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Abstract
One of the central claims associated with the parallel distributed processing approach
popularized by D. E. Rumelhart, J. L. McClelland and the PDP Research Group is
that knowledge is coded in a distributed fashion.  Localist representations within this
perspective are widely rejected.  It is important to note, however, that connectionist
networks can learn localist representations and many connectionist models depend on
localist coding for their functioning.  Accordingly, a commitment to distributed
representations within the connectionist camp should be considered a specific
theoretical claim regarding the structure of knowledge rather than a core principle, as
often assumed.  In this article, it is argued that there are fundamental computational
and empirical challenges that have not yet been addressed by distributed connectionist
theories that are readily accommodated within localist approaches.  It is concluded
that the common rejection of localist coding schemes within connectionist
architectures is unwarranted.
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Challenging the widespread assumption that connectionism and distributed
representations go hand-in-hand.

Since the publication of the two volume set Parallel Distributed Processing
(McClelland, Rumelhart, & the PDP Research Group 1986; Rumelhart, McClelland,
& the PDP Research Group, 1986), connectionist models have played a central role in
theorizing about perception, memory, language, and cognition more generally.  This
approach has reintroduced learning as a core constraint in theory development, it
shows promise of identifying a set of general principles that apply across a wide range
of cognitive domains, and it provides a possible bridge between theories of cognition
and the neural structures that mediate these functions.  And by linking theories of
cognition with theories of learning and neurobiology, connectionism holds the
promise of identifying principled constraints as to why cognitive systems are
organized the way they are as opposed to some other plausible alternatives; that is,
this approach shows promise of supporting explanatory rather than descriptive
theories (Seidenberg, 1993a).

One claim often associated with this framework is that knowledge is coded in
a distributed fashion.  That is, information is coded as a pattern of activation across
many processing units, with each unit contributing to many different representations.
Indeed, at this point, the concepts connectionism and distributed representations are
so strongly associated that distributed representations are sometimes described as one
of the core “connectionist principles” (e.g., Seidenberg, 1993b, p. 300).  This
challenges one of the fundamental assumptions of more traditional “symbolic”
approaches to cognitive theorizing according to which knowledge is coded in a
localist format, with separate representations coding for distinct pieces of information.

The problem with this claim, however, is that localist representations can be
learned in connectionist architecture (e.g., Carpenter & Grossberg, 1987; Grossberg,
1980) and many connectionist models depend on localist coding for their functioning
(e.g., Dell, 1986; Grainger & Jacobs, 1996; Grossberg, 1985; Hummel & Biederman,
1992; Hummel & Holyoak, 1997; Page & Norris, 1998; see Grainger & Jacobs, 1998,
for a recently edited book on “localist connectionism”).   So it is clearly a mistake to
describe distributed representations as an intrinsic property of connectionism.
Instead, it is a specific theoretical claim regarding the structure of knowledge within
this more general framework, and it is reasonable to ask under what conditions
knowledge is represented in a distributed format (if ever), and under what conditions
localist representations develop (if ever).

The main goal of this paper is to raise these questions and put forward a set of
challenges that need to be met before a commitment to distributed coding schemes is
warranted.  Page (in press) has recently provided a strong argument in support of
localist coding schemes, focusing on the strengths of connectionist models that learn
localist representation.  Among other things, he demonstrates that these models can
support a wide range of phenomena based on their close relationship to a number of
classical mathematical models of behavior, and argues that standard criticisms of
localist models—i.e., that they do not generalize, do not degrade gracefully, are not
biologically plausible, etc.—are all unfounded.  In the present paper, I take the
complementary tack, and focus on the weakness of distributed coding schemes.  In
particular, I challenge past evidence that has been taken in support of distributed
coding schemes, question the functional utility of these codes, and most importantly,
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identify fundamental computational limitations of all current models that reject
localist representations.  Many of these challenges are raised in the context of
theories of language processing (in most cases reading), although these issues are
discussed in other domains as well.  At the same time, and in contrast with these
limitations, I show that connectionist models that learn localist representations have
met many of these challenges, although these successes have largely been ignored in
the psychological literature.

Background Issues

Before raising any specific challenges, I would like to set the stage by
identifying some possible points of confusion.  First, it is important to be clear what
constitutes a connectionist network.  Although this might seem self-evident, the issue
is complicated by the role that learning plays in defining the term. Spreading
activation theories of semantic memory (e.g., Collins & Loftus, 1975) as well as the
logogen and the interactive activation models of word identification (McClelland &
Rumelhart, 1981; Morton, 1979) should be considered connectionist model with
localist coding schemes if the term refers to any model that represents information as
a pattern of activation across a set of interconnected units.  But if a central and
defining feature of connectionist models is that they support learning, then these
models can be excluded from this category.  This seems to be the position of
Seidenberg (1993b) when he calls distributed representations a core connectionist
principle, allowing him to exclude these and more recent models, such as those by
Dell (1986), Grainger and Jacobs (1996), and others, which are also hand wired with
localist representations.

But even if one agrees that learning is one of the defining features of
connectionist models, the critical point that needs to be emphasized is that
connectionist models can learn localist representations.  This, however, is not widely
recognized.  For example, consider the following comment by an anonymous review
of an earlier draft of this paper:

The most important problem is that the kind of localist models that both
authors favor [That is Page and myself] involve stipulating on some
pretheoretical or intuitive basis what the units are to represent .  That is,
someone decides that units should correspond to words, syllables,
phonemes, or whatever, and then erect a model….. The present author
doesn’t acknowledge this issue, which is a central one….. Localist
models of this sort all [underline added] solve the representations by fiat:
people just invent them.  Given the lack of constraints on what kinds of
representations can be hand-wired…. this doesn’t end up being a very
strong criterion.”

Similar points have been published elsewhere.

But this characterization of localist networks is mistaken.  For example,
Grossberg and colleagues have developed networks that learn localist representations
without any need to define categories a priori (e.g., Carpenter & Grossberg, 1987;
Grossberg, 1980).  Indeed, Grossberg (1987) specifically criticized the McClelland
and Rumelhart (1981) model that did include hand-wired “letter” and “word” levels,
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and argued that it is preferable to employ the more abstract terms “item” and “list”
levels to refer to units extracted by the learning procedure given that the type of unit is
not pre-specified in his models.  A list level codes collections of items. So for
example, nodes within the list level will learn to represent commonly occurring
groupings of items, which may include words, affixes (e.g., -ed, -ing, un-), stem
morphemes (e.g., ject, vise), bodies (e.g., ead, ind), and even letters.   Grossberg’s
models have been extended (as well as implemented) by Nigrin (1993) and, with
specific focus on visual word identification, Davis (1999).  It is simply not true that
localist representations need to be hand-wired on some pretheoretical basis.

A second general issue of possible confusion is with regards to the types of
localist representations that are rejected by the PDP camp.  The defining feature of a
localist representation is simple enough:  localist coding schemes include separate
representations (that is nodes in a connectionist network) for distinct pieces of
information.  So for example, when a single node in a network codes for the written
letter A and a second node codes for the letter B, the network has encoded these
letters in a localist format.1 The possible confusion relates to the level at which
knowledge—orthographic or otherwise—is claimed to be distributed within the
connectionist framework.  Indeed, within the PDP camp, the extent to which models
include distributed representations varies considerably.  On some models of word
identification, orthographic and phonological knowledge are coded in a distributed
format at all levels, from the input to output units, and there is no single unit in the
model that uniquely defines any piece of information (Seidenberg & McClelland,
1989).   On other models, individual phonetic features, phonemes, letters, or even
complex graphemes (e.g., the letter string TCH) are coded in a localist format (e.g.,
Harm & Seidenberg, 1999; Plaut et al., 1996).  But in all cases, knowledge at the
lexical level is coded in a distributed format, and this is the key theoretical claim that
many authors make, as can be seen in the following quote:

The present model departs from these precursors in a fundamental
way: Lexical memory does not consist of entries for individual words;
there are no logogens.  Knowledge of words is embedded in a set of
weights on the connections between processing units encoding
orthographic, phonological, and semantic properties of words, and the
correlations between these properties.... Thus, the notion of lexical
access does not play a central role in our model because it is not
congruent with the model’s representational and processing
assumptions (Seidenberg & McClelland, 1989, p. 560).

As noted by Page (in press), the willingness to include localist sub-lexical
codes within a network while strongly rejecting localist lexical representations is
surprising, as it leads to the situation in which complex graphemes such as TCH are
represented with localist representations whereas high-frequency words such as IT are
not.  But in any case, the central claim of the present article is that the rejection of
localist representations at the lexical level leads to serious limitations that have not yet
been confronted by the PDP camp.

The above considerations should also make it clear that there is no more or
less stipulation involved in developing models with localist vs. distributed
representations.  Models that use back-propagation (among some other learning
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algorithms) learn distributed lexical representations, whereas most models that learn
via adaptive resonance principles (e.g., Carpenter & Grossberg, 1987), and various
competitive learning schemes (e.g., Rumelhart & Zipser, 1985) learn localist lexical
codes.  There is no reason to conclude that one learning algorithm involves stipulation
whereas the other does not.  Furthermore, as noted above, even in models that learn
with back-propagation, authors sometimes stipulate localist grapheme and phoneme
units (Plaut et al., 1996), or localist letter and phonetic feature units (Harm &
Seidenberg, 1999), or stipulate distributed input and output codes (Seidenberg &
McClelland, 1989).  Distributed representations are every bit as much “stipulated” as
localist representations.

One final point of general introduction should be noted.  One of the
compelling features of the connectionist models that learn distributed representations
is that the same set of principles can be used to explain to a wide range of phenomena,
from reading regular and irregular single syllable words (Seidenberg & McClelland,
1989), nonwords (Plaut et al., 1996), as well as various developmental and acquired
disorders of reading (e.g., Plaut et al., 1996; Harm & Seidenberg, 1999), semantic
priming phenomena (Plaut & Booth, in press), not to mention various non-language
phenomena.  By contrast, more traditional models that include localist representations
often rely on qualitatively different mechanisms to solve different tasks.  For example,
according to the dual route model of reading, irregular words are identified in a
network that includes localist representations (such as the Interactive Activation
model of McClelland & Rumelhart, 1981) whereas nonwords are read by a set of
grapheme-phoneme conversion rules – two systems that operate according to
qualitatively different principles (e.g., Coltheart, Curtis, Atkins, & Haller, 1993). The
fact that connectionist models with distributed representations can accommodate a
wide variety of phenomena is often thought to provide evidence in support of this
general approach.  As Plaut (1999) puts it: "…their relative success at reproducing
key patterns of data in the domain of word reading, and the fact that the very same
computational principles are being applied successfully across a wide range of
linguist and cognitive domains, suggests that these models capture important aspects
of representation and processing in the human language and cognitive domains” (pp.
362-363).

And indeed, the identification of general principles that apply to a wide range
of phenomena is one of the most important functions a theory can fulfill.   But for
present purposes, the relevant point is that this capacity is not restricted to
connectionist models that learn distributed representations.  Indeed, no one has
attempted to explain a wider range of cognitive phenomena than Grossberg and
colleagues, who have developed models of classical and operant conditioning, early
vision, visual object recognition, visual word identification, low-level phonology,
speech recognition, eye-movement control, working memory, episodic memory,
attention shifting, among other phenomena, all employing a small set of principles
embedded within ART networks that learn localist representations (cf., Grossberg,
1999). Others have developed and extended this work by constructing models that
learn to segment familiar patterns embedded in larger patterns, as is necessary in
speech segmentation (Nigrin, 1993) and visual word identification (Davis, 1999)
based on some general learning and processing principles first identified by
Grossberg.   The point is not that Grossberg’s general approach is correct (although I
confess I find this work very compelling), but rather, that connectionist models with
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distributed representations should not be preferred because of their success in a
variety of domains.   Indeed, as argued below, models with localist codes accomplish
a good deal more than current models with distributed representations.

The point of this extended introduction is to demonstrate that there are no
general overarching reasons to prefer distributed compared to localist coding
schemes: Connectionist models can learn either localist or distributed lexical
representations, modelers must “stipulate” various features of their networks, but this
applies equally to models that learn localist and distributed representations, and  both
approaches have been applied to a wide range of phenomena.  Furthermore, as shown
by Page (in press) the standard criticisms levied against localist coding schemes are ill
founded.  Accordingly, if one is going to argue that distributed coding schemes are to
be preferred over more traditional localist representations, it is not sufficient to appeal
to any of these general considerations.  Rather, it is necessary to demonstrate the
advantages of distributed coding schemes when the two approaches are directly
compared in terms of their capacity to accommodate data as well as their ability to
scale up to more realistic settings.   This is approach taken in the present article, and
below I identify a series of basic cognitive functions that have yet to be supported by
connectionist models that learn distributed representations, and contrast these
limitations with existing connectionist models that learn localist representations.

Identifying and naming single syllable words and nonwords.

Connectionist models of word identification that include distributed
representations have focused on the processing of single syllable words and
nonwords, with particular emphasis on the mappings between orthography and
phonology – conditions particularly well suited for learning distributed
representations.  In many respects, these models have been successful within this
domain.  For example, these models can name nonwords (e.g., blap) and irregular
words (e.g., pint).  Prior to the work of Seidenberg and McClelland (1989) and Plaut
et al. (1996), it was widely assumed that qualitatively different mechanisms were
necessary in order to accomplish these two functions.   In addition, as noted by Plaut
(1999) among others, these models can accommodate dozens of specific empirical
results concerning the processing of single syllable words, based on the same general
principles that have been applied to various domains of knowledge.

Still, a number of key phenomena have yet to be explained within this domain
(Besner, 1999, lists 10 such findings).  Let me briefly note two limitations that Besner
does not mention.  First, current models have not provided an explicit account of the
word superiority effect (WSE) in which words are better identified than pseudowords
or single letters—classic findings that are often thought to provide strong empirical
evidence in support of localist coding within the orthographic system.  It is important
to note that localist representations support the WSE in the Interactive Activation
Model of word identification (McClelland & Rumelhart, 1981), as well as more recent
versions of this model (Grainger & Jacobs, 1996).  Thus it is odd that theories that
reject localist coding schemes have not been systematically tested in their ability to
accommodate this rich data set.

Second, Bowers and Michita (1998) reported evidence that words written in
the orthographically unrelated Hiragana and Kanji scripts of Japanese map onto
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common orthographic representations, much like upper- and lower-case words in
English (e.g., READ/read; e.g., Bowers, Vigliocco, & Haan, 1998; Coltheart, 1981;
McClelland, 1976).  In particular, we observed robust long-term priming between
study and test words written in the Kanji and Hiragana scripts (and vice versa),
whereas little or no priming was obtained following a study-test modality shift,
suggesting that the cross-script priming was mediated by modality-specific
orthographic representations.  This finding is consistent with various reports of robust
cross-case and modality specific priming in English (e.g., Bowers, 1996).  But unlike
upper- and lower-case words, Hiragana and Kanji words do not share any sub-lexical
representations and can only be mapped together at the whole word level.  Similar
robust priming effects have been obtained between Hindi and Urdu in Indian (Brown,
Sharma, & Kirsner, 1984) and Roman and Cyrillic in Serbo-Croatian (Feldman, &
Moskovljevic, 1987), although these latter studies did not demonstrate that the cross-
script priming was also modality specific, leaving open the possibility that
phonological or semantic representations supported these latter effects (for general
review of the priming literature, see Bowers, 2000).  The Japanese results, however,
support the conclusion that words are represented at a lexical level within the
orthographic system, and thus provide a challenge to connectionist theories that reject
this level of representation.

Let me also mention one of the most striking problems noted by Besner (1999)
in his review; namely, these models account for little variance in reading response
times at the item level, despite their success in pronouncing words (and more recently
nonwords).  For example, Spieler and Balota (1997) asked participants to read all the
words in the training corpora of the Seidenberg and McClelland (1989) and Plaut et
al. (1996) models, and then carried out regression analyses comparing the mean
naming latencies of the participants to the performance of the model.  When the
estimated naming latency of the Seidenberg and McClelland model were compared to
the human data, the model accounted for 10.1% of the variance.  By contrast, the
combined influences of log frequency, neighborhood density (Coltheart’s N), and
word length was 21.7% of the variance, showing that there is much room for
improvement.  Further, when the Plaut et al. (1996) model was tested, it only
accounted for 3.3% of the variance in word naming.  So, although the model’s
performance was improved with regards to its ability to pronounce nonwords, it was
at the expense of its ability to predict word naming response latencies at the item
level.  In addition, Rastle and Coltheart (1997) tested the Plaut et al. (1996) model on
the nonwords included in Weeks’ (1997) experiment, and found that it only accounted
for 1% of nonword naming latency variance, whereas the Coltheart et al. (1993) dual-
route model explained 38% of the RT variance (see Seidenberg & Plaut, 1998, for
response).  Thus, although these models can name single syllable words and
nonwords, there is little evidence that they accomplish this in the way humans do.

As emphasized by Besner, future advances in connectionist models with
distributed representations may overcome some and perhaps all of these limitations.
The important point to note for present purposes, however, is that even if later
versions of these models can be modified to accommodate all of these results, the
conclusion that distributed representations underlie reading (and cognition more
generally) would still be unsupported.  In order to justify these strong claims, it is
necessary to demonstrate that these representations can support more complex
language functions– such as naming two syllable words, morphologically complex
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words, or encoding two separate words at the same time.  Note, the Plaut et al. (1996)
and Harm and Seidenberg (1999) models cannot address these questions as their input
and output coding schemes were designed to only represent single syllable items
presented one at a time.   Still, it is interesting (and perhaps telling) that the key
change introduced to the Plaut et al. (1996) model in order to support the
pronunciation of single syllable nonwords was the inclusion of localist sub-lexical
representations.

In sum, a number of empirical results obtained with single syllable words and
nonwords remain to be explained with network models that learn distributed
representations, including phenomena that are better accommodated by models with
localist representations (cf. Besner, 1999).  And in any case, general claims
concerning the structure of mental representations based on the processing of simple
word and nonwords are unwarranted.

Identifying and naming two syllable words and morphologically complex words.

As noted above, one of the important limitations of current connectionist
models with distributed representations is that they cannot support the identification
of two syllable words, let alone compound words, such as toothache.  Given the claim
that lexical orthographic and phonological knowledge is coded in a distributed
manner, it will be important to demonstrate that this approach can be extended to the
processing of these more complex word forms.

However, not only are the input and output coding schemes employed by
current models restricted to the processing of single syllable items, there are reasons
to think that these approaches will have difficulties scaling up to more complex forms.
Models that learn distributed lexical codes have used either relational coding schemes
in which each letter is coded within a local context, ignoring the absolute position of
each letter in a word (Seidenberg & McClellend, 1989) or a slot based approaches in
which letters or graphemes are coded in long-term memory in terms of their location
within a word (e.g., Harm & Seidenberg, 1999; Plaut et al., 1997).  For example, the
wickelcoding scheme used by Seidenberg and McClellan (1989) used relational
coding, in which each letter is coded relative to their immediate context, so that the
word DEAD would be coded as the wickelfeatures #DE, DEA, EAD, AD#, where #
refers to a word boundary.  The word DEAD would be identified when all the relevant
features were identified.   In the slot based approach by Plaut et al. (1996), however,
DEAD would be represented by the graphemes D, EA, and D in positions one, two,
three, respectively (a similar slot-based approach was used by Harm & Seidenberg,
1999).

One problem with both these coding scheme, however, is that they obscure
letter-phoneme correspondences that need to be learned through experience.  So for
instance, the mapping between D -> /d/ is relatively constant across letter positions
within a word, but this regularity is lost in the wickelcoding scheme as the two Ds in
DEAD are represented by the unrelated orthographic forms #DE and AD#, and this is
also true of slot-based approaches, as the two Ds are represented by the units D-in-
first-position and D-in-third-position.  That is, the regularities that need to be learned
are dispersed across unrelated orthographic forms.  Plaut et al. (1996) attributed the
poor nonword naming performance of the Seidenberg and McClelland (1989) to the
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extreme version of the dispersion problem in the wickelcoding scheme, which was
reduced in the Plaut et al. (1996) model, and further reduced in the Harm and
Seidenberg (1999) model.  The reduced dispersion problem in both cases allowed
these latter models to pronounce single syllable nonwords (but only after extensive
practice on words).

However, it is important to note that these latter two models continue to treat
the two Ds in the word DEAD as separate orthographic forms, and as such, the
learning of D in one context does not directly apply to D in the other.  Although the
dispersion problem was reduced to the point that the models could learn to read single
syllable words and nonwords, the problem becomes more serious when dealing with
more complex words.  Consider an example taken from Davis (1999) in which a
model has learned the words CAT and HOLE, and then is tested on the morphology
complex word CATHOLE.  The letters H-O-L-E in CATHOLE are represented in
positions four, five, six, and seven, and accordingly, even though the model has been
trained on the word HOLE, this training is irrelevant to naming CATHOLE given that
the letters of HOLE are coded in positions one, two, three, and four– that is, the
HOLE in CATHOLE is orthographically unrelated to the morphologically simple
word HOLE.  Perhaps (although I doubt it) the pronunciation of CATHOLE could be
supported by learning other words that have letters in the corresponding positions of
CATHOLE, such as FATHER, CHOCOLATE, FUNNEL, and PASSAGE, which
have the letters H, O, L, E in positions four, five, six, and seven, respectively.  But in
any case, this would not help the reader to identify the meaning of CATHOLE, as
these latter correspondences are irrelevant to processing the meaning of HOLE coded
in positions four-to-eight.  And this is only one of a number of serious problems with
slot-coding schemes when dealing with complex words, as discussed in detail by
Davis (1999).  For brief discussion, see Andrews and Davis (1999).

Note, the above problem is not a difficulty with distributed representations per
se., but rather, the input coding schemes that these models currently employ (which
are themselves coded in a localist format).  But what needs to be emphasized is that
there are currently no connectionist models with distributed lexical representations
that have solved this fundamental problem, nor have any potential solutions been
suggested.  At the same time, input and output coding schemes that support the
identification of complex word structures have already been identified and
implemented in connectionist networks that rely on the localist coding schemes at
both the lexical and sub-lexical levels (e.g., Davis, 1999; Grossberg 1978; Nigrin,
1993).

The solution depends upon a spatial coding scheme in which localist letter
units are coded in long-term memory in a position invariant fashion, and where the
positions of letters within a word are encoded by the pattern of activation across the
set of active letter units.  That is, letter identity and letter position are dynamically
bound on the basis on the relative activation of letters, such that the same letter nodes
are used regardless of position.   In these models, sequential letters are coded with
decreasing activation values, and the input layer is designed so that there is a constant
ratio between the activities of successive items, what Grossberg (1978) calls the
invariance principle.  So, CATHOLE might be represented as in Figure 1.  One
consequence of the invariance principle is that the pattern of activation for HOLE in
CATHOLE and the morphologically simple word HOLE are the same, allowing direct
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access to HOLE regardless of context.  Note, repeated letters do not pose a problem
for this scheme (Bradski, Carpenter, & Grossberg, 1994; Davis, 1999).

In addition to supporting the identification and naming of more complex word
(and nonword) forms, this coding scheme allows networks to correctly identify subset
and superset patterns, such that a network can correctly identify the words SELF, the
superset MYSELF, and the subset ELF when given the corresponding inputs.  This is
actually quite difficult for many networks to achieve because superset words provide
the maximum amount of excitatory input to both themselves and their subset patterns;
for example, SELF activates all the letters for both SELF and ELF.2  These problems
are simply avoided when networks are restricted to words of a given length (e.g.,
McClelland & Rumelhart, 1981).  Furthermore, Nigrin (1993) employed a spatial
coding scheme in order to develop a model that learns to identify words embedded
within a continuous input string that does not represent word boundaries (much like
continuous speech which does not include straightforward word boundaries)–i.e., the
model could correctly parse the input pattern THEDOGRAN.  So, rather than the
standard approach of recognizing words embedded in a larger pattern by first parsing
words at boundaries (for example, attempting to parse spoken words based on stress,
phonological redundancy, etc.), this model could parse words by first recognizing
them.   Davis (1999) applies a similar approach to Nigrin (1993) but focuses on visual
word identification.

It is also worth mentioning that a spatial coding scheme constitutes a working
memory system, consistent with the strong connection between working memory and
the ability to learn new representations (e.g., Baddeley, Gathercole, & Papagno,
1998).  That is, the coding scheme allows networks to represent order amongst a
limited set of simultaneously active items (both at the letter and word levels),
functions that are currently beyond the capacities of networks with distributed
representations, as discussed later.  Accordingly, this framework is a good example of
a small set of general principles satisfying a wide range of cognitive demands.

In sum, connectionist networks with distributed coding schemes cannot yet
accommodate the identification or naming of multi-syllabic or morphologically
complex words, and it is not clear how the coding schemes employed in these models
can be modified to address these problems.  At the same time, the spatial coding
schemes used in various networks that learn localist lexical representations have
already shown some success in accomplishing these functions.

Generalizing within regular or quasi-regular domains.

As noted above, the majority of simulation studies that have used distributed
coding schemes have focused on the mapping between orthographic and phonological
representations, a case in which the mappings are largely systematic and thus well
suited for distributed coding.  Under these conditions, distributed codes at the lexical
level can support generalization, for example, supporting the pronunciation of simple
orthographic strings that have not been presented previously, such as BLAP.  Of
course, these models can also learn input-output mappings that are not entirely
systematic given their success in reading irregular words.  But it is the consistent
mappings that allow the distributed representations to generalize.
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Although the ability to generalize is considered one of the key properties of
distributed representations, there may be serious limitations to this capacity.  Indeed,
Hummel and Holyoak (1997; Holyoak & Hummel, in press) argue that networks that
reject symbols (that would include all current networks with distributed
representations) are, in principle, unable to generalize in a systematic fashion.  For
example, learning the relations “John is older than Mary” and “Mary is older than
Sue” does not allow these networks to generalize to “John is older than Sue”, because
John, Mary, and Sue are all unrelated concepts in the different contexts.  What is
needed according to these authors is a way to ensure that John, Mary, and Sue are
represented in the same way (by the same units) regardless of context.  Note, this is
the same problem faced by slot coding schemes in word identification, in which the
letter A in first position is different from the letter A in second position.  The solution
proposed by Hummel and Holyoak (1997) is qualitatively the same as that proposed
for letters; namely, it is necessary to represent the concepts John, Mary, and Sue
independent of context, and temporarily bind these units to the role they are playing in
a particular context.  Indeed, these authors have implemented a model that can
dynamically bind concepts such as John, Mary, and Sue to functions such as older (x,
y), allowing the model to generalize in a systematic fashion.  These authors also
provide a mathematical analysis showing that these functions cannot be accomplished
with various other approaches that have been tried, such as conjunctive coding
schemes (see Hummel & Holyoak, 1997, for details).

A striking example of the limitations of networks that reject rules—such as
networks that learn distributed representations via back-propagation—is their
difficulty (or perhaps inability) to learn the identify function (Marcus, 1998).  Marcus
trained a variety of standard network models to map the first node in an input layer to
the first node in an output layer, the second input node to the second output unit, etc,
continuing until input node n-1 was mapped to output node n-1.  This is intended to
simulate the situation in which a person is trained to learn the mapping: one ! one,
two ! two, three ! three, etc.  However, despite extensive training on all the input-
output mappings between units 1 and n-1 (regardless of the size of n), these models
failed to map the input n to the output n.   This is like a human failing to respond 10
given the input 10 after learning the equivalencies from 1 to 9.  The reason these
models did not learn outside its training space is that they only learned to associate
specific inputs with specific outputs.  By contrast, humans can generalize outside the
training space (even generalizing outside the number space, mapping duck to duck),
because, according to Marcus, humans learn an abstract rule, namely, the identity
function input(x) ! output(x).  Interestingly, the neural network model by Hummel
and Holyoak (1997) that can learn abstract rules (including the identify function)
depends upon localist coding schemes for its functioning.

There is a complication to this story, however.  In a behavioral study, Marcus
et al. (1999) familiarized 7-month old infants with sequences of syllables generated
by an artificial grammar.  The infants were then able to distinguish between sequences
generated by this grammar, even when the sequences in the familiarization and test
phases employed different syllables.  That is, the infants showed learning outside the
training set.  Marcus took these data to support the existence of rules in human
learning, and claimed that models that learn with back-propagation could not support
this performance.  However, in a response to this article, Altmann and Dienes (1999)
noted that a model developed by Dienes, Altman & Gao (1999) could also generalize
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beyond the training set, and indeed, the authors were able to simulate the data
reported by Marcus et al. (1999) amongst other findings, despite the fact that the
model included distributed representations (and no rules).

For present purposes, two points should be noted.  First, the network
developed by Dienes et al. (1999) requires training on all the test items for at least one
iteration before any transfer is obtained from the familiarization to test phase.  That is,
when learning an implicit grammar, the model learns more quickly at test when the
implicit grammar in the familiarization and test phases are the same, consistent with
human performance (e.g., Altmann, Dienes, & Goode, 1995).  However, this is a
different situation to the case in which a person generalizes to items that have not
been previously presented.  So for instance, in the case of the identify function, a
person can generate 10 in response to 10, without any previous experience with 10.
The model of Hummel and Holyoak (1997) is able to generalize to completely novel
input forms, although again, it relies on rules and localist representations.  Second,
when learning an implicit grammar, the model of Dienes et al. (1999) sometimes
required more training than people on the test set before showing any transfer from
the familiarization phase.  The authors suggested that this may be due to the fact that
standard back-propagation is poorly suited for learning complex categorizations
because it learns distributed representations, and propose that the problem may be
addressed by including learning rules that develop localist representations (cf.
Kruschke, 1993).

So, at the very least, models with localist representations can generalize as
well as models with distributed representations (cf. Page, 2000)– and if Hummel and
Holyoak (1997), Marcus (1999), and others (e.g., Fodor & Pylyshyn, 1988) are
correct, they have the potential to support a much more powerful form of
generalization.

The role of distributed representations in arbitrary input-output mappings: None.

Although connectionist networks with distributed representations are capable
of supporting some forms of generalization--for example, pronouncing single syllable
nonwords— the ability to generalize is useless (indeed, undesirable) when arbitrary
mappings must be learned.  Learning that the word CHAIR refers to a piece of
furniture does not provide any information about the meaning of the orthographically
related nonword CHAID, and it would be a mistake to generalize in these cases.
Thus, one of the key functional attributes of distributed coding schemes, namely, their
ability to generalize, is not an asset in these conditions.  This undermines much of the
adaptive value of distributed coding in the “triangle” model of reading advocated by
Seidenberg, Plaut and colleagues given the majority of mappings that need to be
learned are arbitrary, as the orthographic-semantic and phonological-semantic
correspondences are largely unsystematic, and only orthographic-phonological codes
are systematically related.

Furthermore, although unsystematic correspondence outnumber systematic
correspondences in the triangle model by a ratio of 2:1, the model underestimates the
number of arbitrary mappings that must be learned.  For example, syntactic features
of words are also often arbitrarily related to their orthographic, phonological and
semantic attributes (cf. Bowers, Vigliocco, Stadthagen-Gonzalez, & Vinson, 1998).
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The complexity of these mappings is important to note because arbitrary mappings are
more difficult to learn using distributed compared to localist coding schemes
(requiring more training), and incorrect generalizations tend to be produced.  What
often facilitates learning in these situations is the inclusion of more of hidden units
(e.g., McRae, de Sa, & Seidenberg, 1997; Plaut, 1997).  For example, in trying to
model lexical decision in a distributed representations, Plaut (1997, p 788) notes: “A
much larger number of hidden units was needed to map to semantics than to map
from orthography to phonology because there is no systematicity between the surface
forms of words and their meaning, and connection networks find unsystematic
mappings particularly difficult to learn.”  Indeed, without including many more
hidden units, the model could not learn these mappings.  It gets easier when more
hidden units are included – and in a model like ART that has a unit for every word,
learning arbitrary mappings is easier still.  The important point to note is that the
inclusion of more hidden units allows a network to develop more localist
representations -- the form of representation that is rejected by these theorists.

Still, despite these difficulties and the lack of any obvious functional utility of
distributed coding schemes when mapping between arbitrary domains, it is
nevertheless argued that distributed representations mediate these mappings.  As far
as I am aware, however, the only evidence put forward in support of this claim was
reported by Hinton and Shallice (1991) and later work by Plaut and Shallice (1993)
who provided a detailed account of the various reading errors associated with deep
dyslexia using a connectionist model that mapped between arbitrarily related
orthographic and semantic representations using a distributed coding scheme.  After
learning these associations, a single lesion to the network caused the model to make a
pattern of errors similar to these patients; that is, it made many semantic errors (e.g.,
settling into the semantic pattern for cat given the orthographic input dog), visual
errors (e.g. settling into the semantic pattern log to the input dog) as well as mixed
visual-and-semantic errors at a rate greater than would be expected by chance (e.g.
settling into  hog in response to the input dog).  This pattern of errors was found to be
quite general, extending to various network architectures with distributed
representations that included recurrent connections (Plaut & Shallice, 1993).  The
ability to accommodate this complex pattern of results with a single lesion is an
improvement over previous accounts that needed to assume multiple lesion sites.
This success was taken to support the conclusion that distributed coding schemes do
indeed support orthographic-semantic mappings.

However, in contrast with the authors initial claim, these results do not depend
upon distributed representations.  The problem with this claim is that similar patterns
of errors are found in connectionist models of speech production (in which
information travels from semantics to phonology rather from orthography to
semantics) that incorporate localist representations and recurrent connections (e.g.,
Dell, 1986; Dell & O’Seaghdha, 1991).  For example, when converting a semantic to
a phonological pattern, these networks would on occasion make various forms of
phonological errors (e.g., output sheep produce sheet), various sorts of semantic errors
(e.g., output cat instead of  dog), and importantly mixed errors  (e.g., output rat to cat)
that were more common than would be expected by chance.  What turns out to be
critical in producing these errors is the interactive nature of processing in the network,
with information traveling in both the semantic-phonological and phonological-
semantic directions.  Distributed representations are not relevant. (Plaut, 1999, also
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notes this point).

In sum, it is unclear what adaptive value distributed coding schemes play
when mapping between arbitrary domains, and the arbitrary mappings outnumber the
systematic mappings in the triangle model of reading advocated by Seidenberg and
colleagues.  Furthermore, there is no evidence that the distributed codes map between
arbitrary domains, despite initial claims.

Language processing beyond single words.

Of course, even if distributed representations play no functional role in the
mapping between two unrelated domains, distributed coding schemes may
nevertheless be used in these situations.  There may be some more basic constraints in
how neurons learn that results in the formation of distributed representations, much
like distributed representations develop in connectionist systems that learn arbitrary
mappings with back-propagation.   The more critical point is whether models with
distributed coding schemes can support various key functions required for reading
words and sentences (and cognition more generally).  As noted above, current
connectionist networks with distributed coding schemes cannot support the processing
of complex word forms presented in isolation, and the problems become more severe
when considering how to represent multiple pieces of information simultaneously, or
representing order amongst a set of items.

To illustrate the first problem, perhaps it is worth describing the limitations of
some specific connectionist models that only include distributed knowledge.  First,
consider a set of connectionist model that represent semantic knowledge using
distributed coding schemes (Becker, Moscovitch, Behrmann, & Joordens, 1997;
Borowky & Masson, 1996; Joordens & Becker, 1997; Masson, 1995; 1998; McRae et
al., 1997; Plaut, 1996; Plaut & Booth, in press).  In these models, concepts are
represented by a distributed pattern of activity over a large number of interconnected
processing units such that related concepts are represented by similar (overlapping)
patterns.  One of the achievements of these models is that they can account for various
semantic priming effects, such that presenting the prime doctor facilitates the
encoding of the related target nurse more than an unrelated prime table (although see
Dalrymple-Alford & Marmurek, 1999, for some complications).  This occurs because
the pattern of activation generated by the a related prime is similar to the pattern of
activation generated by the target, making it easier to arrive at the target state
compared to a condition in which the prime is unrelated to the target.

A key problem with all these accounts, however, is that only a single concept
can be represented at a time.  A pattern of activation across all the units defines a
single concept, and overlapping two patterns on the same set of units results in
nonsense because there is no way to determine which features belong to which
concept.  By contrast, it seems unlikely that thoughts are composed as a series of
single concepts represented one at a time in sequence, any more than sentences can be
coded as a linear string of words (e.g. Vigliocco & Nicol, 1998).  Rather our thoughts
and language are supported by systems that encode the relations between multiple
items that are co-active in parallel.  Without this capacity, we can’t entertain novel
thoughts, such as “The sponge is larger than the tadpole”.  A behavioral manifestation
of co-active representations within conceptual and language systems can be found in a
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classic form of speech error; namely, lexical exchanges, such as: Writing a letter to
my mother --> Writing a mother to my letter (Dell, 1986).  The standard explanation
of this effect is that co-active conceptual representations are assigned the incorrect
grammatical roles (in this case, letter was assigned the role of indirect object rather
than direct object), leading to the exchange. It is unclear whether these errors can be
explained without assuming the co-activation of multiple conceptual and linguistic
representations (cf. Dell, Burger & Svec, 1997).   It certainly has not been done thus
far.  So, although connectionist networks with distributed representations can
accommodate various semantic priming data, they cannot represent meaning.

Or consider a second example, but in phonological processing.  As noted
above, connectionist models with distributed representations can map and generalize
between orthographic and phonological knowledge given the quasi-regular relation
between these two domains.  But, phonological knowledge supports various functions
above and beyond single-word (and pseudoword) pronunciation, such as storing
multiple pieces of information in a short-term phonological store (Baddeley, 1986).
Again, this is problematic, because these connectionist models of reading provide no
means with which to encode more than one word (or pseudoword) at a time.

 Given the above considerations, it is interesting to note that Kawamoto and
colleagues (Kawamoto, 1993; Kawamoto, Farrar, & Kello, 1994) have developed a
distributed theory of semantics that they claimed represents multiple semantic patterns
in parallel.  In particular, the authors developed a connectionist model to account for
semantic ambiguity resolution.  That is, there is a variety of evidence that
homographic words with single spellings (or pronunciation) but multiple meanings
(e.g., bank associated with money and river) activate all meanings for a brief moment,
followed quickly by a process of settling down onto a single appropriate meaning
(e.g., Simpson, 1984).  Evidence comes from cross-modal priming studies, in which
homograph primes are presented visually, and semantic priming is assessed for
auditorily presented targets related to both meanings of the homograph.  Under many
circumstances, semantic priming is obtained to both targets, and in some studies, even
when the context should rule out one meaning. For example, the prime word bugs in
the sentence “Because he was afraid of electronic surveillance, the spy carefully
searched the room for bugs” led to semantic priming for the auditory targets
microphone and insect when the targets were presented immediately after the word
bugs.  But following a delay of about 750-1000 ms, semantic priming is restricted to
the appropriate target microphone (Swinney, 1979).

 To simulate this pattern, Kawamoto trained a network on a set of arbitrary
mappings, with a given input pattern (an orthographic representation) associated with
a given output pattern (a semantic representations) on some learning trials, the same
input pattern associated with a different (unrelated) output pattern on other learning
trials.  When the input was later presented to the network, Kawamoto claimed that the
network temporally represented both semantic patterns, as semantic priming could be
obtained to both meanings of the word during the early stages of processing the input
pattern.  And consistent with the behavioral data, semantic priming was restricted to
one meaning after the input was processed more extensively.

However, there are problems.  First, as noted by Besner and Joordens (1995),
the network actually does a very poor job of representing semantic information in
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many instances.  When the two alternative meanings have been learned to a similar
extent, the network tended to settle into a nonsense blend of the two patterns.  But
even in cases in which the network actually does settle into the dominant semantic
pattern, and in which semantic priming can be observed for both meanings at the early
stages of processing the words, it is incorrect to conclude that both patterns were
simultaneously active.  Instead, the network accomplished semantic priming in the
same way as the previous networks; that is, by varying the difficulty of moving from
one activation pattern to another.  More specifically, after the input is presented, the
activation pattern for the more frequent semantic representation slowly develops, with
the activation values of those semantic units with consistent values in the two patterns
achieving their final values the most quickly, and those units with inconsistent values
developing more slowly, being “undecided” in the early stages of processing.
Because the consistent units settle more quickly into their final states, the network is
actually closer in semantic space to the secondary word meaning than a completely
unrelated word at the beginning of this process (in this network, each node took the
value of either +1 or -1, and as a consequence, approximately half of the units had
consistent values in the unrelated patterns).  Given the closer activation pattern to the
secondary meaning, semantic priming is obtained, as described above.  But to say that
the network represents the alternative word for a short interval of time is misleading,
as fully half of its features are never activated, and indeed, from the very earliest
stages of activation, the nodes with inconsistent values slowly settle into the value
consistent with the dominant meaning.   Of course, the difficulty in representing
multiple forms is exactly the same as the models mentioned above; namely, the
activation of one meaning is inconsistent with all other meanings, and attempting to
co-activate two items simultaneously results in nonsense.

In response to these problems, one might try to argue  that our brains don’t
actually represent multiple pieces of information in parallel, but instead learn to
represent order amongst a set of items that are activated in sequence.  So for example,
rather than representing information in the phonological loop as a collection of co-
activated items, it could be argued that items that are activated sequentially.  And
indeed, connectionist models with distributed coding schemes have been developed
that can represent ordered information; for instance, recurrent networks developed by
Elman (1990).  It is interesting to note, however, that recurrent networks are more
successful in encoding sequences of words when they include localist input coding
schemes.  When Elman (1988) attempted to model sequential order with distributed
representations, he wrote that the: “network’s performance at the end of training...
was not very good”  After five passes through 10,000 sentences, “the network was
still making many mistakes” Elman (p. 17).   Much greater success was obtained
when he relied on localist coding schemes (Elman, 1990).  But more importantly for
present purposes, the ability to represent sequential order in these recurrent networks
was the product of slow learning mediated by changes in the connection weights
between units, producing a long-term representation of ordered information in the
training set.  What is needed to model phonological short-term memory is an ability to
temporarily represent a series of items encoded in real-time.

A solution of this sort was recently proposed by Brown, Preece, & Hulme
(2000), who developed a model of short-term memory in which an internally
generated context representations are associated with the to-be-remembered items.
Briefly, the authors included an oscillator within their model that consists in a pattern
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of activation over a collection of units that changes over time in a deterministic
fashion.  This oscillator is taken to represent an internal state of the model (mind) that
is unaffected by the outside environment.  The to-be-remembered items are also
coded in a distributed fashion, and each item in turn is associated to the current
(different) state of activation within the oscillator, based on Hebbian learning.  At the
time of retrieval, the initial state of the oscillator is reinstated, which in turn retrieves
the first item in the study list based on the learned association.  Because the oscillator
is deterministic, it repeats the same sequence of activations from before, allowing the
internal context to retrieve the associated items studied earlier.  The authors use the
analogy of a clock, in which the hands of the clock represent the internal context that
changes over time in a deterministic manner, and just as a clock repeats itself when it
is set back in time, so does the oscillator. Based on this system, the authors are able to
account for a wide range of phenomena in the short-term memory literature (for
related account, see Lewandowsky, 1999).

Clearly, the success of the model demonstrates that sequential information can
be coded and retrieved using connectionist networks that represent information in a
distributed fashion.  But note, all the work in representing serial order is performed by
a deterministic oscillator that is built into the model and that is unaffected by the
external environment and that can be reset to repeat itself.  Although oscillating
systems have been observed in the brain (e.g., Gray, Konig, Engel, & Singer, 1989),
there is no evidence that they have this property.   And again, it is important to
emphasize that this oscillator model cannot represent two things at the same time.
Although this capacity may be unnecessary in order to account for short-term memory
phenomena, it remains to be seen how various semantic and language skills can be
explained without co-active representations.

To summarize this section thus far, current networks with distributed
representations cannot represent multiple items simultaneously, and although order
can be represented on-line, this has only been accomplished by building a great deal
of purpose-built structure into the network—exactly what authors from the PDP camp
claim to avoid.

In contrast with these limitations, it is important to emphasize that there are
connectionist models of semantic and phonological knowledge that do represent
multiple pieces of information simultaneously and on-line, but they all rely localist
representations in order to achieve this function.  For example, in the case of semantic
knowledge, Hummel and Holyoak (1997) developed a model capable of representing
complex propositions by representing multiple semantic representations in parallel,
employing a complex interplay between distributed and localist codes, where localist
representations function to bind together the semantic features that belong to one
representation or another (thus avoiding the nonsense blend that results in other
networks that avoid localist representations).  In the case of phonological knowledge,
Page and Norris (1998) and Burgess and Hitch (1999) have developed localist
connectionist systems in which order information is represented in terms of the
relative activation of co-active localist codes—that is the spatial coding schemes used
to identify complex word forms (e.g., Davis, 1999)—and like the Brown et al. (2000)
model, these models can account for a wide range of short-term memory phenomena
(also see Grossberg & Stone, 1986; Nigrin, 1993).
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Similarly, models with localist representations can learn one to many
mappings, such as mapping between the orthographic form bank to the semantic
representations money-bank and river-bank; in particular, networks within the ART
family (cf. Bartfai, G., 1996; Carpenter & Markuzon, 1998).  One reason ART models
can learn these mappings is that they have solved the so-called stability-plasticity
problem (Grossberg, 1978; also known as catastrophic interference, McCloskey &
Cohen, 1989; Ratcliff, 1990) such that new learning does not erase past knowledge.
Briefly, these mappings can be learned in ART networks that include a teacher, so-
called ARTMAP networks.  Imagine the case in which a specific pattern of activation
in an input layer learns to activate a specific node in a second layer (call it X).  Now,
if the same input-output mapping is determined to be an error on a later trial, based on
the feedback from the teacher, then the active node X is automatically turned off, and
a new node is activated in the second layer (node Y).  As a consequence of activating
Y, connection weights are changed between the two layers so that Y is activated
based on this same input.  The key point, however, is that the connection weights
between the input units and X are unchanged because learning only occurs between
active items in the two layers, and X was turned off before any learning took place.
As a consequence, when the input is now presented to the network, both X and Y are
activated.3  By contrast, because models that learn with back-propagation have not
overcome the stability-plasticity problem, the attempt to learn inconsistent patterns
causes the network to vacillate between the two possible outcomes, often leading to
blends (or the network settles to the more frequent pattern), as noted above.

More generally, it is interesting to note that the debate concerning the relative
virtues of distributed vs.  localist coding schemes is largely non-existent in literature
focused on sentence level processing.  Rather, the debate has focused on how many
localist lexical representations are required.  For example, in the speech production
literature, Levelt and colleagues (e.g., Levelt, 1989; Levelt, Roelofs, & Meyer, 1999)
have developed a network model of speech production that involves contacting two
lexical representations in sequence, with a conceptual message first activating localist
lexical-semantic representations (so-called lemmas) followed by the activation of
localist lexical-phonological representations (so-called lexemes).  Furthermore,
lemmas are associated with various syntactic features coded locally, and lexemes are
connected with sub-lexical localist phonological representations.  By contrast,
Caramazza and colleagues (e.g., Caramazza, 1997; Caramazza, & Miozzo, 1998; also
see Dell & O’Seaghdha, 1994) have argued that the lemma and lexemes
representations should be collapsed to a single localist representation, which in turn
would be connected to localist syntactic and sub-lexical phonological representations.

The widespread inclusion of localist representations can also be found in the
language comprehension literature, even in cases in which the authors are normally
committed to distributed representations (e.g., MacDonald, Pearlmutter, &
Seidenberg, 1994).  Presumably, the reason that these models have tended to included
localist knowledge is that the authors are confronting head on the problem of
encoding sequences of words on-line, and localist representations seem to serve an
important function in these situations.

So in sum, connectionist models that learn distributed representations via
back-propagation and related procedures cannot represent multiple-items in parallel,
and their ability to represent order on-line depends upon built in structures, such as
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deterministic oscillators.  By contrast, networks that learn localist lexical
representations using spatial coding schemes can represent multiple items in parallel,
and this capacity supports their ability to represent order on-line.

Overall summary

The key theoretical contribution of connectionist models is not that they
provide a means to accommodate various cognitive phenomena while rejecting all
lexical localist representations, but rather, that they have introduced a fundamental set
of learning and processing principles that apply broadly to many cognitive domains
(cf., Grossberg, 1980; McClelland et al., 1986).  And by building models from basic
principles, the theories are more strongly constrained than abstract computational
models that are often hand-tailored to explain a narrow range of findings.  Indeed, by
developing theories based on a small number of general principles, these models may
help to explain why the brain/mind has adopted particular solutions as opposed to
other possible solutions that are descriptively adequate–that is, connectionist models
can provide explanatory theories (cf. Seidenberg, 1993a).

Although localist or distributed representations can be learned within this
framework, there are two general reasons why a strong commitment to distributed
coding schemes is unwarranted.  First, and most important, current models that
include distributed coding fail to support a wide variety of cognitive functions.  The
greatest success of distributed coding schemes have been found in domains that
involve quasi-systematic input-output mappings, in particular, the task of naming
words and nonwords.  But even within this domain, current models are restricted to
processing single syllable items, and serious empirical and computational challenges
need to be met before they adequately account for human performance on these
simple forms, let alone human performance on more complex structures, such as
novel compound words.  Outside this domain, when the input-output mappings are
largely arbitrary (which is the majority of cases in the triangle model of reading
supported by Seidenberg, McClelland, Plaut, and colleagues), it is unclear what
function distributed representations play.  But most  problematic, models with
distributed representations have not been applied to more complex cognitive
phenomena that are fundamental to reading and cognition more generally, such as
representing more than one word at a time.  Until some proposals are offered as how
these more complex skills can be accomplished within this framework, there is little
reason to strongly endorse the claim that all knowledge is coded in a distributed
format.

The second reason why a commitment to distributed coding schemes is
unwarranted is that, unlike the common view, connectionist models can learn localist
representations, and they support all the functions of distributed coding schemes, as
well as more complex computations on which distributed systems fail.  In particular,
these models can support the identification of complex word forms (e.g., Davis, 1999;
Nigrin, 1993), can generalize in systematic fashions (e.g., Hummel & Holyoak, 1997),
map easily between arbitrary domains (e.g., Carpenter & Grossberg, 1987), can
represent order amongst a set of items in short-term memory (e.g., Bradski, Carpenter,
& Grossberg, 1994; Page & Norris, 1998), and can represent multiple items
simultaneously (e.g., Cohen & Grossberg, 1987; Nigrin, 1993).  And as shown by
Page (2000), the standard criticisms levied against localist coding schemes are
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unwarranted.

It is also important to emphasize that models with localist lexical
representations support a wide range of skills using a small set of principles, one of
the important goals of the connectionist agenda.  Indeed, Grossberg has developed his
ART architectures around a small set of key functional demands, including (a) the
ability to process information in noise, such a network can encode significant events
when the input to the system is small or large; the so called noise-saturation dilemma,
(b) the ability to learn new information without erasing past knowledge without
artificially constraining the nature of the learning environment, the so-called stability-
plasticity dilemma, (c) the ability to learn in real time with or without a teacher, (d)
the ability to identify and learn and recognize subset and superset problems, the so-
called temporal chunking problem , (e) the ability to learn with only local interactions,
such that learning is physiologically plausible (unlike back-propagation), and (f) as
noted above, the ability to represent order amongst multiply active items.  All these
functions have been satisfied using the ART and related frameworks, and have been
applied to a wide range of cognitive phenomena, as noted above.  Before localist
coding schemes are rejected, models with distributed coding schemes should at least
match this performance.

Concluding comment

Despite the computational power and neural plausibility of connectionist
network that learn localist representations, in particular the ART models of Grossberg
and colleagues, this work is almost entirely ignored in the psychological literature.
The level to which this work is ignored is quite striking. For instance, in developing a
possible solution to the stability-plasticity problem, McClelland, McNaughton, and
O’Reilly (1995) list many past attempts to solve the problem, and conclude that all
these approaches reduce catastrophic interference at the cost of their ability to
generalize from past experience.  However, they fail to mention ART networks which
were specifically designed to solve this problem.  Indeed, McClelland et al. (1995)
mistakenly credit McCloskey and Cohen (1989) and (Ratcliff, 1990) for
independently identifying the stability-plasticity problem (what they labeled
catastrophic interference), whereas Grossberg identified and provided a formal
solution to this problem much earlier (Grossberg, 1976).  Ratcliff (1990) does credit
Grossberg (1987): “Grossberg has forcefully argued that many of the recent network
models are unstable under temporally changing training environments, and the
problem is illustrated with reference to the back-propagation learning algorithm”(p
306).  However, he fails to mention that Carpenter and Grossberg (1987) implemented
the ART model that solved this problem.

Although there are a few examples of researchers associated with the PDP
camp quoting Grossberg (e.g., Stone, & VanOrden, 1994), the number of references
to ART and related models is not far from zero.  This is undoubtedly the reason why it
is often assumed that distributed representations are one of the core connectionist
principles.  If nothing else, the field needs to more fully consider localist approaches,
and explicitly contrast models that learn localist and distributed codes.  Only then can
strong conclusions regarding the nature of learned knowledge be advanced.4
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Footnotes

1.  Localist coding would also be implemented if the letter A was coded with
collection of nodes that did not overlap with nodes involved in representing other
letters.  So, in terms of implementing a localist coding scheme in neural hardware,
one is not committed to assuming that a single neuron codes for a complex piece of
information.  But one is committed to the view that there is some collection of
neurons is uniquely involved in coding for the letter A, and another set of non-
overlapping neurons uniquely involved in coding for B, etc..

2.  Indeed, Levelt, 1989 claimed it was impossible to access whole word forms from
component features, regardless of whether the features are localist or distributed, due
to what he called the hyperonym and hyponym problem (i.e., problems distinguishing
between subsets and supersets).  However, the success of models that use spatial
coding schemes demonstrate that this conclusion is mistaken.  For brief description of
a formal proof that sub-set and super-set patterns can be identified in spatial coding
network, see Bowers, (1999).

3. Movellan and McClelland (1993) describe a distributed network that could in fact
learn one to many mappings—although it can not represent two things at the same
time.  However, this network has not been tested on any psychological data, and basic
questions regarding how many patterns can be learned, whether the network suffers
from catastrophic interference when multiple patterns are learned, whether sequences
can be learned, etc. have yet to be addressed.  If this network is shown to model the
same set of phenomena that are currently accommodated with localist networks, then
clearly, this particular argument loses force.

4.  For anyone interested in learning more about this approach, perhaps the best place
to start is Grossberg (1987), who explicitly compares the ART framework with more
popular learning algorithms, including back-propagation networks.  Also read the
excellent book by Nigrin (1993), which, in addition to making important advances,
has an excellent introduction to Grossberg’s work.  Davis’ (1999) Ph.D. thesis applies
this general framework to build an impressive model of visual word identification that
extends to multi-syllable and morphologically complex words, and a book is in the
works.
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