = (w,v),
(iii) positivity: (v,v) ≥ 0 and (v,v) = 0 if and only if v = 0,

where c denotes the complex conjugate of c ∈ C. Condition (i) means that the
function (v,w) is linear in the first variable but conjugate linear in the second
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variable; so it is called sesquilinearity rather than bilinearity. Condition (ii) is
a modification of symmetry, under which interchanging the entries changes the
value of the function (v,w) to its complex conjugate; so it is called hermitian
symmetry rather than symmetry. An immediate consequence of hermitian
symmetry is that (v,v) is a real number, so that condition (iii) does make sense.
A complex inner product space has an associated norm ‖v‖2 =

√
(v,v) defined

by the non-negative square root of the real number (v,v) ≥ 0, in parallel to the
case of a real inner product space. The Cauchy-Schwarz inequality holds in a
complex inner product space with essentially the same proof as given in Theo-
rem 2.9 for a real inner product space; the details of verifying that inequality
will be left to the reader. An isometry or an isomorphism between two com-
plex inner product spaces V,W , with the inner products (u,v)V and (u,v)W
respectively, is defined to be a bijective complex linear mapping T : V −→ W
between these two vector spaces that preserves the complex inner product, in
the sense that

(4.41) (Tu, Tv)W = (u,v)V for all u,v ∈ V ;

the spaces V and W are then said to be isometric or isomorphic complex
inner product spaces. The two vectors spaces are also isometric as normed
vector spaces, with the norm associated to the inner product. This is easily
seen to be an equivalence relation between complex inner product spaces that
can be viewed as identifying them for many purposes.

A real inner product space can be viewed as a special case of a complex
inner product space, in which vectors and the field are real so that the com-
plex conjugate of any vector or scalar is just that vector or scalar. The results
already established for real inner product spaces normally extend to complex
inner product spaces, with suitable modifications as necessary; and the results
to be considered subsequently for complex inner product spaces normally spe-
cialize to corresponding results for real inner product spaces, also with suitable
modifications as necessary. In both cases the modifications will be noted in the
course of the discussion.

Any choice of a basis {ui} for an n-dimensional complex vector space V
establishes an isomorphism φ : Cn −→ V between the complex vector spaces
Cn and V , so it can be viewed as establishing a complex coordinate system
on V ; explicitly the image of the vector x = (x1, . . . , xn) ∈ Cn is the vector
v = φ(x) =

∑n
i=1 xiui ∈ V described by the coordinates xi. If V is a complex

inner product space this linear isomorphism then can be used to define an inner
product structure on the complex vector space Cn for which φ is an isometry.
Indeed if x = (x1, . . . , xn) ∈ Cn and y = (y1, . . . , yn) ∈ Cn while φ(x) =∑n
i=1 xiui = v ∈ V and φ(y) =

∑n
j=1 yjuj = w then the complex inner
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product on Cn must be given by

(x,y) =
(
φ(x), φ(y)

)
=

 n∑
i=1

xiui,

n∑
j=1

yjuj

 =

n∑
i,j=1

xiyj(ui,uj)(4.42)

=

n∑
i,j=1

aijxiyj where aij = (ui,uj) ∈ C

or in matrix terms

(4.43) (x,y) = txAy for the matrix A = {aij}.

Since V is a complex inner product space aij = (ui,uj) = (uj ,ui) = aji by
hermitian symmetry. Equivalently in matrix terms A = tA; a matrix A satis-
fying this condition is said to be a hermitian matrix. Conversely if A is a

hermitian matrix then (x,y) = txAy =ty tAx = ty tAx = tyAx = (y,x) so the
expression (4.43) is hermitian symmetric. Also since V is a complex inner prod-
uct space

∑
i,j aijxixj = (u,u) > 0 for any nonzero complex vector x = {xi}

by positivity; a hermitian matrix A such that txAx =
∑
i,j aijxixj > 0 for any

nonzero complex vector x = {xi} is called a positive definite hermitian ma-
trix. Thus any positive definite hermitian matrix A defines the structure of a
complex inner product space on Cn with the inner product (4.43).

Any finite dimensional complex inner product space V has an orthogonal
basis, a basis {ui} for which (ui,uj) = 0 if i 6= j, by an argument similar to that
in the proof of the Gram-Schmidt Theorem; again the details of verifying that
the proof can be carried through in the complex case will be left to the reader. By
positivity ‖ui‖ > 0 for any nonzero vector ui; therefore the vectors u∗i = ui/‖ui‖
actually are an orthonormal basis for V , a basis satisfying the condition that
(ui,uj) = δij for all indices i, j. The coordinate system on V defined by the
basis {u∗i } then exhibits an isometry of the complex inner product space V
with the complex inner product space Cn for which the complex inner product
is defined by the positive definite hermitian matrix I, the identity matrix. This
inner product space is called the standard complex inner product space,
and the vector space Cn with this inner product will be denoted by CnI ; thus
CnI is the vector space Cn with the complex inner product

(4.44) (x,y) = tx · y =

n∑
i=1

xiyi for any vectors x = {xi},y = {yi} ∈ Cn,

and it is the analogue of the vector space Rn with the standard real inner
product. For many purposes it is sufficient just to consider the standard complex
inner product space Cn rather than a general complex inner product space, just
as in the earlier case of the real inner product space.

An isometry between the complex inner product space CnI and itself is a
linear mapping P : Cn −→ Cn between these two vector spaces that preserves
the complex inner product structure, in the sense that (Px, Py) = (x,y) for any
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vectors x,y ∈ Cn. More explicitly the inner product is given by (4.44) so the
isometry is characterized by tx ·y = (x,y) = (Px, Py) = t(Px) ·Py = tx tP ·Py
for all x,y ∈ Cn; and that is an identity in the variables x,y ∈ Cn if and only
if tPP = I, the identity matrix. A matrix P satisfying this condition is called
a unitary matrix; so a unitary matrix is characterized by the condition that

(4.45) tPP = I, the identity matrix, or equivalently P−1 = tP .

The set of all n × n unitary matrices clearly is a group under multiplication;
this group is called the unitary group and is often denoted by U(n). A real
matrix A is hermitian precisely when A = tA, that is, when the matrix A is
symmetric. A real matrix A is unitary precisely when A tA = I, or equivalently
when A−1 = tA. A real unitary matrix is called an orthogonal matrix; and
the set of all n× n orthogonal matrices is a group under multiplication, called
the orthogonal group and often denoted by O(n).

If A : CnI −→ CnI is an endomorphism of the complex vector space CnI
and if P : CnI −→ CnI is the isometry defined by a unitary matrix P then
when P is viewed as a change of coordinates on the complex vector space CnI
the linear transformation A in the new coordinates introduced by P is the
linear transformation PAP−1. This is a matrix that is similar to the matrix
A, under the equivalence relation of similarity of matrices as in (4.1). However
if P is a unitary matrix then P−1 = tP so PAP−1 = PA tP and the linear
transformation A in terms of the new coordinates introduced by P also can be
considered as the matrix PA tP . This is a matrix that is a complex analogue of
a matrix congruent to the matrix A, for the congruence of matrices as discussed
on page 206. Thus this is really a new equivalence relation, a combination of
similarity and congruence with a complex twist, called hermitian congruence.
In the analogous situation for real matrices, where P is an orthogonal matrix,
this is the relation called orthogonal congruence. The examination of this
equivalence relation can be carried out either in terms of orthonormal bases for
inner product spaces or in terms of properties of unitary or orthogonal matrices;
the subsequent discussion will focus on the first of these approaches.

Theorem 4.20 For any endomorphism T : V −→ V of a finite dimensional
complex inner product space V there is a unique endomorphism T ∗ : V −→ V
such that

(4.46) (Tu,v) = (u, T ∗v) for all u,v ∈ V .

If the endomorphism T is described by a matrix T in terms of an orthonormal
basis for V then the endomophism T ∗ is described by the matrix T ∗ = tT .

Proof: The choice of an orthonormal basis establishes an isometry between the
inner product space V and the standard complex inner product space CnI , so
it suffices to prove the theorem just for the case of an endomorphism T of the
inner product space CnI , where the inner product has the form (4.44). For any
vectors x,y ∈ Cn

(Tx,y) = t(Tx) · y = tx tTy = tx · ( tTy) = (x, tTy),
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and that suffices for the proof.

The endomorphism T ∗ for any complex inner product space is called the
adjoint of the endomorphism T , and the matrix T ∗ = tT is called the adjoint
of the matrix T . For a real vector space the adjoint of an endomorphism T also is
defined by the equation (4.46); and when the adjoint of a real transformation is
described by a matrix T in terms of an orthonormal basis the adjoint is described
by the transpose T ∗ = tT . Adjoint endomorphisms are quite basic tools in the
study of inner product spaces; some of their standard properties are summarized
in the following theorem. There are actually two different approaches to the
proof of assertions about adjoint matrices for finite dimensional inner product
spaces: proofs can be expressed either in terms of the basic defining equation
(4.46) for the adjoint transformation or in terms of the matrix description T ∗ =
tT of endomorphisms in terms of an orthonormal basis. Generally the former
approach will be used here, unless the alternative explicit calculation actually
is more convenient.

Theorem 4.21 For a finite dimensional complex inner product space V the
adjoint operation has the following properties:
(i) (S + T )∗ = S∗ + T ∗ for any endomorphisms S, T .
(ii) I∗ = I for the identity mapping I.
(iii) λ∗ = λ for the mapping defined as multiplication by λ ∈ C.
(iv) (ST )∗ = T ∗S∗ for any endomorphsms S, T .
(v) (T ∗)∗ = T for any endomorphism T .

Proof: It is clear from the defining equation (4.46) that (i) and (ii) hold.
Since (λu, v) = λ(u, v) = (u, λv) for any λ ∈ C and any vectors u,v ∈ V
that demonstrates (iii). From (4.46) it follows that

(
u, (ST )∗v

)
= (STu,v) =

(Tu, S∗v) = (u, T ∗S∗v) for any vectors u,v ∈ V , which shows that (iv) holds.
Finally ((T ∗)∗u, v) = (v, (T ∗)∗u) = (T ∗v, u) = (u, T ∗v) = (Tu, v) for all
vectors u,v ∈ V , which demonstrates (v) and thereby concludes the proof.

Actually the explicit proof of the preceding theorem for matrices, where
T ∗ = tT , is possibly even simpler than the proof given here. For real inner
product spaces the adjoint operation has the same properties, except that λ∗ = λ
for the operation of multiplying by a real number λ ∈ R. It is clear from the
preceding theorem that the defining equation (4.46) for the adjoint operator can
be rephrased equivalently in the reverse order, so as the condition that

(4.47) (u, Tv) = (T ∗u,v) for all u,v ∈ V .

Two subspaces W1,W2 of an inner product space V are said to be orthogonal
if (u1,u2) = 0 for any vectors u1 ∈ W1 and u2 ∈ W2; and the orthogonal
complement W⊥ of a linear subspace W ⊂ V is defined to be the subset

(4.48) W⊥ =
{

u ∈ V
∣∣∣ (u,w) = 0 for all w ∈W

}
,

which is easily seen also to be a linear subspace of V .
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Theorem 4.22 If V is a finite dimensional complex inner product space then
(i) kerT = (T ∗V )⊥ and kerT ∗ = (TV )⊥ for any endomorphism T of V ;
(ii) (W⊥)⊥ = W for any subspace W ⊂ V ;
(iii) V = W ⊕W⊥ for any subspace W ⊂ V ; and
(iv) T ∗V = (kerT )⊥ and TV = (kerT ∗)⊥ for any endomorphism T of V .

Proof: Clearly Tu = 0 for a vector u ∈ V if and only if 0 = (Tu,v) = (u, T ∗v)
for all v ∈ V , which implies the first assertion in (i), and the second assertion
follows from the first assertion as an immediate consequence of Theorem 4.21 (v).
If v1, . . . ,vr is an orthonormal basis for the subspace W ⊂ V where r = dimW
this basis can be extended to an orthonormal basis v1, . . . ,vn for the full vector
space V where n = dimV . It is evident that the vectors vr+1, . . .vn form a
basis for the subspace W⊥ ⊂ V ; correspondingly the vectors v1, . . . ,vr form
a basis for (W⊥)⊥ as well as for W , from which (ii) and (iii) clearly follow.
Finally (iv) follows directly from (i) and (ii), and that suffices for the proof.

The same theorem holds for the special case of real inner product spaces. A
very important class of endomorphisms of either a real or a complex inner prod-
uct space V are the normal endomorphisms, defined as those endomorphsms
T such that

(4.49) TT ∗ = T ∗T ;

although this may seem a somewhat peculiar condition, it does turn out to be
both natural and important. Several more naturally defined families of endo-
morphisms are special cases of normal endomorphisms. For example, an en-
domorphism T is said to be self-adjoint if T ∗ = T ; obviously a self-adjoint
endomorphism is a normal endomorphism. A complex self-adjoint matrix T is
one for which tT = T while a real self-adjoint matrix T is one for which tT = T
so is just a symmetric matrix; thus these natural families of matrices are normal
matrices. For other examples, a unitary matrix was defined to be a matrix T
for which tT = T−1, and an orthogonal matrix was defined as a real unitary
matrix, so as a matrix T for which tT = T−1; and both unitary and orthogonal
matrices are normal matrices, so have the following special properties.

Theorem 4.23 A normal endomorphism T of a finite dimensional complex
inner product space V satisfies the following conditions:
(i) ‖Tu‖ = ‖T ∗u‖ for any vector u ∈ V .
(ii) kerT ∗ = kerT .
(iii) TV = T ∗V .
(iv) (T − λI) is also normal for any λ ∈ C.
(v) If Tv = λv for a vector v ∈ V and a complex constant λ then T ∗v = λv.
(vi) If Tu1 = λ1u1 and Tu2 = λ2u2 for vectors u1,u2 and complex constants
λ1, λ2 where λ1 6= λ2 then (u1, u2) = 0.

Proof: (i) For any vector u ∈ V it follows from the properties of adjoint
endomorphisms and the definition of a normal endomorphism that (Tu, Tu) =
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(u, T ∗Tu) = (u, TT ∗u) = (T ∗u, T ∗u), which is equivalent to (i).
(ii) This is an immediate consequence of (i).
(iii) This is an immediate consequence of (ii) and Theorem 4.22 (iv).
(iv) Since (λI)∗ = λI for any complex constant λ by Theorem 4.21 (ii) and
Theorem 4.21 (iii) it follows from Theorem 4.21 (i) that (T − λI)∗ = T ∗ − λI;
therefore (T − λI)(T − λI)∗ = TT ∗ − λT ∗ − λT + |λ|2I and similarly (T −
λI)∗(T − λI) = T ∗T − λT ∗ − λT + |λ|2I, so since TT ∗ = T ∗T it follows that
(T − λI)(T − λI)∗ = (T − λI)∗(T − λI) hence (T − λI) is normal.
(v) If Tv = λv then v ∈ ker (T − λI), and since T − λI is normal by (iv)
it follows from (ii) that ker (T − λI)∗ = ker (T − λI); and as already noted
(T − λI)∗ = T ∗ − λI hence T ∗v = λv.
(vi) If Tu1 = λ1u1 and Tu2 = λ2u2 then T ∗ui = λiui by (v). Therefore
λ1(u1, u2) = (Tu1, u2) = (u1, T

∗u2) = (u1, λ2u2) = λ2(u1,u2); so if λ1 6= λ2

then (u1,u2) = 0, and that suffices for the proof.

Again the same results hold for real inner product spaces. It is an interesting
exercise to demonstrate the converse of (i) of the preceding theorem, that is, to
show that if ‖Tu‖ = ‖T ∗u‖ for any vector u ∈ V then the endomorphism T is
normal. However the true significance of normal endomorphisms really lies in
the following theorem.

Theorem 4.24 (The Spectral Theorem) An endomorphism T of a finite
dimensional complex inner product space V is normal if and only if V has an
orthonormal basis consisting of eigenvectors of T .

Proof: If v1, . . . ,vn is an orthonormal basis for the vector space V consisting
of eigenvectors for the endomorphism T , so that Tvi = λivi, then the matrix
representation of T in terms of this basis is the diagonal matrix with the entries
λi along the diagonal; the adjoint matrix is just the complex matrix with the
diagonal entries λi, and these two matrices of course commute so T is a normal
linear transformation. Conversely if T is a normal linear transformation of
the complex vector space V it has nontrivial eigenvectors and the eigenvectors
for any particular eigenvalue form a finite dimensional vector subspace; any
orthonormal basis of that subspace of course consists of eigenvectors of T . The
eigenvectors for distinct eigenvalues are orthogonal vectors by Theorem 4.23 (vi);
so the set of all eigenvectors of T form a vector subspace W ⊂ V spanned by
a collection of orthonormal eigenvectors vi with eigenvalues λi. If W is not
the entire vector space V its orthogonal complement W⊥ will be a nontrivial
subspace of V , consisting of vectors u ∈ V such that (u,vi) = 0 for 1 ≤ i ≤
r. If u ∈ W⊥ then since T ∗vi = λivi by Theorem 4.23(v) it follows that
(Tu, vi) = (u, T ∗vi) = (u, λivi) = λi(u, vi) = 0, hence Tu ∈ W⊥ as well;
therefore TW⊥ ⊂W⊥. But the endomorphism T of this vector space W⊥ must
also have an eigenvector, which is not in the space W of all eigenvectors. That
contradiction shows that W = V , hence that V is spanned by the eigenvectors
of T , thereby concluding the proof.



220 CHAPTER 4. LINEAR MAPPINGS

Corollary 4.25 (The Spectral Theorem for Complex Matrices) A com-
plex matrix T is hermitian congruent to a diagonal matrix if and only if the
matrix T is normal.

Proof: The preceding theorem shows that the endomorphism described by a
matrix T is normal if and only if the inner product vector space has a basis
consisting of eigenvectors of the endomorphism T . A change of basis in the
inner product space Cn has the effect of replacing the matrix T by a hermitian
congruent matrix; and a matrix is diagonal if and only if the basis vectors are
eigenvectors of the linear transformation described by the matrix. That suffices
for the proof.

The remarkable part of the preceding corollary is that there is such a simple
and readily calculable test to determine whether a matrix is hermitian congruent
to a diagonal matrix. Unitary and self-adjoint matrices are particular examples
of normal matrices, so any such matrices are hermtian congruent to diagonal
matrices. On the other hand there are normal matrices that are neither unitary
nor self-adjoint, so the theorem does cover still other cases. For example, it is a
straightforward calculation to verify that the matrix

(4.50)

1 1 0
0 1 1
1 0 1


is a normal matrix but is neither unitary nor self-adjoint.

The situation for real matrices is rather different, since real normal matrices
do not necessarily have any eigenvectors at all. For example the real matrix(

0 −1
1 0

)
is easily seen to be normal, but it has no real eigenvalues hence no real

eigenvectors; actually that is the usual situation for real 2× 2 normal matrices.
The proof of the spectral theorem for real inner product spaces thus fails just at
the point of using the existence of eigenvectors. However what is in some senses
a rather simpler corresponding result still holds for real inner product spaces,
based on the following observation.

Lemma 4.26 The eigenvalues of any self-adjoint endomorphism of a real or
complex inner product space are real numbers.

Proof: If T : V −→ V is a self-adjoint endomorphism of an inner product space
V and Tv = λv for some nonzero vector v ∈ V and some complex number λ
then λ(v,v) = (Tv,v) = (v, T ∗v) = (v, Tv) = (v, λv) = λ(v,v) and since
(v,v) 6= 0 it follows that λ ∈ R, which suffices for the proof.

Theorem 4.27 An endomorphism T of a finite dimensional real inner product
space is self-adjoint if and only if V has an orthonormal basis consisting of
eigenvectors of T .
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Proof: If V has an orthonormal basis consisting of real eigenvectors of T then
V is isometric to the standard real inner product space for which the endo-
morphism T is represented by a real diagonal matrix, hence T is self-adjoint.
Conversely suppose that T is a self-adjoint endomorphism of a finite dimen-
sional real vector space V . The vector space V is isometric to the standard
real inner product space RnI , and the endomorphism T is then described by a
self-adjont matrix T . This matrix always has a complex eigenvalue; but the pre-
ceding lemma shows that its eigenvalues are all real hence have real eigenvectors.
Therefore the endomorphism T actually has real eigenvectors, so the proof of
the spectral theorem for complex matrices carries over to a corresponding result
for the vector space V , to conclude the proof.

Corollary 4.28 A real matrix T is orthogonally congruent to a diagonal matrix
if and only if the matrix T is self-adjoint.

Proof: The preceding theorem shows that the endomorphism described by a
matrix T is self-adjoint if and only if the inner product space has an orthonormal
basis consisting of eigenvectors of the endomorphism T . A change of basis in
the inner product space Rn has the effect of replacing the matrix T by an
orthogonally congruent matrix; and a matrix is diagonal if and only if the basis
vectors are eigenvectors of the linear transformation described by the matrix.
That suffices for the proof.

It is worth mentioning here that the spectral theorem and the corresponding
theorem for real inner product spaces generally require the hypothesis that
the vector spaces are finite dimensional. Infinite dimensional real and complex
inner product spaces play important roles in analysis, and a major topic is the
investigation of conditions under which the spectral theorem holds in some form
or other for these vector spaces.
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PROBLEMS, GROUP I:

(1) Verify that congruence is an equivalence relation among matrices.

(2) Find an orthonormal basis for the vector space R3 in terms of the usual

symmetric bilinear function f(x,y) =
∑3
i=1 xiyi by applying the Gram-Schmidt

process beginning with the basis v1 = {1, 0, 1}, v2 = {1, 0,−1}, v3 = {0, 3, 4}.

(3) Find an orthonormal basis for the vector space R3 in terms of the sym-

metric bilinear function described by the matrix

1 0 1
0 2 1
1 1 2

.

(4) In R4 in terms of the usual symmetric bilinear function f(x,y) let V ⊂ R4

be the subspace consisting of all vectors x such that f(x,u) = f(x,v) = 0 for
the vectors tu = {1, 0,−1, 1} and tv = {2, 3,−1, 2}. Find an orthonormal basis
for V .

(5) For what real values x is the matrixx 1 2
1 4 5
2 5 8


positive definite? negative definite? What are the rank and signatuure of this
matrix for the special case in which x = 0?

(6) Show that the Cauchy-Schwarz inequality holds in any finite-dimensional
complex inner product space.

(7) Show that if an endomorphism T of an inner product space satisfies ‖Tu‖ =
‖T ∗u‖ for all vectors u then T is normal. [This is the converse of (i) in Theo-
rem 4.23.]

(8) On the inner product space C2 with the usual inner product show that
the matrix

A =

(
1 i
i 1

)
is normal and find an orthonormal basis of C2 consisting of eigenvectors of A.

(9) Show that for any vector space the only endomorphism that is both normal
and nilpotent is the zero mapping.
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PROBLEMS, GROUP II:

(10) (i) Show that the mapping f : R2×2 × R2×2 −→ R from pairs of 2 × 2
real matrices to R, defined by f(A,B) = tr(AB), is a symmetric bilinear func-
tion, where tr(X) is the trace of the matrix X.
(ii) Find a matrix representation M of the mapping f for the basis consisting
of the matrices eij having entry 1 in row i column j and entries 0 otherwise.
Determine the rank and signature of M .
(iii) Find a matrix representation M1 of the restriction of f to the subspace
consisting of pairs of skew-sysmmetric matrices, for some choice of a basis for
this subspace. Determine the rank and signature of the matrix M1.

(11) Show that if V is a finite dimensional vector space over a field F in which
2 6= 0 and if f(x,y) is a nontrivial skew-symmetric bilinear function on V then
there is no basis for V in terms of which the matrix describing the mapping f
is upper triangular.

(12) Show that if the columns of an n × n real matrix form an orthonormal
basis for Rn in terms of the usual symmetric bilinear function then so do the
rows (where both rows and columns are viewed as vectors in Rn).

(13) Show that if A is a symmetric n × n real matrix and if a ∈ Rn is a
critical point for the function g(x) on Rn defined by g(x) = f(Ax,x)/f(x,x)
for x 6= 0 and g(0) = 0, where f(x,y) is the usual symmetric bilinear function
on Rn, then Aa = α a for some real number α. What can you say about the
value of α?

(14) Show that a complex matrix A is normal if and only if A = A1 + i A2

where A1, A2 are commuting self-adjoint matrices.

(15) Find an example of a complex 2 × 2 matrix A such that A2 is normal
but A is not normal.

(16) Show that a complex matrix A is normal if and only if A∗ can be written
as a polynomial in A.

(17) Show that the matrix A =

1 2 3
2 3 4
3 4 5

 is normal and find a real orthogonal

matrix P so that PA t P is a diagonal matrix.
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Chapter 5

The Geometry of Mappings

5.1 The Inverse Mapping Theorem

A continuous one-to-one mapping φ : U −→ V between two open subsets
U, V ⊂ Rn with a continuous inverse φ−1 : V −→ U is called a homeomor-
phism between these two sets. A homeomorphism really identifies the two sets
as far as topological properties are concerned. Indeed the mapping φ takes
open subsets of U to open subsets of V , since the image φ(E) ⊂ V of any open
subset E ⊂ U is the inverse image (φ−1)−1(E) of the set E under the continu-
ous mapping φ−1 : V −→ U , and the inverse mapping φ−1 takes open subsets
of V to open subsets of U ; consequently the mapping φ identifies continuous
functions f : U −→ R on U with continuous functions f ◦ φ−1 : V −→ R on
V , and correspondingly for the inverse mapping φ−1. If the mapping and its
inverse are both continuously differentiable, in which case the mapping is called
a C1 homeomorphism or sometimes a C1 diffeomorphism, this mapping also
identifies C1 functions on the two sets; and if the mapping φ and its inverse are
Cr mappings they identify Cr functions on U with those on V . It is a familiar
result from calculus in one variable that if f : I −→ R1 is a continuously differ-
entiable function in an open interval I ⊂ R1 such that f ′(x) 6= 0 for all x ∈ I
then the mapping f is a C1 homeomorphism from I to its image f(I). The proof
of this result is often skipped or treated casually; but it is a model for one proof
of the corresponding result in higher dimensions, so it may be helpful to review
that special case first. Suppose that f : [a, b] −→ R1 is a continuous mapping
from a closed interval in R1 into R and that f is C1 in the open interval (a, b)
and f ′(x) 6= 0 at each point x ∈ (a, b); since the image f([a, b]) of the compact
connected set [a, b] is necessarily also compact and connected it must be a closed
interval, so it can be assumed that f([a, b]) = [c, d]. The set of points where
f ′(x) > 0 and the set of points at which f ′(x) < 0 are open subsets of (a, b),
the union of which is the entire interval (a, b); and since an interval is connected
it must be the case that one of these two sets is empty, so either f ′(x) > 0 at
all points x ∈ (a, b) or f ′(x) < 0 at all points x ∈ (a, b). Suppose first that

225



226 CHAPTER 5. GEOMETRY OF MAPPINGS

f ′(x) > 0 at all points x ∈ (a, b). It follows from the mean value theorem that
whenever a ≤ x1 < x2 ≤ b there is a point ξ such that x1 < ξ < x2 and
f(x2) − f(x1) = f ′(ξ)(x2 − x1) > 0; thus f is a strictly increasing function
in [a, b], so it is a one-to-one mapping from the closed interval [a, b] onto the
closed interval [c, d] and has a well defined inverse mapping g : [c, d] −→ [a, b].
For any δ > 0 the continuous positive function f ′(x) attains its minimum value
at a point in the compact subset [a + δ, b − δ], and that minimum must be a
positive number m > 0 since f ′(x) > 0 everywhere; so f ′(x) ≥ m > 0 for all
x ∈ [a + δ, b − δ]. Therefore whenever a + δ ≤ x1 < x2 ≤ b − δ it follows from
the mean value theorem that there is a point ξ such that x1 < ξ < x2 and
f(x2)− f(x1) = f ′(ξ)(x2− x1) ≥ m(x2− x1). If yi = f(xi) then xi = g(yi) and
the preceding inequality can be written y2 − y1 ≥ m

(
g(y2) − g(y1)

)
. That is

the case for any points yi for which f(a+ δ) ≤ y1 < y2 ≤ f(b− δ), which shows
that the inverse function g is continuous in the interval [f(a+ δ), f(b− δ)]; and
since that is the case for any δ > 0 it follows that the function g is continuous
in (c, d). Furthermore in the interval c ≤ y1 < y2 ≤ d if xi = g(yi) then

g(y2)− g(y1)

y2 − y1
=

x2 − x1

f(x2)− f(x1)
;

since g is continuous, x2 tends to x1 as y2 tends to y1, so in the limit the
preceding equation reduces to g′(y1) = 1/f ′(x1), showing that the function g
is differentiable and that its derivative is also continuous. The corresponding
result of course holds if f ′(x) < 0 in (a, b). This argument critically used the
hypothesis that the derivative f ′(x) is a continuous function, and the result does
not hold without that hypothesis. Indeed the function

(5.1) h(x) =
1

2
x+ x2 sin

1

x

is differentiable at all points x ∈ R1 and it is easy to see that h′(0) = 1
2 ; but the

derivative of h(x) alternates in sign in any open neighborhood of 0 so it cannot
be a one-to-one mapping in any open neighborhood of 0.

If f : U −→ V is a C1 homeomorphism between two open subsets U, V ⊂ Rn
and if g : V −→ U is its inverse then g

(
f(x)

)
= x, and an application of the

chain rule shows that g′(f(x)
)
f ′(x) = I, the identity matrix, and consequently

that det f ′(x) 6= 0 at each point x ∈ U ; thus a necessary condition for the
mapping f to be a C1 homeomorphism is that det f ′(x) 6= 0 for all x ∈ U . The
matrix f ′ is called the Jacobian matrix of the mapping f , and its determinant
is called the Jacobian of the mapping f . This necessary condition is sufficient
locally. It is convenient first to establish a special case of that result, from which
the general case follows easily.

Theorem 5.1 If f : W −→ Rn is a continuously differentiable mapping defined
in an open neighborhood W ⊂ Rn of the origin such that f(0) = 0 and f ′(0) = I,
the identity matrix, then for any sufficiently small open subneighborhood U ⊂W
of the origin the restriction of the mapping f to U is a C1 homeomorphism
f : U −→ V between U and an open neighborhood V ⊂ Rn of the origin.
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Proof: The mapping r(x) = f(x)− x is a continuously differentiable mapping
such that r(0) = 0 and r′(0) = 0; therefore there is a closed cell ∆ ⊂ W ⊂ Rn
centered at the origin 0 sufficiently small that the following conditions are sat-
isfied:
(i) ‖r′(x)‖o ≤ 1

2 for all x ∈ ∆, for the operator norm for `2 norms; and

(ii) det f ′(x) 6= 0 for all x ∈ ∆.
The first step in the proof is to establish a basic inequality on which the remain-
der of the proof rests. From the Mean Value Inequality (3.56) it follows that for
any points a,b ∈ ∆ there is a point c on the line connecting those two points for
which ‖r(b)−r(a)‖2 ≤ ‖r′(c)‖o‖b−a‖2 in terms of the operator norm ‖r′(c)‖o;
it follows from the assumption (i) that ‖r(b)− r(a)‖2 ≤ 1

2‖b− a‖2. Then from
this inequality and the triangle inequality it follows that

‖b− a‖2 ≤ ‖
(
f(b)− f(a)

)
− (b− a)‖2︸ ︷︷ ︸

=r(b)−r(a)

+‖
(
f(b)− f(a)

)
‖2

≤ 1

2
‖b− a‖2 + ‖

(
f(b)− f(a)

)
‖2

hence that

(5.2) ‖f(b)− f(a)‖2 ≥
1

2
‖b− a‖2,

which is the basic inequality.
It follows from (5.2) that the mapping f : ∆ −→ Rn is an injective mapping;

for if f(b) = f(a) that inequality shows that ‖b − a‖2 = 0. In particular
f(x) 6= f(0) = 0 for any point x ∈ ∂∆, the boundary of the cell ∆; so since ∂∆
is compact there is a positive number d > 0 such that

(5.3) ‖f(x)‖2 ≥ d > 0 for all x ∈ ∂∆.

The next step is to show that the open neighborhood V of the origin defined by

(5.4) V =
{

y ∈ Rn
∣∣∣ ‖y‖2 < 1

2
d
}

is contained in the image f(∆). To demonstrate that, for any point b ∈ V
the function ψ(x) = ‖f(x) − b‖2 is a continuous function on ∆, and it is just
necessary to show that ψ(a) = 0 for some point a ∈ ∆. Since b ∈ V then
ψ(0) = ‖b‖2 < 1

2d by (5.4), while if x ∈ ∂∆ then in view of (5.3) and the
triangle inequality

d ≤ ‖f(x)‖2 ≤ ‖f(x)− b‖2 + ‖b‖2 = ψ(x) + ‖b‖2 < ψ(x) +
d

2

so ψ(x) > d
2 . Thus ψ(0) < ψ(x) for any point x ∈ ∂∆, so the function ψ(x)

must take its minimum value at some interior point a ∈ ∆; and that point is
the obvious candidate to be a zero of the function ψ(x). The square of this

function, the function ψ(x)2 =
∑n
i=1

(
fi(x)− bi

)2
, then also takes its minimum
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value at the point a ∈ ∆, hence that point is a critical point of ψ(x)2, a zero
of all of its partial derivatives ∂jψ(x)2 =

∑n
i=1 2

(
fi(x) − bi

)
∂jfi(x); thus 0 =∑n

i=1 2
(
fi(a) − bi

)
∂jfi(a) for 1 ≤ j ≤ n, which can be written equivalently in

terms of the matrix f ′(a) as

2 f ′(a)
(
f(a)− b

)
= 0.

However the matrix f ′(a) is nonsingular by assumption (ii), hence f(a)−b = 0
as desired.

What has been shown so far is that the mapping f : ∆ −→ Rn is an injective
mapping, and that V ⊂ f(∆). Consequently the subset U = f−1(V ) ⊂ ∆ is an
open neighborhood of the origin for which f is a one-to-one mapping f : U −→ V
from U onto V ; so there is a well defined inverse mapping g = f−1 : V −→ U
from V onto U . To show that this mapping g is continuously differentiable,
for any points y,y + k ∈ V let x,x + h be their images under the mapping
g : V −→ U , so that

(5.5)
x = g(y) and x + h = g(y + k)

y = f(x) and y + k = f(x + h).

By the basic inequality (5.2)

‖g(y+k)−g(y)‖2 = ‖(x+h)−x‖2 ≤ 2‖f(x+h)−f(x)‖2 = 2‖(y+k)−y‖2 = 2‖k‖2,

hence g is continuous. Since f is differentiable

k = f(x + h)− f(x) = f ′(x)h + εf (h) where limh→0
‖εf (h)‖2
‖h‖2 = 0,

from which it follows that

(5.6) g(y + k)− g(y) = h = f ′(x)−1k + εg(k)

where εg(k) = −f ′(x)−1εf (h). Since det f ′(x) 6= 0 for all x ∈ ∆ and ∆ is
compact it follows ‖f ′(x)−1‖o ≤M for some constant M and all points x ∈ ∆;
hence ‖f ′(x)−1k‖2 ≤ M‖k‖2 and similarly ‖εg(k)‖2 ≤ M‖εf (h)‖2. Altogether
then

(5.7)
‖εg(k)‖2
‖k‖2

≤M ‖εf (h)‖2
‖h‖2

· ‖h‖2
‖k‖2

≤ 2M
‖εf (h)‖2
‖h‖2

since by the fundamental inequality (5.2) yet again

‖h‖2
‖k‖2

=
‖(x + h)− x‖2
‖f(x + h)− f(x)‖2

≤ 2.

Since limh→0
‖εf (h)‖2
‖h‖2 = 0 while limk→0 h = 0 as a consequence of the con-

tinuity of the mapping g, it follows from (5.7) that limk→0
‖εg(k)‖2
‖k‖2 = 0 and

consequently from (5.6) that the mapping g is differentiable, and moreover that

g′(y) = f ′(x)−1 = f ′
(
g(y)

)−1
so the derivative g′(y) is also continuous; that

suffices for the proof.
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Theorem 5.2 (Inverse Mapping Theorem) If f : W −→ Rn is a continu-
ously differentiable mapping in an open neighborhood W ⊂ Rn of a point a ∈ Rn
such that det f ′(a) 6= 0 then for any sufficiently small open subneighborhood
U ⊂W of the point a the restriction of the mapping f to U is a C1 homeomor-
phism f : U −→ V between U and an open neighborhood V of the image point

b = f(a). If g : V −→ U is the inverse mapping then g′(y) = f ′(g(y)
)−1

for
each point y ∈ V .

Proof: Introduce the invertible affine mappings φ,ψ : Rn −→ Rn defined by

φ(x) = f ′(a)−1x + a, ψ(x) = x− b.

The composition F = ψ ◦ f ◦ φ is then a continuously differentiable mapping
from an open neighborhood of the origin 0 ∈ Rn into Rn such that F(0) = 0,
and by the chain rule F′(0) = ψ′(b)f ′(a)φ′(0) = I · f ′(a)f ′(a)−1 = I. The
preceding theorem shows that the mapping F is invertible, and that its inverse
G is a continuously differentiable mapping from an open neighborhood of the
origin into Rn. The composition g = φ ◦G ◦ψ is a continuously differentiable
mapping from an open neighborhood of b into Rn, and since f = ψ−1 ◦F ◦φ−1

it follows that g ◦ f = φ ◦G ◦ψ ◦ψ−1 ◦F ◦φ−1 is the identity mapping so that
g is the inverse mapping to f . Finally since y = f

(
g(y)

)
for any point y ∈ V

it follows from the chain rule that I = f ′
(
g(y)

)
g′(y) where I is the identity

matrix, so that g′(y) = f ′
(
g(y)

)−1
, and that concludes the proof.

One consequence of the Inverse Mapping Theorem is that if f : U −→ Rn
is a continuously differentiable mapping defined in an open subset U ⊂ Rn
such that det f ′(x) 6= 0 for all points x ∈ U then f is an open mapping,
in the sense that the image of any open subset U0 ⊂ U is an open subset
f(U0) ⊂ Rn. The inverse image of any open set under a continuous mapping
is always open; but the image of an open subset under a general continuous
mapping is not necessarily open, so open continuous mappings are a special
subclass of continuous mappings. If f : U −→ Rn is a C1 homeomorphism
from an open subset U ⊂ Rn with coordinates (t1, . . . , tn) onto an open subset
V ⊂ Rn with coordinates (x1, . . . , xn), points in V can be described either
in terms of the coordinates (x1, . . . , xn) in Rn or alternatively in terms of the
coordinates (t1, . . . , tn) ∈ U ⊂ Rn; for this reasons the parameters (t1, . . . , tn)
are often described as being another local coordinate system in V , and the
mapping f is called a C1 local change of coordinates in V . Of course it
is also possible just to consider continuous changes of coordinates through a
homeomorphism that is not necessarily given by a C1 mapping. The usefulness of
a change of coordinates is that it may be possible to describe the local geometry
much more simply in terms of the coordinates (t1, . . . , tn) than in terms of the
initial coordinates (x1, . . . , xn). For example, an arc of a circle of radius 1
centered at the origin in the plane with a coordinate system (x1, x2) can be
described locally as a straight line segment r = 1 in terms of polar coordinates
(r, θ).
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There is a more abstract and general form for changes of coordinates, which
opens an important area of mathematics. A Hausdorff topological space M is
called a manifold, or more precisely a topological manifold of dimension
n, if it has an open covering {Vα}, each set of which is homeomorphic to an
open subset Uα ⊂ Rn. Thus if M is manifold then M ⊂

⋃
α Vα and there are

homeomorphisms φα : Uα −→ Vα for some subsets Uα ⊂ Rn. Customarily
the subsets Uα are assumed to be pairwise disjoint. The collection {Vα, φα}
of open subsets of M and homeomorphisms from open subsets of Rn is called
a coordinate covering of the topological space M ; the subsets Vα are called
coordinate neighborhoods of the manifold M , and the coordinates in Uα are
considered local coordinates on the manifold M through the homeomorphism
φα. If {Vα, φα} and {Wβ , ψβ} are two coordinate coverings of M it is clear that
their union is also a coordinate covering ofM . For example a circle can be viewed
as a 1-dimensional manifold, for if it is described in terms of polar coordinates
(r, θ) in a plane R2 then the angle θ can be taken as a local coordinate in any
segment of the circle other than the full circle; similarly a sphere in R3, the
surface of a solid ball Br ∈ R3, can be viewed as a 2-dimensional manifold by
using spherical coordinates (r, θ, φ) in R3. What is interesting is that there are a
great many examples of manifolds, some of which can be described naturally as
subsets of Euclidean spaces as in these examples and others that are naturally
described more abstractly.

Functions defined in a neighborhood Vα ⊂M of a manifold M can be viewed
as functions of the local coordinates in the open subset Uα ⊂ Rn, so it is possible
to consider those that are continuously differentiable or C1 functions of these
local coordinates; but of course it is not necessarily the case that C1 functions in
Vα are also C1 in the interesection Vα∩Vβ when viewed as functions of the local
coordinates in Vβ , unless the homeomorphisms φα and φβ are differentiably
compatible. A differentiable coordinate covering {Vα, φα} of a Hausdorff
space M , or more precisely a C1- coordinate covering of M , is a coordinate
covering such that for any nonempty intersection Vα ∩ Vβ ⊂M the mapping

φβα = φ−1
β ◦ φα : φ−1

α (Vα ∩ Vβ) −→ φ−1
β (Vα ∩ Vβ)

is a C1 mapping. The situation may be clarified by considering Figure 5.1. It is
clear that if a function f : M −→ R is a C1 mapping in a coordinate neighbor-
hood Vα ⊂ M of a differentiable coordinate covering {Vα, φα} of M , meaning
that the composition f ◦ φα : Uα −→ R is a C1 mapping in Uα ⊂ Rn, then it
is also a C1 mapping in the intersection Vα ∩ Vβ in terms of the coordinates in
Vβ ; consequently a function f : M −→ R is defined to be a C1 function on
M in terms of a differentiable coordinate covering {Vα, φα} if f ◦ φα is a C1

mapping for each coordinate neighborhood Vα. That does not necessarily imply
that the function is a C1 function in terms of a different differentiable coordinate
covering of the topological space M . Two C1 coordinate coverings {Vα, φα} and
{Wβ , ψβ} are called equivalent C1 coordinate coverings if their union is a
C1 coordinate covering; that means that the local coordinates in intersections
Vα ∩Wβ also must be compatible. The collection of all equivalent C1 coordi-
nate coverings of M is called a C1 structure on the topological space M . Of
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Figure 5.1: Local coordinate coverings of a manifold.

course there are corresponding definitions for Cr-structures and C∞ structures.
If M and M ′ are two C1 manifolds of dimensions n and n′, with C1 coordi-
nate coverings {Vα, φα} and {V ′β , φ′β}, then just as for real valued functions on
manifolds a continuous mapping f : M −→ M ′ can be expressed in terms of
the local coordinates on the two manifolds; explicitly if f(Vα) ⊂ V ′β then the

mapping f induces the mapping (φ′β)−1 ◦ f ◦ φα from an open subset of Rn

to an open subset of Rn′ ; and the mapping f is said to be a C1 mapping if
these representations of f in terms of the local coordinates on M and M ′ are C1

homeomorphisms. A differentiable mapping is a C1 homeomorphism, or a C1 dif-
feomorphism, if these local representations are C1 mappings. The corresponding
definitions again hold for Cr-structures and C∞ structures. The investigation of
these structures and mappings is the topic of differential topology. The question
whether a topological manifold admits a differentiable structure or not, and if
it admits a differentiable structure whether or not there are additional differ-
entiable structures, have been investigated extensively; but that leads too far
afield to be discussed further here.1

It should be emphasized that the inverse mapping theorem is only a local
result; a mapping f : U −→ Rm for which det f ′(x) 6= 0 at all points x ∈ U ⊂ Rn
need not be invertible if n > 1. For example the derivative of the mapping
f : R2 −→ R2 defined by f(r, θ) = (r cos θ, r sin θ) is the matrix

(5.8) f ′(r, θ) =


∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ

 =

(
cos θ −r sin θ
sin θ r cos θ

)

for which det f ′(r, θ) = r. The Inverse Mapping Theorem asserts that the map-
ping f is locally invertible near any point (r, θ) ∈ R2 for which r 6= 0; but f

1The first example of a topological manifold admitting distinct differentiable structures was
found by John Milnor, who showed that there are precisely 28 distinct differentiable structure
on a 7-dimensional sphere. For further information see for example the Princeton Companion
to Mathematics.
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is clearly not a one-to-one mapping in the open subset U = { (r, θ) | r > 0 }
since f(r, θ) = f(r, θ + 2nπ) for any integer n. It is very difficult to find gen-
eral conditions ensuring that a mapping is globally invertible2. Points at which
the Jacobian of a differentiable mapping f : Rn −→ Rn vanishes are known
as singular points or singularities of the mapping. Mappings can be very
complicated indeed near their singular points. For a simple example, consider
again the mapping f : R2 −→ R2 given by f(r, θ) = (r cos θ, r sin θ); the origin

r = θ = 0 is a singular point since f ′(0, 0) =
(

1 0

0 0

)
. The mapping is sketched

in the accompanying Figure 5.2. A cell centered at the origin is mapped to
the bow-tie region, and the mapping is locally one-to-one except along the axis
r = 0; that entire axis is mapped to a single point, the origin. The general study
of the geometry of singularities of mappings is quite extensive, including what
is known as the theory of catastrophes3.

Figure 5.2: The mapping f : (r, θ) −→ (r cos θ, r sin θ) in an open neighborhood
of the origin.

An important and sometimes somewhat confusing concept is that of the
orientation of a real vector space V . For any two bases ui and vi of an n-
dimensional real vector space V there is a unique nonsingular real n×n matrix
A = {aij} such that ui =

∑n
j=1 aijvj for 1 ≤ i ≤ n. The two bases ui and vi

are said to have the same orientation if detA > 0. Clearly this determines an

2The “Jacobian Problem” is whether a mapping f : Rn −→ Rn from the n-dimensional
vector space to itself for n > 1 defined by polynomial equations for which det f ′(x) = 1 at all
points x ∈ Rn is necessarily a homeomorphism from Rn onto Rn. This is a long standing open
problem in mathematics, having been raised by O. H. Keller in 1939 for polynomial mappings
f : Cn −→ Cn over the complex numbers. It is known to be true for polynomial mappings
f : R2 −→ R2 of degree at most 100, but not in general, at least at the time of this writing.
It is known to be false for polynomial mappings over finite fields. It is also false for mappings
involving functions more general than polynomials; for instance the mapping f : C2 −→ C2

defined by f(x, y) = (ex, e−xy) has the Jacobian det f ′(x, y) = 1 at all points (x, y) but its
image excludes the axis (0, y) and the mapping is not one-to-one. A famous example due to
Fatou and Bieberbach, and discussed for example in the book Several Complex Variables by
S. Bochner and W. T. Martin, (Princeton University Press, 1948), is an injective mapping
f : C2 −→ C2 given by functions that are everywhere analytic and for which the Jacobian
det f ′(x) = 1 at all points x ∈ C2, but the image omits an open subset of C2. A survey of the
problem and some approaches, and some :saexamples of some false proofs, can be found in
the paper by H. Bass, E.H. Connell, D. Wright in the Bulletin of the American Mathematical
Society, volume 7, 1982. If it is just assumed that det f ′(x) 6= 0 for all points x ∈ C2, the
“strong Jacobian problem”, there is a counterexample for mappings f : R2 −→ R2 by S
Pinchuk in Mathematische Zeitschrift, volume 217, 1994.

3See for example the books Catastrophe Theory and Its Applications by Tim Poston and
Ian Stewart, New York: Dover, 1998, or Catastrophe Theory by Vladimir Arnold, Berlin:
Springer-Verlag, 1992.
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equivalence relation among bases, considering two bases equivalent if they have
the same orientation; an equivalence class is called an orientation of the vector
space V . It is customary to say that two bases that are not equivalent under
this relation have the opposite orientation; so the bases ui and vi have the
opposite orientation if detA < 0. There are thus two possible orientations of any
real vector space; but there is not a unique natural orientation of a vector space,
so a choice must be made by selecting a basis that defines the orientation if the
vector space is to be viewed as an oriented vector space. A proper subspace W
of an oriented vector space V does not inherit a natural orientation from that
of V ; the orientation of W must be specified separately by the choice of a basis
for W . For instance a general line in an oriented plane has two orientations,
the two directions in which a vector along the line can point; but neither is
determined by the orientation of the plane.

An orientation of the vector space Rn also can be described by an ordering of
the coordinates in Rn, specifying the coordinates as x1, x2, . . . , xn for example
and taking as the associated basis for Rn the derivatives dx1, dx2, . . . , dxn of
the coordinate functions, the unit vectors dxj = δj in terms of the Kronecker
vectors discussed on page 136. A permutation π of the variables in Rn, a
reordering of the variables, can be described by a permutation matrix M , a
matrix that has a single entry of 1 in each row and column and all other entries
0. For example 

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0



x1

x2

x3

x4

 =


x2

x4

x1

x3


so this matrix describes the permutation π(x1, x2, x3, x4) = (x2, x4, x1, x3), and
more generally 

tδi1
tδi2
· · ·
tδin



x1

x2

· · ·
xn

 =


xi1
xi2
· · ·
xin

 .

for any permutation (i1, i2, . . . , in) of the integers (1, 2, . . . , n), where tδi is the
transpose of the Kronecker vector δi. The sign of the permutation π described
by a permutation matrix M , denoted by sgn(π), is defined by sgn(π) = detM ,
which is ±1. If xij =

∑n
k=1mjkxk is a permuation of the variables in Rn

described by a permutation matrix M = {mij} then dxij =
∑n
k=1mjkdxk

describes the relation between the bases in terms of the two orders of the vari-
ables; the bases dxi and dxij have the same orientation for any permutation
π for which sgn(π) = +1, hence two orders of the coordinates in Rn describe
the same orientation of R precisely when they differ by a permutation π of
sign sgn(π) = +1. A permutation that interchanges any two consecutive vari-
ables, called a transposition, is orientation reversing, since det( 0 1

1 0 ) = −1.
Any permutation clearly can be written as the result of successively applying
transpositions; and the sign of a succession of n transpositions is (−1)n, so a
permutation is orientation preserving precisely when it can be written as the
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successive application of an even number of transpositions. This provides an
alternative to calculating a determinant to determine the sign of a permutation.
There is often no natural orientation associated to the choice of coordinates in
Rn though. For instance the orientation expressed by polar coordinates r, θ in
R2 depends upon the order in which these coordinates are listed, as is the case
for a set of coordinates a, α,ℵ in R3. It is customary to consider an orientation
in R2 as either clockwise or counterclockwise, depending on the order of the
variables; and to consider an orientation in R3 as that specified by either the
order of fingers on the right hand or on the left hand, again a choice of the order
of the variables.

If f : U −→ Rn is a continuously differentiable mapping from an open subset
U ⊂ Rn into Rn and if det f ′(a) 6= 0 at a point a ∈ U then either det f ′(a) > 0,
in which case the mapping f is said to be orientation preserving at the
point a, or det f ′(a) < 0, in which case the mapping f is said to be orientation
reversing at the point a. A C1 mapping thus is orientation preserving at a point
a precisely when its determinant matrix f ′(a) is an orientation preserving linear
transformation. If U is a connected open set and the Jacobian of the mapping
f is nowhere vanishing then the mapping f is either orientation preserving at
all points of U or orientation reversing at all points of U . For example the
mapping f : R2(r, θ) −→ R2(x, y) that takes a point (r, θ) to the point f(r, θ) =
(r cos θ, r sin θ) has the Jacobian det f ′(r, θ) = r, and consequently

if r > 0 then det f ′(r, θ) > 0 and f is orientation preserving,
if r < 0 then det f ′(r, θ) < 0 and f is orientation reversing,
if r = 0 then det f ′(r, θ) = 0 and f is singular,

as indicated in the accompanying Figure 5.3.

Figure 5.3: The mapping f : (r, θ) −→ (r cos θ, r sin θ) preserves the orientation
on the set where r > 0 but reverses the orientation on the set where r < 0.

For a C1 manifold M with the differentiable structure defined by a coordi-
nate covering {Vα, φα} the coordinates zα ∈ Uα and zβ ∈ Uβ are related by
a C1 mapping zβ = φβα(zα) for any nonempty intersection Vα ∩ Vβ as in Fig-
ure 5.3. The orientations of Uα and Uβ defined by the orders of the coordinates
in these neighborhoods are the same precisely when detφ′βα(zα) > 0. The coor-
dinate covering {Vα, φα} is said to define an orientation of the manifold M if
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the orientations in intersecting coordinate neighborhoods Vα ∩Vβ are the same,
that is, if detφ′βα(zα) > 0 for every nonempty interesection Vα ∩ Vβ ; and in
that case the manifold M is said to be an oriented manifold. If the orders
of the coordinates in each coordinate neighborhood of an oriented manifold are
changed by an orientation reversing permutation the result is still an oriented
manifold, but with its orientation reversed. Manifolds such that it is possible to
choose a coordinate covering defining an orientation are said to be orientable
manifolds; and each such has two choices of an orientation. However there are
manifolds, such as the Möbius strip, for which it is not possible to find a coordi-
nate covering for which the orientations agree in all intersections of coordinate
neighborhoods; such manifolds are said to be non-orientable manifolds.

Locally any C1 homeomorphism can be written as a composition of simpler
homeomorphisms, which permits the local study of C1 homeomorphisms to be
reduced to the examination of simpler mappings when that is helpful. A par-
ticularly simple homeomorphism is one that changes only a single variable, a
mapping f : Rn −→ Rn for which the coordinate functions fi(x) have the form
fi(x) = xi for i 6= j while fj(x) is a function of all the variables.

Theorem 5.3 A C1 mapping f : U −→ Rn defined in an open neighborhood U
of the origin in Rn, that takes the origin to the origin and has a nonzero Jacobian
at the origin, can be written in any sufficiently small open subneighborhood
V ⊂ U of the origin as the composition of C1 homeomorphisms that change only
a single variable.

Proof: For convenience a C1 homeomorphism f : U −→ Rn defined in an open
neighborhood U ⊂ Rn of the origin will be said to be of type r if f(0) = 0
and its coordinate functions fi have the form fi(x) = xi for at least r − 1 of
the indices i; but this convention will be used just for the course of the present
proof. Any C1 homeomorphism taking the origin to the origin is of type 1 of
course, since that imposes no conditions on its coordinate functions; but it is
of type n + 1 if and only if it is the identity mapping. The theorem will be
demonstrated by showing that if f is any C1 homeomorphism of type r in an
open neighborhood U of the origin then after restricting that neighborhood
sufficiently there is a homeomorphism φ : U −→ U such that φ changes just
one variable and the composition f ◦ φ is of type r + 1. Indeed if that result is
demonstrated then for any homeomorphism f : U −→ Rn for which f(0) = 0
after restricting the neighborhood U sufficiently there will be a sequence of C1

homeomorphisms φi : U −→ Rn each of which changes just a single variable
such that f ◦ φ1 ◦ φ2 ◦ · · · ◦ φk = I, the identity mapping, and then f =
φ−1
k ◦· · ·◦φ

−1
2 ◦φ

−1
1 , thus exhibiting f as the composition of C1 homeomorphisms

each of which changes just a single variable.

Suppose therefore that f : U −→ Rn is a C1 homeomorphism of type r. For
convenience of notation the variables can be relabeled so that fi(x) = xi for
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1 ≤ i < r. In that case points x ∈ Rn can be written in the form

x =

 xI
xr
xII

 where

 xI ∈ Rr−1 I = (1, 2, . . . , r − 1)
xr ∈ R1

xII ∈ Rn−r II = (r + 1, r + 2, . . . , n)

and the mapping f can be written correspondingly in the form

f(x) =

 xI
fr(x)
fII(x)

 where

 xI ∈ Rr−1 I = (1, 2, . . . , r − 1)
fr(x) ∈ R1

fII(x) ∈ Rn−r II = (r + 1, r + 2, . . . , n).

In these terms the derivative of the mapping f is the n× n matrix

(5.9) f ′(x) =

 Ir−1 0 0
∂Ifr(x) ∂rfr(x) ∂IIfr(x)
∂IfII(x) ∂rfII(x) ∂IIfII(x)


in which Ir−1 is the (r − 1)× (r − 1) identity matrix while

∂Ifr(x) =
(
∂1fr(x) · · · ∂r−1fr(x)

)
, a 1× (r − 1) matrix,

∂IfII(x) =
{
∂jfi(x)

∣∣∣ r+1 ≤ i ≤ n, 1 ≤ j ≤ r−1
}

, an (n− r)× (r−1) matrix,

and similarly for the other components of the matrix (5.9). Since det f ′(0) 6= 0
not all the entries in column r of this matrix are zero; so after a further re-
labeling of the coordinate functions it can be assumed that ∂rfr(0) 6= 0. Let
ψr : U −→ Rn be the mapping defined by

ψr

 xI
xr
xII

 =

 xI
fr(x)
xII

 ,

for which

(5.10) ψ′r(x) =

 Ir−1 0 0
∂Ifr(x) ∂rfr(x) ∂IIfr(x)

0 0 In−r

 .

Since detψ′r(0) = ∂rfr(0) 6= 0 it follows from the Inverse Mapping Theorem
that the mapping ψr is invertible in a sufficiently small open neighborhood
Ur ⊂ U of the origin. The inverse mapping φr = ψ−1

r of course has the
corresponding form

φr

 xI
xr
xII

 =

 xI
gr(x)
xII


for some function gr(x); and since

x = ψr
(
φr(x)

)
= ψr

 xI
gr(x)
xII

 =

 xI
fr
(
φr(x)

)
xII
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it follows that fr
(
φr(x)

)
= xr and therefore

f
(
φr(x)

)
= f

 xI
gr(x)
xII

 =

 xI
fr
(
φr(x)

)
fII
(
φr(x)

)
 =

 xI
xr

fII
(
φr(x)

)
 ,

so the composition f ◦φr is of type r + 1. As already observed, that suffices to
conclude the proof.

Corollary 5.4 (Decomposition Theorem) A C1 mapping f : U −→ Rn de-
fined in an open neighborhood U of a point a ∈ Rn with a nonzero Jacobian at
the point a can be written in any sufficiently small open subneighborhood V ⊂ U
of the point a as the composition of C1 homeomorphisms that change only a
single variable.

Proof: If f(a) = b then g(x) = f(a + x) − b is a C1 mapping defined in the
open neighborhood U of the origin that takes the origin to the origin and has a
nonzero Jacobian at the origin; by the preceding theorem the homeomorphism
g can be written in some open subneighborhood V ⊂ U as a composition of C1

homeomorphisms that change only a single variable, and f(x) = g(x−a) + b =
Tb ◦g◦T−a in terms of the translation mappings Tc(x) = x+c. Any translation
can be written as a composition of translations in a single variable, so altogether
then f is written as a composition of C1 homeomorphisms that change only a
single variable, which suffices for the proof.
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PROBLEMS, GROUP I:

(1) Show that the function (5.1) is differentiable at all points x ∈ R1 but that it
does not describe a one-to-one mapping in any open neighborhood of the origin.

(2) Consider the mapping f : R2 −→ R2 defined by

f(x1, x2) =

(
ex1 cosx2

ex1 sinx2

)
.

(i) Find the Jacobian matrix of the mapping f .
(ii) Find formulas for the local inverse of the mapping f at those points at which
the local inverse exists.
(iii) Is the mapping f injective?
(iv) Is the mapping f surjective?
(v) At which points is the mapping f nonsingular and orientation preserving?

(3) (i) Which permutations of the coordinate axes in R4 are orientation pre-
serving mappings?
(ii) What are the permutation matrices representing these mappings?

(4) (i) Find the Jacobian matrix and the Jacobian of the mapping f : R2 −→ R2

defined by f(x) =

(
sinx1

cosx2

)
.

(ii) Find the singularities of the mapping and describe the mapping at those
singular points.

PROBLEMS, GROUP II:

(5) Introduce an equivalence relation in R2 by setting (x1, x2) � (y1, y2) if
and only if (x1 − y1) ∈ Z and (x2 − y2) ∈ Z; let T = R2/ � be the space of
equivalence classes and let φ : R2 −→ T be the natural mapping that associates
to any point in R2 its equivalence class in T . Introduce the topology on T in
which a set U ⊂ T is open if and only if φ−1(U) is an open subset of R2. Show
that the set T can be given the structure of a compact 2-dimensional C∞ man-
ifold.

(6) Consider the mapping f : R2 −→ R2 defined by

f(x1, x2) =

(
−x1 +

√
x2

1 + x2
2,−x1 −

√
x2

1 + x2
2

)
.

(i) Find the Jacobian of this mapping.
(ii) Find the local inverse of this mapping at those points at which it is locally
bijective. At which of these points is the mapping orientation preserving?
(iii) Show that lines parallel to the coordinate axes in the image space of this
mapping correspond to parabolas x2

2 = 2p
(
x1 + p

2

)
. (These coordinates in the

image space are called parabolic coordinates.)
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(7) Consider the mapping f : R2×2 −→ R2×2 defined by f(X) = X2.
(i) Find the Jacobian matrix of the mapping f and evaluate it at the identity
matrix I.
(ii) Show that the mapping f is a bijective mapping from an open neighborhood
of the identity matrix I to an open neighborhood of the identity matrix I.
(iii) The local inverse f−1 of the mapping f in an open neighborhood of the
identity matrix can be viewed as the mapping f−1(X) =

√
X. What is the

derivative of this function
√
X?

(iv) Can you find an explicit formula for the function
√
X by using the binomial

expansion?

(8) Consider the mapping φ : R3 −→ R3 defined by

f(r, φ, θ) = (r sinφ cos θ, r sinφ sin θ, r cosφ).

(i) Find the Jacobian of the mapping f .
(ii) Determine those points at which the mapping f is locally bijective, and find
a local inverse mapping.
(iii) Is the mapping f orientation preserving at those points at which it is locally
bijective.
(iv) What is the image of the mapping f?
(The coordinates (r, φ, θ) are called spherical coordinates in R3.)

(9) A cylinder is constructed from a strip of paper by gluing the two ends
together in the same order; the Möbius strip is constructed from a strip of pa-
per by gluing the two ends of the strip together in the reverse order. Show that
a cylinder is an orientable manifold but that the Möbius strip is a non-orientable
manifold. It is amusing to note as well that while a cylinder has two edges and
two sides a Möbius strip has only one side and one edge.
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5.2 The Implicit Function Theorem

The Inverse Mapping Theorem can be applied to derive a simple local nor-
mal form at a point a ∈ Rm for mappings f : Rm −→ Rn when m > n and
rank f ′(a) = n, the maximal possible rank, showing that in suitable local coor-
dinates near the point a the mapping is the simplest linear mapping between
spaces of different dimensions; the general result will be discussed in Section 5.3,
but a special case of particular importance and usefulness will be discussed in
this section.

Theorem 5.5 If f : U −→ Rn is a C1 mapping defined in an open neighborhood
U of the origin 0 ∈ Rm where m > n, and if f(0) = 0 and the n × n matrix
consisting of the first n columns of the n ×m matrix f ′(0) is of rank n, then
after shrinking the neighborhood U if necessary there is a C1 homeomorphism
φ : V −→ U between an open neighborhood V of the origin 0 ∈ Rm and the
open neighborhood U , where

(5.11) φ(t1, . . . , tm) = {g1(t), . . . , gn(t)︸ ︷︷ ︸
g(t)

, tn+1, . . . , tm}

for some C1 functions gi(t) of the variables t ∈ V , such that gi(0) = 0 and

(5.12) (f ◦ φ)(t1 . . . , tm) = {t1, . . . , tn}.

Proof: The assertion of the theorem can be summarized as the existence of the
mapping φ in the diagram

Rm Rm Rn⋃ ⋃ ⋃
V

φ−−−−→ U
f−−−−→ Rn

with the properties (5.11) and (5.12). To simplify the notation write points
x ∈ Rm in the form

x =

(
xI
xII

)
where

{
xI ∈ Rn I = (1, 2, . . . , n)
xII ∈ Rm−n II = (n+ 1, n+ 2, . . . ,m).

The n×m matrix f ′(x) can be written

f ′(x) =
(
∂If(x) ∂IIf(x)

)
in terms of the n×n matrix ∂If(x) having the entries

(
∂I
(
f(x)

))
ij

= ∂jfi(x) for

1 ≤ i, j ≤ n and the n× (m− n) matrix ∂IIf(x) with entries
(
∂II
(
f(x)

))
ij

=

∂jfi(x) for 1 ≤ i ≤ n and n+ 1 ≤ j ≤ m. Introduce the C1 mapping ψ : U −→
Rm defined by

ψ(x) = ψ
(

xI
xII

)
=

(
f(x)
xII

)
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and note that

ψ′(x) =

∂If(x) ∂IIf(x)

∂IxII ∂IIxII

 =

∂If(x) ∂IIf(x)

0 Im−n


where Im−n is the identity (m−n)× (m−n) matrix; consequently detψ′(0) =
det ∂If(0) 6= 0, so it follows from the Inverse Mapping Theorem that after
shrinking the neighborhood U if necessary the mapping ψ is a one-to-one map-
ping from U onto an open neighborhood V of the image ψ(0) = 0 ∈ Rm with
a C1 inverse φ = ψ−1, which of course has the form

φ(t) =

(
g(t)
tII

)
for a mapping g : V −→ Rn for which g(0) = 0 since φ(0) = 0; so φ is a
mapping of the form (5.11). Then(

tI
tII

)
= (ψ ◦ φ)

(
tI
tII

)
= ψ

(
g(t)
tII

)
=

(
f(φ(t))

tII

)
so f

(
φ(t)

)
= tI , which demonstrates (5.12) and thereby concludes the proof.

Corollary 5.6 If f : U −→ Rn is a C1 mapping defined in an open subset
U ⊂ Rm where m > n, and if rank f ′(a) = n at a point a ∈ U , then there is a
C1 change of coordinates in an open neighborhood of the point a such that the
mapping f − f(a) is a linear mapping described by a matrix of rank n in terms
of these coordinates.

Proof: The mapping f̃(x) = f(x + a)− f(a) is C1 in an open neighborhood of
the origin, and rank f̃ ′(0) = rank f ′(a) = n while f(0) = 0. By a permutation of
the coordinates it can be supposed that the first n columns of the n×m matrix
f̃ ′(0) are linearly independent. The mapping f̃ thus satisfies the hypotheses of
the preceding theorem, so after a further C1 change of coordinates φ near the
origin the comoposition Lt = f̃

(
φ(t)

)
= f
(
φ(t) + a

)
− f(a) is a linear mapping

of the form (5.12) of rank n; so if ψ(t) = φ(t) + a then f(ψ(t)
)
− f(a) = Lt,

and that suffices for the proof.

Corollary 5.7 If f : U −→ Rn is a continuously differentiable mapping defined
in an open subset U ⊂ Rm where m > n, and if rank f ′(a) = n at a point a ∈ U ,
then there is a C1 change of coordinates in an open neighborhood Ua of the point
a in terms of which the set {x ∈ Ua

∣∣ f(x) = f(a)} is a piece of a linear subspace
of dimension m− n.

Proof: It follows from the preceding Corollary 5.6 that there is a local coordi-
nate system in an open neighborhood Ua of the point a such that the mapping
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f − f(a) is a linear mapping of rank n in terms of these coordinates; conse-
quently the set of points in Ua at which the mapping f − f(a) vanishes is a
linear subspace of dimension m− n, which suffices for the proof.

One of the most important consequences of Theorem 5.5 involves a more
precise assumption about the form of the derivative f ′(0).

Theorem 5.8 (Implicit Function Theorem) If f : U −→ Rn is a C1 map-
ping defined in an open neighborhood U of the origin 0 ∈ Rm where m > n, and
if f(0) = 0 and rank

(
∂1f(0) · · · ∂nf(0)

)
= n, then in a sufficiently small

open cell ∆ = ∆I ×∆II ⊂ U containing the origin, written as the product of a
cell ∆I ⊂ Rn in the space of the first n variables xI = {x1, . . . xn} and a cell
∆II ⊂ Rm−n in the space of the last m−n variables xII = {xn+1. . . . , xm}, there
is a C1 mapping h : ∆II −→ ∆I such that f(x) = 0 for a point x = {xI ,xII}
in ∆I ×∆II if and only if xI = h(xII).

Proof: It follows from Theorem 5.5 that if the neighborhood U is sufficiently
small there is a C1 homeomorphism φ : V −→ U from an open neighborhood
V of the origin in the space Rm of the variables t1, . . . , tm onto U such that
(5.11) and (5.12) are satisfied. Any point x ∈ U is the image x = φ(t) of a
unique point t ∈ V , and it follows from (5.12) that f(x) = 0 if and only if
(f ◦ φ)(t) = {t1, . . . , tn} = 0, or equivalently if and only if tI = 0 when the
point t ∈ Rm is written t = {tI , tII} where tI ∈ Rn and tII ∈ Rm−n; and in
that case it follows from (5.11) that {xI ,xII} = x = φ(t) = {g(0, tII), tII}, so
that actually tII = xII and consequently x = {g(0,xII),xII} or equivalently
xI = g(0,xII), which suffices for the proof.

The argument in the proof of the preceding theorem is illustrated in the ac-
companying Figure 5.4. The zeros of the function f form the image of the linear
subspace defined by the equations t1 = · · · = tn = 0 under the C1 mapping
φ : Rm −→ Rm that describes the change of coordinates in an open neighbor-
hood of the origin. The mapping φ does not change the last m− n coordinates
but only the first n coordinates of the points; so the mapping preserves the
“height” of points above the coordinate axis of the first n coordinates, but
moves the points by changing their first n coordinates. Points on the linear
subspace are described by the parameters ti = xi for n + 1 ≤ i ≤ m while the
coordinates ti are held constant for 1 ≤ i ≤ n; the zeros of the function f are
also described by the parameters ti = xi for n+ 1 ≤ i ≤ m.

In the Implicit Function Theorem, the equation f(x) = 0 can be viewed as a
description of relations among the coordinates x1, . . . , xm in Rm, which implic-
itly describe some of the coordinates as functions of the remaining coordinates;
the theorem provides conditions determining which coordinates really can be
viewed as explicit functions of the remaining coordinates, at least locally. For
example, if f : U −→ R1 is a continuously differentiable function in an open
subset U ⊂ Rm and if ∂1f(a) 6= 0 at some point a ∈ U then by the Implicit
Function Theorem in an open cell ∆ ⊂ U containing the point a there is a func-
tion g(x2, . . . , xn) such that f(x1, . . . , xm) = 0 for a point {x1, . . . , xm} ∈ ∆ if
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Figure 5.4: Illustration of the proof of the Implicit Function Theorem.

and only if x1 = g(x2, . . . , xm). The equation f(x1, x2, . . . xm) = 0 defines x1

implicitly as a function of the remaining variables, and in an open neighborhood
of any point a at which ∂1f(a) 6= 0 this equation also defines x1 explicitly as
a function x1 = g(x2, . . . , xm) of the remaining variables. It is obvious that
some condition on the function f is necessary for this to be true; for instance
without any condition the function f(x1, . . . , xm) might be independent of the
variable x1, in which case it can say nothing at all about that variable. The
example in which f(x1, x2, x3) = x2

1 + x2
2 + x2

3 − 1 illustrates another way in
which some condition on the function f is necessary. The equation f(x) = 0
can be viewed as defining x1 as the function x1 = ±

√
1− x2

2 − x2
3, where the

square root has two well defined locally continuous values so long as x2
2 +x2

3 < 1;
but x1 is not a well defined function in an open neighborhood of any point at
which x2

2 + x2
3 = 1, or equivalently at which ∂1f(x1, x2, x3) = 0. If the variable

x1 is defined explicitly by x1 = g(x2, x3) then f
(
g(x2, x3), x2, x3

)
= 0 identi-

cally in the variables x2, x3; and the chain rule can be applied to calculate the
derivatives of the function g(x2, x3), since

0 =
∂

∂x2
f
(
g(x2, x3), x2, x3

)
= ∂1f

(
g(x2, x3), x2, x3

)
∂1g(x2, x3) + ∂2f

(
g(x2, x3), x2, x3

)
.

Thus the partial derivatives of g can be expressed in terms of the partial deriva-
tives of f , and similarly for higher derivatives. Of course the same argument
can be applied to another variable xi, expressing it as a function of the remain-
ing variables provided that ∂if(x) 6= 0. If f1, f2 are continuously differentiable
functions in an open subset U ⊂ R4 for which f1(a) = f2(a) = 0 and

(5.13) det

(
∂1f1(a) ∂2f1(a)
∂1f2(a) ∂2f2(a)

)
6= 0

then the set of points at which f1(x) = f2(x) = 0 near a can be described explic-
itly as the set of points at which x1 and x2 are explicitly given functions of the
remaining variables, say x1 = g1(x3, x4) and x2 = g2(x3, x4). Thus there are the

identities f1

(
g1(x3, x4), g2(x3, x4), x3, x4

)
= f2

(
g1(x3, x4), g2(x3, x4), x3, x4

)
=



244 CHAPTER 5. GEOMETRY OF MAPPINGS

0; and the partial derivatives of these identities yield two linear equations relat-
ing the partial derivatives of the functions g1(x3, x4) and g2(x3, x4), which can
be solved explicitly in view of (5.13).

The set V = { x ∈ U
∣∣ f(x) = 0 } of zeros of a mapping f : U −→ Rn

defined in an open subset U ⊂ Rm is called the zero locus of the mapping
f . If the mapping is continuous its zero locus is a relatively closed subset of
U , since it is the inverse image of the closed set 0 ∈ Rn under a continuous
mapping. A relatively closed subset V ⊂ U of an open set U ⊂ Rn is called a
k-dimensional submanifold of U if for any point a ∈ V there are an open
neighborhood Ua ⊂ U and a continuous local change of coordinates in Ua such
that V ∩Ua is a linear subspace of dimension k in terms of these coordinates. If
the change of coordinates is described by a continuously differentiable mapping
the subset V is said somewhat more precisely to be a C1 submanifold; similarly
it is said to be a C2 submanifold if the change of coordinates is described by a
C2 mapping, and so on. Corollary 5.7 can be interpreted as the assertion that
if f : U −→ Rn is a C1 mapping from an open subset U ⊂ Rm into Rn for
m > n with the zero locus V ⊂ U , and if rank f ′(x) = n at each point x ∈ V ,
then V is a C1 (m − n)-dimensional submanifold of U . It is quite common
to rephrase this result just in terms of the coordinate functions f1, . . . , fn of
the mapping f and to speak of the set of common zeros of these functions. In
these terms, Corollary 5.7 asserts that if the gradient vectors ∇f1, . . . ,∇fn are
linearly independent vectors at each point of the set V of the common zeros
of these functions then V is a C1 submanifold of dimension m − n in U . For
example the circle

(5.14) V =
{

(x1, x2) ∈ R2
∣∣ x2

1 + x2
2 = 1

}
⊂ R2

can be defined as the zero locus of the function f(x) = x2
1 +x2

2− 1 in the plane,
and since f ′(x) =

(
2x1 2x2

)
is a matrix of rank 1 at each point x ∈ V , at which

not both x1 = 0 and x2 = 0, the zero locus V is a one-dimensional submanifold
of the plane. Indeed it can be described locally as the linear space r = 1 in
terms of polar coordinates (r, θ) in the plane in a neighborhood of each point of
V ; but of course there is no single coordinate neighborhood in which the entire
circle can be described by the equation r = 1, since the other coordinate θ is
not a single-valued function on the full circle. For some purposes an alternative
characterization of submanifolds is quite convenient.

Theorem 5.9 A relatively closed subset V ⊂ U of an open set U ⊂ Rm is an
(m − n)-dimensional C1 submanifold of U if and only if for any point a ∈ V ,
after a permutation of the coordinates in Rm if necessary, there is an open cell
∆a = ∆I,a×∆II,a centered at the point a ∈ V , a product of cells ∆I,a ⊂ Rn and
∆II,a ⊂ Rm−n, such that the intersection V ∩∆a is described by the equations

(5.15) V ∩∆a =
{

x ∈ ∆a

∣∣∣ xi = gi(xn+1, . . . xm), 1 ≤ i ≤ n
}

for some C1 functions gi in the cell ∆II,a ⊂ Rm−n.
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Proof: If V is an (m− n)-dimensional C1 submanifold of U it follows from the
Implicit Function Theorem that V can be described in an open neighborhood
of any point a ∈ V by the equations (5.15). Conversely if V is defined by the
equations (5.15) these equations can be rewritten fi(x) = xi−gi(xn+1, . . . xm) =
0 for 1 ≤ i ≤ n, and since ∇fi(x) are clearly linearly independent vectors it
follows that V is an (m− n)-dimensional C1 submanifold. That suffices for the
proof.

The condition that a subset V ⊂ U of an open set U ⊂ Rn be a submani-
fold is a local condition; so if a relatively closed subset V is a submanifold in a
neighborhood of each of its points it is a submanifold in U . Two C1 subman-
ifolds V1 ⊂ U1, V2 ⊂ U2 of open sets U1, U2 ⊂ Rm are called homeomorphic
C1 submanifolds if there is a C1 homeomorphism φ : U1 −→ U2 such that
φ(V1) = V2; this is clearly an equivalence relation that can be viewed as identi-
fying two submanifolds that are essentially the same. The corresponding notion
holds for topological submanifolds, for which the equivalence mapping is merely
a homeomorphism, or for Cr submanifolds for r > 1. This equivalence relation
really involves not just the point set V but the particular way in which that set
is imbedded in the open set U ⊂ Rm. For example a circle in R3 and a knot-
ted curve in R3 are both submanifolds of R3; but they are not homeomorphic
topological submanifolds, since there is no homeomorphism of R3 to itself that
transforms a circle into a knotted curve4.

The set of common zeros of a collection of functions f1, . . . , fn for which
the gradients ∇f1(x), . . . ,∇fn(x) are not linearly independent at some points
is not necessarily a submanifold at these exceptional points but may have sin-
gularities of one sort or another. Of course if the gradients of these functions
are linearly independent the squares fi(x)2 of these functions have the same
set of common zeros as do the original functions, forming a submanifold; but
the gradients of the squares of these functions vanish at all their common ze-
ros. The study of singularities of differentiable mappings has been and still is
a very active area of mathematical research5. A polynomial function p(z1, z2)
of two complex variables amounts to a pair of real functions of four real vari-
ables, the real and imaginary parts of the variables and of the function; so the
set V of points at which p(z1, z2) = 0 is a candidate to be a submanifold of
dimension 2 in R4. For a linear polynomial p(z1, z2) = a1z1 + a2z2 the set V is
a linear submanifold, and the intersection V ∩ S3

ε of the set V and the sphere
S3
ε = { (z1, z2)

∣∣ |z1|2 + |z2|2 = ε } is a one-dimensional submanifold of the
sphere, a linear slice of the sphere so just an ordinary circle. If the polynomial

4The study of knots is an old subject in mathematics, going back to work of P. G. Tait in
the 1870’s, but it is still a very active subject, with recent ties to mathematical physics and
representation theory among other topics. Classical knot theory focuses on the classification
of knots and the algebraic invariants that distinguish different knots. Further information can
be found in the book by R. H. Crowell and R. H. Fox, Introduction to Knot Theory, Springer,
1963.

5Some classical examples of singularities are isolated singularities of algebraic curves, the
topological properties of which were investigated by K. Brauner (Abh. Math. Sem. Hamburg,
vol. 6 (1928), pages 8 - 54)
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p(z1, z2) has no constant term but a nontrivial linear term then again the set V
is a 2-dimensional submanifold near the origin, and the intersection V ∩ S3

ε is
a submanifold of the sphere that is C1 homeomorphic to a circle in the sphere.
The set V of zeros of the polynomial p(z1, z2) = z2

1 + z2
2 is a 2-dimensional

submanifold near the origin except at the origin itself, which is a singularity;
actually this polynomial splits as the product p(z1, z2) = (z1 + i z2)(z1 − i z2)
of two linear functions both of which vanish at the origin, so near the origin
the set V is the union of two linear spaces of dimension 2, the linear spaces
z1 + i z2 = 0 and z1 − i z2 = 0, which meet only at a single point, the origin.
In this case the intersection V ∩ S3

ε is a submanifold consisting of two disjoint
circles which are not linked in the three-dimensional sphere. For the polyno-
mial p(z1, z2) = z2

1 + z3
2 the origin is again a singularity, and in this case the

intersection V ∩ S3
ε as a submanifold of the sphere is a nontrivial knot in the

sphere, which is fairly easy to describe. In general the intersection V ∩ S3
ε is a

submanifold of the sphere that is a knot of a special type, and its topological
structure determines a good deal of the structure of the set V at its singular
point. There are analogous topological sets that arise in the examination of
isolated singularities of the sets of zeros of polynomials in several variables, a
fascinating subject in its own right; these examples can be used to introduce
the exotic differentiable structures on higher dimensional spheres, as discovered
by J. W. Milnor6.

6A more detailed discussion can be found in Milnor’s book Singular Points of Complex
Hypersurfaces, Annals of Mathematics Studies, number 61, Princeton University Press, 1968.
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PROBLEMS, GROUP I:

(1) Consider the following functions in R3:

f1(x) = ex1 + ex2 + ex3 + x1x2x3 − 3,

f2(x) = x1 + x2
2 + x3

3 + sin (ex1x2x3 − 1) .

(i) Show that the equations f1(x) = f2(x) = 0 define a one-dimensional sub-
manifold V in an open neighborhood of the origin.
(ii) Show that the submanifold V can be described explicitly in an open neigh-
borhood of the origin by equations of the form

x1 = g1(x3) and x2 = g2(x3),

for some C1 functions g1(x3), g2(x3) in a neighborhood of the origin in R1 such
that g1(0) = 0 and g2(0) = 0.
(iii) Find the derivatives g′1(0) and g′2(0).
(iv) Show that the equation f2(x) = 0 defines a two-dimensional submanifold
W in an open neighborhood of the origin.

(2) (i) Show that the two equations

sin(x1 + 2x2) + cos(3x3 + 4x4) = 1, e3x1+5x3 + e2x2+4x4 = 2

define x1 and x3 as functions of x2 and x4 near the origin 0 = (0, 0, 0, 0), and

determine the value of
∂x1

∂x2
at that point.

(ii) Show that these two equations also define x2 and x4 as functions of x1 and

x3 near the origin, and determine the value of
∂x2

∂x1
.

(3) Show that 2× 2 orthogonal matrices form a C1 submanifold in R2×2. What
is its dimension?

PROBLEMS, GROUP II:

(4) (i) Does the equation x2
1 + 2x2

2 + 3x2
3 = 3 cos2 x3 determine x2 explicitly

as a function of x1 and x3 in an open neighborhood of the point (1, 1, 0)? Why?
(ii) Does that equation determine x3 explicitly as a function of x1 and x2 in an
open neighborhood of the point (1,1,0)? Why?

(5) Let f1(x) and f2(x) be C1 functions in an open subset U ⊂ R2, set f3(x) =
f1(x)f2(x) and let Vj be the zero locus of the function fj(x) in U .
(i) Show that V3 = V1 ∪ V2.
(ii) Show that if a ∈ V1 ∩ V2 then (∇f3)(a) = 0.
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(6) (i) If f(x1, x2, x3) = x2
1x2 + ex1 +x3 show that there is a differentiable func-

tion g of two variables in an open neighborhood of the point (1,−1) such that
g(1,−1) = 0 and f

(
g(x2, x3), x2, x3

)
= 0 in an open neighborhood of the point

(1,−1).
(ii) Find ∂1g(1,−1) and ∂2g(1,−1).

(7) Find sufficient conditions on a C1 function f(x1, x2) defined in an open
neighborhood of the origin in R2 and vanishing at the origin so that there exists
a C1 function g(x) in an open neighborhood of the origin 0 ∈ R1 such that
g(0) = 0, g′(0) 6= 0 and f

(
f(x, g(x)), g(x)

)
= 0 for all values x near 0.

(8) Show that the union of the two positive coordinate axes in R2, the set
{ (x1, x2) ∈ R2 | x1x2 = 0, x1 ≥ 0, x2 ≥ 0 }, is a continuous submanifold of R2

but is not a C1 submanifold.

(9) (i) Show that there is a C1 function f(x1, x2) in an open neighborhood
of the origin in R2 such that f(0, 0) = 1 and

f(x1, x2)2 = sin
(
x1x2f(x1, x2)

)
+ 1.

(ii) Show that the derivative ∂2
1f(0, 0) exists.
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5.3 The Rank Theorem

The Inverse Mapping Theorem can be applied to describe mappings between
spaces in situations more general than those to which the Implicit Function
Theorem applies, in particular to describe mappings f : Rm −→ Rn where
m < n.

Theorem 5.10 (Rank Theorem) If f : U −→ Rn is a continuously differ-
entiable mapping defined in an open subset U ⊂ Rm and if rank f ′(x) = r for
all points in an open neighborhood of a point a ∈ U then after a C1 change
of coordinates in open neighborhoods of the points a ∈ Rm and f(a) ∈ Rn the
mapping f is a linear mapping of rank r.

Proof: This theorem involves a change of local coordinates in both the domain
and range of the mapping f , so requires the existence at least locally of C1

homeomorphisms ψ and θ in the diagram

Rm ψ−→ Rm f−→ Rn θ−→ Rn

so that the composition θ ◦ f ◦ ψ : Rm −→ Rn is a linear mapping of rank
r. If rank f ′(a) = r then by suitably relabeling the variables in the domain
Rm and range Rn of the mapping f it can be assumed that the leading r × r
submatrix of f ′(a) is a nonsingular r × r matrix; and by hypothesis that is
also the case for the matrix f ′(x) for all points x ∈ Ua ⊂ Rm for a sufficiently
small open neighborhood Ua of the point a. As before it is convenient to write
points x ∈ Rm in the form x = ( xI

xII ) where xI ∈ Rr and xII ∈ Rm−r, and
correspondingly to write points y ∈ Rn in the form y = ( yI

yII ) where yI ∈ Rr
and yII ∈ Rn−r. The mapping f can then be written

f

(
xI
xII

)
=

(
fI(x)
fII(x)

)
where xI , fI(x) ∈ Rr while xII ∈ Rm−r and fII(x) ∈ Rn−r; and the matrix
f ′(x) then can be decomposed into the submatrices

f ′(x) =

(
∂IfI(x) ∂IIfI(x)
∂IfII(x) ∂IIfII(x)

)
where ∂IfI(x) is an r × r matrix which is nonsingular for all points x ∈ Ua. In
these terms, introduce the mapping φ : Ua −→ Rm defined by

φ

(
xI
xII

)
=

(
fI(x)
xII

)
,

so that

φ′(x) =

(
∂IfI(x) ∂IIfI(x)

0 Im−r

)
where Im−r is the (m− r)× (m− r) identity matrix; since the matrix ∂IfI(x)
is nonsingular for all points x ∈ Ua it follows that the matrix φ′(x) also is
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nonsingular for all points x ∈ Ua. If the neighborhood Ua is sufficiently small it
follows from the Inverse Mapping Theorem that the restriction of the mapping
φ to Ua is a C1 homeomorphism φ : Ua −→ V between the open sets Ua and
V ⊂ Rm. Clearly the inverse mapping ψ : V −→ Ua has the form

ψ

(
tI
tII

)
=

(
g(t)
tII

)
for a C1 mapping g : V −→ Rr,

and then(
tI
tII

)
= t = φ

(
ψ(t)

)
=

(
fI
(
ψ(t)

)
tII

)
hence fI

(
ψ(t)

)
= tI ;

consequently the composite mapping h(t) =
(
f ◦ψ

)
(t) has the form

(5.16)

h(t) = f
(
ψ(t)

)
=

(
fI
(
ψ(t)

)
fII
(
ψ(t)

)) =

(
tI

hII(t)

)
where hII(t) = fII

(
ψ(t)

)
∈ Rn−r,

hence

(5.17) h′(t) =

(
Ir 0

∂IhII(t) ∂IIhII(t)

)
where Ir is the r × r identity matrix. On the other hand since h = f ◦ ψ
then by the chain rule h′(t) = f ′

(
ψ(t)

)
· ψ′(t); the m × m matrix ψ′(t) is

nonsingular for all t ∈ V , while by hypothesis rank f ′
(
ψ(t)

)
= r for all t ∈ V ,

and consequently rank h′(t) = r for all points t ∈ V as well. However it is
evident from (5.17) that rank h′(t) = r if and only if ∂IIhII(t) = 0 for all
points t ∈ V ; so the mapping hII is a function just of the variables tI ∈ Rr.
The mapping θ : fI

(
ψ(V )

)
× Rn−r −→ Rn defined by

θ

(
yI
yII

)
=

(
yI

yII − hII(yI)

)
has the derivative

θ′(y) =

(
Ir 0

−∂IhII(yI) In−r

)
,

so after restricting the domain of θ if necessary this mapping can be viewed as
a local change of coordinates in some neighborhood W of f(a) by the Inverse
Mapping Theorem, and after restricting the neighborhood Ua further if neces-
sary it can be assumed that f(Ua) ⊂W. It is evident from the definition of this
mapping and the explicit form (5.16) of the mapping h, in which hII(t) is a
function of the variables tI alone, that

(θ ◦ f ◦ψ)(t) = θ
(
h(t)

)
= θ

(
tI

hII(t)

)
=

(
tI

hII(t)− hII(t)

)
=

(
tI
0

)
,

which is a linear mapping of rank r. That suffices for the proof.
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Theorem 5.11 If f : U −→ Rn is a continuously differentiable mapping defined
in an open subset U ⊂ Rm and if rank f ′(x) = r for all points x ∈ U then
(i) the image f(Ua) of any sufficiently small open neighborhood Ua ⊂ U of a
point a ∈ U is a C1 submanifold of dimension r of an open neighborhood of the
point f(a) ∈ Rn;
(ii) for any point b ∈ f(U) ⊂ Rn the inverse image f−1(b) is a C1 submanifold
of dimension m− r in U .

Proof: It follows from the preceding theorem that after suitable changes of
coordinates in open neighborhoods Ua of the point a ∈ U ⊂ Rm and Vb of the
point b = f(a) ∈ Rn the mapping f is a linear mapping of rank r; consequently
the image f(Ua) is a linear subspace of dimension r in terms of the new coor-
dinates in Rn and the inverse image f−1(y) of any point y ∈ f(Ua) ⊂ Rn is
a linear subspace of dimension m − r in terms of the new coordinates in Rm.
Consequently the image f(Ua) is an r-dimensional submanifold of Vb in terms
of the original coordinates in Rn, and the inverse image f−1(y)∩Ua of any point
y ∈ f(Ua) is an m− r-dimensional C1 submanifold of Ua in terms of the original
coordinates in Rm. The latter statement holds for any point in f−1(y); so since
the inverse image f−1(y) ⊂ U is a relatively closed subset of U which is locally a
submanifold of U it must be a submanifold of U , and that suffices for the proof.

Part (i) of the preceding theorem can be expected to hold only locally. For
instance it is quite possible that the image of an open interval I ⊂ R1 under a
continuously differentiable mapping φ : I −→ Rn is a curve that intersects itself
at some points, so that although the image is locally a one-dimensional subman-
ifold the full image has singularities; and the image of the open interval need
not even be a closed subset of Rn. The situation in higher dimensions of course
is even more complicated; but the local result is of considerable use. For the
Inverse Mapping Theorem and the Implicit Function Theorem the hypothesis
only required that the mapping be of maximal rank at a point a, or equivalently
that there is a square submatrix of maximal size in the Jacobian matrix of the
mapping so that the determinant of that matrix at the point a is nonzero; and
since the Jacobian of a C1 mapping is a continuous function it is necessarily
nonzero at all points near enough to a. However if the rank of the Jacobian
matrix is not maximal at a point a its rank at nearby points may well be greater
at points arbitrarily close to a. That is the reason that the hypothesis in the
rank theorem requires that the rank be locally constant. In some applications
of the Rank Theorem it is still the case that the rank is maximal; so if the rank
is maximal at a point it is maximal at all nearby points.

Theorem 5.12 If φ : U −→ Rn is a continuously differentiable mapping from
an open set U ⊂ Rr into Rn where r < n and if rankφ′(a) = r at some point
a ∈ U then the image under φ of any sufficiently small open neighborhood of
the point a ∈ U is a C1 submanifold of dimension r in an open neighborhood of
the point φ(a) ∈ Rn.

Proof: If rank φ′(a) = r at a point a ∈ U for a mapping φ : Rr −→ Rn where
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r < n then rankφ′(x) = r for all points x near a, so the desired result follows
immediately from the preceding theorem, and that suffices for the proof.

For example a continuous mapping f : [0, 1] −→ Rm can be viewed as a
parametrized curve in the vector space Rm, beginning at the point f(0) and
ending at the point f(1); and if f ′(t) 6= 0 at each point t ∈ (0, 1) then by
Theorem 5.12 the image of an open neighborhood of any point t0 ∈ (0, 1) is a
1-dimensional submanifold of an open neighborhood of the point f(t0) ∈ Rm.
That the mapping f is differentiable at the point t0 means that

f(t) = f(t0) + f ′(t0)(t− t0) + ε(t) where lim
t→t0

‖ε(t)‖
‖t− t0‖

= 0

for all points t sufficiently near t0. The parametrized curve

f0(t) = f(t0) + f ′(t0)(t− t0)

is a line in Rm passing through the point f(t0), called the tangent line to
the parametrized curve f at the point f(t0) = a0, and its image is of course
another submanifold of Rm; the vector f ′(t0) is called the tangent vector to
the parametrized curve f at the point f(t0) = a0. It follows from the definition
and the uniqueness of the derivative that the tangent line to the parametrized
curve f at the point a0 is the parametrized line through that point that is the
best linear approximation to the f near that point. It is not uncommon to change
the parametrization of the tangent line so that the point a0 corresponds to the
parameter value t = 0, so to describe the tangent line as the parametrized curve
f0(t) = f(t0) + f ′(t0)t. A continuously differentiable mapping φ : U −→ Rn
from an open subset U ⊂ Rm into Rn takes a parametrized curve f to the
parametrized curve φ ◦ f , and by the chain rule the tangent vector to the image
φ ◦ f at the point φ(a0) is the vector (φ ◦ f)′(t0) = φ′(a0)f ′(t0). Thus the
derivative φ′(a0) of the mapping φ at the point a0 can be interpreted as the
linear mapping that takes tangent vectors to parametrized curves through the
point a0 to tangent vectors to the image parametrized curves through the point
φ(a0).

If V is a C1 submanifold of an open subset U ⊂ Rm then through each point
a ∈ V it is possible to pass a continuously differentiable parametrized curve
contained entirely in the set V near that point; for in some local coordinates
near the point a the subset V is a linear subspace, which contains straight
lines through that point. Moreover if dimV = r there are parametrized curves
through that point, the tangent vectors to which span a linear subspace of
dimension r; for in some local coordinates near the point a the subset V is a
linear subspace of dimension r, and there are r linearly independent straight
lines through any point of a linear space of dimension r. For a submanifold
V ⊂ U of an open set U ⊂ Rm defined by equations

(5.18) V = { x ∈ U
∣∣ f1(x) = · · · = fm−r(x) = 0 }

where the vectors ∇fi(x) are linearly independent at each point x ∈ V , the
linear subspace of dimension r consisting of the tangent vectors at the point a
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of all continuously differentiable parametrized curves contained in V and passing
through that point is called the tangent space to the submanifold V at the
point a and is denoted by Ta(V ). The terminology here is a bit casual; what
is called the tangent space is actually a translate of a linear subspace from the
origin to a point on the submanifold, for convenience. If φ : I −→ V is a C1

parametrized curve for which φ(0) = a, then since fi
(
φ(t)

)
= 0 identically

in t it follows from the chain rule that f ′i(a)φ′(0) = 0, or equivalently that
∇fi(a) · φ′(0) = 0; thus the tangent vector to the parametrized curve φ is
perpendicular to all of the gradient vectors ∇fi(a), hence the tangent space to
V at the point a ∈ V is the linear subspace consisting of all points x ∈ Rm such
that the vector x − a is perpendicular to the vectors ∇fi(a). The equation of
the tangent space therefore is

(5.19) Ta(V ) =
{

x ∈ Rm
∣∣∣(x− a) · ∇fi(a) = 0 for 1 ≤ i ≤ m− r

}
.

The tangent space is the linear subspace of Rn that is the best local approxi-
mation to the submanifold V near that point, just as is the tangent line to a
parametrized curve. For example, if V ⊂ R3 is the surface defined by

V =
{

x ∈ R3
∣∣∣ f(x) = x2

1 + x3
2 + x4

3 − 3 = 0
}

then f ′(1, 1, 1) =
(
2 3 4

)
so the equation of the tangent plane to V at the

point {1, 1, 1} is (2, 3, 4) · (x1− 1, x2− 1, x3− 1) = 0 or equivalently 2x1 + 3x2 +
4x3 = 9.

To determine the extrema of a C1 function g defined on an r-dimensional
submanifold V ⊂ Rm it is always possible theoretically to introduce local co-
ordinates in an open neighborhood U of any point a ∈ V so that V ∩ U is an
r-dimensional linear subspace in terms of those coordinates; the restriction of
the function g to V then is locally just a function on an r-dimensional linear
subspace of Rm, so can be viewed as a function on an open subset of Rr and its
critical points are candidates for points at which the function has an extremal
value. However that can be a rather arduous calculation in all but the simplest
situations, since determining the local coordinates in terms of which the sub-
manifold is linear can be quite difficult to do explicitly. However the Implicit
Function Theorem provides a much simpler and widely used method for finding
local extrema on a submanifold. For the submanifold V defined by (5.18) where
the vectors ∇fi(x) are linearly independent at all points x ∈ V , a point a ∈ V
will be a local extremum of the restriction of the continuously differentiable
function g(x) to the submanifold V if and only if it is a local extremum of the
restriction of the function g(x) to any continuously differentiable parametrized
curve lying in V and passing through the point a. Then for any C1 parametrized
curve φ : U −→ Rm in an open neighborhood U ⊂ R1 of the origin t = 0 passing
through the point a, so that φ(0) = a, and contained in V , so that fi

(
φ(t)

)
= 0

for all t ∈ U , the origin t = 0 is a local extremum for the composite function
g
(
φ(t)

)
and consequently

0 =
d

dt
g(φ(t)

)∣∣∣
t=0

= g′(a)φ′(0) = ∇g(a) · φ′(0);
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thus ∇g(a) must be perpendicular to the tangent line to the parametrized curve,
and since that is the case for all parametrized curves in V the vector ∇g(a) must
be perpendicular to the tangent space Ta(V ) to the submanifold V at the point a.
However the tangent space is characterized in (5.19) as the plane perpendicular
to the gradients ∇fi(a), so the vector ∇g(a) must be contained in the span of
the vectors ∇fi(a), consequently must be expressible as a linear combination

(5.20) ∇g(a) =

m−r∑
i=1

λi∇fi(a)

for some parameters λi ∈ R. This set of equations, combined with the equations
fi(a) = 0 for the submanifold V , are an explicit set of equations that can
determine the local extrema of the function g(x), a technique called the method
of Lagrange multipliers.

To apply this method to examine the extrema of a function g on a subset
V ⊂ Rm defined by the vanishing of finitely many C1 functions fi, the first
step is to see whether the set V is a C1 submanifold; the method only provides
candidates for extrema at points at which V is a submanifold, so if the set V
has any singularities those points must be examined separately. The next step
is to examine the equations (5.20) together with the equations fi(x) = 0, to
find candidates for points at which the function g has local maxima or minima.
It is often clear from the problem or can be determined fairly readily whether
any of these points actually is a local maxima or minima. For instance, if M
is a compact submanifold and there are only 2 candidates for local maxima
and minima, one of these must be a global maximum and the other a global
minimum, and which is determined simply by the values of the function g at
these points. If it is not clear whether a point a is a local extrema or not, the
manifold V can be parametrized in an open neighborhood of that point as in
(5.15) in Theorem 5.9, and the restriction of the function g to that neighborhood
is then a function of the variables xm−r+1, . . . , xm to which the usual test in
terms of the Hessian of the function g in these coordinates can be tried; it is
not necessary to determine the local parametrization (5.15) explicitly, of course,
since the chain rule can be used to determine the second derivatives of the
function g in terms of these variables.

As an example of the use of this method, find the minimum of x + y + z
subject to the restrictions that a

x+ b
y + c

z = 1 where x, y, z > 0. The submanifold

V is defined by the equation f(x, y, z) = a
x + b

y + c
z − 1 = 0, and the function of

interest is g(x, y, z) = x+ y + z, where

∇g = (1, 1, 1) ∇f =

(
−a
x2
,
−b
y2
,
−c
z2

)
The Lagrange formula is the equation ∇g = λ · ∇f ; the first component of this
vector equation is λ = −x2/a, and upon substituting this into the other two
components there result the equations

y = x

√
b

a
and z = x

√
c

a
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Since a, b and c are fixed there results a one-parameter set of solutions, parametrized
by x. When restricted to the set S = {(x, y, z) : f(x, y, z) = 0, x > 0, y > 0, z >
0} this is

a

x
+

b

x
√
b/a

+
c

x
√
c/a

=

√
a

x

(√
a+
√
b+
√
c
)

= 1

⇒ (x, y, z) =
(√

a+
√
b+
√
c
)(√

a,
√
b,
√
c
)
.

Thus the extremum associated to this point is g(x, y, z) =
(√

a+
√
b+
√
c
)2

.

To see that this is the minimum, the set S is noncompact but the function g
must have a minimum on any compact subset of S. The function g increases
whenever one of the coordinates x, y, or z becomes very large. Since S is
contained entirely in the first octant, it is only necessary to minimize g on a
reasonable compact subset near the origin, which is the solution found.

When finding the extrema of a continuously differentiable function g(x) on
a set such as the closed semidisc

D =
{

x ∈ R2
∣∣∣ x2

1 + x2
2 ≤ 1, x2 ≥ 0

}
in the plane, the procedure is first to examine critical points in the interior of
the semidisc, then to examine the two pieces of the boundary of the semidisc
that are local submanifolds, the semicircle x2

1 + x2
2 = 1, x2 > 0 and the axis

−1 < x1 < 1, x2 = 0, and then the two remaining points (−1, 0) and (1, 0)
that are points where the boundary fails to be a submanifold. In general, the
procedure is to examine critical points in the interior of the region, and then
to examine the pieces of the boundary that are submanifolds and apply the
method of Lagrange multipliers in all these cases.

If f : U −→ Rn is a continuously differentiable mapping defined in an open
subset U ⊂ Rm where m > n then rank f ′(a) ≤ n at any point a ∈ U ; and if
rank f ′(x) = n at a point x = a ∈ U then it is also the case that rank f ′(x) = n
for all points x ∈ V for an open neighborhood V of the point a, since if some
n × n submatrix of f ′(a) has a nonzero determinant then by continuity that
submatrix of f ′(x) will also have a nonzero determinant for all points x near
enough a. The Rank Theorem asserts that the mapping f is equivalent to a
linear mapping of rank n in an open neighborhood of each point x ∈ V , and
consequently the image of the mapping f is a full open neighborhood of the
point f(a). In particular the image of the mapping f is not contained within
any proper linear subspace of the image space Rn, so the coordinate functions
fi of the mapping f are linearly independent functions at each point a ∈ U
for which rank f ′(a) = n. On the other hand if rank f ′(x) = r at all points
x ∈ U where r < n, then by the Rank Theorem the mapping f will be a linear
mapping of rank r in suitable local coordinates in open neighborhoods of each
point x ∈ U ⊂ Rm and its image f(a) ∈ Rn; that means that the image of the
restriction of the mapping f to an open neighborhood Va of any point a ∈ U is
contained in a submanifold of dimension r in an open neighborhood Vf(a) ⊂ Rn
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of the image point f(a). This submanifold is described as the set of common
zeros of n − r linear functions in some local coordinates near the point f(a),
and these functions will at least be some continuously differentiable functions
hi near the point f(a) in the initial coordinates in Rn. Therefore the component
functions fi of the mapping f satisfy a collection of n − r nontrivial equations
hν
(
f1(x), f2(x) . . . , fn(x)

)
= 0 for 1 ≤ ν ≤ n − r; that is usually expressed by

saying that the functions fi are functionally dependent.
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PROBLEMS, GROUP I:

(1) Find the tangent vector to the curve C ⊂ R3 defined parametrically by
the mapping f : R −→ R3 where

f(t) =
{
e(t−1)(t−2), t2 − 4, t2 − 1

}
at the point on the curve corresponding to the parameter value t = 1; and find
the equation of the tangent line to the curve C at that point.

(2) Consider the plane curve C defined by the equation

f(x1, x2) = x3
1 + x3

2 − 3x1x2 = 0.

(i) Show that the portion of the curve C in the half-plane x2 > 0 is a submani-
fold.
(ii) Find the tangent vector to the curve C at the point ( 3

2 ,
3
2 ) and the equation

of the tangent line to C at that point.

(3) Find a normal vector and the equation of the tangent plane to the surface
in R4 defiined by the equation x2

1x2 +x2x3 +x4 = 3 at the point (1, 1, 1, 1) ∈ R4.

(4) Consider the function f(x1, x2, x3) = x2
1 + x1x2 + x2

2 + x2x3 + x2
3 in R3.

(i) By using the method of Lagrange multipliers find the maximum and mini-
mum values of this function on the spherical surface S defined by x2

1+x2
2+x2

3 = 1,
and the points at which these extreme values are attained.
(ii) By using the method of Lagrange multipliers find the maximum and mini-
mum values of the function f on the intersection S ∩ T of the spherical surface
S and the plane T defined by c1x1 + c2x2 + c3x3 = 0, where (c1, c2, c3) ∈ S is a
point at which the function f takes its maximum value on S.

(5) What are the dimensions of the cylinder in R3 with the least total area
(including both top and bottom and the circular sides) and with the volume 1.

(6) What is the largest possible volume of a box in R3 for which the sum of
the areas of the base and of the four sides is a specified value A? What are the
lengths of the sides of this maximal box?
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PROBLEMS, GROUP II:

(7) Consider the hyperboloid surface S ⊂ R3 defined by the equation

x2
1 + x2

2 − x2
3 = 25.

(i) Find a unit normal vector to S at a point (a1, a2, 5).
(ii) Find the tangent plane to S at a point (a1, a2, 5).
(iii) Show that the line segment ` joining the points (a1, a2, 5) and (a2,−a1,−5)
is contained in the intersection of the surface S and its tangent plane at the
point (a1, a2, 5)

(8) Find the minimuum value of the function f(x) = x1 + x2 + x3 of vari-
ables xj > 0 in R3 on the submanifold defined by the equation a1

x1
+ a2

x2
+ a3

x3
= 1

for some constants aj > 0.

(9) By considering the maximal value of the product x1 · x2 · · ·xn for real num-
bers xj > 0 satisfying the condition that x1 + x2 + · · ·+ xn = c, derive another
proof of the inequality of the arithmetic and geometric means.

(10) If A is a symmetric n × n matrix show that the maximum and minimum
values of the inner product f(x) = Ax · x on the unit sphere in Rn are the
largest and smallest eigenvalues of the matrix A.

(11) Suppose that S1 and S2 are two-dimensional C1 submanifolds in R3 and
that ` is a line segment from a point a1 ∈ S1 to a2 ∈ S2 that has the minimal
length among all line segments joining points of these two surfaces. Show that
the line ` is perpendicular to the tangent planes to the surfaces S1 and S2 at
the points a1 and a2.

(12) Suppose that M is a compact two-dimensional C1 submanifold in R3, such
as the surface of a sphere or doughnut for example. Show that for every two-
dimensional linear subspace L ⊂ R3 there is a point a ∈M such that the tangent
space to M at the point a is the plane a+L, the translate of the linear subspace
L to the point a ∈M .



Chapter 6

Integration

6.1 The Riemann Integral

The basic operation of the Riemann integral is the integration of functions
over closed cells ∆ ⊂ Rn. The content of a closed cell

∆ =
{

x ∈ Rn
∣∣∣aj ≤ xj ≤ bj for 1 ≤ j ≤ n

}
is defined by

(6.1) |∆| =
n∏
j=1

(bj − aj),

and is also considered as the content |∆| of the corresponding open cell ∆. The
content of a cell or interval in R1 is its length, the content of a cell in R2 is its
area, and the content of a cell in R3 is its volume; so the content of a cell is just
a generalization of the length or area or volume to arbitrary dimensions. The
cell can be decomposed as a union of smaller closed cells by adjoining finitely
many points of subdivision

aj = cj,0 < cj,1 < · · · < cj,nj = bj

of each of its sides and writing ∆ as the union of the closed subcells{
x ∈ Rn

∣∣∣ cj,k−1 ≤ xj ≤ cj,k for 1 ≤ j ≤ n, 1 ≤ k ≤ nj
}

;

such a decomposition ∆ =
⋃
i ∆i of the cell is called a partition P of the cell.

The subcells of the partition are not disjoint, but only have portions of their
boundaries in common. For the case n = 1 this is the decomposition of an
interval, a cell in R1, as a union of subintervals; and for n = 2 it is illustrated
in the accompanying Figure 6.1. It is clear that |∆| =

∑
i |∆i| for any partition

of a cell ∆. If f is a bounded function on a cell ∆ ⊂ Rn, its least upper bound

259
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Figure 6.1: partition of cell ∆ ⊂ R2

and greatest lower bound in the set ∆ are well defined finite real numbers; the
upper sum of the function f for the partition P is defined by

(6.2) S∗(f,P) =
∑
i

sup
x∈∆i

f(x)|∆i|,

and similarly the lower sum is defined by

(6.3) S∗(f,P) =
∑
i

inf
x∈∆i

f(x)|∆i|.

It is clear that

(6.4) S∗(f,P) ≤ S∗(f,P)

for any partition P of the cell ∆. Adding further points of subdivision to the
sides of the cell leads to a finer decomposition of the cell as a union of subcells,
called a refinement of the partition. If P2 is a refinement of a partition P1 of
a cell ∆ then

(6.5) S∗(f,P2) ≤ S∗(f,P1) and S∗(f,P2) ≥ S∗(f,P1);

for if a cell ∆i in the partition P1 is decomposed into a union ∆i =
⋃
j ∆ij of

cells ∆ij in the partition P2 then

sup
x∈∆ij

f(x) ≤ sup
x∈∆i

f(x) and
∑
j

|∆ij | = |∆i|

and consequently

S∗(f,P2) =
∑
i,j

sup
x∈∆ij

f(x)|∆ij |

≤
∑
i,j

sup
x∈∆i

f(x)|∆ij | =
∑
i

sup
x∈∆i

f(x)|∆i| = S∗(f,P1),
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and correspondingly for the lower sums with the reversed inequalities. It follows
that if P1 and P2 are any two partitions of a cell ∆ then

(6.6) S∗(f,P1) ≤ S∗(f,P2);

for by considering all the points of subdivision of the sides of the cell ∆ from
both partitions as defining a further partition P ′, a common refinement of both
of these partitions, then by (6.4) and (6.5)

(6.7) S∗(f,P1) ≤ S∗(f,P ′) ≤ S∗(f,P ′) ≤ S∗(f,P2).

In view of (6.7) the upper sums S∗(f,P) for all of the partitions P of a cell ∆
are bounded below by any lower sum S∗(f,P1), and the lower sums S∗(f,P)
for all of the partitions P of a cell ∆ are bounded above by any upper sum
S∗(f,P2); so it is possible to define the upper integral and lower integral of
the function f over the cell ∆ by

(6.8)

∫ ∗
∆

f = inf
P
S∗(f,P) and

∫
∗∆

f = sup
P
S∗(f,P),

where the infimum and supremum are extended over all partitions P of the cell
∆, and clearly

(6.9)

∫
∗∆

f ≤
∫ ∗

∆

f.

It may be the case though that the upper integral is strictly greater than the
lower integral. For example, if f is the function on the real line R defined by

(6.10) f(x) =

 0 if x is rational,

1 if x is irrational,

then supx∈∆i
f(x) = 1 and infx∈∆i

f(x) = 0 for any partition P of a cell ∆

into a union ∆ =
⋃
i ∆i, and consequently S∗(f,P) = |∆| and S∗(f,P) = 0;

and since that is the case for any partition P it follows that
∫ ∗

∆
f = |∆| and∫

∗∆
f = 0, so

∫ ∗
∆
f >

∫
∗∆

f in this case. On the other hand, it is clear that if

f(x) = c at all points x ∈ ∆ then
∫ ∗

∆
f =

∫
∗∆

f = c|∆|. More generally if f is a

continuous function in a cell ∆ then
∫ ∗

∆
f =

∫
∗∆

f . Indeed if f is continuous in

∆ then it is uniformly continuous since ∆ is compact, so for any ε > 0 there is a
partition P of the cell as a union ∆ =

⋃
i ∆i where the cells ∆i are sufficiently

small that supx∈∆i
f(x)− infx∈∆i

f(x) ≤ ε for each cell ∆i. Then

S∗(f,P)− S∗(f,P) =
∑
i

(
sup
x∈∆i

f(x)|∆i| − inf
x∈∆i

f(x)|∆i|
)

(6.11)

≤
∑
i

ε|∆i| = ε|∆|;
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since S∗(f,P) ≤
∫
∗∆ f ≤

∫ ∗
∆
f ≤ S∗(f,P) it follows that

∫ ∗
∆
f−

∫
∗∆ f ≤ ε|∆| for

any ε > 0 and consequently that
∫ ∗

∆
f =

∫
∗∆ f . This proof can be tweaked to

yield a more general result that is a complete characterization of those functions
for which the upper and lower integrals are actually equal; but that requires a
digression to discuss some further properties of functions and point sets.

The oscillation of a bounded function f in a subset S ⊂ Rn was defined in
(3.15) by

(6.12) of (S) = sup
x∈S

f(x)− inf
x∈S

f(x),

and the oscillation at a point a ∈ S was defined in (3.16) by

(6.13) of (a) = lim
r→0

of
(
Nr(a)

)
.

In view of (6.11) it is clear that

(6.14) S∗(f,P)− S∗(f,P) =
∑
i

of (∆i)|∆i|

for any partition P of the cell ∆, so the notion of oscillation is closely related
to the question whether the upper and lower integrals of a function are equal.
The relevant properties of the notion of oscillation for this purpose are that a
bounded function f in an open neighborhood of a point a ∈ Rn is continuous
at a if and only if of (a) = 0, as demonstrated in Theorem 3.14, and that if f is
a bounded function in a subset S ⊂ Rn then the set

(6.15) E =
{

x ∈ S
∣∣∣ of (x) < ε

}
is a relatively open subset of S for any ε > 0, as demonstrated in Theorem 3.15.

A subset S ⊂ Rn has content zero if for any ε > 0 there are finitely many
open cells ∆i such that S ⊂

⋃
i ∆i and

∑
i |∆i| < ε; the set S has measure zero

if for any ε > 0 there are countably many open cells ∆i such that S ⊂
⋃
i ∆i and∑

i |∆i| < ε. Clearly any set of content zero is also a set of measure zero; and
a compact set of measure zero is also of content zero, since if S is compact and
S ⊂

⋃
i ∆i where

∑
i |∆i| < ε then S is already contained in the union of finitely

many of these cells ∆i. It is worth pointing out here that both definitions can
just as well be phrased in terms of closed cells ∆; for given any open cell ∆ and
any ε > 0 there are closed cells ∆− and ∆+ such that ∆− ⊂ ∆ ⊂ ∆+ while
|∆| − |∆−| < ε and |∆+| − |∆| < ε.

Lemma 6.1 If countably many subsets Ei ⊂ Rn each have measure zero then
their union E =

⋃∞
i=1Ei also has measure zero.

Proof: Since Ei has measure zero then for any ε > 0 there are countably many
open cells ∆ij for j = 1, 2, . . . such that Ei ⊂

⋃∞
j=1 ∆ij and

∑∞
j=1 ∆ij < ε/2i;

then E =
⋃∞
i=1Ei ⊂

⋃∞
i,j=1 ∆ij , which is also a countable union of open cells,
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Figure 6.2: submanifold of a cell, a set of measure 0

and
∑∞
i,j=1 |∆ij | =

∑∞
i=1

∑∞
j=1 |∆ij | <

∑∞
i=1

1
2i ε = ε, which suffices for the

proof.

For example, the subset Q ⊂ R1 of rational numbers does not have content
zero, since no finite number of finite open intervals can cover all the ratio-
nal numbers; but it does have measure zero as a consequence of the preceding
lemma, since each individual point of course has measure zero. There are un-
countable sets of measure zero as well; for instance R1 ⊂ R2 is a subset of
measure zero in R2. To see that, the set R1 can be decomposed into the union
R1 =

⋃∞
n=−∞ In where In = [n, n + 1], and for any ε > 0 the segment In is a

subset of the open cell

∆n =
{

(x1, x2) ∈ R2
∣∣∣ n− ε/2 < x1 < n+ 1 + ε/2, −ε/2 < x2 < ε/2

}
for which |∆n| = (1 + ε)ε, showing that In is a set of measure zero; and R1 =⋃
n In then is a set of measure zero by Lemma 6.1. Moreover if V ⊂ U is a
C1 submanifold of dimension k in an open subset U ⊂ Rn where 1 ≤ k < n
then by Theorem 5.9 for any point a ∈ V after relabeling the coordinates if
necessary the intersection V ∩∆a of the submanifold V with a sufficiently small
cell ∆a = ∆′a ×∆′′a centered at the point a, where ∆′a is in the subspace Rn−k
consisting of the first n−k coordinates x1, . . . , xn−k and ∆′′a is in the subspace Rk
consisting of the last k coordinates xn−k+1, . . . , xn, is described by the equations

V ∩∆a =
{

x ∈ ∆a

∣∣∣ xi = gi(xn−k+1, . . . , xn) for 1 ≤ i ≤ n− k
}

for some continuously differentiable functions gi(x
′′) of the variables x′′ ∈ ∆′′a,

as in Figure 6.2. Each point x ∈ V ∩ ∆a can be enclosed in a small cell
∆i = ∆′i × ∆′′i where |∆′i| < ε, and since V ∩ ∆a is compact finitely many of
these small cells cover V ∩ ∆a; and

∑
i |∆i| < ε|∆′′a|, from which it is evident

that the set V ∩∆a is of content 0. The entire submanifold V can be covered
by countably many such cells ∆a, so by Lemma 6.1 the set V has measure 0.
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Lemma 6.2 If E ⊂ Rn has content zero its closure E also has content zero;
but if E ⊂ Rn has measure zero its closure E does not necessarily have measure
zero.

Proof: If E ⊂ Rn has content zero then for any ε > 0 there are finitely many
open cells ∆i such that E ⊂ ∪i∆i and

∑
i |∆i| < ε. Since E ⊂ ∪i∆i and∑

i |∆i| < ε it follows that E also is a set of content zero, for as noted earlier
the definition of a set of content zero can be phrased equivalently in terms of
open or closed cells. The set of rational numbers Q is a set of measure zero in
R but its closure is the full set Q = R, which is not a set of measure zero. That
suffices for the proof.

A function f is continuous almost everywhere in a set S ⊂ Rn if the
subset E ⊂ S of points where f fails to be continuous is a set of measure zero.
For example, the function f on R in example (3.6), defined by

(6.16) f(x) =


1
q if x = p

q where p, q are coprime integers,

0 if x is irrational,

is continuous at the irrational numbers but is discontinuous only at the rational
numbers, a set of measure zero, so it is continuous almost everywhere.

Theorem 6.3 (Riemann - Lebesgue Theorem) If f is a bounded function
in a cell ∆ ⊂ Rn then

∫ ∗
∆
f =

∫
∗∆

f if and only if f is continuous almost

everywhere in ∆.

Proof: For any bounded function f in a cell ∆ and for any ε > 0 let

Eε = { x ∈ ∆ | of (x) < ε } and Fε = { x ∈ ∆ | of (x) ≥ ε },

so Fε = ∆ ∼ Eε. By Lemma 3.15 the set Eε is relatively open in ∆, so its
complement Fε is a relatively closed subset of ∆; and since ∆ is compact it
follows that the closed subset Fε ⊂ ∆ is compact. By Lemma 3.14 the function
f is continuous at a point a ∈ ∆ if and only if of (a) = 0; so the set of points in
∆ at which f is not continuous is the set F = {x ∈ ∆ | of (x) > 0 }, and Fε ⊂ F
for any ε > 0 while F =

⋃∞
n=1 F 1

n
.

To turn to the proof itself, first suppose that the function f is bounded and
continuous almost everywhere in ∆. The set F then is of measure zero, as are
the subsets Fε; and since the sets Fε are compact, they even are of content zero.
Therefore for any ε > 0 there are finitely many open cells ∆′j ⊂ Rn such that

Fε ⊂
⋃
j ∆′j and

∑
j |∆′j | < ε. The complement K = ∆ ∼

⋃
j ∆′j is a closed

and consequently compact subset of ∆, and if a ∈ K then a 6∈ Fε so of (a) < ε;
hence for any point a ∈ K there is an open cell ∆′′a containing that point such

that of (∆
′′
a) < ε. Since K is compact finitely many of the open cells ∆′′ak cover

the compact set K. Let P be the partition ∆ =
⋃
i ∆i of the cell ∆ determined

by the points of subdivision of the finitely many cells ∆′j and ∆′′ak . Let I ′ be
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the set of those indices i such that the cell ∆i is contained within some of the
cells ∆

′
j , and let I ′′ be the remaining set of indices. Thus Fε ⊂

⋃
i∈I′ ∆i and∑

i∈I′ |∆i| < ε, while if i ∈ I ′′ then ∆i ⊂ ∆
′′
ak

for some of the cells ∆
′′
ak

so

of (∆i) < ε. If |f(x)| ≤M for all points x ∈ ∆ then of (D) ≤ 2M for any subset
D ⊂ ∆ and consequently

S∗(f,P)− S∗(f,P) =
∑
i

of (∆i)|∆i| =
∑
i∈I′

of (∆i)|∆i|+
∑
i∈I′′

of (∆i)|∆i|

≤ 2M
∑
i∈I′
|∆i|+ ε

∑
i∈I′′
|∆i| ≤ 2Mε+ |∆|ε.

Since that is the case for any ε it follows that∫ ∗
∆

f =

∫
∗∆

f.

For the converse direction, suppose that f is a bounded function in ∆ such
that

∫ ∗
∆
f =

∫
∗∆

. For any integer n > 0 and any ε > 0 there is a partition P of

the cell ∆ as a union ∆ =
⋃
i ∆i such that∑

i

of (∆i)|∆i| = S∗(f,P)− S∗(f,P) < ε/n.

Let I ′ be the set of those indices i such that ∆i ∩ F1/n 6= ∅ and let I ′′ be the

remaining indices; thus F1/n ⊂
⋃
i∈I′ ∆i ∪

⋃
i∈I ∂∆i, and if i ∈ I ′ there is a

point ai ∈ ∆i such that of (ai) ≥ 1/n and consequently of (∆i) ≥ 1/n. Then

ε/n >
∑
i∈I′

of (∆i)|∆i|+
∑
i∈I′′

of (∆i)|∆i| ≥
∑
i∈I′

of (∆i)|∆i| ≥
∑
i∈I′

(1/n)|∆i|;

thus F1/n ⊂
⋃
i∈I′ ∆i ∪

⋃
i∈I ∂∆i where

∑
i∈I′ |∆i| < ε and

⋃
i∈I ∂∆i has mea-

sure zero. Since that is the case for any ε > 0 it follows that F1/n is a set of
measure zero; and therefore the countable union F = ∪∞n=1F1/n also is a set of
measure zero, which concludes the proof.

It is convenient to say that a function f is Riemann integrable over a
subset S ⊂ Rn if it is bounded and continuous almost everywhere in S. If two
functions f1 and f2 are Riemann integrable in a subset S ⊂ Rn their sum f1 +f2

and product f1f2 are also Riemann integrable in S; for if |fj(x)| ≤ Mj for all
x ∈ S then |f1(x) +f2(x)| ≤ (M1 +M2) and |f1(x)f2(x)| ≤M1M2 for all x ∈ S
while if fj is continuous in the complement of a subset Ej ⊂ S of measure zero
then f1 + f2 and f1f2 are continuous in the the complement of the set E1 ∪E2

which also is of measure zero. The preceding theorem shows that the Riemann
integrable functions in a cell ∆ are precisely those functions for which the upper
and lower integrals over ∆ exist and are equal1. The common value of the upper

1It is perhaps more common to say that a function is Riemann integrable over a cell if
and only if the upper and lower integrals exist and are equal; but that property rests on the
results of rather nontrivial constructions involving the function rather than on somewhat more
intrinsic properties of the function itself. Riemann integrability as defined here makes equal
sense in any subset of Rn without the need of defining the integral over more general sets.
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and lower integrals of a Riemann integrable function f is called the Riemann
integral of the function f over the cell ∆ and is denoted by

∫
∆
f , so that

(6.17)

∫
∆

f =

∫ ∗
∆

f =

∫
∗∆

f ;

for convenience this is often called just the integral of the function f , although
some caution is necessary since there are other common notions of integrals,
such as the Lebesgue or Denjoy integrals. It is perhaps more common and
certainly more traditional to denote the Riemann integral by

(6.18)

∫
∆

f(x) dx =

∫
∆

f,

a somewhat redundant notation but one that is convenient in specifying the
variables involved when considering the effect of changes of variables on the
integral, as for example in Theorem 6.19. Note that if f, g are Riemann in-
tegrable functions in a cell ∆ ⊂ Rn and if f(x) ≥ g(x) for all x ∈ ∆ then
S∗(f,P) ≥ S∗(g,P) for all partitions P of ∆ hence

∫
∆
f ≥

∫
∆
g; this simple

observation, the integration of inequalities, is quite useful and will be extended
further in the subsequent discussion.

The explicit value of a given Riemann integral can be calculated directly
from the definition of the integral; but in practice there is another standard
technique for calculating integrals in one dimension that is almost universally
used for fairly simple functions.

Theorem 6.4 (Second Fundamental Theorem of Calculus) If f(x) is a
C1 function in an open subset U ⊂ R1 then

(6.19)

∫
[a,b]

f ′ = f(b)− f(a)

for any cell [a, b] ⊂ U .

Proof: For any partition

P = a = x0 < x1 < · · · < xn−1 < xn = b

of the cell [a, b] ⊂ U and for any points ξi such that xi ≤ ξi ≤ xi+1 clearly

inf
xi≤x≤xi+1

f ′(x) ≤ f ′(ξi) ≤ sup
xi≤x≤xi+1

f ′(x)

so it follows that

(6.20) S∗(f
′,P) ≤

n−1∑
i=0

f ′(ξi)(xi+1 − xi) ≤ S∗(f ′,P).
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Since f is C1 in U then by the mean value theorem for functions of a single
variable, Theorem 3.29, there are points ξi in the intervals xi < ξi < xi+1 for
which f(xi+1)− f(xi) = f ′(ξi)(xi+1 − xi); for these points

n−1∑
i=0

f ′(ξi)(xi+1 − xi) =

n−1∑
i=0

(
f(xi+1)− f(xi)

)
= f(xn)− f(x0) = f(b)− f(a).

Substituting this observation in (6.20) shows that

S∗(f
′,P) ≤ f(b)− f(a) ≤ S∗(P, f ′),

and since that is the case for any partition P it follows that∫
∗ [a,b]

f ′ ≤ f(b)− f(a) ≤
∫ ∗

[a,b]

f ′;

however the function f ′ is Riemann integrable, as a continuous function on
[a, b], so

∫
∗ [a,b]

f ′ =
∫ ∗

[a,b]
f ′ =

∫
[a,b]

f ′ in the preceding equation, which leads

immediately to (6.19) and thereby concludes the proof.

It is perhaps worth noting that the hypotheses in the preceding theorem
can be weakened; to apply the mean value theorem it is only required that
the function f be continuous in the closed interval [a, b] and differentiable in
the interior (a, b), and to show the equality of the upper and lower integrals
it is only required that the function f ′ be Riemann integrable over [a, b], so
be bounded and continuous almost everywhere in that interval. However in
practice this theorem is usually applied to quite regular functions, those that
can be expressed as derivatives of continuously differentiable functions, such as
polynomials and some expressions invoving exponentials, logarithms and the
trigonometric functions; for instance

∫
[0,π/2]

sinx = − cos(π/2) + cos(0) = 1

since cos′(x) = − sin(x). The following special case of the Second Fundamental
Theorem is also quite commonly used and is well worth keeping in mind.

Corollary 6.5 (Integration by Parts) If f, g are C1 functions in an interval
[a, b] then

(6.21)

∫
[a,b]

fg′ = f(b)g(b)− f(a)g(a)−
∫

[a,b]

f ′g.

Proof: This follows immediately from an application of the preceding theorem
to the product fg, using the linearity of integrals which will be established in
Theorem 6.8.

Of course the Second Fundametal Theorem can be used to evaluate the inte-
grals of a continuous function f only if it is possible to find an antiderivative
of f , a C1 functionn F such that F ′ = f ; and there are quite simple functions2,

2For examples see the discussion of elliptic functions in A Course of Modern Analysis by
Whittaker and Watson.
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such as f(x) =
√
P (x) for some polynomials P (x) of degree at least 3, for which

there are no elementary antiderivatives F (x). That any continuous function ac-
tually has some antiderivative, however complicated it may be, is the content of
the First Fundamental Theorem of calculus; and the First and Second The-
orems taken together are usually referred to as the Fundamental Theorem of
calculus. The antiderivatives are most easily expressed by using the oriented

integral
∫ b
a
f of a Riemann integrable function f , defined by

(6.22)

∫ b

a

f =


∫

[a,b]
f if a ≤ b,

−
∫

[b,a]
f if a ≥ b;

thus oriented integrals have the basic property that

(6.23)

∫ b

a

f = −
∫ a

b

f for any a, b ∈ R.

It is easy to see, as a direct consequence of this definition, that

(6.24)

∫ b

a

f +

∫ c

b

f =

∫ c

a

f for any a, b, c ∈ R;

this is of course trivial if a < b < c but interesting in the other possible cases.

Theorem 6.6 (First Fundamental Theorem of Calculus) If f is a con-
tinuous function in an interval [a.b] the oriented integral F (x) =

∫ x
a
f is a C1

function in (a, b) such that F ′(x) = f(x) for all x ∈ (a, b).

Proof: If F (x) =
∫ x
a
f it follows from (6.24) that F (x + h) − F (x) =

∫ x+h

x
f

whenever x, x+ h ∈ [a, b], where h can be either positive or negative. Since f is
continuous then for any fixed point x ∈ (a, b) and any ε > 0 if h is sufficiently
small

f(x)− ε ≤ f(t) ≤ f(x) + ε for all t between x and x+ h.

The oriented integral of this inequality over the interval between x and x + h
yields the inequalities(

f(x)− ε
)
h ≤ F (x+ h)− F (x) ≤ (f(x) + ε)h if h > 0

or (
f(x)− ε

)
h ≥ F (x+ h)− F (x) ≥ (f(x) + ε)h if h < 0;

and dividing by h and taking the limit as h tends to 0 shows that

f(x)− ε ≤ F ′(x) ≤ f(x) + ε.

Since that is the case for all ε > 0 it follows that F ′(x) = f(x) in both cases,
and that suffices for the proof.



6.1. RIEMANN INTEGRAL 269

Although only the integral of a function over a cell has been defined so far,
it is possible to extend the integral to more general sets remarkably easily. A
bounded subset D ⊂ Rn is called a Jordan measurable set if its boundary
∂D is a set of measure zero; since ∂D is a closed bounded set, and hence a
compact set, then actually ∂D is a set of content zero for any Jordan measur-
able set D. It is easier to show that a set is a Jordan measurable set by using
the characterization that the boundary is a set of measure zero; but for many
results about Jordan measurable sets it is more convenient to use the equivalent
characterization that the boundary is a set of content zero. The equivalence of
these two characterizations should be kept in mind in the subsequent discus-
sion. The definition of a Jordan measurable set does not impose any further
restrictions on the set D; so a Jordan measurable set may be open or closed or
even a more general point set. An open or closed cell is a Jordan measurable
set, since as noted earlier ∂∆ is a set of measure zero for any cell ∆.

Lemma 6.7 If D1, D2 ⊂ Rn are Jordan measurable sets then so are both their
union D1 ∪ D2 and their intersesction D1 ∩ D2.

Proof: Obviously if D1, D2 ⊂ Rn are bounded sets then so are their union and
intersection. Suppose then that their boundaries ∂D1, ∂D2 are sets of measure
zero. For any subsets A,B of a topological space since A∪B ⊂ A∪B and A∪B
is a closed set it follows that A ∪B ⊂ (A ∪B); and similarly A ∩B ⊂ (A ∩B).
Therefore

∂(D1 ∪D2) = (D1 ∪D2)
⋂
∼
(
D1 ∪D2) ⊂ (D1 ∪D2)

⋂
(∼ D1 ∩ ∼ D2)

⊂
(
D1 ∩ ∼ D1 ∩ ∼ D2)

)⋃(
D2 ∩ ∼ D1 ∩ ∼ D2

)
⊂
(
D1 ∩ ∼ D1

)⋃(
D2 ∩ ∼ D2

)
= ∂D1 ∪ ∂D2,

which is a union of two sets of measure zero so is a set of measure zero. Similarly

∂(D1 ∩D2) = (D1 ∩D2)
⋂
∼
(
D1 ∩D2) ⊂ (D1 ∩D2)

⋂
(∼ D1 ∪ ∼ D2)

⊂
(
D1 ∩D2 ∩ ∼ D1)

)⋃(
D1 ∩D2 ∩ ∼ D2

)
⊂
(
D1 ∩ ∼ D1

)⋃(
D2 ∩ ∼ D2

)
= ∂D1 ∪ ∂D2,

which also is a union of two sets of measure zero so is a set of measure zero, and
that suffices for the proof.

A Jordan measurable set D ⊂ Rn is a bounded subset of Rn by definition, so
D ⊂ ∆ for some cell ∆ ⊂ Rn. A Riemann integrable function f in the Jordan
measurable set D can be extended to a function f̃ in the cell ∆ by setting

(6.25) f̃(x) =


f(x) if x ∈ D

0 if x ∈ ∆ ∼ D.
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The extended function f̃ of course is bounded in ∆. It is continuous almost
everywhere in the interior of D, since the function f is continuous almost ev-
erywhere in D by assumption, and it is also continuous in the complement
∆ ∼ D of the closure of D, where it vanishes identically by definition; and since
∆ = Do ∪ (∆ ∼ D)o ∪ ∂D where ∂D is a set of measure 0 it follows that the

function f̃ is also continuous almost everywhere in ∆. Consequently the func-
tion f̃ is Riemann integrable in the cell ∆, so it is possible to define the integral
of the initial function f over the Jordan measurable set D by

(6.26)

∫
D

f =

∫
∆

f̃ .

It is evident from the definition of the Riemann integral that the value of the
integral

∫
D
f is independent of the choice of the cell ∆; for if ∆ ⊂ ∆′ then in

calculating the integral
∫

∆′
f̃ it is always possible to take partitions such that

each cell ∆′i in the partition is either contained in ∆ or is disjoint from ∆ or is
one of a finite number of cells containing ∂∆ and of total content less than any
given ε.

As a special case, if f is a Riemann integrable function in a closed cell ∆
its restriction f |D to a Jordan measurable set D ⊂ ∆ is a Riemann integrable

function in D and the extension f̃ |D can be identified with the product χ
D
f

where χ
D

is the characteristic function of the set D, the function defined by

(6.27) χ
D

(x) =

 1 if x ∈ D,

0 if x 6∈ D.

Thus if f is a Riemann integrable function in a closed cell ∆ then its integral
over any Jordan measurable set D ⊂ ∆ can be defined equivalently by

(6.28)

∫
D

f =

∫
∆

χ
D
f.

In particular the content of a Jordan measurable set D ⊂ ∆ can be defined as
the integral of the constant function 1 over the set D, so by the integral

(6.29) |D| =
∫

∆

χ
D
.

When D = ∆ this definition coincides with the previous definition of the content
of a cell, since for any partition P of a cell ∆ it follows immediately from the
definition of the upper sum that S∗(χ

∆
,P) =

∑
i |∆i| = |∆| and consequently

that
∫

∆
χ

∆
= |∆|.

The extension of the Riemann integral to integrals over Jordan measurable
sets provides the basic tool for integration in a good deal of analysis. The
properties of this extension are the next set of topics to be discussed here.
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Theorem 6.8 (Linearity of the integral) If f1 and f2 are Riemann inte-
grable functions in a Jordan measurable set D ⊂ Rn then so is any linear com-
bination f = c1f1 + c2f2 for real constants c1, c2 and

(6.30)

∫
D

f = c1

∫
D

f1 + c2

∫
D

f2.

Proof: It was noted earlier that the sums and products of Riemann integrable
functions are also Riemann integrable; and it is clear that constants are Rie-
mann integrable, so any linear combination of Riemann integrable functions is
Riemann integrable. The integrals over D of Riemann integrable functions are
defined as the integrals over any cell ∆ containing D of the extended functions
(6.25); so it is sufficient just to prove the theorem for linear combinations of
Riemann integrable functions over a cell ∆. If f is Riemann integrable in ∆
then for any partition P of that cell and any constant c > 0

S∗(cf,P) =
∑
i

(
sup
x∈∆i

cf(x)

)
|∆i| = c

∑
i

(
sup
x∈∆i

f(x)

)
|∆i| = cS∗(f,P)

and consequently ∫
∆

cf =

∫ ∗
∆

cf = c

∫ ∗
∆

f = c

∫
∆

f.

On the other hand

S∗(−f,P) =
∑
i

(
sup
x∈∆i

−f(x)

)
|∆i| = −

∑
i

(
inf

x∈∆i

f(x)
)
|∆i| = −S∗(f,P)

and consequently∫
∆

−f =

∫ ∗
∆

−f = inf
P
S∗(−f,P) = inf

P
−S∗(f,P)

= − sup
P
S∗(f,P) = −

∫
∗∆
f = −

∫
∆

f.

If f1 and f2 are two Riemann integrable functions in ∆ then

sup
x∈∆i

(
f1(x) + f2(x)

)
≤ sup

x∈∆i

f1(x) + sup
x∈∆i

f2(x)

hence∫
∆

(f1 + f2) =

∫ ∗
∆

(f1 + f2) ≤ S∗(f1 + f2,P) ≤ S∗(f1,P) + S∗(f2,P);

the corresponding argument shows that the reverse inequality holds for the lower
sums, so

(6.31) S∗(f1,P) + S∗(f2,P) ≤
∫

∆

(f1 + f2) ≤ S∗(f1,P) + S∗(f2,P).
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For any ε > 0 there exists a partition P such that

S∗(fi,P) ≤
∫

∆

fi ≤ S∗(fi,P) and ≤ S∗(fi,P)− S∗(fi,P) < ε

for i = 1, 2; and substituting these inequalities in (6.31) shows that∣∣∣∣∫
∆

(f1 + f2)−
∫

∆

f1 −
∫

∆

f2

∣∣∣∣ < 2ε.

Since that is the case for any ε > 0 it follows that
∫

∆
(f1 + f2) =

∫
∆
f1 +

∫
∆
f2,

which suffices for the proof.

Integrability is really required for the preceding result to hold. For the
function (6.10) for example

∫ ∗
∆
f = |∆| and

∫
∗∆

f = 0, and it is clear that the

same argument applied to the function g(x) = 1− f(x) shows that
∫ ∗

∆
g = |∆|

and
∫
∗∆

g = 0; consequently
∫ ∗

∆
f +

∫ ∗
∆
g = 2|∆| while

∫
∗∆

f +
∫
∗∆

g = 0. On

the other hand f+g = 1 so
∫ ∗

∆
(f+g) =

∫
∗∆

(f+g) =
∫

∆
(f+g) = |∆|. Thus it is

neither true that
∫ ∗

∆
(f + g) =

∫ ∗
∆
f +

∫ ∗
∆
g nor that

∫
∗∆

(f + g) =
∫
∗∆

f +
∫
∗∆

g.

Theorem 6.9 (Positivity of the integral) Let f and g be Riemann inte-
grable functions over a Jordan measurable set D ⊂ Rn.
(i) If f(x) ≥ 0 for all x ∈ D then

∫
D
f ≥ 0.

(ii) If f(x) ≥ g(x) for all x ∈ D then
∫
D
f ≥

∫
D
g.

(iii)
∣∣ ∫
D
f
∣∣ ≤ ∫

D
|f |.

Proof: Again it is sufficient just to prove these assertions for Riemann inte-
grable functions over a cell ∆. If f(x) ≥ 0 for all x ∈ ∆ then S∗(f,P) ≥ 0 for
any partition P of the cell ∆ so (i) holds. Then (ii) follows by applying (i) to
the difference f − g and using the preceding Theorem 6.8, while (iii) follows by
applying (ii) to the functions |f | and ±f since |f(x)| ≥ f(x) and |f(x)| ≥ −f(x)
for all x ∈ ∆; and that suffices for the proof.

The Riemann integral of course can be extended to integrals of vector-valued
functions by integrating each component, so that the integral

∫
D

f of a vector-
valued function f = {fi} is defined to be the vector with i-th component the
integral

∫
D
fi. It is useful for many purposes to have available the following

extension of part (iii) of the preceding theorem.

Corollary 6.10 If f is a vector-valued function the components of which are
Riemann integrable in a Jordan measurable set D ⊂ Rn then

(6.32)

∥∥∥∥∥
∫
D

f

∥∥∥∥∥
2

≤
∫
D

‖f‖2.

Proof: If u is a unit vector in the direction of the vector
∫
D

f then from the
Cauchy-Schwarz inequality it follows that |u ·

∫
D

f | = ‖
∫
D

f‖2 and |u · f | ≤ ‖f‖2.
By part (iii) of the preceding theorem∥∥∥ ∫

D

f
∥∥∥

2
=
∣∣∣u · ∫

D

f
∣∣∣ =

∣∣∣ ∫
D

u · f
∣∣∣ ≤ ∫

D

|u · f | ≤
∫
D

‖f‖2.
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which suffices for the proof,

Lemma 6.11 If f is a bounded function in a Jordan measurable set D ⊂ Rn
and if f(x) = 0 for all points x ∈ (D ∼ E), where E ⊂ D is a set of content 0,
then f is Riemann integrable over D and

∫
D
f = 0.

Proof: The Jordan measurable set D is bounded so D ⊂ ∆ for some cell ∆.
The extended function f̃ in ∆ is zero in ∆ ∼ E, so is Riemann integrable in ∆
since E is of content zero. For any ε > 0 it is possible to find a finite number
of open cells ∆′i such that E ⊂ ∪i∆′i and

∑
i |∆′i| < ε. These cells can be taken

to be cells in a suitably fine partition P of the cell ∆; the function f̃ thus is

bounded on each of the cells ∆
′
i, with a bound M , and vanishes in the other

cells ∆
′′
j of that partition. Therefore

S∗(f̃ ,P) =
∑
i

(
sup
x∈∆

′
i

f̃(x)

)
|∆′i|+

∑
j

 sup
x∈∆

′′
j

f̃(x)

 |∆′′j |
≤
∑
i∈I′

M |∆i|+ 0 ≤Mε;

and since that is the case for any ε > 0 it follows that
∫
D
f =

∫ ∗
∆
f̃ ≤ 0.

The corresponding argument shows that
∫
D
f =

∫
∗∆

f̃ ≥ 0, and consequently∫
D
f = 0, which suffices for the proof.

The preceding result fails if the exceptional set is of measure 0 rather than of
content 0; for a function f such that f(x) = 1 at a countable dense set of points
of a Jordan measurable set D and f(x) = −1 at another countable dense set of
points of D while f(x) = 0 otherwise does have the property that it vanishes
outside of a set of measure 0, but it is not Riemann integrable over D.

Theorem 6.12 (Invariance of the integral) If f is a Riemann integrable
function over a Jordan measurable set D ⊂ Rn, and if g is a bounded function
in D such that g(x) = f(x) at all points x ∈ (D ∼ E) where E ⊂ D is a set of
content zero, then g is also Riemann integrable over D and

∫
D
g =

∫
D
f .

Proof: The function f−g is bounded in D and vanishes on the set D ∼ E where
E ⊂ D is a subset of content zero, so by the preceding lemma this function is
Riemann integrable in D and

∫
D

(f − g) = 0. The difference g = f − (f − g) of
these two Riemann integrable functions is then also Riemann integrable, and it
follows from Theorem 6.8 that

∫
D
g =

∫
D
f −

∫
D

(f − g) =
∫
D
f , which suffices

for the proof.

The preceding theorem shows that a Riemann integrable function f in a
Jordan measurable set D can be modified on any subset of content 0 in D in any
arbitrary way, so long as it remains bounded, and the modified function remains
Riemann integrable with the same integral as the function f . The integral of
a function f thus is not so much a property of the individual function f , but
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rather is a property of an equivalence class of functions, where two Riemann
integrable functions in D are equivalent if and only if they are equal outside a
set of content 0 in D. In particular when considering integrals or integrability
of functions over cells or Jordan measurable sets, the values of a function at
the boundary of the set are immaterial, provided of course that the function
remains bounded; so as far as integration is concerned, it is immaterial whether
closed or open Jordan measurable sets are considered.

Theorem 6.13 (Additivity of the integral) If D1, D2 ⊂ Rn are Jordan mea-
surable sets where the intersection E = D1 ∩D2 is a set of content zero and if
f is a Riemann integrable function in the union D1 ∪D2 then

(6.33)

∫
D1∪D2

f =

∫
D1

f +

∫
D2

f ;

in particular

(6.34) |D1 ∪D2| = |D1|+ |D2|.

Proof: The union D1 ∪ D2 of two Jordan measurable sets D1, D2 is also a
Jordan measurable set by Lemma 6.7, o it is contained in a cell ∆; and then∫
D1∪D2

f =
∫

∆
χ
D1∪D2

f . The characteristic function of the union of the two

Jordan measurable sets is χ
D1∪D2

(x) = χ
D1

(x) + χ
D2

(x) − χ
E

(x), where the
intersection E = D1 ∩D2 is also a Jordan measurable set; consequently∫

D1∪D2

f =

∫
∆

(χ
D1

+ χ
D2
− χ

E
)f

=

∫
∆

χ
D1
f +

∫
∆

χ
D2
f −

∫
∆

χ
E
f

=

∫
D1

f +

∫
D2

f

since E is a subset of content zero so
∫

∆
χ
E
f = 0 by Theorem 6.11. That

demonstrates (6.33), which holds in particular for f = 1 and therefore implies
(6.34), thereby concluding the proof.

A subset D ⊂ ∆ has content zero if and only if
∫ ∗

∆
χ
D

= 0, since for any

partition P of the cell ∆ as the union ∆ =
⋃
i∈I ∆i it is clear that

S∗(χD,P) =
∑

{ i∈I |D∩∆i 6=∅ }

|∆i|.

That suggests that the notion of the content of a Jordan measurable set might
be extended to the notion of the content of an arbitrary subset D ⊂ ∆ by setting
|D| =

∫ ∗
∆
χ
D

; but for more general disjoint sets3 it is not necessarily the case

3The Banach-Tarski paradox is the result that the ordinary solid ball of radius 1 in R3

can be decomposed into a union of finitely many disjoint sets such that when these sets are
suitably rotated and translated in R3 and put back together again the union is the solid ball
of radius 2; this rather surprising result was demonstrated by Banach and Tarski in a joint
paper in Fundamenta Mathematicae volume 6, (1924), pages 244 - 277, and is discussed in
the book The Banach-Tarski Paradox by Stan Wagon, Cambridge University Press, 1994.
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that |D1 ∪D2| = |D1|+ |D2|. The Lebesgue integral does provide an extension
of the notion of the content to some more general sets than Jordan measurable
sets for which this is true though.
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PROBLEMS, GROUP I:

(1) (i) Suppose that f is a real-valued function on R. Show that if f is Riemann
integrable on R then so is |f |.
(ii) If |f | is Riemann integrable on R is f Riemann integrable on R? Why?

(2) Find an example of a closed subset of R that has measure 0 but that does
not have content 0.

(3) Evaluate the following integrals explicitly:
(i)
∫

[a,b]
esin x cosx,

(ii)
∫

[a,b]
1

sin x cosx where 0 < a < b < π/2.

(iii)
∫

[a,b]
ex(sinx+ cosx),

(4) (i) If f(x) is a monotonically decreasing continuous non-negative function
on the set { x ∈ R | x ≥ 1 } show that for any integer N ≥ 2

N∑
n=2

f(n) ≤
∫

[1,N ]

f(x)dx ≤
N−1∑
n=1

f(n).

(ii) Use this to derive necessary and sufficient conditions on r ensuring that the
sum

∑∞
n=1 1/nr converges.

(5) Either prove or find a counterexample to the assertion that if f(x) and
g(x) are real-valued Riemann-integrable functions in the interior of the unit

ball U =
{

x ∈ Rn
∣∣∣ ‖x‖2 < 1

}
in Rn and if f(x) = g(x) whenever x ∈ U and

‖x‖2 is rational then
∫
U
f =

∫
U
g.

PROBLEMS, GROUP II:

(6) If f and g are continuous real-valued functions in [a, b] ⊂ R and g(x) > 0
for all x ∈ [a, b] show that there is a point c ∈ (a, b) such that∫

[a,b]

fg = f(c)

∫
[a,b]

g.

(7) Show that for any integer n ≥ 0∫
[0,x]

tne−t = n !

(
1− e−x

n∑
k=0

xk

k!

)
.

(8) Show that a monotonically increasing real-valued function on an interval
[0, 1] ⊂ R is Riemann integrable.
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(9) Show that if f is a non-negative integrable function in a cell ∆ ⊂ Rn such
that

∫
∆
f = 0 then { x ∈ ∆ | f(x) 6= 0 } is a set of measure 0.

(10) (i) Show that the Cantor set C ⊂ [0, 1] is a set of measure 0. Is it a
set of content 0? Why?
(ii) Show that the characteristic function χC of the Cantor set C ⊂ [0, 1] is
Riemann integrable and find

∫
[0,1]

χC .

(11) Show that if E ⊂ Rn has content 0 then its boundary ∂E also has content
0, but that if E ⊂ Rn has measure 0 its boundary ∂E does not necessarily have
measure 0.

(12) If E ⊂ ∆ ⊂ Rn is a Jordan measurable set then for any ε > 0 there is
a compact Jordan measurable set F ⊂ E for which |E ∼ F | < ε.

(13) (i) If A,B ⊂ R are sets of content zero is their sum

A+B =
{
a+ b

∣∣∣ a ∈ A, b ∈ B } ⊂ R

also a set of content zero? Why?
(ii) If A,B ⊂ R are sets of measure zero is their sum A+B also a set of measure
zero? Why?
(Suggestion: Consider the Cantor set.)
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6.2 Calculation of Integrals

The explicit calculation of integrals in several variables can be reduced to
a succession of calculations of integrals in a single variable. A cell ∆ ∈ Rn =
Rn′ ×Rn′′ where n = n′ + n′′ can be written as a product ∆ = ∆′ ×∆′′ of cells
∆′ ∈ Rn′ and ∆′′ ∈ Rn′′ , so a function f in the cell ∆ ∈ Rn can be written as a
function f(x′,x′′) of variables x′ ∈ ∆′ ∈ Rn′ and x′′ ∈ ∆′′ ∈ Rn′′ . For any fixed
point x′′ ∈ ∆′′ the function f(x′,x′′) can be considered as a function of the
variable x′ ∈ Rn′ alone; so if f is bounded it is possible to consider the upper
integral of this function of the variable x′, denoted by

∫ ∗
x′∈∆′

f(x′,x′′); this upper

integral then is a well defined bounded function of the variable x′′ ∈ ∆′′, so it is
possible to consider the upper integral of this function of the variable x′′, denoted

by
∫ ∗
x′′∈∆′′

( ∫ ∗
x′∈∆′

f(x′,x′′)
)

and called an iterated integral. Of course it is

possible to use the lower rather than upper integral for one or another or both of

these integrals, leading to iterated integrals such as
∫ ∗
x′′∈∆′′

( ∫
∗x′∈∆′

f(x′,x′′)
)

;

and it is possible to proceed in the other order, integrating first with respect to
the variable x′′ and then the variable x′, leading to iterated integrals such as∫ ∗
x′∈∆′

( ∫ ∗
x′′∈∆′′

f(x′,x′′)
)

.

Theorem 6.14 (Fubini’s Theorem) If f is a Riemann integrable function in
a product cell ∆ = ∆′ ×∆′′ the integrals

∫ ∗
x′∈∆′

f(x′,x′′) and
∫
∗ x′∈∆′

f(x′,x′′)

are Riemann integrable functions of the variable x′′ ∈ ∆′′ and

(6.35)

∫
∆

f =

∫
x′′∈∆′′

(∫ ∗
x′∈∆′

f(x′,x′′)
)

=

∫
x′′∈∆′′

(∫
∗ x′∈∆′

f(x′,x′′)
)
.

Proof: If P ′ is a partition ∆′ =
⋃
i ∆′i of the cell ∆′ and P ′′ is a partition

∆′′ =
⋃
i ∆′′i of the cell ∆′′ these two separate partitions determine a partition

P = P ′ × P ′′ of the cell ∆ and

S∗(f,P) =
∑
ij

sup
x′∈∆′i
x′′∈∆′′j

f(x′,x′′)
∣∣∣∆′i ×∆′′j

∣∣∣
=
∑
j

(∑
i

sup
x′∈∆′i
x′′∈∆′′j

f(x′,x′′)
∣∣∣∆′i∣∣∣

) ∣∣∣∆′′j ∣∣∣.

For any fixed point x′′0 ∈ ∆′′j∑
i

sup
x′∈∆′i
x′′∈∆′′j

f(x′,x′′)
∣∣∣∆′i∣∣∣ ≥∑

i

sup
x′∈∆′i

f(x′,x′′0)
∣∣∣∆′i∣∣∣ = S∗

(
f(x′,x′′0),P ′

)
≥ F (x′′0)
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where F (x′′0) =
∫ ∗
x′∈∆′

f(x′,x′′0). That is the case for any fixed point x′′0 ∈ ∆′′j
so the same inequalities hold for the supremum over all such points; hence

S∗(f,P) ≥
∑
j

sup
x′′0∈∆′′j

F (x′′0)
∣∣∣∆′′j ∣∣∣ = S∗(F,P ′′) ≥

∫ ∗
x′′∈∆′′

F (x′′)

and consequently for the upper integral∫ ∗
∆

f ≥
∫ ∗
x′′∈∆′′

(∫ ∗
x′∈∆′

f(x′,x′′)
)
.

The corresponding argument for the lower integral leads to the reversed in-
equality, and combining these two inequalities with the inequalities between the
upper and lower Riemann integrals yields the chain of inequalities∫ ∗

∆

f ≥
∫ ∗
x′′∈∆′′

(∫ ∗
x′∈∆′

f(x′,x′′)
)
≥
∫
∗ x′′∈∆′′

(∫ ∗
x′∈∆′

f(x′,x′′)
)

(6.36)

≥
∫
∗ x′′∈∆′′

(∫
∗ x′∈∆′

f(x′,x′′)
)
≥
∫
∗ ∆

f.

Since the function f is Riemann integrable
∫ ∗

∆
f =

∫
∗ ∆

f and consequently all
of the inequalities in (6.36) must be equalities. In particular from the first line
of (6.36) it follows that∫ ∗

x′′∈∆′′

(∫ ∗
x′∈∆′

f(x′,x′′)
)

=

∫
∗ x′′∈∆′′

(∫ ∗
x′∈∆′

f(x′,x′′)
)
,

so the upper and lower integrals of the function F (x′′) =
∫ ∗
x′∈∆′

f(x′,x′′) are
equal; therefore the function F (x′′) is a Riemann integrable function in the cell

∆
′′

so its upper Riemann integral is just its Riemann integral. Then from (6.36)
it follows further that

∫
∆
f =

∫
∆
′′ F , which is the first equality in (6.35). The

second inequality in (6.35) follows from (6.36) by replacing the middle term∫
∗ x′′∈∆′′

( ∫ ∗
x′∈∆′

f(x′,x′′)
)

by
∫
∗ x′′∈∆′′

( ∫
∗x′∈∆′

f(x′,x′′)
)
, thereby conclud-

ing the proof.

Corollary 6.15 If f is a continuous function in a product cell ∆ = ∆′ × ∆′′

then

(6.37)

∫
∆

f(x) =

∫
x′′∈∆′′

(∫
x′∈∆′

f(x′,x′′)
)

=

∫
x′∈∆′

(∫
x′′∈∆′′

f(x′,x′′)
)
.

Proof: If f is continuous in ∆ then for each fixed point x′′ ∈ ∆′′ the function
f(x′,x′′) is a continuous function of x′ ∈ ∆′ so the upper integral or lower
integral in (6.35) can be replaced by the ordinary integral; and the same holds
for iterated integrals in the reverse order, so that suffices for the proof.
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It is customary also to set∫
x′′∈∆′′

(∫
x′∈∆′

f(x′,x′′)
)

=

∫
∆′′

∫
∆′
f(x′,x′′)dx′dx′′,

another commonly used notation for an iterated integral, where the inner inte-
gral, that with respect to the inner variable x′, is calculated first, and the result
is then integrated over the outer integral, that with respect to the outer variable
x′′. Integrals over Jordan measurable sets D ⊂ ∆ are calculated similarly, by
reducing them to integrals over cells; but some care often is required to keep
the regions of integration straight. The process can be repeated, with more
iterations; so an integral over a Jordan measurable set in Rn can be reduced to
the calculation of n separate integrals of functions of a single variable.

Figure 6.3: an example of Fubini’s theorem in R2

For examples of the application of Fubini’s Theorem, first let D ⊂ R2 be the
region bounded by the lines x1 + x2 = 0, x1 − 2x2 = 0, and x2 = 1 as in the
accompanying Figure 6.3. An application of Fubini’s Theorem shows that for
any continuous function f(x) in D∫

D

f(x) =

∫
[0,1]

∫
[−x2,2x2]

f(x1, x2)dx1dx2,

thus reducing the integral to an iteration of integrals of functions of a single
variable. The region D can be split into region D1 consisting of those points
x ∈ D for which −1 ≤ x1 ≤ 0 and the region D2 consisting of those points
x ∈ D for which 0 ≤ x1 ≤ 2, and then an application of Fubini’s Theorem
shows that for any continuous function f(x) in D∫

D

f(x) =

∫
[−1,0]

∫
[−x1,1]

f(x1, x2)dx2dx1 +

∫
[0,2]

∫
[x1/2, 1]

f(x1, x2)dx2dx1.
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The order in which Fubini’s Theorem is applied can make a difference in the
calculation. The iterated integral∫

[0,1]

∫
[
√
x1, 1]

cos(x3
2 + 1)dx2dx1

involves a rather complicated trigonometric integral with respect to the variable
x2, but the equal iterated integral involves only simple integrations, since with
the change of variables t = x3

2∫
[0,1]

∫
[
√
x1, 1]

cos(x3
2 + 1)dx2dx1 =

∫
[0,1]

∫
[0, x2

2]

cos(x3
2 + 1)dx1dx2

=

∫
[0,1]

x2
2 cos(x3

2 + 1)dx2 =

∫
[0,1]

cos(t+ 1)
1

3
dt =

1

3

(
sin 2− sin 1

)
.

There are some cases in which a Riemann integrable function f(x′,x′′) in a
product ∆ = ∆′ × ∆′′ is not a Riemann integrable function of one variable
when the other variable is held fixed. For instance the function f(x1, x2) of
variables x1, x2 ∈ R1 defined in a cell ∆ = ∆′ ×∆′′ ⊂ R2 by

f(x′, x′′) =


0 if either x′ or x′′ is irrational,

1
q if both x′ and x′′ are rational and x′′ = p

q

for coprime integers p and q actually is independent of the variable x′, and
as a function of the variable x′′ it is continuous whenever x′′ is irrational but
discontinuous whenever x′′ is rational. As a function of two variables its points
of discontinuity are the products ∆′ × p

q for all rational points p
q , a countable

union of intervals; and since intervals are sets of measure zero in R2 the points of
discontinuity form a set of measure zero, so the function f is Riemann integrable.
Of course it is also Riemann integrable as a function of the variable x′′ for each
fixed point x′ ∈ ∆′; but for any fixed point x′′ the function takes the values 0 or
1
q on dense subsets of the interval ∆′ so the function is not Riemann integrable

as a function of the variable x′. Fortunately in this case the integration can be
taken first with respect to the variable x′′, and the simpler version of Fubini’s
Theorem holds.

In Fubini’s Theorem it is necessary to assume that a function f on the
product cell ∆ = ∆′ ×∆′′ is Riemann integrable; there are functions that are
Riemann integrable in the variable x′ ∈ ∆′ for each fixed point x′′ ∈ ∆′′, and
conversely are Riemann integrable in the variable x′′ ∈ ∆′′ for each fixed point
x′ ∈ ∆′, but are not Riemann integrable in the product cell ∆. For example
let f(x′, x′′) be a function on the cell ∆′ × ∆′′ ∈ R2 that takes the value 1 at
the center of the square, that takes the value 1 at each of four points in the
subsquares when the square is split in half on each line, but where these points
are chosen so that no two lie on the same horizontal or vertical line, and so on;
and takes the value 0 otherwise. Thus this function takes each of the values 1
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Figure 6.4: an example

and 0 on dense subsets of the square, so it is not Riemann integrable; but on
each horizontal or vertical line the function takes the value 1 at a single point
and is 0 otherwise, so is Riemann integrable.

As discussed in Section 3.1, pointwise limits of continuous functions are not
necessarily continuous, but uniform limits of continuous functions are contin-
uous. The pointwise limits (3.17) of Riemann integrable functions hence are
not necessarily Riemann integrable, since such limits are not even necessarily
continuous; moreover even if a sequence of Riemann integrable functions con-
verges pointwise to a Riemann integrable function, the integral of the limit
is not necessarily equal to the limit of the integral. For instance consider
the sequence of continuous functions fν(x) on the unit interval [0, 1] where
fν(0) = 0, fν

(
1/ 2ν

)
= 2ν, fν(1/ν) = 0, fν(1) = 0, and the function fν is ex-

tended to be linear in the intervals between these points, as in the accompanying
Figure 6.4. It is easy to see that limν→∞ fν(x) = 0 for all points x ∈ [0, 1] but

that
∫ 1

0
fν = 1.

Theorem 6.16 (Convergence of Riemann Integrals) If fν is a uniformly
convergent sequence of Riemann integrable functions in a cell ∆ ⊂ Rn then its
limit f is a Riemann integrable function in ∆ and

lim
ν→∞

∫
∆

fν =

∫
∆

f.

Proof: Since the functions fν converge uniformly to f there is an integer N such
that |f(x) − fN (x)| < 1 for all x ∈ ∆; the function fN is Riemann integrable
by hypothesis so it is bounded by some constant M in ∆, and then

|f(x)| ≤ |f(x)− fN (x)|+ |fN (x)| ≤ 1 +M

for all x ∈ ∆ so the limit function is bounded in ∆. The set Eν ⊂ ∆ of points
at which the function fν fails to be continuous is a set of measure zero, since the
functions fν are Riemann integrable by hypothesis; so the union E =

⋃∞
ν=1Eν is

also a set of measure zero, and all the functions fν are continuous in ∆ ∼ E. The
functions fν converge uniformly to f in ∆ ∼ E so it follows from Theorem 3.20
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that the limit function f is also continuous in ∆ ∼ E, hence that f is Riemann
integrable. For any ε > 0 there is an N such that |f(x) − fν(x)| < ε for all
x ∈ ∆ whenever ν > N ; since the functions f and fν are integrable it then
follows from Theorem 6.9 that for any ν > N∣∣∣ ∫

∆

f −
∫

∆

fν

∣∣∣ =
∣∣∣ ∫

∆

(f − fν)
∣∣∣ ≤ ∫

∆

|f − fν | ≤
∫

∆

ε = ε|∆|

and consequently that limν→∞
∫

∆
fν =

∫
∆
f , which concludes the proof.

Another limiting process is the integral transformation defined by a kernel
function k(x,y) of the variables x ∈ D ⊂ Rm and y ∈ E ⊂ Rn for compact
Jordan measurable sets D and E. A Riemann integrable function f(y) of the
variable y ∈ E can be transformed to the function

(6.38) F (x) =

∫
y∈E

k(x,y)f(y)

of the variable x ∈ D, provided that the kernel k(x,y) is a Riemann integrable
function of the variable y ∈ E for each point x ∈ D. Of course the properties of
the transform F (x) depend on the properties of the kernel k(x,y) as a function
of the variable x ∈ D; a sufficiently regular kernel k(x,y) can transform a
merely Riemann integrable function f(y) of the variable y ∈ E to a continuous
or differentiable function F (x) of the variable x ∈ D.

Theorem 6.17 (i) If D ⊂ Rm and E ⊂ Rn are compact Jordan measurable
sets, k(x,y) is a continuous function of the variables x ∈ D, y ∈ E, and f(y)
is a Riemann integrable function of the variable y ∈ E, then the transform
F (x) =

∫
y∈E k(x,y)f(y) is a continuous function of the variable x ∈ D.

(ii) If in addition there is an open neighborhood U of D × E such that the
function k(x,y) is continuous in the variables x, y in U and is differentiable
in the variable x in U with derivatives that are continuous in both variables in
U then the transform F (x) =

∫
y∈E k(x,y)f(y) is a continuously differentiable

function of the variable x ∈ D and

(6.39) ∇F (x) =

∫
y∈E
∇xk(x,y)f(y).

Proof: (i) The function f(y) is bounded, so there is a constant M such that
|f(y)| ≤ M for all y ∈ E. The continuous function k(x,y) in the compact set
D × E is uniformly continuous, so for any ε > 0 there is a δ > 0 such that
|k(x1,y1) − k(x2,y2)| < ε whenever ‖(x1,y1) − (x2,y2)‖2 < δ. Therefore if
x ∈ D and h ∈ Rm satisfies ‖h‖2 < δ then

|F (x + h)− F (x)| =
∣∣∣∣∫

y∈E

(
k(x + h,y)− k(x,y)

)
f(y)

∣∣∣∣
≤
∫
y∈E
|k(x + h,y)− k(x,y)| |f(y)|

≤
∫
y∈E

εM = εM |E|,
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so F (x) is a continuous function of the variable x ∈ D.
(ii) By hypothesis the kernel k(x,y) is continuous in the open neighborhood U
of the set D×E and is a differentiable function of the variable x in U ; and since
D and E are compact, then by shrinking the neighborhood U as necessary it
can be assumed that U is compact and the function k(x,y) is continuous in U .
Then by the mean value theorem, Theorem 3.36, for any point x ∈ D and for
any h ∈ Rm sufficiently small

k(x + h,y)− k(x,y) = ∇xk(z,y) · h

for some point z ∈ U between x and x + h on the line joining these two points.
Therefore

F (x + h)− F (x)−
∫
y∈E
∇xk(x,y) · hf(y)

=

∫
y∈E

(
k(x + h,y)− k(x,y)−∇xk(x,y) · h

)
f(y)

=

∫
y∈E

(
∇xk(z,y)−∇xk(x,y)

)
· hf(y).

Since the function ∇xk(z,y) is assumed to be continuous on the compact set
U it is uniformly continuous, and consequently for any ε > 0 there is a δ > 0
sufficiently small that whenever ‖h‖2 < δ

‖∇xk(z,y)−∇xk(x,y)‖2 < ε;

hence by the Cauchy-Schwartz inequality∣∣∣(∇xk(z,y)−∇xk(x,y)
)
· h
∣∣∣ < ε‖h‖2.

Thus if |f(y)| ≤M for all y ∈ E then∣∣∣∣F (x + h)− F (x)−
∫
y∈E
∇xk(x,y) · hf(y)

∣∣∣∣ ≤ ∫
y∈E

εM‖h‖2 ≤ εM |E|‖h‖2,

which shows that F (x) is differentiable and that its derivative is given by (6.39),
which suffices for the proof.

The integral has been defined so far just for Riemann integrable functions
in a Jordan measurable set in Rn. It is possible to extend the Riemann integral
in order to integrate a wider class of functions over a wider class of subsets of
Rn. The extension however does not necessarily satisfy all of the properties
of integrals that have been considered in the preceding discussion; that is one
of the reasons that the extension is called an improper Riemann integral.
Some care must be taken when working with these integrals, for as with the
Cheshire cat some perplexing results can appear unexpectedly, even though
nothing but the grin remains of the improper integral. However there are many
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advantages in being able to use integrals of more general functions, such as
unbounded continuous functions, over more general sets, such as unbounded
sets and general open subsets of Rn; for not every open subset of Rn is a Jordan
measurable set. Indeed the rational neighborhood S introduced on page 101, the
open subset S ⊂ R1 containing all the rationals but not all of R1, is not a Jordan
measurable set. To demonstrate that, if rj is a list of the rational numbers in
the open unit interval (0, 1) for j ≥ 1 and if ∆j is an open interval of length at
most |∆j | = ε

2j contained in (0, 1) and containing the point rj , where ε < 1
2 ,

let S =
⋃

∆j . Clearly S = [0, 1], and it follows that ∂S = [0, 1] ∼ S. If S
were a Jordan measurable set its boundary would be a compact set of content
0, which could be covered by finitely many open intervals of total length less
than ε; thus there would be finitely many open intervals Ij ⊂ R1 such that

([0, 1] ∼ S) ⊂
⋃N
j=1 Ij and

∑N
j=1 |Ij | < ε, and consequently

[0, 1] ⊂
( N⋃
j=1

Ij ∪
∞⋃
i=1

∆i

)
.

However the compact set [0, 1] would be covered by finitely many of these open
intervals, so that actually

[0, 1] ⊂
( N⋃
j=1

Ij ∪
M⋃
i=1

∆i

)
,

which is impossible since
∑N
j=1 |Ij |+

∑M
i=1 |∆i| < 2ε < 1; consequently S cannot

be a Jordan measurable set. However arbitrary open sets can be expressed as
natural limits of Jordan measurable sets.

Theorem 6.18 Any open subset U ⊂ Rn can be written as a union U =⋃∞
i=1Di where Di are open Jordan measurable sets such that Di ⊂ Di+1 for all

indices i. Moreover these Jordan measurable sets can be assumed to be unions
of cells in a partition of Rn.

Proof: For any natural number r let Pr be a partition of the entire space Rn
into cells having as their sides intervals of length 2−r, where Pr+1 is a refinement
of the partition Pr; and let ∆r be the open cell consisting of those points x ∈ Rn
such that ‖x‖∞ < r. For a sufficiently large index r1 the partition Pr1 will be
sufficiently fine that some closed cells in the partition will be contained in the
open set U ∩∆r1 ; the interior of the union of those cells then is an open Jordan
measurable set D1 such that D1 ⊂ U∩∆r1 . For a sufficiently large index r2 > r1

each point on the compact boundary ∂D1 will be contained in the interior of
the union of all closed cells ∆i of the partition Pr2 for which ∆i ⊂ U ∩∆r2 ; the
interior of the union of those closed cells in the partition Pr2 that are contained
in U ∩∆r2 then is an open Jordan measurable set D2 such that D1 ⊂ D2 and
D2 ⊂ U ∩ ∆r2 . The process can be continued, providing a sequence of open
Jordan measurable sets Di contained in U such that Di ⊂ Di+1 for each index
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i. Since the cells of partition Pri have sides of length 2−ri and
⋃
r ∆r = Rn it

follows that for any point x ∈ U there will be some index ri sufficiently large that
for some closed cell ∆ of the partition Pri it is the case that x ∈ ∆ ⊂ U ∩∆ri .
Then either x ∈ Di or x ∈ ∂Di hence x ∈ Di+1, and that suffices for the proof.

Consider then an open subset U ⊂ Rn that is a union U =
⋃∞
i=1Di of open

Jordan measurable sets Di such that Di ⊂ Di+1 for all indices i. If f is a
function that is continuous almost everywhere in U set

(6.40) f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0)

for any point x ∈ U . Clearly f+(x) ≥ 0 and f−(x) ≥ 0 at all points x ∈ U , and
f(x) = f+(x)−f−(x) is a unique decomposition of the function f as a difference
of two non-negative functions, in the sense that if f = g−h, where g ≥ 0 and h ≥
0, then f+ ≤ g and f− ≤ h; and both functions f+ and f− are also continuous
almost everywhere in U . For any integer i > 0 the functions min(f+(x), i)
and min(f−(x), i) are bounded and continuous almost everywhere in U , and
consequently they are Riemann integrable over the Jordan measurable sets Dj .
Moreover since these are positive functions and min(f+(x), i) ≤ min(f+(x), i+1)
while Di ⊂ Di+1 it follows that∫

Di

min(f+(x), i) ≤
∫
Di+1

min(f+(x), i+ 1);

consequently the sequence of real numbers
∫
Di

min(f+(x), i) for i = 1, 2 . . . has
a well defined limit as i → ∞, either a real number or +∞, so it is possible to
define

(6.41)

∫
U,{Di}

f+ = lim
i→∞

∫
Di

min(f+(x), i)

and correspondingly of course

(6.42)

∫
U,{Di}

f− = lim
i→∞

∫
Di

min(f−(x), i).

These expressions actually are independent of the choice of the sequence of
Jordan measurable sets Di. Indeed if U also is the union U =

⋃∞
j=1Ej for

some Jordan measurable sets Ej ⊂ Rn such that Ej ⊂ Ej+1 then the same
construction leads to the integrals

∫
U,{Ej} f+ and

∫
U,{Ej} f−. Since each set Di

is compact and Di ⊂
⋃∞
j=1Ej for the open sets Ej then Di is actually contained

in a finite union of the sets Ej , and consequently in the largest of the sets Ej
in this finite union, say the set Eji ; and since Di is contained in Ej whenever
j > ji it is possible to assume that ji ≥ i. Therefore∫

Di

min(f+, i) ≤
∫
Eji

min(f+, ji) ≤
∫
U,{Ej}

f+,
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and since that is the case for any i it follows that∫
U,{Di}

f+ ≤
∫
U,{Ej}

f+;

and of course the same holds for the integrals of the function f−. On the other
hand the argument can be reversed, so that the opposite inequality

∫
U,{Ej} f+ ≤∫

U,{Di} f+ also holds, and consequently

∫
U,{Ej}

f+ =

∫
U,{Di}

f+

and correspondingloy
∫
U,{Ej} f− =

∫
U,{Di} f− If at least one of these two inte-

grals
∫
U,{Di} f+ or

∫
U,{Di} f− is finite the improper integral of the function

f over the open set U is defined to be the difference

(6.43)

∫̂
U

f =

∫
U,{Di}

f+ −
∫
U,{Di}

f−,

which is either a real number or +∞ or −∞.

A possible difficulty with improper Riemann integrals is that some of the
integrals may have infinite values. For instance if f is an unbounded function

that is continuous almost everywhere in an open subset U but
∫̂
U
f = ∞

then
∫̂
U

(f + g) = 0 where g = −f while
∫̂
U
g = −∞ so the equation∫̂

U
(f+g) =

∫̂
U
f+

∫̂
U
g does not really make any sense. On the other hand if

f and g are functions that are continuous almost everywhere in an open subset
and have finite improper integrals then since (f + g)+(x) ≤ f+(x) + g+(x) and
(f + g)−(x) ≤ f−(x) + g−(x) at all points x ∈ U it follows fairly readily that∫̂
U

(f + g) =
∫̂
U
f+

∫̂
U
g. Thus the basic identities of Theorem 6.8 hold if the

improper integrals are actually finite. It is possible to define the content of an

arbitrary open subset U as the improper integral |U | =
∫̂
U

1, which is always
well defined although possibly |U | = +∞.

There are various alternative ways of extending the class of functions and
domains for integration that arise in various applications. The advantage of the
procedure discussed here is that it is intrinsic: it attaches to any function f
that is continuous almost everywhere in an open subset U a unique value for

the integral
∫̂
U
f , unless that value would be the indeterminate form ∞−∞.

There are situations in which it is possible to attach to an integral that would
otherwise be of the indeterminate form∞−∞ a well defined value by specifying
a particular way of taking the limit. The classical example is that of the Cauchy
principal value of the integral of a function of a single real variable that is
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unbounded in a neighborhood of a point, as for example

lim
ε→0
ε>0

(∫
[−1,−ε]

1

x
+

∫
[ε,1]

1

x

)
= 0,

lim
ε→0
ε>0

(∫
[−1,−ε]

1

x
+

∫
[2ε,1]

1

x

)
= − log 2.

In this way it is possible to assign a definite value to the integral
∫ 1

−1
1
x that

would otherwise be of the indeterminate form ∞ − ∞; but the actual value
depends upon the particular choice of the way in which the limit is taken.

Another important and useful technique for the actual calculation of integrals
is the change of variables in an integration. For a simple special case, a C1

diffeomorphism φ : [a, b] −→ [c, d] between two nontrivial segments of the real
line has a nonzero derivative at all points of [a, b], so either φ′(x) > 0 for all
points x ∈ (a, b) and the mapping φ is orientation preserving so φ(a) = c and
φ(b) = d, or φ′(x) < 0 for all points x ∈ (a, b) and the mapping φ is orientation
reversing so φ(a) = d and φ(b) = c. If f is a continuous function in the interval
[c, d] the composition f ◦ φ is a continuous function in the interval [a, b]. By
the First Fundamental Theorem of calculus, Theorem 6.6, there is a C1 function
F in [c, d] for whichd F ′(x) = f(x) at all points x ∈ (c, d); and by the Second
Fundamental Theorem of calculus, Theorem 6.4,

(6.44)

∫
[c,d]

f = F (d)− F (c).

The composition F ◦ φ then is a C1 function in [a, b] such that (F ◦ φ)′ =
(F ′ ◦ φ) · φ′ = (f ◦ φ) · φ′; so by the Second Fundamental Theorem of calculus
again

(6.45)

∫
[a,b]

(f ◦ φ) · φ′ = (F ◦ φ)(b)− (F ◦ φ)(a).

If φ′(x) > 0 then φ(b) = d and φ(a) = c so (6.45) takes the form

(6.46)

∫
[a,b]

(f ◦ φ) · φ′ = F (d)− F (c) =

∫
[c,d]

f,

while if φ′(x) < 0 then φ(b) = c and φ(a) = d so (6.45) takes the form

(6.47)

∫
[a,b]

(f ◦ φ) · φ′ = F (c)− F (d) = −
∫

[c,d]

f.

Since φ′(x) > 0 in the first of the two preceding equations, and φ′(x) < 0 in
the second, these two equations can be combined into the change of variables
formula

(6.48)

∫
[a,b]

(f ◦ φ) · |φ′| =
∫

[c,d]

f.
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For a diffeomorphism φ : D −→ E between two open subsets of Rn the derivative
φ′ is a matrix; and if D is connected either detφ′(x) > 0 for all points x ∈ D
and the mapping φ is orientation preserving or detφ′(x) < 0 for all points x ∈ D
and the mapping φ is orientation reversing. Under this change of variables the
integral changes in the following general form of the formula (6.48) for the case
n = 1.

Theorem 6.19 (Change of Variables Theorem) If φ : D −→ E is a C1

homeomorphism between two open subsets in Rn and if f is a function that
is continuous almost everywhere in the open set E and has a finite improper
integral in E then the function (f ◦φ) |detφ′| is continuous almost everywhere
in D and has a finite improper integral in D, and

(6.49)

∫̂
E

f =

∫̂
D

(f ◦ φ) |detφ′|.

Proof: As a preliminary observation, if φ : D −→ E is a C1 homeomorphism
between two open subsets D,E ⊂ Rn then for any cell ∆ ⊂ ∆ ⊂ D the boundary
of the image of ∆ is the image of the boundary of ∆, that is, ∂φ(∆) = φ(∂∆).
Since each face of ∆ is locally a submanifold of Rn of dimension n−1 that is also
the case for the image under a C1 homeomorphism, so the boundary of the image
φ(∆) consists of a collection of pieces that are also locally submanifolds of Rn of
dimension n− 1 hence are subsets of measure zero; consequently ∂φ(∆) is a set
of measure zero so the image φ(∆) is a Jordan measurable set in Rn. A set that
is the image of a cell ∆ under a C1 homeomorphism of an open neighborhood
of the closure ∆ will be called a special Jordan measurable set, although
only for the duration of this proof. It is evident from this definition that the
image of a special Jordan measurable set under a C1 homeomorphism defined
in an open neighborhood of its closure is also a special Jordan measurable set

To turn to the proof of the theorem itself, first it will be demonstrated that
for any cell ∆ ⊂ ∆ ⊂ E and for any constant c

(6.50)

∫
∆

c =

∫
φ−1(∆)

c |detφ′|

if φ : D −→ E is a C1 homeomorphism that changes only a single variable.
To simplify the notation, relabel the variables so that only the first variable is
changed. When points x ∈ D and y ∈ E are written

x =

(
x1

xII

)
where

{
x1 ∈ R1

xII ∈ Rn−1 and y =

(
y1

yII

)
where

{
y1 ∈ R1

yII ∈ Rn−1

the homeomorphism φ thus has the form

φ(x) =

(
φ1(x)
xII

)
where

{
φ1(x) ∈ R1

xII ∈ Rn−1 ;

therefore

φ′(x) =

(
∂1φ1(x) ∂IIφ1(x)

0 In−1

)
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Figure 6.5: Mappings that change a single variable

where In−1 is the (n − 1) × (n − 1) identity matrix, so detφ′(x) = ∂1φ1(x).
The cell ∆ ⊂ E is the product of an interval ∆1 in the y1-axis and a cell ∆II

in the space Rn−1 of the remaining variables yII , so it is the union of the one-
dimenesional slices ∆(yII) = ∆1 × yII for points yII ∈ ∆II . The image of
the cell ∆ under the inverse homeomorphism φ−1 : E −→ D is the special
Jordan measurable set φ−1(∆) ⊂ D, which correspondingly is the union of the
one-dimensional slices

φ−1
(
∆(yII)

)
=
{

x = {x1,xII} ∈ φ−1(∆)
∣∣∣ xII = yII

}
as sketched in the accompanying Figure 6.5. It follows from Fubini’s Theorem
and the change of variables formula for the restriction

φ : φ−1
(
∆(yII)

)
−→ ∆(yII)

of the homeomorphism φ to the one-dimensional slices that∫
∆

c =

∫
yII∈∆II

∫
y1∈∆(yII)

c =

∫
xII∈∆II

∫
x1∈φ−1

(
∆(yII)

) c |φ′1|
=

∫
xII∈∆II

∫
x1∈φ−1

(
∆(yII)

) c |detφ′| =
∫
φ−1(∆)

c |detφ′|,

so the formula (6.50) for the effect of a change of variables in integration holds
in this case.

Next it will be demonstrated that for any cell ∆ ⊂ ∆ ⊂ E and for any func-
tion f that is Riemann integrable in ∆ the function (f ◦ φ)|detφ′| is Riemann
integrable in φ−1(∆) and

(6.51)

∫
∆

f =

∫
φ−1(∆)

(f ◦ φ) |detφ′|

if φ : D −→ E is a C1 homeomorphism that changes only a single variable. Of
course it is clear that (f ◦ φ)|detφ′| is bounded in φ−1(∆); but the remainder



6.2. CACULATION OF INTEGRALS 291

of the preceding assertions remains to be proved. For any partition P of the cell
∆ as the union ∆ =

⋃
i ∆i, introduce the function f∗ in ∆ defined by

(6.52) f∗(y) =


supz∈∆i

f(z) if y ∈ ∆i,

f(y) if y ∈
⋃
j ∂∆j .

The function f∗ is constant in each open cell ∆i of the partition P, so by what
has just been proved it follows that

(6.53)

∫
∆i

f∗ =

∫
φ−1(∆i)

(f∗ ◦ φ) |detφ′|.

The function f∗ is continuous in ∆ except for the union of the boundaries of the
cells ∆i, and that union is a set of measure 0; hence f∗ is Riemann integrable
over ∆, as is (f∗ ◦ φ) |detφ′|. The special Jordan measurable sets ∆i are
disjoint, as are the special Jordan measurable sets φ−1(∆i), so it follows from
(6.53) and Theorem 6.13 that
(6.54)∫

∆

f∗ =
∑
i

∫
∆i

f∗ =
∑
i

∫
φ−1(∆i)

(f∗ ◦ φ) |detφ′| =
∫
φ−1(∆)

(f∗ ◦ φ) |detφ′|.

It is clear from the definition (6.52) that
∫

∆i
f∗ =

(
supy∈∆i

f(y)
)
|∆i|, hence

(6.55)

∫
∆

f∗ =
∑
i

∫
∆i

f∗ =
∑
i

(
sup
y∈∆i

f(y)

)
|∆i| = S∗(f,P).

It is also clear from (6.52) that (f∗ ◦ φ)(x) |detφ′(x)| ≥ (f ◦ φ)(x) |detφ′(x)|
at all points x ∈ φ−1(∆), so the upper sums of these two functions for any par-
tition of a cell containing the special Jordan measurable set φ−1(∆) satisfy the
corresponding inequality and consequently so do the upper integrals; therefore
(6.56)∫
φ−1(∆)

(f∗ ◦ φ) |detφ′| =
∫ ∗
φ−1(∆)

(f∗ ◦ φ) |detφ′| ≥
∫ ∗
φ−1(∆)

(f ◦ φ) |detφ′|.

Combining (6.54), (6.55) and (6.56) shows that

(6.57) S∗(f,P) ≥
∫ ∗
φ−1(∆)

(f ◦ φ) |detφ′|;

and since that is true for any partition P of the cell ∆

(6.58)

∫ ∗
∆

f ≥
∫ ∗
φ−1(∆)

(f ◦ φ) |detφ′|.

The corresponding argument for the lower integrals, for which the inequalities
are reversed, shows that

(6.59)

∫
∗∆
f ≤

∫
∗φ−1(∆)

(f ◦ φ) |detφ′|,



292 CHAPTER 6. INTEGRATION

and combining (6.58) and (6.59) yields the inequalities

(6.60)

∫ ∗
∆

f ≥
∫ ∗
φ−1(∆)

(f ◦ φ) |detφ′| ≥
∫
∗φ−1(∆)

(f ◦ φ) |detφ′| ≥
∫
∗∆
f.

However
∫ ∗

∆
f =

∫
∗∆ f =

∫
∆
f since the function f is Riemann integrable by

hypothesis, so the inequalities in (6.60) are equalities; hence the function (f ◦
φ) |detφ′| is Riemann integrable over φ−1(∆) and the formula (6.51) for the
effect of a change of variables in integration holds in this case.

Actually the preceding result holds for somewhat more general domains than
a cell ∆. Indeed if φ : D −→ E is still a C1 homeomorphism that changes only
a single variable then for any point b ∈ E, any sufficiently small special Jordan
measurable set U ⊂ E for which b ∈ Uo, and any Riemann integrable function
f in U ,

(6.61)

∫
U

f =

∫
φ−1(U)

(f ◦ φ) |detφ′|.

Indeed if U is sufficiently small there is a cell ∆ such that U ⊂ ∆ ⊂ E; then
(6.51) holds for the extension f̃ of the function f to the entire cell ∆, and (6.61)
follows immediately since∫

U

f =

∫
∆

f̃ and

∫
φ−1(U)

(f ◦ φ)|φ′| =
∫
φ−1(∆)

(f̃ ◦ φ)|φ′|.

From this it will be demonsrated that if φ : D −→ E is an arbitrary C1 home-
omorphism and if f is a function that is Riemann integrable in E then for any
point b0 ∈ E and for any sufficiently small cell ∆ such that b0 ∈ ∆ ⊂ ∆ ⊂ E

(6.62)

∫
∆

f =

∫
φ−1(∆)

(f ◦ φ) |detφ′|.

Indeed since detφ′
(
φ−1(b0)

)
6= 0 for a C1 homeomorphism φ : D −→ E it

follows from Corollary 5.4 that for a sufficiently small open cell ∆ ⊂ ∆ ⊂ E
containing b0 the homeomorphism φ can be written as the composition

(6.63) φ = φr ◦ φr−1 ◦ · · · ◦ φ2 ◦ φ1

of C1 homeomorphisms that change only a single variable. Each of these separate
mappings φj will be a mapping between special Jordan measurable sets, so that
(6.61) holds for each. To demonstrate (6.62) it suffices then merely to show that
if (6.61) holds for two C1 homeomorphisms φ : D −→ E and ψ : E −→ F then
it also holds for the composition ψ ◦ φ : D −→ F . For that purpose, if f is a
Riemann integrable function in F then∫

F

f =

∫
E

(f ◦ψ)|detψ′| =
∫
D

(
(f ◦ψ) ◦ φ

)
|(detψ′) ◦ (φ)||detφ′|

=

∫
D

(
f ◦ (ψ ◦ φ)

)
|det(ψ ◦ φ)′|
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since (ψ ◦ φ)′(x) = ψ′
(
φ(x)

)
φ′(x) by the chain rule for differentiation.

Finally to complete the proof of the theorem itself, by Theorem 6.18 any
open subset E ∈ Rn can be written as the union of an increasing sequence of
open Jordan measurable sets Ei, each of which is a union Ei =

⋃
j ∆ij of cells

∆ij that are disjoint aside from their boundaries; and D is correspondingly the
union of the increasing sequence of open subsets Di = φ−1(Ei) each of which is a
union Di =

⋃
φ−1(∆ij) of special Jordan measurable sets that are disjoint aside

from their boundaries. By passing to refinements of these cells it can be assumed
by what already has been demonstrated that

∫
∆ij

f =
∫
φ−(∆ij)

(f ◦φ)|detφ′| for

any Riemann integrable function in E; and it then follows from Theorerm 6.13
that ∫

Ei

f =

∫
Di

(f ◦ φ)|detφ′|

for each set Ei. The improper integrals are defined as in (6.43) in terms of the
limits of the integrals over the sets Di and Ei, so (6.49) holds in the limit and
that suffices for the proof.

For an explicit example, consider the integral
∫
E

log(x2
1 + x2

2) where

E =
{

(x1, x2) ∈ R2
∣∣∣ a ≤ x2

1 + x2
2 ≤ b, x1 ≥ 0, x2 ≥ 0

}
.

This is most convenently handled by introducing polar coordinates through the
change of coordinates

φ : R2(r, θ) −→ R2(x1, x2)

where x1 = r cos θ, x2 = r sin θ. The mapping φ establishes a one-to-one map-
ping φ : D −→ E where

D =
{

(r, θ) ∈ R2
∣∣∣ a ≤ r ≤ b, 0 ≤ θ ≤ π

2

}
;

and

φ′(x, y) =
∂(x1, x2)

∂(r, θ)
=


∂x1

∂r

∂x1

∂θ

∂x2

∂r

∂x2

∂θ

 =

(
cos θ −r sin θ
sin θ r cos θ

)

so |detφ′(r, θ)| = r. The formula for the change of variables and an application
of Fubini’s Theorem show that∫

E

log(x2
1 + x2

2) =

∫
D

log(r2) r

=

∫ b

a

∫ π/2

0

2r log r dθ dr

=
π

2

∫ b

a

2r log r =
π

2
r2(log r − 1

2
)
∣∣∣b
a

=
π

2

(
b2 log b− a2 log a

)
− π

4
(b2 − a2).
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PROBLEMS, GROUP I:

(1) When the unit cell ∆ ⊂ R2 is viewed as a product of unit intervals ∆ = I1×I2
in terms of coordinates (x1, x2) ∈ R2 show that∫

∆

f1(x1)f2(x2) =

(∫
I1

f1

)(∫
I2

f2

)
where f1, f2 are Riemann integrable functions on I1 and I2 respectively.

(2) Calculate
∫

∆
log
(

(1 + x1)(1 + x2)
)

where ∆ is the unit cell in R2.

(3) Calculate ∫
[0, 1]

∫
[0, x2

1]

(x2
1 + x1x2 − x2

2).

(4) Calculate
∫
D
ex1−x2 where D is the triangular region in the plane having

vertices (0, 0), (1, 3), (2, 2).

(5) Calculate
∫̂

R e−x
2

by noting that

(∫̂
R e
−x2

)2

=
∫̂

R2 e−x
2
1−x

2
2 and using

polar coordinates.

PROBLEMS, GROUP II:

(6) Find the content of the plane region bounded by the curve r = 1 + sin θ
in polar coordinates in R2.

(7) Let f be the real-valued function in the unit cell in R2 defined by

f(x1, x2) =

 1 if x1 is rational

2x2 if x1 is irrational.

Show that the function f(x1, x2) is not Riemann integrable in the unit cell but
that nonetheless the iterated integral

∫
x1∈[0,1]

∫
x2∈[0,1]

f(x1, x2)dx2dx1 exists.

(8) Show that if g is integrable then
∫

[0,x]

∫
[0,y]

g(t)dtdy =
∫

[0,x]
(x − t)g(t)dt,

thus reducing a double integral to a single integral.

(9) If f is a Riemann integrable non-negative function on the unit interval
[0, 1] show that the subset

E =
{

(x1, x2) ∈ R2
∣∣∣ 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ f(x1)

}
⊂ R2

is a Jordan measurable set and that its content is |E| =
∫

[0,1]
f .
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(10) A step function φ in a cell ∆ ⊂ Rn is a real-valued function that is
constant in each open cell ∆i of a finite partition ∆ =

⋃
i ∆i of ∆; thus a step

function is a function that can be written as the sum φ =
∑
i ciχ∆i

in terms of
the characteristic functions of the cells ∆i of the partition.
(i) Show that the step function φ =

∑
i ciχ∆i

is Riemann integrable in ∆ and

that
∫

∆
φ =

∑
i ci|∆i|.

(ii) Show that any continuous real-valued function f on ∆ can be written as a
uniform limit f = limν φν of step functions φν on ∆, hence that the integral of
f can be expressed as the limit

∫
∆
f = limν

∫
∆
φν for some sequence φν of step

functions on ∆.

(11) Show that if the characteristic function χE of a subset E ⊂ R2 is Rie-
mann integrable then E is a set of measure zero if and only if for almost every
x1 ∈ R the set

Ex1 =
{
x2 ∈ R

∣∣∣ (x1, x2) ∈ E
}

is a set of measure zero in R.

(12) If D is a Jordan measurable set in Rn and φ : U −→ Rn is a mapping
that is C1 on an open neighborhood U of D show that φ(D) is also a Jordan
measurable set.
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Chapter 7

Differential Forms and
Their Integrals

7.1 Line Integrals

The Riemann integral of a function over a C1 compact submanifold of Rn
is zero, since such a submanifold is a set of content 0; nonetheless there are
variants of the integral that are defined nontrivially over submanifolds and sim-
ilar subsets of Rn, and they play a very important role in mathematics and
its applications. The simplest case is probably that of integrals over curves in
Rn. As on page 251, a parametrized curve in an open subset U ⊂ Rn is
a continuous mapping φ : [a, b] −→ U from a closed interval [a, b] ⊂ R1 into
Rn. It is necessary to distinguish between a mapping and its image, that is, to
distinguish between a parametrized curve and the subset of Rn that is the image
of the parametrized curve; a great many distinct parametrized curves may have
the same image, but they are considered as distinct parametrized curves. It is
customary to consider the parameter space as an oriented interval [a, b] ⊂ R1

with a ≤ b; hence a parametrized curve also has a natural orientation, an order
corresponding to the order of the parameter in [a, b]. Much of the subsequent
discussion will focus on C1 parametrized curves φ, those for which the mapping
extends to a C1 mapping φ : (a − ε, b + ε) −→ U for some ε > 0; but it is
common also to consider Ck parametrized curves for any integer k > 0, or even
C∞ parametrized curves, those that are Ck parametrized curves for all k > 0.
Unless explicitly assumed otherwise, however, parametrized curves are merely
continuous mappings. Also unless explicitly assumed otherwise, parametrized
curves are not required to be one-to-one mappings, nor are C1 parametrized
curves required to have a nonvanishing derivative; thus a parametrized curve
may cover its image repeatedly or with a variety of self-intersections, or even be
stationary at some points, as sketched in the accompanying Figure 7.1.

Two parametrized curves φ : [a, b] −→ U and ψ : [c, d] −→ U are said to
be equivalent parametrized curves if there is an orientation preserving home-

297
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Figure 7.1: A parametrized curve from A to B; it may repeat the loop C several
times, it may have a cusp as at D or a self intersection as at E, it may follow the
segment from F to G then return to F and then continue back to G and beyond,
or it may map an entire segment of the parameter space to the single point H;
thus the image or support of a curve can be far from actually describing the
curve.

omorphism h : [a, b] −→ [c, d] such that φ(t) = ψ
(
h(t)

)
for all t ∈ [a, b]. It

is clear that this is an equivalence relation in the usual sense; an equivalence
class γ of parametrized curves is called a curve. It is often assumed as a
standard convention that the parameter interval for a parametrized curve is
the unit interval [0, 1], since any closed interval is homeomorphic to [0, 1]. If
φ and ψ are equivalent parametrized curves then φ([a, b]) = ψ([c, d]), so all
the parametrized curves in an equivalence class have the same image; this im-
age is called the support of the curve γ and is denoted by |γ| = |φ|. A
parametrized curve for which the mapping φ : [a, b] −→ Rn is injective is
called a simple parametrized curve. Clearly any parametrized curve that is
equivalent to a simple parametrized curve also is a simple parametrized curve;
hence the entire equivalence class is called a simple curve. For any simple
curve φ : [a, b] −→ Rn the image φ([a, b]) ⊂ Rn with the induced topology
as a subset of Rn is a Hausdorff topological space; and since the set [a, b] is
compact the mapping φ : [a, b] −→ φ([a, b]) is a homeomorphism, by Theo-
rem 3.10. It follows that a simple curve is fully determined by its image; indeed
if φ : [a, b] −→ Rn and ψ : [c, d] −→ Rn are simple parametrized curves with
the same image then since φ and ψ are orientation-preserving homeomorphisms
the composition h = φ−1 ◦ ψ : [c, d] −→ [a, b] is also an orientation-preserving
homeomorphism and consequenty φ and ψ = φ◦φ−1 ◦ψ = φ◦h are equivalent
parametrized curves so determine the same curve. Thus for a simple curve γ in
Rn it is customary to identify the curve with its support |γ| ⊂ Rn; but the ori-
entation is determined only by specifying a parametrization. Some care should
be taken in identifying curves other than simple curves with their images. In
an extension of the notion of equivalence of curves, two C1 parametrized curves
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φ : [a, b] −→ U and ψ : [c, d] −→ U are called C1-equivalent parametrized
curves if the mapping h : [a, b] −→ [c, d] extends to a C1 orientation-preserving
homeomorphism between open neighborhoods of [a, b] and [c, d], and of course
correspondingly for Ck parametrized curves or C∞ parametrized curves. An
equivalence class of Ck parametrized curves naturally is called a Ck curve.

If φ : [0, 1] −→ U is a parametrized curve in an open subset U ⊂ Rn and
f : U −→ R is a function in U the composition f ◦ φ, also denoted by φ∗(f),
is a well defined function on the parameter interval [0, 1] called the induced
function or the pullback of the function f under the mapping φ. If the
function f is continuous then the induced function φ∗(f) is a continuous function
in [0, 1]; and if the parametrized curve and the function are C1 functions then
the pullback is a C1 function. The integral of a continuous function f in U on
the parametrized curve φ is defined by

(7.1)

∫
φ

f =

∫
[0,1]

φ∗(f).

The value of the integral depends on the parametrization, for the integrals of a
function over equivalent parametrized curves are not necessarily equal. Indeed
if φ : [0, 1] −→ U and ψ : [0, 1] −→ U are C1 equivalent parametrized curves
and φ = ψ ◦ h for a continuously differentiable mapping h : [0, 1] −→ [0, 1] then
it follows from the change of variables theorem, Theorem 6.19, that

∫
ψ
f =∫

[0,1]
f ◦ψ =

∫
[0,1]

(f ◦ψ)◦h |h′| =
∫

[0,1]
f ◦φ |h′|, which is not necessarily equal

to
∫

[0,1]
f ◦φ =

∫
φ
f . Consequently the notion of the integral of a function over

a curve, as distinct from the integral over a parametrized curve, is not really
well defined.

One way to obtain an intrinsically defined integral over a curve is to use
an intrinsically defined parametrization of the curve; perhaps the only natural
candidate for an intrinsically defined parametrization is by the arc length of
a curve. If φ : [0, 1] −→ U is a parametrized curve then for any partition
P of the interval [0, 1] by points of subdivision 0 = t0 < t1 < · · · < tm =
1 the parametrized curve φ can be approximated by the piecewise linear
parametrized curve φP for which φP(ti) = φ(ti) for each point of subdivision
and the mapping φP is extended to be a linear mapping between the points
φ(ti−1) and φ(ti), so that if ti−1 ≤ t ≤ ti then

(7.2) φP(t) =
t− ti

ti−1 − ti
φ(ti−1) +

t− ti−1

ti − ti−1
φ(ti).

This is something like approximating the image φ([0, 1]) ⊂ U by the polygon
joining the successive points φ(ti); but the mapping φ is not necessarily a
one-to-one mapping, and consequently the approximation of the mapping φ
by the piecewise linear mapping φP may differ significantly from a polygonal
approximation of the point set φ([0, 1]) ⊂ U . The arc length of the piecewise
linear curve φP is defined to be the sum

(7.3) L(φ,P) =

m∑
i=1

‖φ(ti)− φ(ti−1)‖2,
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in terms of the `2 norm in Rn. If P ′ is a refinement of the partition P, ob-
tained by adding a point of subdivision t′ between ti−1 and ti, the length
‖φ(ti) − φ(ti−1)‖2 of the linear segment of the piecewise linear approxima-
tion φP between the points φ(ti) and φ(ti−1) is replaced by the larger sum
‖φ(ti)−φ(t′)‖2 +‖φ(t′)−φ(ti−1)‖2 in the piecewise linear approximation φP′ ,
so that L(φ,P ′) ≥ L(φ,P); iterating this observation shows that the same in-
equality holds for any refinement P ′ of the partition P. The arc length of the
parametrized curve φ is defined to be

(7.4) L(φ) = sup
P
L(φ,P),

where the supremum is extended over all partitions P of the parameter in-
terval [0, 1]. If the arc length is finite the curve is said to be a rectifiable
parametrized curve; so the arc length of a rectifiable curve is a well defined
real number. There are parametrized curves that are not rectifiable, such as the
parametrized curve in R2 given by

(7.5) φ(t) =

 {t, t sin π
2t} for 0 < t ≤ 1,

{0, 0} for t = 0.

If Pn is the partition given by 0 < 1
n <

1
n−1 < · · · <

1
2 < 1 then since

∥∥∥φ ( 1
i

)
− φ

(
1
i+1

)∥∥∥
2
≥
∣∣∣ 1i sin πi

2 −
1
i+1 sin π(i+1)

2

∣∣∣ =


1
i+1 if i is even

1
i if i is odd,

it is apparent that limn→∞ L(φ,Pn) = ∞, hence that this parametrized curve
is not rectifiable.

Lemma 7.1 If φ : [a, b] −→ U and ψ : [c, d] −→ U are two equivalent
parametrized curves and if φ is rectifiable then ψ also is rectifiable and L(φ) =
L(ψ).

Proof: Since the parametrized curves φ and ψ are equivalent there is an
orientation-prerserving homeomorphism h : [a, b] −→ [c, d] for which φ = ψ ◦ h,
so the homeomorphism h is monotonically increasing. Any partition

P : a = t0 < t1 < · · · < tm = b

of the interval [a, b] determines a partition

h(P) : c = h(a) = h(t0) < h(t1) < · · · < h(tm) = h(b) = d

of the interval [c, d], and conversely any partition of the interval [c, d] arises
in this way from a partition of the interval [a, b]. Since ψ

(
h(ti)

)
= φ(ti)

it is clear from the definition (7.3) that L
(
ψ, h(P)

)
= L(φ,P), hence that
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L(ψ) = supP L
(
ψ, h(P)

)
= supP L

(
φ,P

)
= L(φ) and consequently that ψ

also is rectifiable. That suffices for the proof.

The preceding lemma shows that if a parametrized curve is rectifiable then
so is any equivalent parametrized curve, so the equivalence class can be called
a rectifiable curve; and equivalent rectifiable parametrized curves have the
same arc length, which can be called the arc length of the curve. For any
parametrized curve φ : [0, 1] −→ Rn the restriction of the mapping φ to a
segment [a, b] ⊂ [0, 1] is another parametrized curve φ

∣∣[a, b] : [a, b] −→ Rn
called a segment of the initial parametrized curve. The arc length of the
segment φ

∣∣[a, b] of a parametrized curve φ is denoted by L(φ
∣∣[a, b]).

Lemma 7.2 For any rectifiable parametrized curve φ : [0, 1] −→ Rn and any
subinterval [a, b] ⊂ [0, 1]
(i) L(φ

∣∣[a, b]) ≥ ‖φ(b)− φ(a)‖2 ; and

(ii) L(φ
∣∣[a, b]) = L(φ

∣∣[a, c]) + L(φ
∣∣[c, b]) if 0 ≤ a ≤ c ≤ b ≤ 1.

Proof: (i) If 0 ≤ a ≤ b ≤ 1 then a ≤ b is a particular partition P of the interval
[a, b] so it follows from (7.3) and (7.4) that

‖φ(b)− φ(a)‖2 = L(φ,P) ≤ L(φ
∣∣[a, b]).

(ii) For any partition P of the interval [a, b] the length L(φ,P) is increased by
adjoining the point c to the other points of subdivision; so when examining the
supremum of the lengths L(φ,P) for partitions P of the interval [a, b] it always
can be assumed that c is one of the points of subdivision of the partition P, and
consequently that the partition P consists of a partition P1 of the interval [a, c]
and a partition P2 of the interval [c, b]. Therefore L(φ,P) = L(φ,P1)+L(φ,P2)
for all partitions, so L(φ, [a, b]) = L(φ

∣∣[a, c]) +L(φ
∣∣[c, b]), which suffices for the

proof.

Lemma 7.3 If φ : [0, 1] −→ Rn is a rectifiable parametrized curve and s(t) =
L(φ

∣∣[0, t]) for any t ∈ [0, 1] then
(i) s(t) is a monotonically increasing continuous function for which s(0) = 0
and s(1) = l = L(φ), and
(ii) s(t1) = s(t2) for some parameter values 0 ≤ t1 < t2 ≤ 1 if and only if the
mapping φ is constant in the interval [t1, t2].

Proof: (i) It follows immediately from Lemma 7.2 (ii) that if 0 ≤ t′ ≤ t′′ ≤ 1
then s(t′′) = s(t′) + L(φ

∣∣[t′, t′′]) ≥ s(t′), so the function s(t) is monotonically
increasing. Consider a fixed point t0 ∈ [0, 1] and a value ε > 0. Since the
mapping φ is uniformly continuous on the compact interval [0, 1] there is a
δ > 0 such that

(7.6) ‖φ(t′)− φ(t′′)‖2 < ε whenever |t′ − t′′| < δ.

Furthermore by definition of the arc length of a parametrized curve there is a
partition P of the interval [0, 1] such that

(7.7) 0 ≤ L(φ)− L(φ,P) < ε.
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After passing to a refinement of the partition P it can be assumed that t0 is
one of the points of subdivision of the partition P, and that if t′0 < t0 < t′′0 are
three consecutive points of subdivision of P then |t0 − t′0| < δ and |t0 − t′′0 | < δ.
For any t in the interval t′0 < t < t0 let Pt be the refinement of P that arises
by adding t as another point of subdivision. The restriction of the partition Pt
to the interval [t, t0] consists just of the two points φ(t) and φ(t0), and since
|t0 − t| < |t′0 − t0| < δ it follows from (7.6) that

(7.8) L(φ|[t, t0],Pt) = ‖φ(t)− φ(t0)‖2 < ε.

On the other hand it follows from Lemma 7.2 (ii) and (7.7) that(
L(φ|[0, t])−L(φ|[0, t],Pt)

)
+
(
L(φ|[t, t0])− L(φ|[t, t0],Pt)

)
+

+
(
L(φ|[t0, 1])− L(φ|[t0, 1],Pt)

)
≤ L(φ)− L(φ,Pt) < ε,

so since all the differences in the parentheses are non-negative it follows that

(7.9) L(φ|[t, t0])− L(φ|[t, t0],Pt) < ε.

Then from (7.8) and (7.9) it follows that

|s(t)− s(t0)| = L(φ|[t, t0])

=
(
L(φ|[t, t0])− L(φ|[t, t0],Pt)

)
+ L(φ|[t, t0],Pt)

< ε+ ε = 2ε.

The corresponding argument yields the same result for points t in the interval
t0 < t < t′′0 , so the function s(t) is continuous.
(ii) If φ(t) = φ(t1) for all parameter values t ∈ [t1, t2] it is clear from the
definition that L(φ,P) = 0 for any partition P of the interval [t1, t2] and con-
sequently that 0 = L(φ

∣∣[t1, t2]) = L(φ
∣∣[0, t2]) − L(φ

∣∣[0, t1]) = s(t2) − s(t1).
On the other hand if s(t1) = s(t2) then since s(t) is monotonically increas-
ing s(t1) = s(t) whenever t1 ≤ t ≤ t2, hence Lemma 7.2 (i) shows that
that 0 = s(t) − s(t1) = L(φ

∣∣[t1, t]) ≥ ‖φ(t) − φ(t1)‖2 and consequently that
φ(t) = φ(t1). That suffices for the proof.

If φ : [0, 1] −→ Rn is a parametrized curve for which s(t) = L(φ
∣∣[0, t])

is strictly increasing then the mapping s : [0, 1] −→ [0, l] is a homeomor-
phism, since it is a continuous one-to-one mapping between two compact sets;
and if t : [0, l] −→ [0, 1] is the inverse homeomorphism then the composition
σ(s) = φ(t(s)) is a parametrized curve that is equivalent to the curve φ. From
Lemma 7.1 it follows that

(7.10) L(σ
∣∣[0, s]) = L

(
φ
∣∣[0, t(s)]) = s,

so the parametrized curve σ is parametrized by arc length. On the other hand
if the function s(t) fails to be strictly increasing then by Lemma 7.3 (ii) that



7.1. LINE INTEGRALS 303

is because the mapping φ is constant on some subintervals of [0, 1]; and the
mapping φ can be modified, essentially by shrinking such subintervals to points,
so that s(t) becomes strictly increasing. In more detail, s : [0, 1] −→ [0, l]
is a surjective mapping, since the image of the connected set [0, 1] under the
continuous mapping s is also connected and contains the points s(0) = 0 and
s(1) = l. Therefore for any point s0 ∈ [0, l] there is some point t0 ∈ [0, 1] for
which s(t0) = s0; and if there is another point t′0 for which s(t′0) = s0 it follows
from Lemma 7.3 (ii) that φ(t0) = φ(t′0), so setting ψ(s0) = φ(t0) yields a well-
defined mapping ψ : [0, l] −→ Rn, independent of the choice of the particular
point t0, such that ψ

(
s(t)

)
= φ(t). This mapping ψ is a continuous mapping,

since if 0 ≤ s1 ≤ s2 ≤ l and if t1, t2 ∈ [0, 1] are any parameter values s for which
s(t1) = s1 and s(t2) = s2 then by Lemma 7.2 (i)

‖ψ(s2)−ψ(s1)‖2 = ‖φ(t2)− φ(t1)‖2
≤ L(φ

∣∣[t1, t2]) = s(t2)− s(t1) = s2 − s1.

Furthermore the function L(ψ
∣∣[0, s]) is a strictly increasing function of s. To

see that, if L(ψ
∣∣[0, s1]) = L(ψ

∣∣[0, s2]) where s1 < s2 then by Lemma 7.3 (ii)
the mapping ψ must be constant in the interval [s1, s2] so in particular ψ(s1) =
ψ(s2). If s1 = s(t1) and s2 = s(t2) then t1 < t2 since s is monotone increasing
by Lemma 7.3 (i). If t ∈ [t1, t2] then s(t) ∈ [s1, s2] hence φ(t) = ψ

(
s(t)

)
=

ψ(s1) and consequently s1 = s(t1) = s(t2) = s2 by Lemma 7.3 (ii) again, a
contradiction.

Thus for any rectifiable parametrized curve φ it is possible to modify the
parametrization by deleting subintervals of the parameter space on which the
mapping φ is constant, so that the parametrization is not constant in subinter-
vals of the parameter set; this will be called a regular parametrization of the
curve, and the process of modifying the parameter space in this way is called
the regularization of the parametrized curve. Any regular parametrization
is equivalent to the parametrization by arc length; and a parametrized curve
with arc length as the parameter is said to be a curve parametrized by arc
length. If f is a continuous function in an open neighborhood of a regularly
parametrized curve φ its integral over φ can be defined uniquely as the integral
with respect to arc length, so by definition

(7.11)

∫
φ

f =

∫
s∈[0,l]

f(s)

where the curve φ is parametrized by arc length; traditionally that is denoted
by

(7.12)

∫
φ

f =

∫
s∈[0,l]

f(s)ds

following the convention that the symbol ds indicates integration with respect
to parametrization by arc length. With this notation the arc length of the curve
φ can be defined by L(φ) =

∫
φ

1 ds. As an additional word of caution, the
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integral is still the integral of an equivalence class of parametrized curves φ,
and is not the integral just over the point set |φ|, the support of the curve φ;
for instance a parametrized curve may cover its image repeatedly, as in the case
of integrating twice along a circle.

Theorem 7.4 A C1 parametrized curve φ : [0, 1] −→ U in an open subset
U ⊂ Rn is rectifiable and its arc length is

(7.13) L(φ) =

∫
[0,1]

‖φ′‖2.

Proof: For any partition P of the interval [0, 1] it follows from the fundamental
theorem of calculus in one variable applied to each coordinate function of the
mapping φ and the inequality of Corollary 6.10 that

L(φ,P) =

m∑
i=1

‖φ(ti)− φ(ti−1)‖2 =

m∑
i=1

∥∥∥ ∫
[ti−1,ti]

φ′
∥∥∥

2
(7.14)

≤
m∑
i=1

∫
[ti−1,ti]

‖φ′‖2 =

∫
[0,1]

‖φ′‖2;

so since ‖φ′‖2 is continuous on the compact set [0, 1] this integral is finite and
the curve φ is rectifiable. Moreover since L(φ) = supP L(φ,P) it is also the
case that

(7.15) L(φ) ≤
∫

[0,1]

‖φ′‖2.

For any point t ∈ [0, 1) and any h > 0 sufficiently small that t+h ≤ 1 it follows
from (7.15) and Lemma 7.2 (ii) that

(7.16) s(t+ h)− s(t) = L(φ
∣∣[t, t+ h]) ≤

∫
[t,t+h]

‖φ′‖2.

On the other hand for any unit vector u ∈ Rn it follows from Lemma 7.2 (i),
the Cauchy-Schwarz inequality and the mean value theorem applied to the real-
valued function u · φ(t) that

(7.17) L(φ
∣∣[t, t+h]) ≥ ‖φ(t+h)−φ(t)‖2 ≥ |u·

(
φ(t+h)−φ(t)

)
| = |u·φ′(τ)| h

for some point τ in the interval (t, t+ h). Since L(φ
∣∣[t, t+ h]) = s(t+ h)− s(t)

by Lemma 7.2 (ii) again the preceding inequality (7.17) can be rewritten

(7.18)
1

h

(
s(t+ h)− s(t)

)
≥ |u · φ′(τ)|,

and when combined with the inequality (7.16) that leads to the inequality

(7.19) |u · φ′(τ)| ≤ 1

h

(
s(t+ h)− s(t)

)
≤ 1

h

∫
[t,t+h]

‖φ′‖2.
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The same inequality holds for the interval (t− h, t) in place of (t, t+ h), which
is readily seen to amount to the inequality (7.19) for a negative value of h and
a point τ ′ in the interval (t − h, t). If u is taken to be the unit vector in the
direction of the vector φ′(t), then since τ and τ ′ tend to t as h tends to 0 through
either positive or negative values

(7.20) lim
h→0
|u · φ′(τ)| = |u · φ′(t)| = ‖φ′(t)‖2.

On the other hand it follows from the fundamental theorem of calculus, Theo-
rem 6.6, that

(7.21) lim
h→0

1

h

∫
[t,t+h]

‖φ′‖2 =
d

dt

∫ t

0

‖φ′‖2 = ‖φ′(t)‖2.

Therefore taking the limit in (7.19) as h tends to zero through positive or neg-
ative values and applying (7.20) and (7.21) shows that the function s(t) is dif-
ferentiable and

(7.22) s′(t) = ‖φ′(t)‖2.

It finally follows from the fundamental theorem of calculus again that

L(φ) = s(1) =

∫
[0,1]

s′(t) =

∫
[0,1]

‖φ′‖2,

and that concludes the proof.

For any C1 parametrized curve φ it follows from (7.22) that its arc length
s(t) = L(φ

∣∣[0, t]) is a C1 mapping s : [0, 1] −→ [0, l] where s(1) = l = L(φ) is the
arc length of φ; and if it is also assumed that φ′(t) 6= 0 at all points t ∈ (0, 1)
then the function s(t) is strictly increasing so the curve φ is C1 equivalent to a
curve that is parametrized by arc length.

Corollary 7.5 A C1 mapping φ : [0, l] −→ Rn is the parametrization of a curve
by arc length if and only if ‖φ′(s)‖2 = 1 for all points s ∈ [0, l].

Proof: If φ : [0, l] −→ Rn is a C1 parametrization by arc length then s(t) =
L(φ

∣∣[0, t]) = t and it follows from (7.22) that ‖φ′(t)‖2 = s′(t) = 1. Conversely
if φ : [0, l] −→ Rn is a parametrized curve for which ‖φ′(s)‖2 = 1 then it follows
from (7.13) that L(φ

∣∣[0, t]) =
∫

[0,t]
‖φ′‖2 =

∫
[0,t]

1 = t, so the parameter t is arc

length, which suffices for the proof.

If φ : [0, l] −→ U is a C1 curve parametrized by arc length then since arc
length is strictly increasing φ′(t) 6= 0 at all points t ∈ [0, l]; hence by Theo-
rem 5.11, the corollary to the Rank Theorem, the image of an open neighborhood
of any parameter value s0 ∈ [0, l] is a C1 submanifold of an open neighborhood of
the point φ(s0) ∈ U . The vector φ′(s0) is a tangent vector to that submanifold,
as in the discussion on page 253, and has length ‖φ′(s0)‖2 = 1, by the preceding



306 CHAPTER 7. DIFFERENTIAL FORMS

Corollary 7.5; thus it is the unit tangent vector to the local piece of the curve
φ at the point φ(s0), so it is denoted by τ (s0) = φ′(s0). The curve φ may inter-
sect itself at some points, at which there may be different unit tangent vectors
to the various local components of the curve φ. If f is a continuous vector field
in an open neighborhood of |φ| the dot product f

(
φ(s)

)
· τ (s) = f

(
φ(s)

)
·φ′(s)

is a well defined continuous function of the variable s ∈ [0, l] so it has a well
defined integral

(7.23)

∫
φ

f · τ ds =

∫
[0,l]

(f ◦ φ) · φ′,

where
∫
φ

f · τ ds again indicates integration of the function f · τ on the curve φ
parametrized by arc length. This is called the line integral of the vector field
f along the curve φ. What is particularly interesting is that this integral can be
calculated in terms of any parametrization of the curve φ that is equivalent to
the parametrization by arc length; in this sense the integration of vector fields
along curves is a more intrinsic construction than the integration of functions
along parametrized curves.

Theorem 7.6 If ψ : [a, b] −→ Rn is a C1 parametrized curve and ψ′(t) 6= 0 for
a ≤ t ≤ b, and if φ is the parametrization of that curve by arc length, then

(7.24)

∫
φ

f · τ ds =

∫
[a,b]

(f ◦ψ) ·ψ′

for any continuous vector field f in an open neighborhood of ψ([a, b]).

Proof: The parametrized curve ψ is equivalent to a curve φ parametrized by
arc length, since ψ′(t) 6= 0 at all points t ∈ [a, b]; and the line integral of
the vector field f along the parametrized curve ψ is defined in terms of the
parametrized curve φ. If h : [a, b] −→ [0, l] is a C1 homeomorphism such that
ψ(t) = φ

(
h(t)

)
then h′(t) > 0 and by the chain rule ψ′(t) = φ′

(
h(t)

)
h′(t), so

by the formula for the change of variables in integration for functions of a single
variable it follows as in (7.23) that∫

φ

f · τ ds =

∫
[0,l]

f
(
φ(s)

)
· φ′(s) =

∫
[a,b]

f
(
φ(h(t))

)
· φ′
(
h(t)

)
h′(t)

=

∫
[a,b]

f
(
ψ(t)

)
·ψ′(t),

which suffices for the proof.

For example, consider the integral of the vector field f(x) = {x2
1, x1x2} in

terms of the variables x1, x2 in R2 over the parabola described parametrically
by the mapping φ : [0, 1] −→ R2 for which φ(t) = {t, t2}. Since φ′(t) = {1, 2t}
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then f
(
φ(t)

)
= {t2, t3} so f

(
φ(t)

)
· φ′(t) = t2 + 2t4 and consequently∫

γ

f · τ ds =

∫
[0,1]

f
(
φ(t)

)
· φ′(t)

=

∫
[0,1]

(t2 + 2t4) =

(
1

3
t3 +

2

5
t5
) ∣∣∣∣1

0

=
11

15
.

A more interesting example is the line integral of a vector field that is the
gradient f(x) = ∇h(x) of a function h in an open set U ⊂ Rn, a vector field
called a conservative vector field with the potential h.

Theorem 7.7 If f(x) = ∇h(x) is a conservative vector field in a connected
open subset U ⊂ Rn with a C1 potential h, and if φ is a C1 oriented curve in U
from a point a ∈ U to a point b ∈ U then

(7.25)

∫
φ

f · τ ds = h(b)− h(a).

Proof: In view of the preceding theorem it is sufficient to demonstrate this
result just for a curve parametrized by arc length; so let φ : [0, l] −→ U be the
parametrization of a curve by arc length, where φ(s) = {φj(s)} and φ(0) = a,
φ(l) = b. By the chain rule

d

ds
h
(
φ(s)

)
= h′

(
φ(s)

)
φ′(s) =

n∑
j=1

∂jh
(
φ(s)

)
φ′j(s) =

n∑
j=1

fj
(
φ(s)

)
φ′j(s)

= f
(
φ(s)

)
· φ′(s),

and consequently by the fundamental theorem of calculus∫
γ

f · τ ds =

∫
[0,l]

f
(
φ(s)

)
· φ′(s) =

∫
[0,l]

h′
(
φ(s)

)
= h

(
φ(l)

)
− h
(
φ(0)

)
= h(b)− h(a),

which suffices for the proof.

Thus the integral of a conservative vector field along a curve really depends
only on the beginning and end points of the curve, and is quite independent of
the particular path taken between these two points. There are vector fields that
are not conservative, and for which the line integral between two points depends
on the path chosen between those two points. For example for the vector field
f(x) = {x2,−x1} in R2, and the parametrized curves ψ1(t) = {t,−t} and
ψ2(t) = {t,−t2} for t ∈ [0, 1]∫

ψ1

f · τ ds =

∫
[0,1]

{−t, −t} · {1, −1} dt =

∫
[0,1]

0 dt = 0,

∫
ψ2

f · τ ds =

∫
[0,1]

{−t2, −t} · {1, −2t}dt =

∫
[0,1]

t2dt =
1

3
.
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Actually the condition that the line integral of a vector field is independent of
the path characterizes conservative vector fields.

Theorem 7.8 A C1 vector field f : U −→ Rn in an open subset U ⊂ Rn is
conservative if and only if the line integrals

∫
φ

f · τ ds depend only on the end

points of C1 parametrized curves γ in U .

Proof: The preceding theorem demonstrated that if f is a conservative vector
field and ψ : [0, 1] −→ U is a C1 parametrized curve in U then the line integral∫
ψ

f · τ ds depends just on the beginning and end points of ψ. Conversely

suppose that f is a C1 vector field in a connected open subset U ⊂ Rn such
that the line integrals

∫
ψ

f · τ ds depend only on the beginning and end points

of all C1 parametrized curves ψ : [0, 1] −→ U . For a fixed base point a ∈ U the
integral h(x) =

∫
ψx

f · τ ds along any C1 parametrized curve ψx from the point

a to the point x is a well defined function of the point x = {x1, . . . , xn} ∈ U ,
independent of the particular choice of the parametrized curve ψx, provided
of course that x is in the same connected component of U as the point a. In
particular consider a parametrized curve ψx that describes a path from a to
the beginning of a segment of the straight line λi through the point x parallel
to the coordinate axis of the variable xi and then along λi to the point x, near
the point x, as in the accompanying figure. The parametrization has the form

Figure 7.2: A path of integration λi

ψx(t) = {x1, . . . , xi−1, t, xi+1, . . . , xn} for bi ≤ t ≤ xi

so ψ′x = δi is the unit vector parallel to λi. The function h(x) then can be
written as the sum of the value A of the integral up to a point ψx(bi) on the
line λi and the integral

h(x)−A =

∫
t∈[bi,xi]

f(x) · τ ds =

∫
t∈[bi,xi]

fi(x1, . . . , xi−1, t, xi+1, . . . , xn)

along λi; and it then follows from the fundamental theorem of calculus in one
variable that ∂ih(x) = fi(x). The corresponding argument for paths ending
parallel to other coordinate axes in Rn shows that ∇h(x) = f(x), hence that
the vector field f is conservative, thus concluding the proof.
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PROBLEMS, GROUP I:

(1) Let γ1 be the straight line segment from the point (0, 3) to the point (3, 0)
in the plane R2, and γ2 be the arc of the circle of radius 3 centered at the origin
from the point (0, 3) to the point (3, 0). For each of these paths γi calculate the
integral

∫
γi
x1x

2
2ds, with respect to arc length.

(2) Find the arc length of the curve in R2 described parametrically by φ(t) =
( 1

3 t
3 − t, t2) for 0 ≤ t ≤ 2.

(3) Evaluate the integral
∫
φ

f(x) · τ ds with respect to arc length for the vector

field f(x) =

(
x1 + x2

1

)
where φ(t) = (t, t2) for 0 ≤ t ≤ 1.

(4) Let γ be the oriented curve from the origin (0, 0, 0) to the point (1, 1, 1)
in R3 described by the equations x2 = x1, x3 = x2

1.
(i) Find the arc length of this curve.
(ii) Calculate the integral

∫
γ

f · τ ds with respect to the arc length, where τ
is the unit tangent vector to the curve γ and f is the vector field defined by
f = t(x1,−x2, x3).
(iii) Caculate the integral

∫
γ
x1ds with respect to arc length.

PROBLEMS, GROUP II:

(5) Find a curve γ in the plane that has arc length 1 and has the property

that
∫
γ

f · τ ds = 0 for the vector field f(x) =

(
x1

x2

)
.

(6) Let γ be a curve in R3 parametrized by arc length for a C∞ mapping
f : [0, l] −→ R3, and let τ (s) = f ′(s) be the unit tangent vector to γ at the
point f(s).
(i) Show that if τ ′(s) 6= 0 then that vector is perpendicular to τ (s).
The length ‖τ ′(s)‖2 = κ(s) of this vector is called the curvature of γ at the
point f(s), and its inverse 1/κ(s) is called the radius of curvature of γ at the
point f(s).
(ii) Show that κ(s) = 0 for all s ∈ [0, L] if and only if γ is a straight line in R3.
(iii) Show that the radius of curvature of a circle in a plane in R3 is equal to
the radius of the circle.
If τ ′(s) 6= 0 the unit vector ν(s) = 1

κ(s)τ
′(s) is called the principal normal

vector to the curve γ. The vector β(s) = τ (s) × ν(s), called the binormal
vector to the curve γ at the point f(s), is a unit vector that is perpendicular
both to the tangent vector τ (s) and to the principal normal vector ν(s).
(iv) Show that β′(s) · β(s) = β′(s) · f ′(s) = 0 and consequently that β′(s) =
−τ(s)ν(s) for a real-valued function τ(s) and that ν′(s) = −κ(s)τ (s)+τ(s)β(s).
The function τ(s) is called the torsion of the curve γ. The set of differential
equations in (iv), called the Serret-Frenet equations, can be written equiva-
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lently
(
τ ′(s) ν′(s) β′(s)

)
=
(
τ (s) ν(s) β(s)

) 0 −κ(s) 0
κ(s) 0 −τ(s)

0 τ(s) 0

 .

(v) Show that τ(s) = 0 if and only if the curve γ is contained in a 2-dimensional
linear subspace of R3.
(vi) Assuming the general result from the elementary theory of ordinary differ-
ential equations that all parametrized curves for which the parametrization f(t)
satisfies f ′i(t) =

∑n
j=1mij(t)fj(t) for some given functions mij(t) differ by a

linear transformation of Rn, show that any two curves with the same curvature
and torsion can be transformed into one another by a linear transformation and
translation in R3. For this reason curvature and torsion are sometimes called
the intrinsic equations of space curves.
(For more information about the geometry of curves see for example volume II
of Spivak’s Differential Geometry.)
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7.2 Exterior Algebras and Differential forms

The further discussion of integration in n-dimensional spaces can be sim-
plified considerably by using another real algebra, the exterior algebra Λ(V )
over a real vector space V . This algebra is often introduced rather generally
and abstractly; but for the purposes here it is easier and quicker to introduce it
through a simple explicit construction. To an n-dimensional real vector space V
with a basis v1, . . . ,vn there is associated another finite dimensional real vector
space Λ(V ) with a basis consisting of the formal symbols

(7.26) vi1 ∧ vi2 ∧ · · · ∧ vir

for arbitrary integers r and indices 1 ≤ i1, i2, . . . , ir ≤ n, with the understanding
that

(7.27) vi1 ∧ vi2 ∧ · · · ∧ vir = sign

(
i1 i2 · · · ir
j1 j2 · · · jr

)
vj1 ∧ vj2 ∧ · · · ∧ vjr

if the set of indices i1, i2, . . . , ir is a permutation of the set of indices j1, j2, . . . , jr,

where sign

(
i1 i2 · · · ir
j1 j2 · · · jr

)
is the sign of that permutation as discussed on

page 47; thus two of the basic vectors (7.26) are equal if the ordered sets of
indices are an even permutation of one another, and are the negatives of one
another if the ordered sets of indices are an odd permutation of one another. In
particular if two of the indices i1, i2, . . . , ir in (7.26) are equal then that basis
vector is the same as the basis vector for which those two terms are interchanged;
but by the understanding (7.27) those two basis vectors are also the negatives
of one another, and consequently that basis vector is necessarily the zero vector.
Thus the basis of Λ(V ) really consists just of those symbols (7.26) described by
distinct sets of indices 1 ≤ i1 < i2 < · · · < ir ≤ n. For example if dimV = 3
then the basis vectors for the vector space Λ(V ) are the seven symbols

(7.28) v1, v2, v3, v1 ∧ v2, v1 ∧ v3, v2 ∧ v3, v1 ∧ v2 ∧ v3,

since for instance v1 ∧ v1 = −v1 ∧ v1 = 0 and v2 ∧ v1 = −v1 ∧ v2 is a nonzero
basis vector, while any two symbols that involve 3 distinct basic vectors vi differ
only by a sign and any symbols involving 4 or more of the basic vectors must
have two indices that are the same so must necessarily vanish. It is evident that
the vector space Λ(V ) is just another finite-dimensional real vector space; but
it is defined in terms of a specific basis so that it is possible to introduce quite
simply a multiplication on that vector space.

The subspace of the vector space Λ(V ) spanned by the symbols involving
r basic vectors is denoted by Λr(V ). In particular then there is the natural
identification V = Λ1(V ), since the vector space V is spanned by the basis
vectors vj ; and it is convenient and traditional to set Λ0(V ) = R, the one-
dimensional real vector space spanned by the identity 1, while Λr(V ) = 0 if
r > n = dimV . Thus if dimV = n the vector space Λ(V ) really is the direct
sum

(7.29) Λ(V ) = Λ0(V )⊕ Λ1(V )⊕ · · · ⊕ Λn(V )
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where Λr(V ) is the vector subspace of Λ(V ) with a basis consisting of the sym-
bols vi1 ∧ vi2 ∧ · · · ∧ vir where 1 ≤ i1 < i2 < . . . < ir ≤ n. The number
of distinct basis vectors thus is the number of sets of r distinct integers from
among the first n integers so

(7.30) dim Λr(V ) =

(
n
r

)
;

that also holds for r = 0, since Λ0(V ) = R and by convention

(
n
0

)
= 1. It

follows that

(7.31) dim Λ(V ) =

n∑
r=0

dim Λr(V ) =

n∑
r=0

(
n
r

)
= 2n,

in view of the binomial expansion (1 + 1)n = 2n. A vector ω ∈ Λr(V ) can be
written as the sum

(7.32) ω =
∑

1≤i1<i2<···<ir≤n

ai1i2...irvi1 ∧ vi2 ∧ · · · ∧ vir

for some real numbers ai1i2...ir ∈ R; this is called the reduced form for the vec-
tor ω, and the coefficients ai1i2...ir are uniquely determined. For some purposes
it is more convenient to write a vector ω ∈ Λr(V ) as a sum

(7.33) ω =

n∑
i1,i2,··· ,ir=1

bi1i2...irvi1 ∧ vi2 ∧ · · · ∧ vir

over all orders of the indices i1, i2, . . . , ir; this is called the unreduced form for
the vector ω. In this form the coefficients bi1i2...ir are not uniquely determined;
but ω can be rewritten in the reduced form by combining the coefficients of
vectors vi1 ∧ vi2 ∧ · · · ∧ vir that differ only in sign. For example if dimV = 3 a
vector ω in the unreduced form

ω = b12v1 ∧ v2 + b13v1 ∧ v3 + b23v2 ∧ v3(7.34)

+ b21v2 ∧ v1 + b31v3 ∧ v1 + b32v3 ∧ v2

can be rewritten in the reduced form

(7.35) ω = (b12 − b21)v1 ∧ v2 + (b13 − b31)v1 ∧ v3 + (b23 − b32)v2 ∧ v3,

and correspondingly for any of the vector spaces Λr(V ). The expresssions (7.32)
and (7.33) are a bit unwieldy at times, so it is often convenient to use multi-
index notation, writing the unreduced form (7.33) as

(7.36) ω =
∑
I bIvI

where I = (i1, i2, . . . , ir) and bI is an abbreviation for bi1···ir while vI is an
abbreviation for vi1 ∧ · · · ∧ vir , and writing the reduced form (7.32) as

(7.37) ω =
∑′
I aIvI
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with the corresponding meaning of the terms; thus
∑
I denotes a sum over all

indices i1, . . . , ir in the range 1 ≤ i1, . . . , ir ≤ n while
∑′
I denotes a sum over

all ordered sets of indices 1 ≤ i1 < · · · < ir ≤ n.
A multiplication operation in Λ(V ) is defined by associating to two basis

vectors ω = vi1 ∧ vi2 ∧ · · · ∧ vir ∈ Λr(V ) and σ = vj1 ∧ vj2 ∧ · · · ∧ vjs ∈ Λs(V )
their exterior product or wedge product, defined as the vector

ω ∧ σ = vi1 ∧ vi2 ∧ · · · ∧ vir ∧ vj1 ∧ vj2 ∧ · · · ∧ vjs ∈ Λr+s(V );

this is the zero vector if ip = jq for any p, q, but otherwise is one of the basis
vectors for the subspace Λr+s(V ). In general then for any vectors ω ∈ Λr(V )
and σ ∈ Λs(V ) written out in unreduced form as

(7.38) ω =
n∑

i1,...,ir=1

ai1···irvi1 ∧ · · · ∧ vir ∈ Λr(V )

and

(7.39) σ =

n∑
j1,...,js=1

bj1···jsvj1 ∧ · · · ∧ vjs ∈ Λs(V )

their wedge product is the vector

(7.40) ω ∧ σ =

n∑
i1,...,ir, j1,...,js=1

ai1···irbj1···jsvi1 ∧ · · · ∧ vir ∧ vj1 ∧ · · · ∧ vjs ,

which also is in the unreduced form. Even if the vectors ω and σ are in the
reduced form their wedge product is in the unreduced form, which of course
can be rewritten in the reduced form. Note that the exterior product (7.40) is
a bilinear function of the vectors ω and σ. The vector space Λ(V ) with this
multiplication is a real algebra called an exterior algebra.

It is clear that the wedge product is associative, in the sense that

(7.41) ω ∧ (σ ∧ τ) = (ω ∧ σ) ∧ τ ;

this product hence is usually written just as ω ∧ σ ∧ τ , and correspondingly for
products of more vectors. The wedge product however is not commutative, for

(7.42) ω ∧ σ = (−1)rsσ ∧ ω if ω ∈ Λr(V ) and σ ∈ Λs(V ).

Indeed the permutation that exchanges

vi1 ∧ · · · ∧ vir ∧ vj1 ∧ · · · ∧ vjs and vj1 ∧ · · · ∧ vjs ∧ vi1 ∧ · · · ∧ vir

can be written as the composition first of the permutation that transfers vj1
across vi1∧· · ·∧vir , a permuation with sign (−1)r, followed by the permutation
that transfers vj2 across vi1∧· · ·∧vir , another permutation of sign (−1)r, and so
on; and this composition of s permutations each of sign (−1)r is a permutation
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of sign (−1)rs. In the special case in which r = 0 a vector ω ∈ Λ0(V ) is just a
real number a, and the wedge product ω ∧ σ is just the vector a σ. Of course
ω ∧ σ = 0 automatically if r + s > n.

To apply this algebraic machinery to analysis in Rn, the differentials dxj
of the coordinate functions xj in Rn are a basis for the vector space Rn, as in
Section 3.2; and in terms of this basis the vector space Rn can be identified
with the vector space Λ1(Rn). A vector field over an open subset U ⊂ Rn is a
mapping f : U −→ Rn with the coordinate functions f(x) = {fj(x)} in terms of
the basis dxj of Rn, so it can be viewed also as a mapping f : U −→ Λ1(Rn);
and when it is written in terms of the basis vectors dxj as the sum

(7.43) ω(x) =

n∑
j=1

fj(x) dxj

this expression is called a differential form of degree 1 in U , or for short a

differential 1-form in U . Similarly a mapping f : U −→ RN where N =

(
n
r

)
can be viewed as a mapping f : U −→ Λr(Rn); and when written in terms of
the basis vectors dxj1 ∧ . . . ∧ dxjr as the sum

(7.44) ω(x) =
∑

1≤j1<···<jr≤n

fj1···jrdxj1 ∧ · · · ∧ dxjr

this expression is called a differential form of degree r in U , or a differential
r-form for short. In particular Λ0(U), the vector space of 0-forms on U , is
identified with the vector space of functions on U . A continuous differential
form in U is one for which the functions fj1···jr are continuous, while a C1 or
C∞ differential form is one for which the functions are C1 or C∞ functions.
The vector space of differential r-forms in an open subset U ⊂ Rn is denoted
by Λr(U); whether that refers to the vector space of continuous, C1 or C∞
differential r-forms in U will usually be determined by context. In particular
when considering differential operators it is easiest just to consider the C∞
differential forms. If it is necessary or convenient to be explicit, Λr(C, U) denotes
the vector space of continuous r-forms in U while Λr(C1, U) denotes the space of
C1 differential forms and Λr(C∞, U) denotes the space of C∞ differential forms.

The special case of differential forms in an open set U ⊂ R3 is both a useful
example and a case that arises sufficiently often that it is convenient to have
an alternative description of differential form in that case. A differential 1-form
can be viewed as an alternative way of writing a vector field in R3, a mapping
f : U −→ R3, as already discussed; and since dim Λ2(R3) = 3 a vector field also
can be identified with a differential 2-form. Thus to a vector field f(x) = {fj(x)}
in U ⊂ R3 there are naturally associated the two differential forms

ωf (x) = f1(x)dx1 + f2(x)dx2 + f3(x)dx3 ∈ Λ1(U)

and(7.45)

Ωf (x) = f1(x)dx2 ∧ dx3 + f2(x)dx3 ∧ dx1 + f3(x)dx1 ∧ dx2 ∈ Λ2(U),
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where the notation for the 2-form Ωf (x), involving cyclic permutations of the
indices, is chosen to fit into the classical form for the algebraic operations. The
exterior product of the 1-form associated to a vector field f : U −→ R3 and the
2-form associated to a vector field g : U −→ R3 is easily seen to be the 3-form

(7.46) ωf (x)∧Ωg(x) =

(
f1(x)g1(x)+f2(x)g2(x)+f3(x)g3(x)

)
dx1∧dx2∧dx3;

this is the 3-form associated to the dot product or inner product f(x) · g(x) of
the two vector fields f(x) and g(x), so that

(7.47) ωf (x) ∧ Ωg(x) = f(x) · g(x) dx1 ∧ dx2 ∧ dx3,

and in this case the exterior product is commutative. On the other hand a
straightforward calculation shows that the exterior product of the 1-forms as-
sociated to two vector fields f : U −→ R3 and g : U −→ R3 is the 2 form

ωf (x) ∧ ωg(x) = det

(
f2(x) f3(x)
g2(x) g3(x)

)
dx2 ∧ dx3 + det

(
f3(x) f1(x)
g3(x) g1(x)

)
dx3 ∧ dx1

(7.48)

+ det

(
f1(x) f2(x)
g1(x) g2(x)

)
dx1 ∧ dx2,

which is the 2 form associated to the vector field f(x)×g(x), traditionally called
cross-product of the two vector fields f(x) and g(x), defined by
(7.49)

f(x)×g(x) =

{
det

(
f2(x) f3(x)
g2(x) g3(x)

)
, det

(
f3(x) f1(x)
g3(x) g1(x)

)
, det

(
f1(x) f2(x)
g1(x) g2(x)

)}
;

the easiest way to remember this definition is to write it symbolically as

(7.50) f(x)× g(x) = det

 ε1 ε2 ε3

f1(x) f2(x) f3(x)
g1(x) g2(x) g3(x)

 ,

where ε1, ε2, ε3 is a basis for R3. In these terms then

(7.51) ωf (x) ∧ ωg(x) = Ωf×g(x);

the exterior product of 1-forms is skew-symmetric, as is the cross-product, so

(7.52) ωg(x) ∧ ωf (x) = −ωf (x) ∧ ωg(x) and f(x)× g(x) = −g(x)× f(x).

It is clear from (7.49) that the cross-product f(x)× g(x) is trivial at a point x
precisely when the two vectors f(x) and g(x) are linearly dependent. It is also
clear from (7.49) that for any other vector field h(x) in U

(7.53) h(x) ·
(
f(x)× g(x)

)
= det

h1(x) h2(x) h3(x)
f1(x) f2(x) f3(x)
g1(x) g2(x) g3(x)

 ,



316 CHAPTER 7. DIFFERENTIAL FORMS

which provides an alternative characterization of the cross-product. An evident
consequence of (7.53) is that f(x) ·

(
f(x) × g(x)

)
= g(x) ·

(
f(x) × g(x)

)
= 0;

hence the cross-product f(x) × g(x) is a vector in R3 that is perpendicular to
both f(x) and g(x) if these vectors are linearly independent, so it is determined
uniquely up to sign. As for the sign, it follows from (7.49) then that if f(x0) =
{1, 0, 0} and g(x0) = {0, 1, 0} at a point x0 ∈ U then f(x0) × g(x0) =
{0, 0, 1}; consequently the three vectors f(x0),g(x0), f(x0)×g(x0) have the
same orientation as the three basis vectors dx1, dx2, dx3 ∈ R3, the natural
orientation associated of the vector space R3 with this choice of coordinates.

In Rn the vector space of differential r-forms and the vector space of differ-
ential (n−r)-forms also have the same dimension, so as in the preceding special
case n = 3 these differential forms can be viewed as differential forms associated
to vector fields f : U −→ RN where N = ( n

n−r ). Alternatively there is the
Hodge duality mapping, the explicit linear isomorphism

(7.54) ∗ : Λr(U) −→ Λn−r(U) for open sets U ⊂ Rn

that associates to a differential form ω =
∑′
I fI dxI ∈ Λr(U) in the reduced

form the differential form in reduced form

(7.55) ∗ω =
∑′
I,J ε(IJ)fI dxJ ∈ Λn−r(U)

where

(7.56) ε(IJ) = sign

(
I J

1 · · ·n

)
is the sign of the permutation of the sequence (1, . . . , n) leading to the order
(I, J) of these integers, and is set equal to 0 if the sequence (I, J) is not a
permutation of the sequence (1, . . . , n). Thus for example in Rn

(7.57) ∗f = fdx1 ∧ dx2 ∧ · · · ∧ dxn

while in particular in R2

(7.58) ∗(f1dx1 + f2dx2) =
∑

1≤i,j≤2

ε(ij)fi dxj = f1 dx2 − f2 dx1

and in R3

∗(f1 dx1 + f2 dx2 + f3 dx3) =
∑

1≤i≤3

∑
1≤j1<j2≤3

ε(ij1j2)fi dxj1 ∧ dxj2

(7.59)

= f1 dx2 ∧ dx3 − f2dx1 ∧ dx3 + f3dx1 ∧ dx2

or equivalently ∗ωf = Ωf for the differential forms associated to a vector field f .
The general Hodge duality operator satisfies

(7.60) ∗ ∗ ω = (−1)r(n−r)ω for any differential r-form ω in Rn.
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To demonstrate this, if ω =
∑′
I fI dxI is an r-form in Rn then by definition

∗(∗ω) = ∗
(∑′

I,J ε(IJ)fI dxJ

)
(7.61)

=
∑′
I,J,K ε(JK)ε(IJ)fI dxK .

For any ordered set of r indices 1 ≤ k1 < · · · < kr ≤ n there is a unique
complementary ordered set of n − r indices 1 ≤ j1 < · · · < jn−r ≤ n such
that (J,K) is a permutation of the integers (1, 2, . . . , n), and then there is a
further unique complementary ordered set of r indices 1 ≤ i1 < · · · < ir ≤ n
such that (I, J) also is is a permutation of the integers (1, 2, . . . , n), for which
clearly I = K; thus the only nontrivial terms in the sum (7.61) are those for
which the indices J and I are uniquely determined by the indices K, indeed for
which I = K, and since ε(IJ)ε(JK) = ε(KJ)ε(JK) = (−1)r(n−r) just as in the
earlier examination of exterior products it follows that (7.61) reduces to (7.60)
as desired. For instance since it was already noted in (7.59) that ∗ωf = Ωf for
any vector field f in R3, it follows from (7.60) that ∗Ωf = ∗ ∗ ωf = ωf .

The characteristic property of Hodge duality1 though is that if ω =
∑′
I fI(x)dxI

and σ =
∑′
J gJ(x)dxJ are two r-forms in Rn then

(7.62) ω ∧ ∗σ =
∑′
I fI(x)gI(x)dx1 ∧ · · · ∧ dxn.

Indeed by definition

ω ∧ ∗σ =
∑′
I,J,K fI(x)dxI ∧ ε(JK)gJ(x)dxK(7.63)

=
∑′
I,J,K ε(JK)fI(x)gJ(x)dxI ∧ dxK .

For any ordered set of r indices 1 ≤ i1 < · · · < ir ≤ n there is a unique ordered
set of n− r indices 1 ≤ k1 < · · · < kn−r ≤ n such that dxI ∧ dxK is nontrivial,
and for that ordered set of indices dxI ∧ dxK = ε(IK)dx1 ∧ dx2 ∧ · · · ∧ dxn;
then there is a unique ordered set of r indices 1 ≤ j1 < · · · < jr ≤ n such that
ε(JK) 6= 0, and clearly J = I. Thus the choice of an ordered set of indices I
determines unique ordered sets of indices J and K for which the associated term
in the sum (7.63) is nontrivial, and since ε(IK)dxI ∧dxK = dx1∧dx2∧· · ·∧dxn
that sum reduces to (7.62).

There are other operators on differential forms that arise in analysis. If
φ : D −→ E is a mapping from an open subset D ⊂ Rm into an open subset
E ⊂ Rn then to any function f in the set E there can be associated the induced
function φ∗(f) in the set D, the function defined by

(7.64) φ∗(f)(x) = f
(
φ(x)

)
for all points x ∈ D.

1The version of Hodge duality discussed here is a special case of the general Hodge duality,
for which the characteristic property is that

ω ∧ ∗σ =
∑′
I,J hIJfI(x)gJ (x)dx1 ∧ · · · ∧ dxn

where hIJ = hi1j1hi2j2 · · ·hinjn for some positive definite symmetric matrix hij ; actually for
some applications in physics the matrix hij is not even necessarily positive definite, but is a
Lorentz metric, having one negative and n− 1 positive eigenvalues.
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It is clear that φ∗(c1f1 + c2f2) = c1φ
∗(f1) + c2φ

∗(f2) for any functions f1, f2

in D and any constants c1, c2 ∈ R. To emphasize the main point it will be
assumed that the changes of coordinates and the differential forms are C∞; the
results also hold for Cr differential forms with a bit of care in tracking the
differentiations involved. To any function f ∈ Λ0(E) there can be associated
the induced function φ∗(f) ∈ Λ0(D), and that is a well defined linear mapping

(7.65) φ∗ : Λ0(E) −→ Λ0(D).

Similarly to any mapping f : E −→ RN there can be associated the induced
mapping φ∗(f) in the set D, the mapping defined by

(7.66) φ∗(f)(x) = f
(
φ(x)

)
for all points x ∈ D.

Differential forms ω ∈ Λr(E) in an open set E ⊂ Rn are just mappings from
E into a vector space RN , but are expressed in terms of a basis for RN that is
determined by the basis dy1, . . . , dyn for the vector space Rn if y1, . . . , yn are the
coordinates in Rn. On the other hand differential forms ω ∈ Λr(D) in an open
set D ⊂ Rm are mappings from D into a vector space RM , expressed in terms
of a basis for RM that is determined by the basis dx1, . . . , dxm for the vector
space Rm if x1, . . . , xm are the coordinates in Rm. The induced differential form
under the mapping φ : D −→ E must also reflect the change in the bases for
the two vector spaces Rm and Rn defined by the mapping φ. By the chain rule
the derivatives of these functions are the row vectors

y′i(x) =

(
∂yi
∂x1

,
∂yi
∂x2

, · · · , ∂yi
∂xm

)
,

which can be written equivalently in terms of the bases dxi of the space Rm and
dyi of the space Rn as the linear combination

(7.67) dyi =

m∑
j=1

∂yi
∂xj

dxj

of the basis vectors dxj . The induced differential form φ∗(ω) ∈ Λr(D) on
D consequently is defined separately for any multi-index I by

φ∗
(
fI(y)dyI

)
=
∑
J

fI
(
φ(x)

) ∂yi1
∂xj1

dxj1 ∧ · · · ∧
∂yir
∂xjr

dxjr(7.68)

=
∑
J

fI
(
φ(x)

) ∂yi1
∂xj1

· · · ∂yir
∂xjr

dxj1 ∧ · · · ∧ dxjr ,

which in an abbreviated form is sometimes written

(7.69) φ∗
(
fI(y)dyI

)
= fI

(
φ(x)

)∑
J

∂YI
∂XJ

dxJ .
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This is sometimes also referred to as the pullback of the differential form ω
from E to D. It is clear that φ∗ (Λr(E)) ⊂ Λr(D) and that
(7.70)
φ∗(c1ω1 +c2ω2) = c1φ

∗(ω1)+c2φ
∗(ω2) for any ω1, ω2 ∈ Λr(E) and c1, c2 ∈ R,

so the mapping φ∗ is a linear mapping

(7.71) φ∗ : Λr(E) −→ Λr(D);

and it is also clear that

(7.72) φ∗(ω ∧ σ) = φ∗(ω) ∧ φ∗(σ) for any ω ∈ Λr(E) and σ ∈ Λs(E).

In particular if D,E ⊂ Rn are both subsets of vector spaces of the same dimen-
sion and ω ∈ Λn(E) is a differential n-form in E then ω(y) = f(y)dy1∧· · ·∧dyn
for some function f in E and (7.68) reduces to

φ∗
(
f(y)dy1 ∧ · · · ∧ dyn

)
=
∑
J

f
(
φ(x)

) ∂y1

∂xj1
· · · ∂yn

∂xjn
dxj1 ∧ · · · ∧ dxjn(7.73)

= f
(
φ(x)

)
detφ′(x)dx1 ∧ · · · ∧ dxn.

This illustrates the role of exterior algebras as convenient tools in handling
determinants, and in a sense underlies all the applications of differential forms
in analysis and geometry.

Theorem 7.9 If φ : D −→ E is a C∞ mapping between two open subsets
D ⊂ Rm and E ⊂ Rn while ψ : E −→ F is a C∞ mapping between open subsets
E ⊂ Rn and F ⊂ Rp then (ψ ◦ φ)∗ : Λr(F ) −→ Λr(D) is the composition
(ψ ◦ φ)∗ = φ∗ ◦ ψ∗ of the mapping φ∗ : Λr(E) −→ Λr(D) and the mapping
ψ∗ : Λr(F ) −→ Λr(E).

Proof: If the coordinates inD are t1, . . . , tm, the coordinates in E are x1, . . . , xn,
and the coordinates in F are y1, . . . , yp, then for any differential form ω(y) =∑
I fI(y)dyI it follows that

ψ∗(ω)(x) =
∑
I,J

fI
(
ψ(x)

) ∂yI
∂xJ

(x)dxJ

and

φ∗
(
ψ∗(ω)

)
(t) =

∑
I,J,K

fI
(
ψ(φ(t))

) ∂yI
∂xJ

(
φ(t)

)∂xJ
∂tK

(t)dtK .

On the other hand for the composite mapping ψ ◦ φ

(ψ ◦ φ)∗(ω)(t) =
∑
I,K

fI
(
ψ ◦ φ(t)

) ∂yI
∂tK

(t)dtK ,
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and it follows from the chain rule that

∂yI
∂tK

=
∑
J

∂yI
∂xJ

(φ(t))
∂xJ
∂tK

(t).

Consequently (ψ ◦ φ)∗(ω) = φ∗
(
ψ∗(ω)

)
, which suffices for the proof.

The exterior derivative of a differential form ω(x) ∈ Λr(U) of degree r is
defined to be a differential form dω(x) ∈ Λr+1(U) of degree r + 1. Explicitly, if
f(x) ∈ Λ0(U) is a differential form of degree 0, a function defined in the subset
U ⊂ Rn, its exterior derivative is defined to be the derivative of that function
expressed as a differential form, so

(7.74) df(x) =

n∑
j=1

∂jf(x)dxj if f ∈ Λ0(U).

If ω(x) =
∑
I fI(x)dxI ∈ Λr(U) is a differential form of degree r > 0 its exterior

derivative is defined by

(7.75) dω(x) =
∑
I

dfI(x) ∧ dxI ,

so that
(7.76)

d

( n∑
i1,...,ir=1

fi1···ir (x) dxi1∧· · ·∧dxir
)

=

n∑
j,i1,...,ir=1

∂jfi1···ir (x) dxj∧dxi1∧· · ·∧dxir .

In particular of course dω = 0 for any n-form ω in an open subset U ⊂ Rn.

Theorem 7.10 Exterior differentiation is a linear mapping

(7.77) d : Λr(U) −→ Λr+1(U)

of C∞ differential r-forms in an open subset U ⊂ Rn such that
(i) d

(
ω(x) ∧ σ(x)

)
= dω(x) ∧ σ(x) + (−1)rω(x) ∧ dσ(x)

if ω(x) ∈ Λr(U) and σ(x) ∈ Λs(U) while
(ii) d dω(x) = 0 for any differential form ω ∈ Λr(U).

Proof: That exterior differentiation is a linear mapping on r-forms is an imme-
diate consequence of the definitions (7.74) and (7.75); and the exterior derivative
of a C∞ differential form also is a C∞ differential form.
(i) For functions it follows from the usual rules for differentiation of a product
that

(7.78) d
(
f(x)g(x)

)
= f(x)dg(x) + g(x)df(x).
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In general if ω =
∑
I fI(x)dxI ∈ Λr(U) and σ =

∑
J gJ(x)dxJ ∈ Λs(U) it

follows from (7.78) that

d
(
ω(x) ∧ σ(x)

)
= d

(∑
I,J

fI(x)gJ(x)dxI ∧ dxJ
)

=
∑
I,J

d

(
fI(x)gJ(x)

)
∧ dxI ∧ dxJ

=
∑
I,J

(
gJ(x)dfI(x) + fI(x)dgJ(x)

)
∧ dxI ∧ dxJ

=
∑
I,J

dfI(x) ∧ dxI ∧ gJ(x)dxJ + (−1)r
∑
I,J

fI(x)dxI ∧ dgJ(x) ∧ dxJ ,

where the sign (−1)r arises since the 1-form dgJ(x) must be moved across the
r differentials in dxI .
(ii) If ω(x) =

∑
I fI(x)dxI ∈ Λr(U) then

d
(
dω(x)

)
= d
(∑

I

dfI(x) ∧ dxI
)

= d
(∑
I,j

∂fI(x)

∂xj
dxj ∧ dxI

)
=
∑
I,j,k

∂2fI(x)

∂xj∂xk
dxk ∧ dxj ∧ dxI ,

which is zero since ∂jkfI(x) is symmetric in the indices j, k by Theorem 3.40
while dxk ∧ dxj is skew-symmetric in these indices. That suffices for the proof.

A differential form ω(x) is said to be closed if dω(x) = 0, and it is said
to be exact if ω(x) = dσ(x) for some differential form σ(x). A consequence
of Theorem 7.10 (ii) is that any exact differential form is necessarily a closed
differential form; but the converse is not true in general. For example, in the
complement of the origin in the plane R2 of the variables x1, x2 the function
θ(x1, x2) = tan−1(x2/x1), the angle in polar coordinates, is well defined in any
half-plane bounded by a line through the origin, such as the half-planes x1 > 0
and x1 < 0, but it cannot be defined in the entire complement of the origin as
a single-valued function. However a simple calculation shows that

ω(x) = dθ(x1, x2) = − x2

x2
1 + x2

2

dx1 +
x1

x2
1 + x2

2

dx2,

so this is a well defined closed differential 1-form in the complement of the
origin in R2. If ω(x) were an exact differential form in the full complement of
the origin it would be the exterior derivative ω(x) = df(x) of a well defined
function f(x) in the complement of the origin; but then df(x) = dθ(x) so that
d
(
f(x) − θ(x)

)
= 0 hence f(x) − θ(x) = c is a constant in the complement of

the origin, which would imply that θ(x) = f(x)− c is a well defined function in
the complement of the origin, a contradiction. However it is at least true locally
that any closed form is exact.
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Theorem 7.11 (Poincaré’s Lemma) If ω(x) ∈ Λr(∆) is a closed C∞ differ-
ential form of degree r > 0 in the standard open cell

(7.79) ∆ =
{

x ∈ Rn
∣∣∣ 0 < xi < 1 for 1 ≤ i ≤ n

}
⊂ Rn

then there is a C∞ differential form σ(x) ∈ Λr−1(∆) of degree r − 1 in ∆ such
that ω(x) = dσ(x).

Proof: Consider differential r-forms ω(x) =
∑′
I f(x)dxI that involve only the

differentials dx1, dx2, . . . , dxk for some index 1 ≤ k ≤ n, so that

ω(x) =
∑

1≤i1<···<ir≤k fi1,··· ,ir (x)dxi1 ∧ · · · ∧ dxir .

The theorem will be demonstrated by induction on the index k. If k = 1 then
ω(x) = f(x)dx1 and 0 = dω(x) =

∑n
i=2 ∂if(x)dxi ∧ dx1 so ∂if(x) = 0 for i > 1

and consequently f(x) = f(x1) is a function of the variable x1 alone, where
x1 ∈ (0, 1). The integral g(x1) =

∫ x1

a
f for a point a ∈ (0, 1) is a function of

the variable x1 ∈ (0, 1) for which dg(x) = dg(x1) = f(x1)dx1 = ω(x), which
establishes the desired result in this special case. Assume then that the theorem
has been demonstrated for an index k, and consider a differential r-form ω(x)
that involves only the differentials dx1, . . . , dxk, dxk+1. This differential form
can be written

ω(x) = ω1(x) ∧ dxk+1 + ω2(x)

where the differential (r − 1)-form ω1(x) and the differential r-form ω2(x) are
in reduced form and involve only the differentials dx1, . . . , dxk, so that

ω1(x) =
∑′
I fI(x)dxI and ω2(x) =

∑′
J gJ(x)dxJ

for indices

1 ≤ i1 < i2 < . . . < ir−1 ≤ k and 1 ≤ j1 < j2 < · · · < jr ≤ k.

By assumption

0 = dω(x) = dω1(x) ∧ dxk+1 + dω2(x)

=
∑′
I

∑n
i=1 ∂ifI(x)dxi ∧ dxI ∧ dxk+1 +

∑′
J

∑n
j=1 ∂jgJ(x)dxj ∧ dxJ .

The only terms in this expression that involve dxk+1 and dxl for l > k+1 are just
in the first sum and just for the index i = l; and the basis vectors dxl∧dxI∧dxk+1

are linearly independent since 1 ≤ i1 < i1 < · · · < ir−1 ≤ k and k < k + 1 < l.
Consequently ∂lfI(x) = 0 for l > k+1, so fI(x) = fI(x1, · · · , xk+1) is a function
just of the variables x1, . . . , xk+1, where 0 < xi < 1. The integrals

hI(x1, . . . , xk+1) =

∫ xk+1

a

fI(x1, . . . , xk, t)dt

then are functions in the cell ∆ for which ∂k+1hI(x) = fI(x), by the fundamental
theorem of calculus for functions of a single variable; hence the differential
(r − 1)-form

ω3(x) =
∑′
I hI(x)dxI ,
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which involves just the differentials dx1, . . . , dxk, satisfies

dω3(x) =
∑′
I

(∑k
i=1 ∂ihI(x)dxi ∧ dxI + ∂k+1hI(x)dxk+1 ∧ dxI

)
=
∑′
I

(∑k
i=1 ∂ihI(x)dxi ∧ dxI + fI(x)dxk+1 ∧ dxI

)
= ω4(x) + (−1)r−1ω1(x) ∧ dxk+1

for a differential form ω4(x) that involves only the differentials dx1, . . . , dxk.
Then

ω(x)− (−1)r−1dω3(x) = ω1(x) ∧ dxk+1 + ω2(x)− (−1)r−1ω4(x)− ω1(x) ∧ dxk+1

= ω2(x)− (−1)r−1ω4(x)

involves only the differentials dx1, . . . , dxk and

d
(
ω(x)− (−1)r−1dω3(x)

)
= 0;

by the induction hypothesis then there is a differential form ω5(x) in the cell ∆
such that

ω(x)− (−1)r−1dω3(x) = dω5(x),

hence such that ω(x) = dσ(x) where σ(x) = (−1)r−1ω3(x) + ω5(x). That
establishes the induction step and thereby concludes the proof.

The preceding theorem also holds for Ck differential forms, by following
through the construction keeping track of the differentiability of the terms in-
volved. The theorem is an example of an integrability theorem for a linear
system of partial differential equations. For example, the existence of a func-
tion h such that dh = σ for a 1-form σ =

∑n
j=1 fj(x)dxj in Rn amounts

to the existence of a solution of the system of partial differential equations
∂ih(x) = fi(x) for 1 ≤ i ≤ n. It is clear that if there is a solution h(x)
then ∂jfi(x) = ∂j∂ih(x) = ∂i∂jh(x) = ∂ifj(x); that is just the condition
that dσ(x) = 0, which by Poincaré’s Lemma is also a sufficient condition for
the existence of the solution h(x). There are corresponding interpretations for
Poincaré’s Lemma for differential forms of higher degree, although they are a
bit more complicated to state without using the machinery of differential forms.
Another important property of exterior differentiation is its invariance under
the pullback of differential forms.

Theorem 7.12 If φ : D −→ E is a C∞ mapping from an open subset D ⊂ Rm
into an open subset E ⊂ Rn then for any C∞ differential form ω ∈ Λr(E)

(7.80) dφ∗(ω) = φ∗(dω) ∈ Λr+1(D).

Proof: For a differential form ω ∈ Λr(E) written explicitly as ω =
∑
I fI(y)dyI

it follows from the definition (7.68) that

φ∗(ω) =
∑
I,J

fI
(
φ(x)

) ∂yi1
∂xj1

· · · ∂yir
∂xjr

dxj1 ∧ · · · ∧ dxjr .
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The exterior derivative of ω is

dω =
∑
I,k

∂fI
∂yk

dyk ∧ dyI

and it follows from the definition (7.68) that

φ∗(dω) =
∑
I,J,k,l

∂fI
∂yk

(
φ(x)

) ∂yk
∂xl

∂yi1
∂xj1

· · · ∂yir
∂xjr

dxl ∧ dxj1 ∧ · · · ∧ dxjr

On the other hand

dφ∗(ω) =
∑
I,J,l

∂

∂xl

(
fI
(
φ(x)

) ∂yi1
∂xj1

· · · ∂yir
∂xjr

)
dxl ∧ dxj1 ∧ · · · ∧ dxjr

=
∑
I,J,k,l

∂fI
∂yk

(
φ(x)

) ∂yk
∂xl

∂yi1
∂xj1

· · · ∂yir
∂xjr

dxl ∧ dxj1 ∧ · · · ∧ dxjr

+
∑
I,J,k,l

fI
(
φ(x)

) ∂2yi1
∂xl∂xj1

∂yi2
∂xj2

· · · ∂yir
∂xjr

dxl ∧ dxj1 ∧ · · · ∧ dxjr

+ · · ·

where the remaining terms involve successively the second derivatives of the

the partial derivatives
∂2yi2
∂xl∂xj2

,
∂2yi3
∂xl∂xj3

, and so on. These terms that involve

the second derivatives all vanish, since for example
∂2yi1
∂xl∂xj1

is symmetric in

the indices l and j1 while dxl ∧ dxj1 is skew-symmetric in these indices. That
suffices for the proof.

The exterior derivatives of differential forms in R3 have classical forms, which
are possibly quite familiar from physics. For the 2-form Ωf (x) associated to a
vector field f(x) in an open set U ⊂ R3 as in (7.45) it follows quite directly from
the definition of exterior derivative that

(7.81) dΩf (x) =

(
∂f1(x)

∂x1
+
∂f2(x)

∂x2
+
∂f3(x)

∂x3

)
dx1 ∧ dx2 ∧ dx3.

The coefficient of this differential 3-form is known as the divergence of the
vector field f and is often denoted by div f(x), so by definition it is the function

(7.82) div f(x) =
∂f1(x)

∂x1
+
∂f2(x)

∂x2
+
∂f3(x)

∂x3
.

A traditional alternative notation is expressed in terms of the vector differential
operator

(7.83) ∇ =
{
∂
∂x1

, ∂
∂x2

, ∂
∂x3

}
.
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When applied to functions ∇f(x) is the gradient of the function f(x), as dis-
cussed on page 142; and the dot product of this operator with a vector field is
the function

(7.84) ∇ · f(x) =
∂

∂x1
f1(x) +

∂

∂x2
f2(x) +

∂

∂x3
fx) = div f(x).

In terms of this operator (7.81) can be rewritten

(7.85) dΩf (x) =


div f(x) dx1 ∧ dx2 ∧ dx3

or

∇ · f(x) dx1 ∧ dx2 ∧ dx3.

For the 1-form ωf (x) associated to a vector field f(x) in an open set U ⊂ R3 as
in (7.45) it follows by a straightforward calculation that

dωf (x) =
(
∂2f3(x)− ∂3f2(x)

)
dx2 ∧ dx3 +

(
∂3f1(x)− ∂1f3(x)

)
dx3 ∧ dx1

(7.86)

+
(
∂1f2(x)− ∂2f1(x)

)
dx1 ∧ dx2;

this is the 2-form associated to the vector field called the curl of the vector field
f(x), defined as the vector field
(7.87)

curl f(x) =
{
∂2f3(x)− ∂3f2(x), ∂3f1(x)− ∂1f3(x), ∂1f2(x)− ∂2f1(x)

}
.

It follows from (7.49) that the curl of a vector field can be written in terms of
the operator ∇ as

(7.88) curl f(x) = ∇× f(x),

so that

(7.89) dωf (x) =


Ωcurl f(x)

or

Ω∇×f(x).

The condition that ddω = 0 for any differential form ω, as in Theorem 7.10 (ii),
has classical interpretations as well. For any C∞ function f(x) in R3 since
df(x) = ω∇f(x), another interpretation of the first line of (7.45), it follows from
(7.89) that 0 = d df(x) = dω∇f(x)

= Ω∇×∇f(x) and consequently that

(7.90) ∇×∇f(x) = 0 or alternatively curl gradf(x) = 0.
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On the other hand for any C∞ vector field f(x) = {f1(x), f2(x), f3(x)} since
dωf(x) = Ω∇×f(x) by (7.89) it follows from (7.81) that 0 = d dω

f(x)
= dΩ∇×f(x) =

∇ ·
(
∇× f(x)

)
dx1 ∧ dx2 ∧ dx3 and consequently that

(7.91) ∇ ·
(
∇× f(x)

)
= 0 or alternatively div curl f(x) = 0.

Both (7.90) and (7.91) of course can be demonstrated by direct calculation from
the definition of the differential operator ∇. However Poincaré’s Lemma is a
far less trivial result, so its classical consequences cannot be proved merely by
a direct calculation, as should be expected. If f(x) is a C∞ vector field in R3

the condition that f(x) = ∇g(x) for a function g(x) in ∆ means in terms of
differential forms that ω

f
(x) = dg(x); and by Poincaré’s Lemma that is the case

for a vector field in a cell ∆ ⊂ R3 if 0 = dω
f(x)

= Ω∇×f(x), consequently

(7.92) f(x) = ∇g(x) for a function g(x) in ∆ if ∇× f(x) = 0,

or alternatively in the even more classical notation

(7.93) f(x) = grad g(x) for a function g(x) in ∆ if curl f(x) = 0.

On the other hand that f(x) = ∇× g(x) for a vector field g(x) in ∆ means in
terms of differential forms that Ωf(x) = dωg(x); and by Poincaré’s Lemma that
is the case for differential forms in a cell ∆ ⊂ R3 if 0 = dΩf(x) = ∇ · f(x) dx1 ∧
dx2 ∧ dx3, and consequently

(7.94) f(x) = ∇× g(x) for a vector field g(x) in ∆ if ∇ · f(x) = 0

or alternatively

(7.95) f(x) = curl g(x) for a vector field g(x) in ∆ if div f(x) = 0.
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PROBLEMS, GROUP I:

(1) If ω1 is a closed C∞ differential form and ω2 is an exact C∞ differential
form in an open subset U ⊂ Rn is the product ω1 ∧ ω2 closed? Why? Is the
product ω1 ∧ ω2 exact? Why?

(2) Calculate the exterior derivatives of the following differential forms:

(i) ω1 = x1dx1 + x2
2dx2 + x3

3dx3 (ii) ω2 =
−x2dx1 + x1dx2

x2
1 + x2

2

(3) In R4 consider the differential forms
ω1 = x1dx2 + x3dx4,
ω2 = (x2

1 + x2
3)dx1 ∧ dx2 + (x2

2 + x2
4)dx3 ∧ dx4,

ω3 = dx1 ∧ dx3 + x2dx1 ∧ dx4 + x1dx2 ∧ dx4.
(i) Find the exterior products ω1 ∧ ω1, ω1 ∧ ω2 and ω2 ∧ ω2 in reduced form.
(ii) Find the exterior derivatives dω1, dω2 and dω3 in reduced form.
(iii) Find the Hodge duals ∗ω1 and ∗ω3 in reduced form.
(iv) Which of these three differentials forms are closed ?
(v) For each of the differentials ωi that is closed find a differential form σ such
that ω = dσ. Having found one such form σ, what is the most general such
form? (Answer this part of the question without giving explicit formulas for all
possible solutions, but just by characterizing all possible solutions using your
general knowledge of the properties of differential forms).

(4) (i) For the mapping φ : R2(r, θ) −→ R2(x, y) defined by x = r cos θ and
y = r sin θ calculate the differential forms φ∗(ωi) where ω1 = dx + dy and
ω2 = dx ∧ dy.
(ii) If ψ is a local inverse of the mapping φ calculate the differential forms ψ∗(σi)
where σ1 = dr + dθ and σ2 = dr ∧ dθ.

(5) Show that if φ : U −→ V is a C∞ homeomorphism between two open
subsets of Rn and if every closed differential form in U is exact then every
closed differential form in V is exact.

PROBLEMS, GROUP II:

(6) Find a smooth 2-dimensional piece of a surface S ⊂ R3 such that the differ-
ential form on S induced by the differential 2-form

ω = x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2

on R3 is identically zero.

(7) Show that for any function f(x) in Rn the differential operator ∆f = ∗ d ∗ d f
is just the classical Laplacian operator on functions, the differential operator

∆f =
∑n
i=1

∂2f

∂x2
i

.
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(8) Hyperspherical coordinates in R4 are defined by

x1 = r cos θ1

x2 = r sin θ1 cos θ2

x3 = r sin θ1 sin θ2 cos θ3

x4 = r sin θ1 sin θ2 sin θ3.

Find the explicit formula for the change of variables expressing integration
in R4 in terms of hyperspherical coordinates. Use this to calculate the con-
tent of the unit hyperball in R4, the set of points at which r ≤ 1 where
r =

√
x2

1 + x2
2 + x2

3 + x2
4.

(9) To a vector field f = {fi} in R4 there can be associated the differential
forms

ωf = f1dx1 + f2dx2 + f3dx3 + f4dx4

Ωf = f1dx2 ∧ dx3 ∧ dx4 − f2dx3 ∧ dx4 ∧ dx1

+ f3dx4 ∧ dx1 ∧ dx2 − f4dx1 ∧ dx2 ∧ dx3.
Show that for any three vector fields f1, f2, f3 in R4 the vector field F for which
ΩF = ωf1 ∧ ωf2 ∧ ωf3 can be interpreted as an analogue F = f1 × f2 × f3 of the
cross-product in R3, that is, as a vector field perpendicular to the vector fields
fi with the appropriate orientation.

(10) Show that an exterior 2-form ω =
∑

1≤i<j≤n aijui∧uj in an n-dimensional
vector space V in terms of a basis ui also can be written as the sum ω =
(v1 ∧ v2) + (v3 ∧ v4) + · · · + (v2r−1 ∧ v2r) for an appropriate basis v1, . . . ,vn
of V , where r is the largest integer such that the product ω ∧ ω ∧ · · · ∧ ω 6= 0 of
r copies of the form ω is nonzero.

(11) An exterior r-form ω ∈ Λr(V ) for an n-dimensional real vector space V is
said to be decomposable if it can be written in the form ω = v1 ∧ · · · ∧ vr for
a suitable basis v1, . . . ,vn for V , and it is said to be indecomposable if it is
not decomposable.
(i) Show that if dimV ≤ 3 then every differential form ω ∈ Λ2(V ) is decompos-
able.
(ii) Show that if v1,v2,v3,v4 are linearly independent vectors in v then the
exterior form ω = (v1 ∧v2) + (v3 ∧v4) is indecomposable. [Suggestion: look at
ω ∧ ω.]
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7.3 Integrals of Differential Forms

Integrals of differential n-forms in open subsets E ⊂ Rn can be defined,
but only in terms of the orientation of the vector space Rn; these integrals
are oriented integrals, extending that notion from spaces of dimension 1 as
defined in (6.22) to spaces of dimensions n > 1. The integral of a continuous
n-form ω(y) = f(y)dy1 ∧ · · · ∧ dyn over an open subset E ⊂ Rn of an oriented
vector space Rn with the orientation dy1 ∧ · · · ∧ dyn in terms of coordinates
y1, . . . , yn is defined by

(7.96)

∫
E

f(y)dy1 ∧ · · · ∧ dyn =

∫
E

f,

so that

(7.97)

∫
E

f(y)dyi1 ∧ · · · ∧ dyin = sgn

(
i2 i2 · · · in
1 2 · · · n

)∫
E

f(y)

where sgn

(
i1 i2 · · · in
1 2 · · · n

)
is the sign of the permutation

(
i1 i2 · · · in

)
of

the integers
(
1 2 · · · n

)
, as defined on page 47; thus under a permutation

of the variables the integral of a differential form changes by the sign of the
permutation.

Theorem 7.13 If φ : D −→ E is a C1 homeomorphism between two connected
open subsets D,E ⊂ Rn then for any continuous differential n-form ω in E

(7.98)

∫
E

ω = ±
∫
D

φ∗(ω),

where the sign is + if the mapping φ preserves the orientation and − if the
mapping φ reverses the orientation.

Proof: Suppose that the vector space Rn containing D is oriented by the
differential form dx1 ∧ · · · ∧dxn in terms of coordinates x1, . . . , xn, and that the
vector space Rn containing E is oriented by the differential form dy1∧· · ·∧dyn in
terms of coordinates y1, . . . , yn. The integral of a continuous differential n-form
ω(y) = f(y)dy1 ∧ · · · ∧ dyn in E is

(7.99)

∫
E

ω =

∫
E

f,

as in (7.96); and the integral of the induced differential form φ∗(ω) in D, which
by (7.73) has the explicit form φ∗(ω)(x) = f

(
φ(x)

)
detφ′(x)dx1 ∧ · · · ∧ dxn, is

(7.100)

∫
D

φ∗(ω) =

∫
D

(f ◦ φ) detφ′.
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If the mapping φ preserves orientation then detφ′(x) > 0 whenever x ∈ D
and consequently detφ′(x) = |detφ′(x)|, while if the mapping φ reverses ori-
entation then detφ′(x) < 0 at all points x ∈ D and consequently detφ′(x) =
−|detφ′(x)|; therefore (7.100) can be rewritten

(7.101)

∫
D

φ∗(ω) = ±
∫
D

(f ◦ φ)|detφ′|

where the sign is + if the mapping φ preserves orientation and − if the map-
ping φ reverses orientation. By the change of variables formula (6.49) in Theo-
rem 6.19

(7.102)

∫
E

f =

∫
D

(f ◦ φ)|detφ′|,

and (7.98) follows immediately by substituting (7.99) and (7.101) into (7.102),
to conclude the proof.

There also are oriented integrals of m-forms over suitable lower-dimensional
subsets of the spaces Rn. An m-dimensional singular cell in an open subset
U ⊂ Rn is a continuous mapping φ : ∆ −→ U from an oriented closed cell
∆ ⊂ Rm into the open subset U ⊂ Rn. It is often assumed that the parameter
cell is the standard unit cell

(7.103) ∆m =
{
{x1, . . . , xm} ∈ Rm

∣∣∣ 0 ≤ xj ≤ 1 for 1 ≤ j ≤ m
}

with the orientation indicated by the order of the variables, although other nor-
malizations are sometimes more appropriate. A C1 singular cell is a singular
cell for which the mapping φ extends to a C1 mapping from an open neighbor-
hood of the closed cell ∆ into U ; of course a Ck singular cell for any integer
k > 0 is defined correspondingly, and a C∞ singular cell is defined as one for
which the mapping φ is of class Ck for all integers k > 0. For convenience much
of the further discussion will focus on C∞ singular cells, to avoid the necessity
of keeping track of the degree of differentiabilitiy of singular cells and to ensure
that the singular cells are sufficiently smooth for the arguments in later proofs.
A 1-dimensional singular cell is a parametrized curve, as defined on page 251,
since an interval [0, 1] is a 1-dimensional cell that is naturally oriented. For sin-
gular cells of dimension m > 1 however the orientation always must be specified
explicitly. As in the case of curves, the mappings describing singular cells are not
required to be one-to-one mappings, nor for Ck singular cells is it required that
the derivative φ′ of the mapping φ have maximal rank; so the images of singular
cells are not necessarily submanifolds of U even locally, and that is the reason
for the adjective singular. It is even possible for the image of a singular m-cell
to be a submanifold of Rn of a dimension lower than m. Two m-dimensional
singular C1 cells φ1 : ∆1 −→ Rn and φ2 : ∆2 −→ Rn are equivalent singular
cells if there is an orientation-preserving C1 homeomorphism h : ∆1 −→ ∆2 such
that φ1(t) = φ2

(
h(t)

)
; this is easily seen to be an equivalence relation between

singular cells. Equivalent singular cells of course are of the same dimension
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and have the same image; but in general singular cells having the same image
are not necessarily equivalent singular cells and are not necessarily of the same
dimension. The corresponding notion and results hold for Ck or C∞ singular
cells.

If φ : ∆ −→ U is an m-dimensional C∞ singular cell in an open subset
U ⊂ Rn, and if ω ∈ Λm(U) is a continuous differential m-form in the open set
U , the integral of the differential form ω over the singular cell φ is defined by

(7.104)

∫
φ

ω =

∫
∆

φ∗(ω).

If φ1 : ∆1 −→ U and φ2 : ∆2 −→ U are C∞ equivalent singular cells, so that
φ1(t) = φ2

(
h(t)

)
where h : V1 −→ V2 is an orientation preserving C∞ homeo-

morphism between open neighborhoods Vi of the cells ∆i, then by Theorems 7.9
and 7.13

(7.105)

∫
∆1

φ∗1(ω) =

∫
∆1

h∗
(
φ∗2(ω)

)
=

∫
∆2

φ∗2(ω);

thus the integrals of a differential form over C∞ equivalent singular m-cells are
equal.

Line integrals in Rn are special cases of integrals of differential forms over
singular cells, since a parametrized curve is a special case of a singular cell.
If φ : [0, 1] −→ U is a C∞ parametrized 1-cell in an open subset U ⊂ Rn,
where the parameter in [0, 1] is t and the parameters in Rn are x1, . . . , xn, and
if ω(x) =

∑n
j=1 fj(x)dxj is a continuous differential form in U , the induced

differential form is φ∗(ω)(t) =
∑n
j=1 fj

(
φ(t)

)dxj
dt

dt; and if f(x) = {fj(x)} is

the vector field with component functions fj(x) this induced differential form
can be written as the dot product φ∗(ω)(t) = f

(
φ(t)

)
· φ′(t)dt. The integral of

the differential 1-form ω(x) over the singular 1-cell φ hence is just the familiar
line integral

(7.106)

∫
φ

ω =

∫
φ

f · τ ds

as in (7.23); and for simple parametrized curves the integral is determined by
the image curve γ = φ([0, 1]) so it is often denoted just by

∫
γ
ω =

∫
γ

f · τ ds.
For example if γ ⊂ R3 is the curve from the origin a = {0, 0, 0} to the point
b = {1, 1, 1} that is the image of the mapping φ : [0, 1] −→ R3 given by
φ(t) = {t, t2, t3}, and if f is the vector field f(x) = {x2

1, x2, x1x2x3}, then∫
γ

f · τ ds =

∫
γ

(x2
1dx1 + x2dx2 + x1x2x3dx3)

=

∫
[0,1]

(
t2 · dt+ t2 · 2tdt+ t6 · 3t2dt

)
=

∫
[0,1]

(
t2 + 2t3 + 3t8

)
dt =

7

6
.
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As this example illustrates, the explicit calculation of line integrals is often
simpler when these integrals are expressed in terms of differential 1-forms.

Another commonly considered special case is that of the integration of dif-
ferential 2-forms over 2-dimensional singular cells in R3. Let φ : ∆ −→ U be
a C∞ singular 2-cell in an open subset U ⊂ R3, where the parameters in R2

are t1, t2 with the natural orientation dt1 ∧ dt2 and the parameters in R3 are
x1, x2, x3 with the natural orientation dx1 ∧ dx2 ∧ dx3. A continuous 2-form in
R3 can be viewed as the differential form

Ωf (x) = f1(x)dx2 ∧ dx3 + f2(x)dx3 ∧ dx1 + f3(x)dx1 ∧ dx2

associated to the vector field f(x), with the usual cyclic notation as in (7.45).
The induced differential form under the mapping φ is the differential 2-form

φ∗(Ωf )(t) =

2∑
j1,j2=1

(
f1

(
φ(t)

) ∂x2

∂tj1

∂x3

∂tj2
+ f2

(
φ(t)

) ∂x3

∂tj1

∂x1

∂tj2

+ f3

(
φ(t)

) ∂x1

∂tj1

∂x2

∂tj2

)
dtj1 ∧ dtj2

=

(
f1

(
φ(t)

)(∂x2

∂t1

∂x3

∂t2
− ∂x2

∂t2

∂x3

∂t1

)
+ f2

(
φ(t)

)(∂x3

∂t1

∂x1

∂t2
− ∂x3

∂t2

∂x1

∂t1

)
+ f3

(
φ(t)

)(∂x1

∂t1

∂x2

∂t2
− ∂x1

∂t2

∂x2

∂t1

))
dt1 ∧ dt2,

which can be written more succinctly as

φ∗(Ωf )(t) = det



f1

(
φ(t)

)
f2

(
φ(t)

)
f3

(
φ(t)

)
∂x1

∂t1

∂x2

∂t1

∂x3

∂t1

∂x1

∂t2

∂x2

∂t2

∂x3

∂t2


dt1 ∧ dt2,(7.107)

or using the cross-product introduced in (7.49) as

(7.108) φ∗(Ωf )(t) = f
(
φ(t)

)
·
( ∂x

∂t1
× ∂x

∂t2

)
dt1 ∧ dt2

in terms of the vector fields

∂x

∂tj
=

{
∂x1

∂tj
,
∂x2

∂tj
,
∂x3

∂tj

}
for j = 1, 2.

Thus the integral of the differential 2-form Ωf on the singular 2-cell φ is given
by

(7.109)

∫
φ

Ωf =

∫
∆

f
(
φ(t)

)
·
( ∂x

∂t1
× ∂x

∂t2

)
dt1 ∧ dt2.
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The value of this integral depends on both the orientation of the space R3, which
determines the order of the columns in (7.107), and the orientation of the space
R2, which determines the order of the rows in (7.107). If the two vectors ∂x/∂t1
and ∂x/∂t2 are linearly independent at a point t ∈ ∆ then rank φ′(t) = 2 and
it follows from the rank theorem that the image of an open neighborhood of the
point t ∈ ∆ is a 2-dimensional submanifold of an open neighborhood of φ(t) in
U ; but of course this may not be all of the image Γ near the point φ(t) ∈ U .
The three vectors

∂x

∂t1
,

∂x

∂t2
,

∂x

∂t1
× ∂x

∂t2

have the orientation compatible with the chosen orientation of R3, described by
the order dx1, dx2, dx3 of the basis vectors along the coordinate axes. The

unit vector in the direction of the cross-product
∂x

∂t1
× ∂x

∂t2
is the unit normal

vector to that oriented submanifold, which is denoted by ν(t); and in these
terms

(7.110)
∂x

∂t1
× ∂x

∂t2
=
∥∥∥ ∂x

∂t1
× ∂x

∂t2

∥∥∥
2
ν(t).

In parallel to the interpretation of line integrals in (7.106), the integral (7.109)
can be written

(7.111)

∫
Γ

Ωf =

∫
Γ

f · ν dS

and can be viewed as the integral over the surface Γ of the dot product of the
vector field f and the unit normal vector ν to Γ, where dS indicates integration
with respect to the surface area of Γ where the surface area |Γ| is defined by2

(7.112)
∣∣∣Γ∣∣∣ =

∫
∆

∥∥∥ ∂x

∂t1
× ∂x

∂t2

∥∥∥
2
.

The calculation of the surface area can be a rather complicated one, involving

2The direct definition of surface area is an extremely complicated matter, as discussed in
detail for instance in the classical book by T. Radoó Length and Area, American Mathematical
Society Colloquium Publications, New York, 1948. Those difficulties are finessed by using the
pattern of the calculation of arc length through line integrals to define surface area, reversing
the order of the discussion in Section 7.23. It is customary to attempt to justify this definition

of surface area by observing that the length
∥∥∥ ∂x
∂t1
×
∂x

∂t2

∥∥∥
2

of the cross product of the two

vectors
∂x

∂t1
and

∂x

∂t2
is the area of the parallelogram spanned by these two vectors, which

can be viewed as a planar approximation to the surface since the vectors are tangent vectors
approximating the lengths of the two curves that are the image of the t1 and t2 coordinate
axes under the mapping φ : R2 −→ R3. What is perhaps more convincing though is that the
integral

∫
Γ dS for some standard surfaces yields the usual values for surface areas.
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explicit integrals of the form
(7.113)

|Γ| =
∫

∆

√√√√√√det

∂x2

∂t1
∂x3

∂t1

∂x2

∂t2
∂x3

∂t2

2

+ det

∂x3

∂t1
∂x1

∂t1

∂x3

∂t2
∂x1

∂t2

2

+ det

∂x1

∂t1
∂x2

∂t1

∂x1

∂t2
∂x2

∂t2

2

.

As in the case of line integrals it is generally much much simpler to calculate
the integral (7.109) as the integral of the differential form Ωf in terms of any
parametrization of the singular cell Γ, without calculating the surface area.

For example the cylindrical surface Γ ⊂ R3 defined by x2
1 + x2

2 = 1, 0 ≤
x3 ≤ 1, can be described as the image of the singular 2-cell φ : ∆2 −→ Γ given
by φ(t) = {cos t1, sin t1, t2}, where the orientation of the cell is described by
the differential form dt1 ∧ dt2. At the point φ(0) = φ({0, 0}) = {0, 0, 1} on the
boundary of the surface Γ

∂x

∂t1
= {− sin t1, cos t1, 0}

∣∣∣
t1=t2=0

= {0 1 0},

∂x

∂t2
= {0 0 1}

hence
∂x

∂t1
× ∂x

∂t2
= {1, 0, 0},

which points outward from the interior of the cylinder. (For the opposite orien-
tation of the cylinder the orientation of the unit cell ∆2 would be described by
the differential form dt2 ∧ dt1.) The differential 2-form

Ωf = x1 dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2,

is that described by the vector field f where f(x) = {x1, x2, x3}, and its integral
is ∫

Γ

f · ν dS =

∫
Γ

Ωf =

∫
∆

x1 dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2

=

∫
∆

det

 cos t1 sin t1 t2
− sin t1 cos t1 0

0 0 1

 dt1 ∧ dt2

=

∫
t1∈[0,2π]

∫
t2∈[0,1]

dt2dt1 = 2π.

Furthermore since

∂x

∂t1
× ∂x

∂t2
= cos t1dx1 + sin t1dx2 + 0dx3

when expressed in terms of the basis vectors dx1, dx2, dx3 it follows that∥∥∥∥ ∂x

∂t1
× ∂x

∂t2

∥∥∥∥
2

= 1
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so the area of the cylinder Γ is

|Γ| =
∫

Γ

1dS =

∫
∆

1 = 2π.

That is of course a familiar result, and it should be somewhat comforting that
the general formula does work in this case.

The boundary ∂∆ of an ordinary n-cell ∆ consists of a collection of singular
(n−1)-cells; to discuss this boundary in more detail it is convenient to introduce
some further notation. Denote the unit cell in the space Rn by
(7.114)

∆(x1, x2, . . . , xn) =
{

(x1, x2, . . . , xn) ∈ Rn
∣∣∣ 0 < xi < 1 for 1 ≤ i ≤ n

}
,

with the orientation described by the differential form dx1∧dx2∧ . . .∧dxn; and
correspondingly denote the closed unit cell by
(7.115)

∆(x1, x2, . . . , xn) =
{

(x1, x2, . . . , xn) ∈ Rn
∣∣∣ 0 ≤ xi ≤ 1 for 1 ≤ i ≤ n

}
,

also with the orientation described by the differential form dx1∧dx2∧ . . .∧dxn.
The boundary of either cell consists of those points of the closed cell for which
at least one of the coordinates takes the value 0 or 1; for instance when n = 2
the boundary of the cell ∆(x1, x2) consists of the 4 segments

∆(0, x2) ⊂ R2 =
{

(0, x2)
∣∣∣ 0 ≤ x2 ≤ 1

}
(7.116)

∆(1, x2) ⊂ R2 =
{

(1, x2)
∣∣∣ 0 ≤ x2 ≤ 1

}
∆(x1, 0) ⊂ R2 =

{
(x1, 0)

∣∣∣ 0 ≤ x1 ≤ 1
}

∆(x1, 1) ⊂ R2 =
{

(x1, 1)
∣∣∣ 0 ≤ x1 ≤ 1

}
.

The segment ∆(0, x2) can be viewed as a singular 1-cell, the image of the closed
unit 1-cell ∆(x2) ⊂ R1 under the mapping that takes a point x2 ∈ ∆(x2) to
the point (0, x2) ∈ ∆(x1, x2), and correspondingly for the other three segments.
With the orientations of these singular cells defined by the natural orientation
of the 1-cells ∆(xi), the collection of these four singular cells is sketched in
the accompanying Figure 7.3. However the more natural and more traditional
expression for the boundary of the cell ∆(x1, x2) consists of these 4 singular
1-cells but with the orientations changed so that the path described by the col-
lection of these singular cells traverses the entire boundary of the cell ∆(x1, x2)
in the counterclockwise direction; that involves reversing the orientations of the
singular cells ∆(x1, 1) and ∆(0, x2). It is convenient to denote these singular
cells with the orientation reversed by −∆(x1, 1) and −∆(0, x2), and to view the
collection of all four of these cells, with the chosen orientations, as a formal sum

(7.117) ∂∆(x1, x2) = ∆(x1, 0) + ∆(1, x2)−∆(x1, 1)−∆(0, x2)
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Figure 7.3: The singular cells forming the boundary of a cell ∆(x1, x2) ⊂ R2.

of singular 1-cells in R2. In general, a singular n-chain in an open subset
U ⊂ Rm is defined to be a finite formal sum

(7.118) C =

r∑
j=1

νj · φj for integers νj ∈ Z and singular n-cells φj in U ;

and the boundary of the cell ∆(x1, x2, . . . , xn) is defined to be the singular
(n− 1)-chain

(7.119) ∂∆(x1, x2, . . . , xn) =

n∑
i=1

1∑
ε=0

(−1)i+ε∆(x1, . . . , xi−1, ε, xi+1, . . . , xn).

The notation ∂∆ is the same as that used for the point set boundary of ∆;
generally it should be clear from the context whether ∂∆ is to be viewed as
a point set or as a singular chain, but if necessary for clarity the set will be
called either the point set boundary or the boundary chain. In particular the
boundary of the 1-cell ∆(x1) is the singular 0-chain

(7.120) ∂∆(x1) = ∆(1)−∆(0),

in which the point or 0-cell ∆(1) at the head of the 1-cell has the positive
sign and the point or 0-cell ∆(0) at the tail of the 1-cell has the negative sign;
the boundary of the 2-cell ∆(x1, x2) is the singular 1-chain (7.117); and the
boundary of the 3-cell ∆(x1, x2, x3) is the singular 2-chain

∂∆(x1, x2, x3) = −∆(0, x2, x3) + ∆(1, x2, x3) + ∆(x1, 0, x3)−∆(x1, 1, x3)

(7.121)

−∆(x1, x2, 0) + ∆(x1, x2, 1).

The geometric significance of the orientation of the boundary ∂∆(x1, x2, x3) as
just defined may not be all that clear, and perhaps merits a bit more discussion,
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Figure 7.4: The boundary of a cell ∆(x1, x2, x3) ⊂ R3.

for which Figure 7.4 may be helpful. The boundary segment ∆(x1, x2, 1) is the
top side while the boundary segment ∆(x1, x2, 0) is the bottom side of the cell
∆(x1, x2, x3). By (7.121) the orientation of the top side is described by the
differential form dx1 ∧ dx2 while the orientation of the bottom side is described
by the differential form −dx1 ∧ dx2 = dx2 ∧ dx1. If ei denotes the unit vector
in the direction of the xi-axis in R3, the orientation of the top side also can be
described by the ordered pair of vectors e1, e2, or equivalently by their cross-
product e1 × e2 = e3, a vector perpendicular to the top boundary segment
and in the direction pointing outward from the 3-cell ∆(x1, x2, x3); and the
orientation of the bottom side is described by the ordered pair of vectors e2, e1,
or equivalently by their cross-product e2 × e1 = −e3, a vector perpendicular to
the bottom boundary segment and in the direction pointing outward from the
3-cell ∆(x1, x2, x3). The boundary segment ∆(1, x2, x3) is the front side while
the boundary segment ∆(0, x2, x3) is the back side of the cell ∆(x1, x2, x3). The
orientation of the front side is described by the differential form dx2 ∧ dx3 or
the cross-product e2×e3 = e1, a vector perpendicular to that side and pointing
outward, while the orientation of the back side is described by the differential
form−dx2∧dx3 or the cross-product e3×e2 = −e1, again a vector perpendicular
to that side and pointing outward. The boundary segment ∆(x1, 1, x3) is the
right-hand side while the boundary segment ∆(x1, 0, x3) is the left-hand side
of the cell ∆(x1, x2, x3). The orientation of the right-hand side is described by
the differential form −dx1 ∧ dx3 or the cross-product e3 × e1 = e2, a vector
perpendicular to that side and pointing outward, while the orientation of the
left-hand side is described by the differential form dx1∧dx3 or the cross-product
e1 × e3 = −e2, yet again a vector perpendicular to that side and pointing
outward. Thus the orientations of the 6 faces of the 3-cell ∆(x1, x2, x3) are all
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described by the outward pointing normal vectors to these sides, an easy way
to remember the orientation and to use it in explicit calculations.

The notion of the boundary chain of a standard n-cell ∆ ⊂ Rn can be
extended quite simply to singular n-cells. A singular n-cell φ is a continuous
mapping φ : ∆ −→ Rn, and its boundary is defined by

∂φ = φ
(
∂∆(x1, x2, . . . , xn)

)
(7.122)

=

n∑
i=1

1∑
ε=0

(−1)i+εφ
(
∆(x1, . . . , xi−1, ε, xi+1, . . . , xn)

)
.

In this definition the singular cell ∆(x1, . . . , xn−1, 0) is the mapping from the
standard (n− 1)-cell ∆(x1, . . . , xn−1) ⊂ Rn−1 into Rn that takes a point
(x1, . . . , xn−1) ∈ Rn−1 to the point (x1, . . . , xn−1, 0) ∈ Rn, so
φ
(
∆(x1, . . . , xn−1, 0)

)
is just the singular (n − 1)-cell resulting from the com-

position of these two mappings; the other terms in (7.122) can be interpreted
correspondingly, as is illustrated in Figure 7.5. A singular n-chain C is said

Figure 7.5: The boundary of a singular cell φ
(

∆(x1, x2)
)
⊂ R3, where the

mapping φ is orientation preserving.

to be a cycle or an n-cycle if ∂C = 0, and it is said to be a boundary if
C = ∂C0 for some singular (n + 1) chain C0. For example, in Figure 7.5 the
boundary chain of the cell ∆(x1, x2) is the boundary 1-chain ∂∆(x1, x2) =
∆(x1, 0) + ∆(1, x2) −∆(x1, 1) −∆(0, x2). Each vertex (ε1, ε2) ∈ R2 of the cell
∆(x1, x2) is part of the boundary of two of these singular cells in the boundary
chain ∂∆(x1, x2), at the head of one and the tail of the other; so altogether the
boundary of the boundary 1-chain ∂∆(x1, x2) is the trivial 0-chain

∂∂∆(x1, x2) = ∂∆(x1, 0) + ∂∆(1, x2)− ∂∆(x1, 1)− ∂∆(0, x2)

=
(
(1, 0)− (0, 0)

)
+
(
(1, 1)− (1, 0)

)
+
(
(0, 1)− (1, 1)

)
+
(
(0, 0)− (0, 1)

)
= 0,

hence the boundary chain ∂∆(x1, x2) is a cycle. That is indeed the general
situation.

Theorem 7.14 The boundary chain of a singular chain is a cycle, or equiva-
lently ∂(∂C) = 0 for any singular chain C.
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Proof: The boundary of the standard cell ∆(x1, x2, . . . , xn) was defined in
(7.119) and the boundary of a chain was defined in (7.122), and from these
definitions it follows that

∂∂∆(x1, . . . , xn) = ∂

(
n∑
i=1

1∑
ε=0

(−1)i+ε∆(x1, . . . , xi−1, ε, xi+1, . . . , xn)

)(7.123)

=

n∑
i=1

1∑
ε=0

(−1)i+ε∂∆(x1, . . . , xi−1, ε, xi+1, . . . , xn).

Here ∆(x1, . . . , xi−1, ε, xi+1, . . . , xn) is a singular (n − 1)-cell, the image of the
standard (n− 1)-cell ∆(x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1 by the mapping

φ : ∆(x1, . . . , xi−1, xi+1, . . . , xn) −→ ∆(x1, . . . , xi−1, ε, xi+1, . . . , xn)

for which

φ(x1, . . . , xi−1, xi+1, . . . , xn) = (x1, . . . , xi−1, ε, xi+1, . . . , xn) ∈ Rn;

it then follows from the definition (7.119) of the boundary of a cell and the
definition (7.122) of the boundary of a singular cell that

∂∆(x1, . . . , xi−1, ε, xi+1, . . . , xn) = ∂φ∆(x1, . . . , xi−1, xi+1, . . . , xn)

= φ∂∆(x1, . . . , xi−1, xi+1, . . . , xn)

= φ

( i−1∑
j=1

1∑
δ=0

(−1)j+δ∆(x1, . . . , xj−1, δ, xj+1, . . . xi−1, xi+1, . . . , xn)

+

n∑
j=i+1

1∑
δ=0

(−1)j−1+δ∆(x1, . . . , xi−1, xi+1, . . . xj−1, δ, xj+1, . . . , xn)

)

=
i−1∑
j=1

1∑
δ=0

(−1)j+δ∆(x1, . . . , xj−1, δ, xj+1, . . . xi−1, ε, xi+1, . . . , xn)

+

n∑
j=i+1

1∑
δ=0

(−1)j−1+δ∆(x1, . . . , xi−1, ε, xi+1, . . . xj−1, δ, xj+1, . . . , xn).

The sign change in the preceding equation is a consequence of the indexing of
the cell ∆(x1, . . . , xi−1, xi+1, . . . , xn) since xj is the j-th variable in

∆(x1, . . . , xi−1, xi+1, . . . , xn)

if j < i but is the (j − 1)-th variable if j > i; and

∆(x1, . . . , xi−1, ε, xi+1, . . . xj−1, δ, xj+1, . . . , xn)
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is the obvious singular (n − 2)-cell with the natural extension of the defini-
tion of the singular (n−1)-cell ∆(x1, . . . , xi−1, ε, xi+1, . . . , xn). Substituting the
preceding observation into (7.123) yields

∂∂∆(x1, . . . , xn)

=

n∑
i,j=1
j<i

1∑
ε,δ=0

(−1)i+j+ε+δ∆(x1, . . . , xj−1, δ, xj+1, . . . xi−1, ε, xi+1, . . . , xn)

+

n∑
i,j=1
j>i

1∑
ε,δ=0

(−1)i+j−1+ε+δ∆(x1, . . . , xi−1, ε, xi+1, . . . xj−1, δ, xj+1, . . . , xn).

If the indices i, j are interchanged and the indices ε, δ are simultaneously inter-
changed in the first line on the right-hand side of the preceding equation the
result is evidently equal to the second line in that equation, except for the sign,
so that ∂∂∆(x1, . . . , xn) = 0, which suffices for the proof.

For example the annular region in Figure 7.6, the region between two con-
centric circles, can be described as the image of the singular 2-chain C = φ1+φ2,
where the images of the 2-cells ∆1 and ∆2 are the sets Γ1 and Γ2 that cover the
annular region and that intersect only in the boundary segments at the top and
bottom of the annular region. When the cells ∆i have the standard orientation,
so that their boundaries are traversed in the counter-clockwise order, and the
mappings φi are orientation preserving, the boundary of the singular 2-chain re-
duces to the outer circle of the annular region, traversed in the counter-clockwise
direction, and the inner circle of the annular region, traversed in the clockwise
direction, since the two boundary segments at the top and bottom of the annu-
lar region are traversed in opposite directions so cancel in the full boundary of
the annular region.

The set of singular n-chains in an open subset U ⊂ Rm form an abelian group
Cn(U,Z), a set with an addition operation for which the sum of two singular
chains C′ =

∑
i ν
′
iφ
′
i and C′′ =

∑
j ν
′′
j φ
′′
j is defined to be the singular chain

C′ + C′′ =
∑
i ν
′
iφ
′
i +

∑
j ν
′′
j φ
′′
j . It is clear from the definition of the boundary

chain that ∂
(
C′+C′′

)
= ∂C′+∂C′′, so the set of singular n-cycles form a subgroup

Zn(U,Z) ⊂ Cn(U,Z), a subset closed under the operation of addition of singular
chains; and it follows from Theorem 7.14 that the set of singular n-boundaries
form a further subgroup Bn(U,Z) ⊂ Zn(U,Z). The quotient group, defined in
analogy with the quotient of two vector spaces, is a group

(7.124) Hn(U,Z) =
Zn(U,Z)

Bn(U,Z)

called the n-dimensional singular homology group of the set U . These groups
can be defined for more general topological spaces than just subsets of Rm; they
are algebraic structures that reflect the geometrical properties of topological
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Figure 7.6: An annular region viewed as the image of a singular cell C = φ1 +φ2

spaces, and some examples of their usefulness will be included in the subsequent
discussion here3.

The integral of a differential n-form ω over a singular n-chain is defined by

(7.125)

∫
C
ω =

r∑
j=1

νj

∫
φj

ω for the chain C =
∑r
j=1 νj · φj .

For example, twice the integral of a differential form ω over a singular cell φ
can be viewed alternatively as the integral of that differential form over the
singular chain C = 2 · φ; and the negative of the integral of ω over φ, or
what is the same thing the integral of ω over φ with the opposite orientation,
can be viewed alternatively as the integral of that differential form over the
singular chain C = −1 · φ = −φ. The fundamental theorem of calculus for
functions of a single variable extends to functions of several variables in the
form of Stokes’s Theorem, which is expressed most naturally in terms of the
integrals of differential forms over singular chains. The proof really is just a
straightforward application of the classical fundamental theorem of calculus in
a single variable, which can be established readily in the following special case.

Theorem 7.15 If ω is a C∞ differential form of degree n−1 defined in an open

3Homology groups are discussed in detail in most books on algebraic topology, as for
instance in the book by Allen Hatcher Algebraic Topology, (Cambridge University Press,
2002).
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neighborhood of the cell ∆(x1, x2, . . . , xn) ⊂ Rn then

(7.126)

∫
∂∆(x1,x2,...,xn)

ω =

∫
∆(x1,x2,...,xn)

dω.

Proof: First for a fixed index r introduce for convenience but just for the course
of this proof the simplifying notation

∆ = ∆(x1, x2, . . . , xn) ⊂ Rn,
∆r = ∆(x1, . . . , xr−1, xr+1, . . . , xn) ⊂ Rn−1

∆r,ε = ∆(x1, . . . , xr−1, ε, xr+1, . . . , xn) ⊂ Rn

dXr = dx1 ∧ · · · ∧ dxr−1 ∧ dxr+1 ∧ · · · ∧ dxn,
dX = dx1 ∧ dx2 ∧ · · · ∧ dxn.

Consider then a differential (n − 1)-form given by ωr = f(x) dXr for some
function f(x). For this differential form

(7.127) dωr = ∂rf(x) dxr ∧ dXr = (−1)r−1∂rf(x) dX.

Furthermore on a segment ∆(x1, . . . , xi−1, ε, xi+1, . . . , xn) of the boundary ∂∆
the variable xi is constant, so if i 6= r the differential form ωr = f(x) dXr van-
ishes identically; therefore the integral of the differential form ωr over the bound-
ary ∂∆ reduces to the integral just over the singular (n − 1)-cells (−1)r+1∆r,1

and (−1)r∆r,0 of the boundary. It then follows from the definition of the in-
tegral of a differential form over a singular cell, the fundamental theorem of
calculus in one variable and Fubini’s Theorem that∫

∂∆

ωr = (−1)r+1

∫
∆r,1

ωr + (−1)r
∫

∆r,0

ωr

= (−1)r+1

∫
∆r

(
f(x1, . . . , xr−1, 1, xr+1, . . . , xn)

− f(x1, . . . , xr−1, 0, xr+1, . . . , xn)
)
dXr

= (−1)r+1

∫
∆r

∫
∆(xr)

∂rf(x) dxr ∧ dXr

=

∫
∆

dωr,

which is (7.126) for the differential form ωr Since any differential (n − 1)-form
ω can be written as a sum of differential forms of the special type ωr for r =
1, 2, · · · , n and (7.126) is linear in the differential form ω it follows that (7.126)
holds for arbitrary differential forms ω, which suffices for the proof.

Corollary 7.16 (Stokes’s Theorem) If C ⊂ U is a C∞ n-dimensional sin-
gular chain in an open subset U ⊂ Rm and ω is a C∞ differential (n− 1)-form
in U then

(7.128)

∫
∂C
ω =

∫
C
dω.
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Proof: First for the special case of a singular n-cell φ : ∆ −→ U in an open
subset U ⊂ Rm, if ω is an arbitrary C1 differential (n − 1)-form ω in U then
since ∂φ = φ∂∆ by (7.122) it follows from the definition (7.125) of the integral
of a differential form over a singular chain, the definition (7.104) of the integral
of a differential form over a singular cell, and the preceding Theorem 7.15 that∫

∂φ

ω =

∫
∂∆

φ∗(ω) =

∫
∆

dφ∗(ω) =

∫
∆

φ∗(dω) =

∫
φ

dω,

since dφ∗(ω) = φ∗(dω) by Theorem 7.12; and that is (7.128) for the case of a
singular cell. Then if C =

∑
i νi ·φi is an arbitrary singular chain where φi are

singular cells in U and if ω is a C∞ differential (n− 1)-form in U it follows from
what has just been demonstrated and the definition (7.125) of the integral over
a singular chain that∫

∂C
ω =

∑
i

νi

∫
∂φi

ω =
∑
i

νi

∫
φi

dω =

∫
∑
i νi·φi

dω =

∫
C
dω,

and that suffices for the proof.

Examples of the application of Stokes’s Theorem abound. It can be used for
instance to complement the discussion of conservative vector fields in Section 7.1.
It was noted there that any closed 1-form is locally the exterior derivative of
a function, indeed is the exterior derivative of a function in any cell but not
necessarily so in more general regions; but it is the exterior derivative of a
function in a class of regions that can be described topologically.

Corollary 7.17 4 If U ⊂ Rn is an open subset such that H1(U,Z) = 0 then
any closed C∞ differential 1-form in U is the exterior derivative of a function
in U .

Proof: It follows from Theorem 7.8 that it is sufficient to show that the integral∫
γ
ω of any closed 1-form ω on curves γ between two points a,b ∈ U depends

only on the points a,b and not on the choice of the curve γ from a to b. If γ1, γ2

are two curves from a to b, viewed as singular 1-chains, then γ = γ1 − γ2 is a
singular 1-cycle in U so as a consequence of the hypothesis it is the boundary
γ = ∂C of a singular 2-chain C ⊂ U ; then by Stokes’s Theorem∫

γ1

ω −
∫
γ2

ω =

∫
γ

ω =

∫
∂C
ω =

∫
C
dω =

∫
C

0 = 0,

which suffices for the proof.

A number of applications of Stokes’s Theorem can be restated in more clas-
sical terms.

4For extensions of this corollary see for instance the discussion of De Rham’s theorem in
“From Calculus to Cohomology: De Rham Cohomology and Characteristic Classes” by Ib H.
Madsen and Jurgen Tornehave, (Cambridge University Press, 1997), among other places.
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Theorem 7.18 If C is a C∞ singular n-chain C in an open subset U ⊂ Rn and
if

(7.129) ω =

n∑
i=1

fidx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn

is a C∞ differential (n− 1)-form in U then

(7.130)

∫
∂C
ω =

∫
‖calC

n∑
i=1

(−1)i−1 ∂fi
∂xi

.

Proof: This is simply Stokes’s Theorem
∫
∂C ω =

∫
C dω for the differential form

(7.129), written out explicitly, so no further proof is required.

Corollary 7.19 (Green’s Theorem) If C is a singular 2-chain in an open
subset U ⊂ R2 then

(7.131)

∫
∂C

(
f1dx1 + f2dx2

)
=

∫
D

(
∂f2

∂x1
− ∂f1

∂x2

)
for any C1 vector field f = {f1, f2} in U .

Proof: This is just the special case of the preceding theorem for the differential
form ωf in R2, so no further proof is required.

Green’s Theorem can be applied for example to the annular region D in
Figure 7.6, which is the singular 2-chain C = φ1 +φ2; the boundary ∂C consists
of the outer circle γ1 oriented in the counterclockwise direction and the inner
circle γ2 oriented in the clockwise direction. If ω = f1dx1 + f2dx2 is a C1

differential 1-form in an open neighborhood of D then Green’s Theorem asserts

that
∫
γ1
ω −

∫
γ2
ω =

∫
D

(
∂f2

∂x1
− ∂f1

∂x2

)
. In particular it follows that

(7.132)

∫
γ1

x1dx2 −
∫
γ2

x1dx2 =

∫
D

1 = |D|,

where |D| is the area of the annular region D. Of course the same formula can be
applied to any set that is the image of a singular chain, showing that the area of
any such set can be calculated from its boundary alone5. As a more interesting
example of this technique consider the hypocycloid curve in Figure 7.7, defined
by the equation

x
2/3
1 + x

2/3
2 = a2/3

5This method for calculating the area of a region from its boundary is embodied in me-
chanical and electronic machines, called planimeters, that have long been used in engineering
and surveying; these machines are discussed for example in the book by John Bryant and
Christopher J. Sangwin How round is your circle? Where engineering and mathematics
meet. Princeton University Press, 2008.
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for some constant a > 0. This curve can be viewed as the boundary of a singular
chain C consisting of four singular 2-cells, the images of which are the segments
in the four quadrants in Figure 7.7. The boundary chain reduces to the union
of the four curved arcs, traversed in the counterclockwise direction, so is the
image of the singular 1-cell

φ(t) = {a cos3 t, a sin3 t} for 0 ≤ t ≤ 2π;

consequently the area |D| of the region enclosed by the hypocycloid is

|D| =
∫

[0,2π]

x1dx2 =

∫
[0,2π]

a cos3 t · 3a sin2 t cos t =

∫
[0,2π]

3a2 sin2 t cos4 t

=

∫
[0,2π]

3a2(cos4 t− cos6 t) = 3a2

(
3

4
π − 5

8
π

)
=

3

8
a2π.

Figure 7.7: A hypocycloid

Green’s Theorem can be written in terms of the differential 1-form ωf =
f1dx1 + f2dx2 associated to a vector field f as the line integral

(7.133)

∫
γ

f · τ ds =

∫
D

(
∂f2

∂x1
− ∂f1

∂x2

)
where τ is the unit tangent vector to γ and ds indicates integration with respect
to the arc length of γ. Green’s Theorem also can be written in terms of the
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Hodge dual ∗ωf = f1dx2 − f2dx1 of the differential form ωf and since d ∗ ωf =
(∂1f1 + ∂2f2)dx1 ∧ dx2

(7.134)

∫
γ

∗ωf =

∫
D

(
∂f1

∂x1
+
∂f2

∂x2

)
.

If the curve γ is parametrized by a mapping φ : [0, 1] −→ U the integral of the
differential form ∗ωf is given by

(7.135)

∫
γ

∗ωf =

∫
t∈[0,1]

(
f1
dx2

dt
− f2

dx1

dt

)
.

This can be viewed as the integral over the curve γ of the inner product f ·v of
the vector field f and the vector field

(7.136) v =

{
dx2

dt
, −dx1

dt

}
;

and since ‖v‖2 =

√(
dx2

dt

)2
+
(
dx1

dt

)2
then with the conventions adopted in the

discussion of line integrals the integral (7.135) can be rewritten in terms of the
unit vector ν = v/‖v‖2 as the line integral

(7.137)

∫
γ

∗ωf =

∫
γ

f · ν ds

with respect to the arc length of the curve γ. The vector field ν is orthogonal
to the tangent vector field τ along the curve since

v · τ =

{
dx2

dt
,−dx1

dt

}
·
{
dx1

dt
,
dx2

dt

}
= 0;

and when τ = {1, 0} then ν = {0,−1}, so the pair of orthogonal vectors ν, τ
has the orientation of the vector space R2. In these terms the version (7.134) of
Green’s Theorem takes the form

(7.138)

∫
γ

f · ν ds =

∫
D

(
∂f1

∂x1
+
∂f2

∂x2

)
.

While the line integral
∫
γ

f ·τ ds measures the component of the vector field f in

the direction of the tangent vector to γ, the integral
∫
γ

f ·ν ds is the component
of the vector field f in the direction of the outward normal vector to γ. The
first integral sometimes is interpreted as the work done by the vector field f
in pushing a particle along the curve γ, while the second integral sometimes is
interpreted as the total flow across the curve γ of a substance moving with the
velocity at any point x described by the vector f(x). For a conservative vector
field f = ∇h with the potential function h Green’s Theorem in these two cases
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takes the forms ∫
γ

∇h · τ ds =

∫
D

(
∂2h

∂x1∂x2
− ∂2h

∂x2∂x1

)
= 0,

(7.139) ∫
γ

∇h · ν ds =

∫
D

(
∂2h

∂x2
1

+
∂2h

∂x2
2

)
=

∫
D

∆h

where ∆h is the Laplacian of the function h, defined as ∆h(x) = ∂2h(x)
∂x2

1
+ ∂2h(x)

∂x2
2

.

Another classical special case of Theorem 7.18 arises in three dimensions,
and has a great number of applications in physics.

Corollary 7.20 (Gauss’s Theorem) If C is a singular 3-chaiin in an open
subset U ⊂ R3 then

(7.140)

∫
∂C

(
f1dx2 ∧ dx3 + f2dx3 ∧ dx1 + f3dx1 ∧ dx2

)
=

∫
D

(
3∑
i=1

∂fi
∂xi

)
for any C∞ vector field f = {f1, f2, f3} in U .

Proof: This is just the special case of the Theorem 7.18 for the differential form
Ωf in R3, so no further proof is required.

For the differential form Ωf associated to a vector field f the surface integral
in (7.140) can be written as in (7.111), while the integrand in the integral over
the set D can be written as in (7.84), so Gauss’s Theorem can be written in the
alternative form

(7.141)

∫
Γ

f · ν dS =

∫
D

∇ · f =

∫
D

div f(x)

where Γ is the boundary chain of the singular 3-chain C and D = |C| is the image
of the chain C. As in the discussion of Green’s Theorem, the surface integral can
be interpreted as the total flow across the boundary Γ of a substance moving
with the velocity at a point x ∈ R3 described by the vector f(x). With this
interpretation, ∇ · f(x) = div f(x) describes the amount of this mysterious
substance created at the point x, so the volume integral can be interpreted as
the total amount of the substance being created within D. Gauss’s Theorem
asserts that the amount of substance being created in D is equal to the amount
flowing outward across the boundary Γ of D, the amount of material diverging
from the domain D and measured locally by div f(x). For the particular case in
which the vector field f is conservative, so is the gradient f = ∇h of a potential
function, Gauss’s Theorem takes the form

(7.142)

∫
Γ

∇h(x) · ν dS =

∫
D

∇ · ∇h(x) =

∫
D

∆h(x)

in terms of the harmonic differential operator ∆h =
∑3
i=1

∂2h
∂x2
i

in R3. For a

simple example of Gauss’s Theorem, to integrate the normal component of the
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vector field f = {2x1, x
2
2, x

2
3} over the boundary Γ of the unit sphere D =

{ x ∈ R3
∣∣‖x‖22 ≤ 1 }, since ∇ · f = 2 + 2x2 + 2x3 it follows from (7.141) that∫

Γ
f · ν dS = 2

∫
D

(1 + x2 + x3). The unit ball is symmetric with respect to
the variables x2 and x3 so the second two terms in the integral yield 0 and
consequently

∫
Γ

f · ν dS = 2
∫
D

1 = 8
3π.

A final classical interpretation of the general Stokes’s Theorem of Corol-
lary 7.16, which was traditionally called Stokes’s Theorem before that term was
adopted for the general case, involves line integrals in R3 that are the boundaries
of singular 2-chains.

Corollary 7.21 If C ⊂ U is a continuously differentiable singular 2-chain in
an open subset U ⊂ R3 then

(7.143)

∫
∂C

f(x) · τ ds =

∫
C

(
∇× f(x)

)
· ν dS =

∫
C

curl f(x) · ν dS

for any C∞ vector field f(x) in U .

Proof: This is just the special case of Corollary 7.16 for the differential form
ωf , so no further proof is necessary.

For a simple example of the classical Stokes’s Theorem, let γ be the intersec-
tion of the unit sphere S ⊂ R3, the set S = {(x1, x2, x3) |x2

1 +x2
2 +x2

3 = 1}, with
the plane x3 = 0 and f(x) be the vector field f(x) = {2x1, x

2
2, x

2
3}; since the

curve γ is the boundary of the disc D = {(x1, x2, x3)|x2
1+x2

2 ≤ 1, x3 = 0} when
the orientation of the disc is described by the differential form dx2 ∧ dx1, and
∇×f(x) = 0, Stokes’s Theorem asserts that

∫
γ

f(x)·τ ds =
∫
D

(
∇×f(x)

)
·ν dS =

0. For a perhaps more interesting observation though, if Ω is a closed 2-form in
R3 and S is the unit sphere in R3, so that S is the boundary S = ∂D of the unit
ball, then by Gauss’s Theorem

∫
S

Ω =
∫
D
dΩ = 0; but that does require that

the differential form Ω is defined and closed in the entire ball D, just as with the
corresponding example in R2 discussed on page 321. However if Ω = dω is an
exact differential form defined just in an open neighborhood of the unit sphere
S, and not necessarily in the entire ball D, it is actually the case that

∫
S

Ω = 0.
Indeed if γ is a circle on S, the intersection of S with a plane in R3, then γ splits
the sphere S into two pieces, S = S1 ∪ S2, where γ is the boundary of both S1

and S2; but if S1 and S2 have the same orientation as S and if γ is oriented so
that ∂S1 = γ then clearly ∂S2 = −γ. Then by the classical Stokes’s Theorem∫
S

Ω =
∫
S1

Ω +
∫
S2

Ω =
∫
γ
ω −

∫
γ
ω = 0. The classical Stokes’s Theorem was

also used to give a geometrical interpretation of the curl of a vector field. If
f(x) is a C1 vector field in an open neighborhood U of a point a ∈ R3, if Dε

is a disc of radius ε centered at the point a in a plane L ⊂ R3 through the
point a, with boundary γε = ∂Dε in L, and if the plane L is chosen so that the
unit normal vector ν to the plane L is parallel to the vector curl f(a),then by
Stokes’s Theorem

∫
γε

f(x) · τds =
∫
Dε

curl f(x) ·ν dS; and since the area of the

disc Dε is |Dε| =
∫
Dε
dS it follows that

1

πε2

∫
γε

f(x) · τds =

∫
Dε

curl f(x) · ν dS∫
Dε
dS.
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The function curl f(x) ·ν is a continuous function of the point x, so its average
over the disc Dε approaches the value curl f(a) · ν = ‖curl f(a)‖2 in the limit
as ε tends to zero; consequently

(7.144) ‖curl f(a)‖2 = lim
ε→0

1

πε2

∫
γε

f(x) · τ ds,

so that the length of the vector curl f(a) is the limit of the line integral of the
vector f(x) around the curve γε as ε tends to zero, where this integral can be
viewed as describing the curl of the vector field f(x) at the point a.
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PROBLEMS, GROUP I:

(1) Compute the surface integral∫
S

(x2
1 + x2

2)dx1 ∧ dx2 + x1dx2 ∧ dx3

where S is the curved part of the boundary of the cylinder of height 1 with base
the unit circle at the origin in the plane of the variables x1, x2 oriented so that
the normal vector points outward.

(2) Express the surface integral
∫
S

f · ν dS of the vector-valued function
f(x1, x2, x3) = t(x2

1 + x2
2, x2x3, x

2
3)

on the piece S of the surface of the cylinder x2
2 + x2

3 = 4 in R3 for which
0 ≤ x1 ≤ 1 x2 ≥ 0, x3 ≥ 0, oriented so that ν is the outward normal, as the
integral of a differential form and evaluate this integral.

(3) Express the surface integral
∫
S

f · ν dS of the vector-valued function
f(x1, x2, x3) = t(x2

1, x3,−x2)
along the surface S of the unit sphere x2

1 + x2
2 + x2

3 = 1, oriented so that ν is
the outward normal, as an integral of an appropriate differential form on S, and
evaluate the integral by using Stokes’s Theorem.

(4) In R3 let S be the surface x2
1 + x2

2 = 1 − x3, 0 ≤ x3 ≤ 1, and let S0 be
the disc x2

1 + x2
2 ≤ 1, x3 = 0. Orient the surface segments S and S0 so that the

normal vectors point outwards from the interior of the region they bound.
(i) Compute the surface integral

∫
S

f · ν dS for the vector field
f(x1, x2.x3) = t(x1, x2, 2x3 − x1 − x2).

(ii) Compute the integral in (i) but for the surface S0.

(5) Compute
∫
X

(∇ × f) · ν dS for the vector field f(x) = {x2, x1x2x3, x2}
where X is the piece of the paraboloid x3 = 3− x2

1 − x2
2 for which x3 ≥ 0, and

ν is the unit outward normal vector to X.

PROBLEMS, GROUP II:

(6) If ω is a closed differential 1-form on the complement of the origin in R2

show that there is a unique constant c such that ω = c dθ + df where θ is the
angle (or argument) in polar coordinates and f is a differentiable function in
the complement of the origin in R2.

(7) Show that the volume of a smoothly bounded Jordan measurable set D ⊂ R3

is given by the surface integral V = 1
3

∫
∂D

f · ν dS for the vector field f(x) =
t(x1, x2, x3), where the boundary surface is oriented so that the normal vector
points outward.
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(8) Demonstrate the differential form analogue of the formula for integration
by parts, the assertion that if C is an n-dimensional chain in an open subset
U ⊂ RN , if f is a smoothly differentiable function in U and if ω is a smoothly
differentiable (n− 1)-form in U then∫

C fdω =
∫
∂C fω −

∫
C(df) ∧ ω.

(9) If φ is a smooth oriented singular 2-cell in R3 and f, g are C1 functions
in an open neighborhood U of the image φ(∆) show that∫

∂φ
f∇g · τds =

∫
φ

(∇f ×∇g) · νdS.

(10) (i) Let Λr0(∆) be the set of C∞ differential r-forms in the cell ∆ ⊂ Rn
that are identically 0 in an open neighborhood of the boundary ∂∆. Show that
the integral formula (ω1, ω2) =

∫
∆
ω1 ∧ ∗ω2, where ∗ω2 is the Hodge dual of ω2,

defines an inner product on the vector space Λr0(∆).
(ii) Show that for this inner product (dω1, ω2) = (ω1, dω2) where ω1 is an (r−1)-
form, ω2 is an r-form and the differential operator d is defined by dω = ±∗d∗ω.

(11) A function f in Rn is said to have compact support if there is a com-
pact set S ⊂ Rn such that f(x) = 0 whenever x 6∈ S.
(i) Show that if fi for 1 ≤ i ≤ n are continuously differentiable functions in Rn
and at least one of them has compact support then∫

Rn
df1 ∧ df2 ∧ · · · ∧ dfn = 0.

(ii) Find an explicit example of continuously differentiable functions fi in Rn,
of course none of which has compact support, such that

lim
r→∞

∫
Br

df1 ∧ df2 ∧ · · · ∧ dfn =∞

where Br = { x ∈ Rn
∣∣ ‖x‖2 ≤ r }.

(iii) Show that if f1, f2 are C∞ functions in Rn and at least one of them has
compact support then∫

Rn

f1(x) df2(x) ∧ dx2 · · · ∧ dxn = −
∫

Rn

f2(x) df1(x) ∧ dx2 · · · ∧ dxn.

(12) Let f = {f1, f2, f3} be a C∞ vector field and g be a C∞ function in an open
cell ∆ ⊂ R3; and let D be a singular cell in ∆ such that its boundary ∂D is a
C∞ submanifold of ∆.
(i) Find d ∗ ωf , where ∗ indicates the Hodge dual form, and also find ∗ωf ∧ dg.
(ii) Show that if f(x) is a tangent vector to the surface ∂D at each point x ∈ ∂D
then ∫

D

(
f1∂1g + f2∂2g + f3∂3g

)
= −

∫
D

(
∂1f1 + ∂2f2 + ∂3f3

)
g.

(iii) Show that if ∇g(x) is a tangent vector to ∂D at each point x ∈ ∂D and
if ∆g(x) = ∂2

1g(x) + ∂2
2g(x) + ∂2

3g(x) = 0 at each point x ∈ D then g(x) is
constant in D.
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abelian group, 15
absolute value, 61

of a complex number, 64
absolutely convergent

double series, 156
absolutely convergent series, 153
adjoint

endomorphism, 216, 217
matrix, 217

adjugate matrix, 52
algebra

commutative, 53
exterior, 313, 314
function, 178
fundamental theorem, 124
self-adjointfunction, 180

algebra over a field, 53
algorithm

division, for polynomials, 190
Euclidean, 190

almost everywhere, 264
alternating

multilinear function, 48
alternating harmonic series, 154
analytic

real, 152, 167
angle

between two vectors, 64
antiderivative, 267
antisymmetry

in a partial ordering, 5
in order, 9

arc length, 299
arc length parametrization

of a curve, 303
archimedian field, 27
argument

of a complex number, 175
arithmetic mean, 65
associative law, 14, 15
axioms

Peano, 6

Baire Category Theorem, 102
ball

closed, 89
in normed vector space, 66

ball, open, 79
basis

orthogonal, 207
orthonormal, 207, 213

Basis Theorem, 33
bijective

mapping, 2
bilinear function

nontrivial, 206
skew-symmetric, 206
trivial, 206

binomial
coefficiets, 175
function, 175

block
Jordan, 198

Bolzano-Weierstrass Theorem, 101
boundary, 338
boundary chain, 336
boundary of a set, 88
bounded above, 25
bounded below, 25
bounded linear transformation, 67
bounded set, 100

cancellation law, 15, 16
Cantor set, 101
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Cantor’s Diagonalization Theorem, 10
Cantor-Bernstein Theorem, 8
cardinality, 6
Cartesian norm, 61
Cartesian product, 14
category

first and second, 103
Category Theorem

of Baire, 102
category, first, 103
category, second, 103
Cauchy sequence

uniformly, 121
Cauchy-Schwarz inequality, 63
Cayley table, 17
cell

Ck singular, 330
open, 79
singular, 330
standard unit, 330

cells
equivalent singular, 331

chain
boundary, 336
singular, 336

Chain Rule, 137
change of local coordinates, 229
characterisic polynomial

of a matrix, 186
characteristic function of a set, 4, 270
characteristic value, 186
characteristic vector, 186
closed

mapping, 128
closed ball, 89
closed mapping, 128
closed sets, 86
closure, 87
cofinite topology, 96
column

of matrix, 40
column rank

of matrix, 45
commutative algebra, 53
commutative diagram, 44
commutative group, 15

commutative law, 14, 16
commute, 188
compact

locally, 102
compact set, 97
complement

of a subset, 2
orthogonal, 217

complete ordered field, 25
complex conjugate, 55
complex inner product space, 213
complex inner product spaces

isometry, 214
isomorphism, 214

complex numbers, 55
composite mapping, 4
composition

of linear transformations, 38
conditionally convergent series, 153
congruent

hermitian, 216
orthogonally, 216

congruent matrices, 206
conjugate linear, 213
connected topological space, 90
conservative vector field, 307
construction of the real numbers, 80
content of a set, 270
content zero, 262
continuous

almost everywhere, 264
uniformly, 119

continuous mapping, 109
continuously differentiable, 136
convergence

radius of, 164
convergent

power series, 152
double series, 156
pointwise, 120
uniformly, 120

convergent series, 153
absolutely, 153
conditionally, 153
uniformly, 163

convergrent
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sequence of mappings, 120
convex

set in Rn, 91
coordinate

covering, 229
neighborhood, 229

coordinate covering
differentiable, 230
equivalent differentiable, 230

coordinate system, 214
in a vector space, 39

coordinates
change of, 229
local, 229
of vector in Fn, 31

correspondence
one-to-one, 2

cosine, 172
countable set, 6
countably infinite set, 6
covering

coordinate, 229
open, 97

Cramer’s Rule, 52
critical point, 131
cross-product

of vector fields in R3, 315
curl

of vector field, 325
curve, 297

Ck, 297
C∞, 297
parametrized, 252
parametrized, 297
parametrized by arc length, 303
parametrized rectifiable, 300
rectifiable, 301
regularly parametrized, 303
simple, 297

curve:piecewise linear, 299
cycle, 338
cyclic group, 17

Decomposition Theorem, 237
degree

of nilpotent matrix, 196

of polynomial, 22
dense, 87

subspace, 71
dependence

linear, 33
dependent, functionally, 256
derivative, 129

directional, 141
exterior, 320, 341

derived set, 93
determinant, 49
diagonal matrix, 43
diagonalizable

matrix, 195
diagonalizable matrix, 188
diagram

commutative, 44
Venn, 2

diffeomorphism, 225
difference between two sets, 2

symmetric, 2
differentiable

continuously, 136
coordinate covering, 230
coordinate covering, equivalent, 230
function, on a differentiable man-

ifold, 230
differentiable mapping, 129
differential form, 137, 314

induced under a mapping, 318
integral, 331
pullback under a mapping, 318

dimension
of vector space, 34

Dimension Theorem, 34
direct sum

of linear spaces or subspaces, 32
of vector spaces, 33

directional derivative, 141
discrete metric, 71
discrete topology, 86
disjoint sets, 2
disjoint union, 14
distributive law, 14
divergence of vector field, 324
divergent
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double series, 156
division algorithm

for polynomials, 190
divisor

greatest common, 190
domain

Euclidean, 190
integral, 23
of a mapping, 2

dot product, 62
double series, 156

convergent, 156
divergent, 156
iterated sums, 158

duality of differential forms, 316

eigenspace, 186
eigenvalue, 186
eigenvector, 186
empty set, 1
endmorphism

adjoint, 217
endomorphism

adjoint, 216
normal, 218
of a vector space, 185
self-adjoint, 218
unitary, 218

equal sets, 1
equicontinuous, uniformly, 123
equivalence

of norms, 66
equivalence class, 4
equivalence relation, 4
equivalent

differentiable coordinate coverings,
230

matrices, 43, 185
parametrized curves, 297
singular cells, 331

equivalent sets, 5
Euclidean algorithm, 190
Euclidean domain, 190
Euclidean norm, 61
even

permutation, 47

exact sequence
of vector spaces, 60

exponential function, 168
exterior algebra, 313, 314
exterior derivative, 320, 341
exterior product, 313
extremum

local, 131

field, 18
archimedian, 27
complete ordered, 25
of quotients, 24

field,vector, 137
finite dimensional, 34
first category, 103
First Fundamental Theorem of Calcu-

lus, 267
form

differential, 314
differential, integral, 331

four group, 17
Fourier series

finite, 180
Fubini’s Theorem, 278
function, 109

alternating multilinear, 48
binomial, 175
characteristic, of a set, 4
differentiable, on a differentiable

manifold, 230
exponential, 168
induced, 299
induced under a mapping, 317
linear, 48
logarithm, 170
multilinear, 48
negative definite quadratic, 211
nontrivial bilinear, 206
periodic, 174
positive definite quadratic, 211
pullback, 299
quadratic, 211
trivial bilinear, 206

function algebra, 178
self-adjoint, 180
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functionally dependent, 256
fundamental theorem of algebra, 124
Fundamental Theorem of Calculus, 267

First, 267
Second, 266

Gauss’s Theorem, 347
general linear group, 42
generalized harmonic series, 177
geometric mean, 65
geometric series, 159
gradient, 136
Gram-Schmidt Orthogonalization Method,

208
Gram-Schmidt Theorem, 208
greatest common divisor, 190
greatest lower bound, 25
Green’s Theorem, 344
group, 15

abelian, 15
commutative, 15
cyclid, 17
general linear, 42
Klein’s, 17
singular homology, 340
symmetric, 16

group homomorphism, 18
group isomorphism, 18

harmonic series, 155
alternating, 154
generalized, 177

Hausdorff space, 92
Heine-Borel Theorem, 100
hermitian

matrix, 213
matrix, positive definite, 215
symmetry, 213

hermitian congruent, 216
hermitian congruent matrices, 216
hessian

of a function, 213
hessian matrix

of a function, 213
Hodge duality, 316
homeomorphic spaces, 116

homeomorphic submanifolds, 245
homeomorphism, 116, 225
homology group

singular, 340
homomorphism

vector space, 35
homonorphism

of groups, 18

ideal
polynomial, 191

identity
polarization, 63

identity isomorphism, 35
identity law, 15
identity matrix, 40, 42
image

inverse, of a mapping, 2
of a mapping, 2
of linear transformation, 36

improper integral, 287
improper Riemann integral, 284
inclusion

proper, 1
independence

linear, 33
independent

linearly, subspaces, 32
indiscrete topology, 86
induced differential form

under a mapping, 318
induced function, 299

under a mapping, 317
induced topology, 90
induction

Peano axiom, 6
proof by mathematical, 6

inequality
arithmetic and geometric means,

65
Cauchy-Schwarz, 63

infimum, 25
infinite

countably, 6
injective

linear transformation, 35
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mapping, 2
inner product, 62

standard complex, 215
inner product space

comples, 213
complex, isometry, 214
complex, isomorphism, 214
real, 213

inner product space, real, 62
integers, 20

positive, 21
integrable

Riemann, 265
integral

improper, 287
iterated, 278
lower, 261
of differential form, 331
on a parametrized curve, 299
oriented, 267, 329
Riemann, 261, 265
upper, 261

integral domain, 23
integral, line, 306
integration by parts, 267
interior, 87
intersection of sets, 1
interval

open, 79
inverse

mapping, 2
inverse image

of a mapping, 2
inverse law, 15
Inverse Mapping Theorem, 228
invertible

matrix, 42
irreducible polynomial, 190
isometric spaces, 72
isometry, 72

of complex inner product spaces,
214

isomorphism
of complex inner product spaces,

214
of groups, 18

vector space, 35
iterated integral, 278
iterated sums

of double series, 158

Jacobian, 226
Jacobian matrix, 226
Jordan

normal form, 198
Jordan block, 198
Jordan measurable set, 269

kernel
of linear transformation, 36

Klein’s four group, 17
Klein’s Vierergruppe, 17
Kronecker

symbol, 35
vector, 35

Lagrange multipliers, 254
larger topology, 86
leading coefficient

of polynomial, 22
leading term

of polynomial, 22
least common multiple, 190
least upper bound, 25
length, arc, 299
limit, 117

of sequence of mappings, 120
limit point, 93
line integral, 306
linear dependence, 33
linear function, 48
linear independence, 33
linear order, 21
linear subspace, 32
linear subspaces

sum, 32
linear transformation, 35

bounded, 67
linearly independent subspaces, 32
local

change of coordinates, 229
coordinate system, 229
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local extremume, 131
local maximuim, minimum, 131
locally compact, 102
locus, zero, 244
logarithm, 170
lower integral, 261

manifold, 229
oriented, 234
topological, 229

mapping, 109
between sets, 2
bijective, 2
continuous, 109
injective, 2
inverse, 2
open, 229
surjective, 2

Mapping Theorem, 37
marix

permutation, 53
mathematical induction, proof by, 6
matrices

equivalent, 43, 185
similar, 185

matrix, 40
adjoint, 217
adjugate, 52
congruent, 206
diagonal, 43
diagonalizable, 188, 195
hermitian, 215
hermtian, 213
hessian, 213
identity, 40, 42
invertible, 42
negative definite, 211
nilpotent, 196
nilpotent, degree, 196
nonsingular, 42
orthogonal, 216
permutation, 233
positive definite, 211
positive definite hermitian, 215
principal minors, 211
singular, 42

unitary, 216
zero, 40

matrix blocks, 43
matrix, Jacobian, 226
maximal topology, 86
maximum

local, 131
mean

arithmetic, 65
geometric, 65

mean norm, 61
Mean Value Inequality, 143
Mean Value Theorem, 132, 142
measurable set, Jordan, 269
measure zero, 262
metric, 71

discrete, 71
equivalence, 72
norm, 71
space, 71
weakly equivalent, 96

metric topology, 86
minimal polynomial, 192
minimal topology, 86
minimum

local, 131
modulo, 32
modulus

of a complex number, 64, 175
monic

polynomial, 190
multi-index notation, 149, 312
multilinear function, 48
multiple

least common, 190
multiplicity

of an eigenvalue, 186

natural numbers, 6
natural orientation

of Rn, 232
negative definite

matrix, 211
quadratic function, 211

neighborhood
ε, 78
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coordinate, 229
open, of a point, 86
rational, 284

nilpotent
matrix, 196
matrix, degree, 196

non-orientable
manifold, 234

nonsinglar matrix, 42
nontrivial

bilinear function, 206
norm, 61

Cartesian, 61
equivalence, 66
Euclidean, 61
mean, 61
operator, 67
supremum, 61

normal
endomorphism, 218

normal form
Jordan, 198

notation
multi-index, 312

nowhere dense set, 103
null space

of linear transformation, 36
number

rational, 24
numbers

natural, 6
real, 25

odd
permutation, 47

one-to one correspondence, 2
open

ball, 79
cell, 79
interval, 79
mapping, 229

open covering, 97
open neighborhood

of a point, 86
open set, 78
open sets, 86

operator norm, 67
order, 5

linear, 5, 21
of element of a group, 16
of group, 16
partial, 5, 21

ordered ring, 21
orientable

manifold, 234
orientation

natural, of Rn, 232
of a vector space, 232

oriented
manifold, 234

oriented integral, 267, 329
origin

Peano axiom, 6
orthogonal

complement, 217
subspaces of a vector space, 217

orthogonal basis, 207
orthogonal matrix, 216
orthogonal vectors, 64
orthogonally congruent matrices, 216
orthonormal basis, 207, 213
oscillation, 118, 262

parallel vectors, 64
parametrized curve, 252

by arc length, 303
equivalent, 297
rectifiable, 300
regularly parametrized, 303
segment, 301

partial derivative, 131
partial order, 5, 21
partial sum

of Taylor series, 152
partial sums

of power series, 152
partial sums of series, 153
partition, 259
parts

integration by, 267
Peano

axioms, 6
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perfect
set, 93

periodic function, 174
permutation, 46, 233

even, odd, 47
matrix, 233
sign of, 233

permutation matrix, 53
perpendicular vectors, 64
piecewise linear curve, 299
point

critical, 131
limit, 93
singular, 232

pointwise convergence, 120
polarization identity, 63
polynomial

characteristic, of a matrix, 186
irreducible, 190
minimal, 192
monic, 190
reducible, 190

polynomial ideal, 191
polynomial ring, 22
positive definite

hermitian matrix, 215
matrix, 211
quadratic function, 211

positive elements
in an ordered ring, 21

positive integers, 21
positive series, 153
potential, 307
power series, 152

convergent, 152
partial sums, 152
sum, 152
uniformly convergent, 152

power set, 4
principal minors of a matrix, 211
product

Cartesian, 14
dot, 62
inner, 62
of matrices, 40
of natural numbers, 14

of vector spaces, 33
scalar, 32

proof by mathematical induction, 6
proper

polynomial ideal, 191
proper inclusion, 1
proper subset, 1
pullback

function, 299
of a differential form, 318

quadratic function, 211
negative definite, 211
positive definite, 211

quotient
linear transformation, 36
of a set under an equivalence rela-

tion, 5
quotient space, 32
quotients

field of, 24

radius of convergence, 164
range

of a mapping, 2
rank

of matrix, 45
Rank Theorem, 249
rational neighborhood, 101, 284
rational numbers, 24
rationals, 24
real

inner product space, 62
real analytic, 152, 167
real inner product space, 213
real numbers, 25, 26

construction of, 80
rectifiable

curve, 301
parametrized curve, 300

reduced form
for elements of Λ(V ), 312

reducible polynomial, 190
refinement, 260
reflexivity

in a partial ordering, 5
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in an order, 9
in equivalence relation, 4

regular parametrization
of a curve, 303

regular topological space, 107
relative topology, 90
Riemann - Lebesgue Theorem, 264
Riemann integrable, 265
Riemann integral, 261, 265

improper, 284
ring, 18

ordered, 21
polynomial, 22

row rank
of matrix, 45

rows
of matrix, 40

scalar, 31
scalar product, 32
second category, 103
Second Fundamental Theorem of Cal-

culus, 266
segment

of parametrized curve, 301
self-adjoint

endomorphism, 218
self-adjoint function algebra, 180
separable, 87
separated

sets, 90
sequence, 72

exact,of vector spaces, 60
series, 153

convergent, 153
double, 156
double, absolutely convergent, 156
double, convergent, 156
double, divergent, 156
double, iterated sums, 158
finite Fourier, 180
generalized harmonic, 177
geometric, 159
harmonic, 155
partial sums, 153
positive, 153

power, 152
power, convergent, 152
power, uniformly convergent, 152
power,partial sums, 152
power,sum, 152
Taylor, 151
uniformly convergent, 163

sesquilinear, 213
set, 1

disjoint, 2
empty, 1
equality, 1
intersection, 1
nowhere dense, 103
open, 78
union, 1

set of the first category, 103
set of the second category, 103
Sierpinski space, 86
sign

of a permutation, 233
of permutation, 47

similar
matrices, 185

simple curve, 297
sine, 172
singular

matrix, 42
singular cell, Ck, 330
singular cells

equivalent, 331
singular chain, 336
singular homology group, 340
singular point, 232
singularity

of a mapping, 232
of submanifolds, 245

skew-symmetric
bilinear function, 206

smaller topology, 86
space

T1, 94
Hausdorff, 92
metric, 71
quotient, 32
real inner product, 62
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Sierpinski, 86
topological, 86

Space, T2, 92
space, metric, 71
space, vector, 31
span, 33
sparse, 87
spectrum

of a linear transformation, 186
standard

complex inner product, 215
standard unit cell, 330
Stokes’s Theorem, 341
structure

C1, 230
subcovering, 97
subgroup, 18
submanifold, 244

C1, 244
subsequence, 123
subset, 1

proper, 1
subspace

dense, 71
linear, 32
metric, 71
vector, 32

succession
Peano axiom, 6

successor
of a natural number, 6

successor natural number, 5
successor set, 5
sum

of power series, 152
direct, of vector spaces, 33
of linear subspaces, 32
of natural numbers, 14
of vector spaces, 33
partial, of Taylor series, 152
upper, 260

sum of linear subspaces or subspaces
direct, 32

support
of a curve, 297

supremum, 25

supremum norm, 61
surjective

linear transformation, 35
mapping, 2

Sylvester
criterion, 212
Law of Inertia, 209

symbol
Kronecker, 35

symmetric
bilinear function, 206

symmetric difference of two sets, 2
symmetric group, 16
symmetries

of sets, 16
symmetry

hermitian, 213
in equivalence relation, 4

system
coordinate, 214

table
Cayley, 17

Talor series
partial sum, 152
sum, 152

tangent
line, 252
space, 253
vector, 252

Taylor series, 149, 151, 152
convergent, 152

Taylor series, several variables, 150
Theorem

Baire Category, 102
Bolzano-Weierstrass, 101
Cantor Bernstein, 8
Cantor’s Diagonalization Theorem,

10
Cantor-Bernstein, 8
Chain Rule, 137
Dimension, 34
Heine-Borel, 100
Mean Value, 132
Mean Value Inequality, 143
Mean Value Theorem, 142
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Taylor series, 150
Taylor series, one variable, 149

theorem
Basis, 33
Gram-Schmidt, 208
Mapping Theorem, 37

topological space, 86
topology

COFINITE, 96
discrete, 86
indiscrete, 86
induced, 90
larger, 86
maximal, 86
metric, 86
minimal, 86
relative, 90
smaller, 86

transformation
linear, 35

transitivity
in a partial ordering, 5
in equivalence relation, 4

transitiviy
in an order, 9

transpose
of matrix, 42
of vector, 31

transposition, 47, 233
trivial

bilinear function, 206

uniformly Cauchy sequence, 121
uniformly continuous, 119
uniformly convergent

sequence of mappings, 120
series, 163

uniformly equicontinuous, 123
uniformnly convergent power series, 152
union

disjoint, 14
union of sets, 1
unit cell

standard, 330
unit normal vector

to singular 2-cell, 333

unit tangent vector, 306
unitary

endomorphism, 218
unitary matrix, 216
unreduced form

for elements of Λ(V ), 312
upper sum, 260

value
characteristic, 186

vector, 31
characteristic, 186
Kronecker, 35
tangent, 252
unit tangent, 306

vector field, 137
conservative, 307

vector space, 31
coordinate system in, 39
product of, 33
trivial or zero, 31

vector subspace, 32
Venn diagram, 2
Vierergruppe, 17

weakly equivalent metric, 96
wedge product, 313

zero locus, 244
Index of Notation

(a, b), open interval, 79
2A = (F2)A, the power set of A,

the set of all subsets of A, 4
A∆B, symmetric difference ofsets

A and B, 2
A ∩ B, intersection of sets A and

B, 1
A ∪B, union of sets A and B, 1
A ∼ B, difference between sets A

and B, 2
A ' B, there is a bijective map-

ping f : A −→ B, 5
AtB, disjoint union of sets A and

B, 14
A ⊂ B, A is a subset of B, 1
A $ B, A is a proper subset of B,

1
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A × B, Cartesian product of sets
A and B, 14

A/ �, quotient of setA under equiv-
alence relation �, 5

A†∗, adjugate of the matrix A, 52
BA, set of mappings f : A −→ B,

4
Br(a), open ball, radius r, center

a, 79
Df(a), derivative of mapping f , 131
Dkf(a), partial derivative, 131
E′, derived set (set of limit points)

of set E, 93
Eo, interior of set E, 87
E1 ≤ E2, 25
Fσ set, 104
Gδ set, 104
I, identity matrix, 40
I, identity isomorphism, 35
In, n× n identity matrix, 40
Ir, identity matrix of rank r, 42
L(φ), arc length of parametrized

curve φ, 300
L(φ, [a, b]), arc length of segment

φ, a, b] of parametrized curve301
L(φ,P), are length of piecewise

linear approximation to curve
φ, 299

O(n), orthogonal group of rankn.,
216

R[x], polynomial ring over a ring
R, 22

S∗(f,P), upper sum of function f
for partition P, 260

T ∗, adjoint of endomorphism T ,
216

T1 space, 94
T2 space, 92
U(n), unitary group of rankn., 216
V modulo V0 quotient vector space,

32
V , Klein’s Vierergruppe, 17
V/V0, quotient vector space, 32
V ∼= W , V and W are isomorphic

vector spaces, 36

V1⊕V2, direct sum of vector spaces
or subspaces V1 and V2, 32

V1 × V2, product of vector spaces,
33

Vi⊕V2, direct sum of vector spaces,
33

W⊥, orthogonal complement ofW ,
217

W1 ⊥ W2, subspaces W1 and W2

are orthogonal, 217
Z/nZ, quotient ring of integers,

22
#(A), cardinality of the set A, 6
#(S) =∞, S is an infinite set, 6
C, field of complex numbers, 55
CnI , standard complex inner prod-

uct space, 215
∆, open cell, 79
Λ(V ), exterior algebra on vector

space V , 313
N, the set of natural numbers, 6
Q, field of rationals, 24
R, field of real numbers, 25, 26
Z, ring of integers, 20
Z4, cyclic group of order 4, 17
f ′(a), derivative of mapping f , 131⋂
αAα, intersection of sets Aα, 2⋃
αAα, union of sets Aα, 2

ν, unit normal vector to singular
2-cell, 333

φ, a, b], segment of parametrized
curve301

φ∗(f), induced function under the
mapping φ, 317

φ∗(fω), induced differential r-form
under the mapping φ, 318

τ , unit tangent vector to a curve,
306

x · y, dot product, 62
x,y), inner product, 62
χA(x), characteristic polynomial of

matrix A, 186
χE , characteristic function of set

E, 4
χ
D

(x), characteristic function of
D, 270
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cos t, the cosine function, 172
dimV , dimension of vector space

V , 34
`1 norm, 61
`2, Cartesian or Euclidean norm,

61
`∞, supremum norm, 61
∅, empty set, 1
∂yki
∂xj

, partial derivative, 131

inf(E), infimum or greatest lower
bound of E, 25∫

∆
f , Riemann integral, 261

ι : A −→ A, identity mapping, 9
Gl(n, F ), general linear group of

rank n over field F , 42
crank(A), column rank of matrix

A, 45
rank(A), rank of matrix A, 45
rrank(A), row rank of matrix A,

45
sgn(π), sign of permutation π, 47
µA, minimal polynomial of matrix

A, 192
∇f(x), gradient of function f(x),

136
∇, differential operator, 324
E, closure of set E, 87
∂E, boundary of set E, 88
∂∆, boundary chain of a cell ∆,

336
∂kf , partial derivative, 131
∂uf(a), directional derivative of func-

tion f , 141
ρ(x, y), metric, 71
∼ A, difference E ∼ A when E is

understood, 2
sin t, the sine function, 172
sup(E), supremum or least upper

bound of E, 25
tA, transpose of matrix A, 42
a ≡ b (mod n), congruence rela-

tion, 22
a ≥ E, 25
a ∈ A, a is a member of the set A,

1

a ≤ E, 25
a′, successor to a ∈ N, 6
e(x) = ex, the exponential func-

tion, 168
ex = e(x), exponential function,

170
f−1, inverse mapping to f , 2
g ◦ f , the composite mapping, 4
l(x) = log(x), logarithm function,

170
n-cycle, 338
of (E), of (a), oscillation of function

f , 118
of (S), oscillation of function f in

a set S, 262
p(x), (X), the polynomial q(x) is

a multiple of the polynomial
p(x)192

r-form, 314
s(t) = L(φ, [0, t]), arc length of

curve φ301
curl f(x) = ∇× f(x), 325
divf(x) = ∇ · f(x), 324
grad f(x), gradient of function f(x),

136
C∞ homeomorphism, 225
C =

∑r
j=1 νj ·φj , a singular chain,

336
C1, continuously differentiable, 136
C1 equivalent parametrized curves,

297
L(V,W ), vector space of linear trans-

formations T : V −→W , 38
Nε(a)), 78
P(A), the power set of A, the set

of all subsets of A, 4
of (a), oscillation of function f at

a point a, 262


