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Abstract Socially-conveyed rules and instructions strongly shape expectations and emotions.
Yet most neuroscientific studies of learning consider reinforcement history alone, irrespective of
knowledge acquired through other means. We examined fear conditioning and reversal in humans
to test whether instructed knowledge modulates the neural mechanisms of feedback-driven
learning. One group was informed about contingencies and reversals. A second group learned only
from reinforcement. We combined quantitative models with functional magnetic resonance imaging
and found that instructions induced dissociations in the neural systems of aversive learning.
Responses in striatum and orbitofrontal cortex updated with instructions and correlated with
prefrontal responses to instructions. Amygdala responses were influenced by reinforcement
similarly in both groups and did not update with instructions. Results extend work on instructed
reward learning and reveal novel dissociations that have not been observed with punishments or
rewards. Findings support theories of specialized threat-detection and may have implications for
fear maintenance in anxiety.

DOI: 10.7554/eLife.15192.001

Introduction

Neuroscientists have built a rich understanding of the brain systems that govern learning from pun-
ishments and rewards, which seem to be largely conserved across species (Balleine and O’Doherty,
2010; Haber and Knutson, 2010). Yet humans possess a distinctive capacity to learn from socially-
conveyed rules and instructions, which is an important example of a broader capacity, shared by
many species, of learning from events other than simple reinforcers (Tolman, 1949). Most of us do
not need to get burnt to avoid putting our hands on a hot stove: A verbal warning serves as a suffi-
cient threat. How does instructed knowledge influence our subsequent responses to ongoing threats
in the environment?

Atlas et al. eLife 2016;5:e15192. DOI: 10.7554/eLife.15192

1 of 26


http://creativecommons.org/publicdoman/zero/1.0/
http://creativecommons.org/publicdoman/zero/1.0/
http://dx.doi.org/10.7554/eLife.15192.001
http://dx.doi.org/10.7554/eLife.15192
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access

LI F E Research article Neuroscience

elLife digest Around the start of the twentieth century, Pavlov discovered that dogs salivate
upon hearing a bell that has previously signaled that food is available. This phenomenon, in which a
neutral stimulus (the bell) becomes associated with a particular outcome (such as food), is known as
classical conditioning. The network of brain regions that supports this process — which includes the
striatum, the amygdala and the prefrontal cortex — seems to work in a similar way across most
animal species, including humans.

However, humans don't learn only through experience or trial-and-error. We do not need to burn
our hands to learn not to touch a hot stove: a verbal warning from others is usually sufficient.
Experiments have shown that giving people verbal instructions on how to obtain rewards alters the
activity of the striatum and prefrontal cortex. That is, the instructions interact with the circuit that
also supports learning through experience. But is this the case for learning how to avoid
punishments? That process depends largely on the amygdala, and it is possible that systems
designed to detect threats may be less sensitive to verbal warnings.

To address this question, Atlas et al. taught people to associate one image with a mild electric
shock, and another with the absence of a shock. After a number of trials, the relationships were
reversed so that the previously neutral picture now predicted a shock and vice versa. Telling the
participants about the reversal in advance triggered changes in the activity of the striatum and part
of the prefrontal cortex. By contrast, such warnings had no effect on the amygdala. Instead, the
activity of the amygdala changed only after the volunteers had experienced for themselves the new
relationship between the pictures and the shocks.

A key next step is to find out whether this distinction between the two types of learning signals
(those that can be updated by instructions and those that cannot) is specific to humans. While the
current study relied upon language, there are other methods that could be used to explore this
issue in animals. Furthermore, knowing that the human brain has a specialized threat detection
system that is less sensitive to instructions could help us to understand and treat anxiety disorders.
Atlas et al. hope to test this possibility directly in the future.

DOI: 10.7554/¢elife.15192.002

We tested whether dynamic feedback-driven aversive learning is modulated when individuals are
informed about contingencies in the environment. It is unknown whether instructions integrate with
the systems that support error-driven learning, as most reinforcement learning models fail to account
for the potential influence of explicit information, despite the fact that verbal information shapes
responses across nearly all domains, including aversive learning (Wilson, 1968; Phelps et al., 2001;
Costa et al., 2015; Mertens and De Houwer, 2016). We sought to characterize computationally
the contribution of instructed knowledge to dynamic aversive learning in humans. Our aim was to
determine whether instructed knowledge influences the neural mechanisms of aversive learning, or
whether separate neural systems process feedback-driven and instructed knowledge.

Recent studies in the appetitive domain suggest that instructions about rewarding outcomes
modulate learning-related responses in the striatum (Doll et al., 2009; 2011, Li et al., 2011a) and
ventromedial prefrontal cortex (Li et al., 2011a) and that this modulation might depend on the pre-
frontal cortex (Doll et al., 2009; 2011; Li et al., 2011a). In the aversive domain, such interactions,
by which instructed knowledge might help to overcome learned expectations of threat, are of partic-
ular importance due to their relevance for anxiety and post-traumatic stress disorder. However, no
studies have tested whether instructions have the same effects on dynamic aversive learning, which
is known to depend on the amygdala (Maren, 2001) but also involves the striatum (Seymour et al.,
2004; 2005; Delgado et al., 2008b) and ventromedial/orbitofrontal cortex (VMPFC/OFC)
(Phelps et al., 2004; Kalisch et al., 2006; Schiller et al., 2008). Instructions might modulate learning
in the amygdala as well as the striatum and VMPFC/OFC, or amygdala responses might be insensi-
tive to cognitive instruction (Ohman and Mineka, 2001), as suggested by theories of automatic
threat detection in the amygdala (Ohman, 2005).

All participants performed a Pavlovian aversive learning task in which one image, the Original
conditioned stimulus (CS+), was paired with mild electric shock (the unconditioned stimulus [US]) on
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Figure 1. Experimental design. (A) Prior to the conditioning phase of the experiment, participants in the Instructed Group saw each image and were
informed about initial probabilities. Participants in the Uninstructed Group also saw the images prior to the experiment, but were not told about
contingencies. (B) Participants in both groups underwent a Pavlovian fear conditioning task with serial reversals. There were three reversals across the
duration of the task, leading to four continuous blocks of twenty trials. In each block, one image (the conditioned stimulus, or CS+) was paired with a
shock (the unconditioned stimulus, or US) 30% of the time, leading to 4 reinforced trials and 8 unreinforced trials, whereas a second image (the CS-)
was never paired with a shock. Images were presented for 4 s, followed by a 12-second inter-stimulus interval. (C) Upon each reversal, the Instructed
Group was informed that contingencies had reversed. Button presses were included to ensure participants were paying attention to the instructions but
had no effect on the task itself or task timing. Instructions were always immediately followed by at least two unreinforced presentations of each CS
before the new CS+ was paired with a shock. The figure presents one of two pseudorandom trial orders used during the experiment (see

Materials and methods).

DOI: 10.7554/elife.15192.003

30% of trials, and a second image, the Original CS-, was not paired with shock. Contingencies
reversed three times. Participants assigned to an Instructed Group were informed about initial con-
tingencies and instructed upon reversal (Figure 1), whereas participants in an Uninstructed Group
learned through reinforcement alone. Models were fit to skin conductance responses (SCRs), a tradi-
tional measure of the conditioned fear response in humans. We combined quantitative modeling of
behavior with functional magnetic resonance imaging (fMRI) to examine how instructions influence
brain responses and skin conductance responses (SCRs) during fear conditioning. We evaluated
quantitative learning models, fit to SCR, and confirmed model conclusions with task-based fMRI
analyses. We focused on responses in the amygdala, striatum, and VMPFC/OFC. We hypothesized
that instructions about contingencies would modify learning-related signals and brain responses
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during fear conditioning, and that, as in the appetitive domain, this modulation would involve the
prefrontal cortex.

Results

Subjective ratings

Upon completion of the experiment, participants reported the number of perceived contingency
reversals and retrospectively rated shock expectancy and affect in response to each image. Partici-
pants recognized that three reversals had occurred (M = 3.22, SD = 0.79), and there was no group
difference in the estimated number of reversals (p>0.1). Two-way ANOVAs revealed a main effect of
Group on reported affect (F(1,68) = 8.57, p<0.01), such that the Uninstructed Group reported less
positive affect for both stimuli. There were no Group differences in shock expectancy ratings, nor
were there any main effects of Stimulus (Original CS+ vs Original CS-) or Group x Stimulus interac-
tions on either outcome measure.

Instructions influence skin conductance responses

We tested whether participants showed differential SCRs to unreinforced CS presentations during
fear acquisition (i.e. larger responses to the Original CS+ than Original CS-), and whether responses
were modulated after participants were instructed that contingencies had reversed (Instructed
Group) or after they received a shock paired with the new CS+/ previous CS- (Uninstructed Group).
As reported in Table 1, both groups showed differential responses that reversed in response to con-
tingency changes throughout the task (CS+ > CS-; B = 0.04, t = 5.82, p<0.0001). Differential
responses were larger in the Instructed Group than the Uninstructed Group (B = 0.03, t = 3.98,
p=0.0002), and SCRs habituated over time (B = -0.07, t = 10.59, p<0.0001).

These results reflect group-level effects and group differences across all participants. However, a
subset of participants did not show differential SCRs prior to the first reversal. As our primary
research question concerns the effects of instructions on the neural systems of aversive reversal
learning, the strongest tests are in those individuals who learn contingencies prior to the first rever-
sal. Given this, we restricted our analyses to ‘learners.” As described in Materials and methods, we
defined learners as those individuals who showed greater SCR to the CS+ relative to the CS- in late
acquisition (the second half of the first run; 20/30 Instructed Group participants, 20/38 Uninstructed
Group participants). In this subset of learners, the main effects and interactions on SCR reported
above remained significant and increased in magnitude (Figure 2A,C; Table 1). Importantly, both
the Instructed and Uninstructed Groups showed SCRs that were responsive to changing contingen-
cies when we examined each group separately, and when we restricted analyses to trials that fol-
lowed the first reversal (Table 1), suggesting that effects were not driven entirely by initial learning.
The Uninstructed Group showed significant reversals when we analyzed trials from the second half
of each block in this post-acquisition analysis, and marginal effects when we included all post-acqui-
sition trials (see Table 1). This is expected given the low reinforcement rate (33%) that we used in
this study, and is consistent with somewhat slow learning. The quantitative models and fMRI analyses
reported below focus on the 20 learners in each group. Combined fMRI analyses that include data
from the full sample are entirely consistent with these findings and are reported in figure supple-
ments and source data.

We also tested whether instructions immediately update autonomic responses by examining
instructed reversals in Instructed Group learners. Each reversal featured a delay between instruction
delivery and reinforcement of instructions (Figure 1C): Following instructions, each CS was pre-
sented without reinforcement at least twice before the previous CS- was paired with a US. We com-
pared responses during these post-instruction, pre-reinforcement windows with an equivalent
number of trials prior to each instruction (e.g. the last two CS+ and CS- trials in each phase). We
found a significant effect of instructions on differential responding (B = 0.04, t(19) = 3.50, p=
0.0024), such that SCR responses reversed immediately after each instruction, before any actual rein-
forcement was delivered.
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Figure 2. Effects of instructions on skin conductance responses (SCR) and aversive learning. Mean normalized skin conductance responses (SCRs) as a
function of group and condition. Both groups showed significant reversals of SCR responses throughout the task (p<0.001; Table 1), and effects were
larger in the Instructed Group (see Table 1). Error bars reflect within-subjects error. (A) Mean SCR in the Instructed Group as a function of original
contingencies. Runs are defined relative to the delivery of instructions. (B) Dynamics of expected value based on fits of our modified Rescorla-Wagner
model, fit to SCR in the Instructed Group. Fitted model parameters were consistent with SCR reversing almost entirely in response to instructions (p =
0.943). This timecourse was used in fMRI analyses to isolate regions involved in instruction-based learning. (C) Mean SCR in the Uninstructed Group as a
function of original contingencies. A new run is defined when the previous CS- is paired with a shock. (D) Dynamics of expected value based on the
model fit to SCR from the Uninstructed Group. This timecourse was used in fMRI analyses to isolate regions involved in feedback-driven learning in

both groups.
DOI: 10.7554/eLife.15192.005

Feedback-driven learning is modulated by instructions
We were interested in understanding how instructions shape error-driven learning and the develop-
ment of expectations. To this end, we focused on the computation of expected value (EV) and used

a simple Rescorla-Wagner model modified to capture flexible effects of instructions and test for dis-
sociations. Our quantitative models assume that SCR at cue onset reflects EV (see Materials and
methods). Shocks were incorporated as reinforcements, and thus positive EV corresponds to an
expectation for a shock. Consistent with standard Rescorla-Wagner models, EV updates in response
to prediction error (PE), and the speed of updating depends on learning rate (o). We focus on corre-
lations with EV in this manuscript, due to concerns of algebraic collinearity when EV, shock, and PE
are included in the same model.
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Neuroscience

Group Analysis type o p Deviance
Instructed Group learners (n = 20) Across-subjects analysis 0.061 0.943 60.83
Within-subjects analysis M= M= M =
0.07, SD = 0.09 0.69, SD = 0.32 2.73,SD =0.88
Uninstructed Group learners (n = 20) Across-subjects analysis 0.042 0 40.86
Within-subjects analysis M= M= M =
0.11, SD=0.22 0.10, SD = 0.25 1.98, SD = 0.93

DOI: 10.7554/eLife.15192.006

Models fit to the Uninstructed Group's SCRs isolate learning-related processes that respond to
reinforcement history alone (i.e. feedback-driven learning), since this group was not informed about
cue contingencies or reversals. Models fit to the Instructed Group’s SCRs, however, should capture
the immediate effects of instruction reported above. To acknowledge this flexible effect of instruc-
tions, we modified the standard Rescorla-Wagner model. We introduced an instructed reversal
parameter, p, which determines the extent to which EV reverses upon instruction (see Materials and
methods). If p = 1, the EVs of the two CSs are swapped completely when instructions are delivered,
whereas if p = 0, each CS maintains its current EV and the model reduces to a standard experiential
Rescorla-Wagner model. The best-fitting parameters when fit across Instructed Group subjects
revealed that EV reversed almost completely at the time of instructions in the Instructed Group (p =
0.943; Table 2), suggesting that instructions immediately influence EV/SCR, as illustrated in
Figure 2B. When we fit the same model to SCRs from the Uninstructed Group (for whom the addi-
tional effect should not be observed since no instructions were given) estimates were indeed consis-
tent with associations not reversing at the time when the instructions would have been delivered (p
= 0.0; Table 2). The resulting time course, which captures slower reversals of EV based on purely
feedback-driven learning, is depicted in Figure 2D. We also fit the model to individual participants
in both groups (see Materials and methods) and found that instructed reversal parameters (i.e. p) dif-
fered significantly as a function of Group (Instructed Group > Uninstructed Group, t(38) = 6.53,
p<0.0001; Table 2).

Neural correlates of feedback-driven and instructed aversive learning
Our goal was to determine whether and how the neural systems that support feedback-driven aver-
sive learning are modulated by instructions. Thus our computational neuroimaging analyses pro-
ceeded in two stages, guided by the quantitative models reported above. First, we examined each
group separately using the model fit to behavior in that group. Thus we used the model depicted in
Figure 2D to isolate neural correlates of feedback-driven learning in the Uninstructed Group, and
the model depicted in Figure 2B to isolate neural correlates of instruction-based learning in the
Instructed Group. Next, we directly compared the two sources of learning in the Instructed Group,
since these participants were exposed to both forms of feedback (i.e. instructions about contingen-
cies and reversals, as well as experiential learning from reinforcement between each reversal). In
each analysis, we focused on results in amygdala, striatum, and VMPFC/OFC (see Figure 3—figure
supplement 3) to determine whether these a priori regions of interest (ROls) were sensitive to feed-
back-driven learning and/or whether they updated with instructions. Finally, we tested the conclu-
sions from quantitative models with task-based analyses that relied strictly on our experimental
design, thus eliminating the influence of assumptions derived from our models.

Neural correlates of feedback-driven aversive learning

We first focused on the neural correlates of experiential learning by examining responses in the
Uninstructed Group. Regressors were based on the best-fitting parameters from the model fit to the
Uninstructed Group, thus isolating feedback-driven EV (Figure 2D; see Materials and methods).
ROIl-based analyses within the Uninstructed Group revealed a main effect of Region (F(2,40) = 5.13,
p=0.011). Post-hoc t-tests revealed that this was driven by positive correlations between feedback-
driven EV and responses in the amygdala (bilateral: t(1,19) = 4.21, p=0.0005; Left: t(1, 19) = 3.94,
p=0.001; Right: t(1,19): = 3.72, p=0.001) and striatum (bilateral: t(1,19) = 2.31, p=0.0017; left: t(1,
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Figure 3. Neural correlates of expected value. (A) Neural correlates of feedback-driven expected value (EV) were isolated by examining correlations
between the timecourse depicted in Figure 2D and brain activation in response to cue onset in Uninstructed Group learners (n = 20). Top: ROl-based
analyses (see Figure 3—figure supplement 3) revealed significant correlations with feedback-driven EV in the amydala and striatum. Error bars reflect
standard error of the mean; ***p<0.001; *p<0.05. Bottom: Voxel-wise FDR-corrected analyses confirmed ROI-based results and revealed additional
correlations in the VMPFC/OFC, as well as other regions (see Figure 3—figure supplement 1, Figure 3—figure supplement 1—source data 1,

2). (B) Neural correlates of instruction-based EV were isolated by examining correlations between the timecourse depicted in Figure 2B and brain
activation in response to cue onset in Instructed Group learners (n = 20). Top: ROI-based analyses revealed a significant negative correlation with
instruction-based EV in the VMPFC/OFC. Bottom: Voxel-wise analyses confirmed these results and revealed strong positive correlations in the bilateral
striatum, as well as the dACC, insula, and other regions (see Figure 3—figure supplement 2 and Figure 3—figure supplement 2—source data 1 and
2). We did not observe any correlations between amygdala activation and instruction-based EV.

DOI: 10.7554/eLife.15192.007

The following source data and figure supplements are available for figure 3:

Figure supplement 1. Feedback-driven EV in the Uninstructed Group.

DOI: 10.7554/eLife.15192.008

Figure supplement 1—source data 1. Neural correlates of feedback-driven expected value (EV): Uninstructed Group Learners (n = 20).

DOI: 10.7554/eLife.15192.009

Figure supplement 1—source data 2. Neural correlates of feedback-driven EV: Entire Uninstructed Group (n = 38).

DOI: 10.7554/elife.15192.010

Figure supplement 2. Instruction-based EV in the Instructed Group.

DOI: 10.7554/elife.15192.011

Figure supplement 2—source data 1. Neural correlates of instruction-based EV: Instructed Group Learners (n = 20).
DOI: 10.7554/elife.15192.012

Figure supplement 2—source data 2. Neural correlates of instruction-based EV: Entire Instructed Group (n = 30).
Figure 3 continued on next page
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Figure 3 continued

DOI: 10.7554/eLife.15192.013
Figure supplement 3. Regions of interest.
DOI: 10.7554/elife.15192.014

19) = 2.58, p=p =0.018; right: p=p =0.063). Voxel-wise FDR-corrected results confirmed ROIl-based
findings, and isolated additional correlations in the VMPFC/mOFC (see Figure 3A, Figure 3—figure
supplement 1, and Figure 3—figure supplement 1—source data 1 and 2). The striatum and amyg-
dala both showed positive correlations with EV, associated with increased activation for the stimulus
currently predicting an aversive outcome. The VMPFC/mOFC showed negative correlations with EV,
consistent with prior work showing increased VMPFC/OFC responses to conditioned stimuli predict-
ing safe, relative to aversive, outcomes (Schiller et al., 2008). Additional regions that correlated
with feedback-driven EV are reported in Figure 3—figure supplement 1 and associated source
data.

Instructions shape responses in VMPFC/OFC and striatum

We used parameters from the best-fitting instructed learning model to isolate the neural correlates
of aversive learning that updates expected value on the basis of instructions in the Instructed Group.
In this model, EV updates immediately with instructions (Figure 2b), consistent with the SCRs mea-
sured in the Instructed Group. ROI-based ANOVAs revealed a significant effect of Region (F(2,40) =
6.49, p=0.0038), driven by significant negative correlations with EV in the VMPFC/OFC ROI (t(1,19)
= -2.61, p=0.0173; see Figure 3B). Voxelwise FDR-corrected results also revealed robust activation
in the bilateral caudate, which showed positive correlations with instructed EV (see Figure 3B, Fig-
ure 3—figure supplement 2, Figure 3—figure supplement 2—source data 1, and Figure 3—fig-
ure supplement 2—source data 2). Additional regions that tracked instructed EV in whole brain
analyses and results across the entire Instructed Group are reported in Figure 3—figure supple-
ments 2, 3 and associated source data.

Feedback-driven versus instruction-based learning within the Instructed
Group

The preceding results, from separate groups using EV signals driven by instructions or feedback,
suggest that responses in the amygdala, striatum, and VMPFC/OFC were driven by reinforcement in
the Uninstructed Group, while only VMPFC/OFC and striatal responses were sensitive to instructions
the Instructed Group. To test for formal dissociations, we directly compared the neural correlates of
instructed and feedback-driven aversive learning in Instructed Group participants, who were
exposed to both instructions and experiential learning. This within-subjects analysis ensures that
potential dissociations indicated above are driven by differences in the computational sources of
neural activation, rather than differences in performance between the groups. To isolate brain
responses that were sensitive only to reinforcement (despite the presence of instructions about con-
tingencies and reversals), we used the feedback-driven EV regressor generated from the model fit to
the Uninstructed Group's behavior, which takes advantage of the fact that trial sequences were iden-
tical for both groups. The instruction-driven EV regressor was generated from the model fit to the
Instructed Group's behavior and reported above.

We included both EV regressors in a within-subjects voxel-wise analysis in the Instructed
Group. Between reversals, experiential learning would be somewhat correlated across models.
Thus, to remove shared variance, we did not orthogonalize regressors in this analysis (see Mate-
rials and Methods). A contrast across the two EV regressors formally tests whether each voxel is
more related to feedback-driven or instruction-driven EV. Results from this contrast are pre-
sented in Figure 4. Voxelwise FDR-corrected analyses revealed that the bilateral amygdala was
preferentially correlated with feedback-driven EV, while the right caudate and left putamen
showed preferential correlations with instruction-based EV (see Figure 4B, Figure 4—figure sup-
plement 1, and Figure 4—figure supplement 1—source data 1). ROl-based analyses confirmed
voxelwise results, with a main effect of Region (F(2,40) = 3.76, p=0.0324; Figure 4A), driven by
amygdala correlations with feedback-driven EV but not instructed EV (t(1,19) = 2.57, p=0.0189),
although striatal differences between models were not significant when averaged across the
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Figure 4. Dissociable effects of instructed and feedback-driven learning in the Instructed Group. (A) ROI-based effects of feedback-driven and
instruction based EV signaling within Instructed Group learners from the model including both signals (see Materials and Methods). Direct model
comparisons within Instructed Group learners revealed a significant effect of Model in the amygdala (p<0.05). VMPFC differences were marginal within
learners (p = 0.11) and were significant when all Instructed Group participants were included in analyses (p<0.05). Error bars reflect standard error of the
mean. ***p<0.001; *p<0.05; p<0.10. (B) Voxelwise direct comparison between feedback-driven and instruction based EV signaling within the Instructed
Group. Regions in warm colors, including bilateral amygdala (left), showed preferential correlations with feedback-driven EV. Regions in cool colors,
including left caudate (middle), dorsal anterior cingulate and medial prefrontal cortex (right), showed higher correlations with instruction-based EV.
Additional regions that showed significant differences as a function of model are presented in Figure 4—figure supplement 1, Figure 4—figure
supplement 1—source data 1 and 2.

DOI: 10.7554/elife.15192.015

The following source data and figure supplements are available for figure 4:

Figure supplement 1. Feedback-driven vs instruction-based EV in the Instructed Group.

DOI: 10.7554/elife.15192.016

Figure supplement 1—source data 1. Feedback-driven vs instruction-based EV: Instructed Group Learners (n = 20).
DOI: 10.7554/elife.15192.017

Figure supplement 1—source data 2. Neural correlates of instruction-based EV: Entire Instructed Group (n = 30).
DOI: 10.7554/elife.15192.018

entire ROI. Although these effects were somewhat weak when limited to learners, effects
increased in magnitude when we examined the entire Instructed Group, including individuals
who did not exhibit measurable SCRs (see Figure 4—figure supplement 1 and Figure 4—fig-
ure supplement 1—source data 2). When we included all Instructed Group participants, we
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also observed negative correlations with instruction-based EV in the VMPFC/OFC. ROl-wise anal-
yses across the entire Instructed Group revealed that the main effect of Region (F(2, 60) = 7.12,
p =0.0017) was driven by both bilateral amygdala specificity for feedback-driven EV (t(1,29) =
2.93, p =0.0066) as well as VMPFC/OFC specificity for instructed EV (t(1,29) = 2.29, p =0.0293).

Verifying the models: Dissociable effects of instructed reversals in the
instructed group

Quantitative models revealed that the striatum and VMPFC/OFC track aversive learning that updates
with instructions, whereas the amygdala learns from aversive feedback irrespective of instruction. To
further verify these dissociations with traditional contrast-based analyses that were independent of
learning models and observed behavior, we employed a task-based, event-related General Linear
Model (GLM). This allowed us to isolate the effects of instructed reversals within the Instructed
Group by focusing specifically on the trials surrounding instructions, prior to subsequent reinforce-
ment. The analysis leverages the delay between instruction delivery and US reinforcement
(Figure 5A) and mirrors our behavioral analysis of the immediate effects of instructed reversals on
SCR. We compared brain responses pre- and post-instruction by computing a CS ([previous CS+ >
previous CS-]) x Phase ([Pre - Post]) interaction analysis. This provided a within-subjects comparison
between instructed reversals and feedback-driven reversals. Furthermore, this analysis is entirely
independent of the Uninstructed Group, and therefore allows us to ensure that the results and con-
clusions reported above do not simply reflect a difference in performance or learning rate between
the two groups.

We first identified regions that reversed immediately upon instruction (CS x Phase interaction).
Such regions should show differential activation to the previous CS+ than CS- prior to instruction,
and similar activation to the new CS+ relative to the new CS- after instructions, prior to reinforce-
ment. We observed immediate instructed reversal effects in the ventral striatum and VMPFC/OFC.
The VMPFC/OFC was identified in both ROI-based and voxel-wise analyses, while the striatal activa-
tion was evident in voxel-wise analyses (see Figure 5B, Figure 5—figure supplement 1, and Fig-
ure 5—figure supplement 1—source data 1). Post-hoc analyses revealed that the VS showed
greater activation to the current CS+, relative to the corresponding CS-, while VMPFC/OFC showed
greater deactivation to the current CS+ (t(1,19) = -4.82, p=p =0.0001). Instructed reversal effects in
the striatum and VMPFC/OFC were stronger and more widespread when the entire Instructed
Group was included in the analysis (see Figure 5—figure supplement 1 and Figure 5—figure sup-
plement 1—source data 2). Whole-brain exploratory analyses also revealed immediate reversals
with greater activation to the current CS+ in the dorsal anterior cingulate cortex (dACC), bilateral
insula, thalamus, and midbrain surrounding the periaqueductal gray (PAG), and deactivation in bilat-
eral hippocampus (see Figure 5B, Figure 5—figure supplement 1, Figure 5—figure supplement
1—source data 1, and Figure 5—figure supplement 1—source data 2).

We also identified regions that continued to show differential responses to the previous contin-
gencies despite the fact that instructions had been delivered (main effect of CS without interaction;
i.e. [previous CS+ > previous CS-] | [new CS- > new CS+]). These regions presumably update with
reinforcement, as our analysis incorporates all three reversals and therefore regions must show
greater activation to the new CS+ prior to each subsequent instructed reversal. Voxel-wise analyses
revealed that the right amygdala showed differential responses that did not reverse upon instruction
(Figure 5B), although effects were not significant when averaged across the entire ROIl. We note
that we also observed a small cluster in the left putamen that did not reverse with instructions; how-
ever this region showed greater activation to the current CS- than CS+, unlike the robust ventral
striatal activation observed in all of our other analyses, which reveal greater activation with higher
likelihood of aversive outcomes. Results of whole-brain exploratory analyses and across the entire
sample are reported in Figure 5—figure supplement 2, Figure 5—figure supplement 2—source
data 1 and 2.

Finally, we tested whether these task-based effects of instructions on neural activation were
related to our quantitative models and effects on behavior. We used each individual’'s p parameter
(based on within-subjects model fitting; see Materials and Methods) to characterize the behavioral
effects of instructions on SCR and aversive learning. We tested for correlations between this quantity
and the magnitude of the instructed reversal effect (CS x Phase interaction) as well as the main effect
without reversal ([previous CS+ > previous CS-] |J [new CS- > new CS+]), using an exploratory
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Figure 5. Task-based effects of instructed reversals and relationship with modeled behavior. (A) We examined responses in the Instructed Group
surrounding the three instructed reversals to dissociate regions that are sensitive to instructions from those that learn from feedback and seem to be
insensitive to instructions. Regions that are sensitive to instructions should show differential responses that reverse immediately upon instruction. The
lavender timecourse depicts this pattern with greater activation on CS+ trials (blue) than CS- trials (yellow) prior to instruction, and the opposite pattern
after instructions are delivered. Regions that update from aversive feedback and show no effect of instructed reversals would follow the orange
timecourse, with greater activation to the previous CS+ than CS- both pre- and post-instruction. This feedback-driven pattern does not update until the
new CS+ has been reinforced. (B) A number of regions showed differential responses that reversed upon instruction, including the right VS and
VMPFC/OFC (left; see also Figure 5—figure supplement 1, Figure 5—figure supplement 1—source data 1 and 2). The VS showed greater
activation to the current CS+ relative to the current CS-, whereas the VMPFC/OFC showed deactivation to the CS+. The right amygdala showed
differential activation that did not reverse with instructions (right). Additional regions that did not reverse with instructions are presented in Figure 5—
figure supplement 2, Figure 5—figure supplement 2—source data 1 and 2. (C) We conducted brain-behavior correlations to explore the
relationship between neural activity in the period surrounding instructions and the magnitude of each individual’s behavioral response to instructions.
We tested for correlations between each individual's p parameter (based on within-subjects fits) and the magnitude of the reversal effect using an
exploratory threshold of p<0.001, uncorrected. We observed significant correlations between p and the magnitude of instructed reversals in dACC (left)
and the bilateral caudate tail and thalamus (right), as well as bilateral DLPFC (see Figure 5—figure supplement 3), suggesting that those individuals
who showed stronger reversals in SCR also showed stronger reversals in these regions. In addition, we found that the individuals who showed the least
evidence for updating with instructions also showed the largest non-reversing differential responses in the right amygdala (right). Full results of brain-
behavior correlations are reported in Figure 5—figure supplement 3 and Figure 5—figure supplement 3—source data 1.

DOI: 10.7554/eLife.15192.019

The following source data and figure supplements are available for figure 5:

Figure 5 continued on next page
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Figure 5 continued

Figure supplement 1. Immediate reversal with instructions (CS [previous CS+ > previous CS-] x Phase [Pre - Post] interaction) Voxelwise FDR-corrected
results of regions that show immediate reversals with instructions in the Instructed Group, based on the window surrounding the delivery of instructions
(see Materials and Methods).

DOI: 10.7554/¢elife.15192.020

Figure supplement 1—source data 1. Immediate reversal with instructions (CS x Phase interaction): Instructed Group Learners (n = 20).

DOI: 10.7554/elife.15192.021

Figure supplement 1—source data 2. Immediate reversal with instructions (CS x Phase interaction): Entire Instructed Group (n = 30).

DOI: 10.7554/¢elife.15192.022

Figure supplement 2. No reversal with instructions (main effect of CS without interaction; i.e.

DOI: 10.7554/eLife.15192.023

Figure supplement 2—source data 1. No reversal with instructions (main effect of CS without interaction): Instructed Group Learners (n = 20).

DOI: 10.7554/elife.15192.024

Figure supplement 2—source data 2. No reversal with instructions (main effect of CS without interaction): Entire Instructed Group (n = 30).

DOI: 10.7554/eLife.15192.025

Figure supplement 3. Correlations with instructed reversal (p) parameters.

DOI: 10.7554/elife.15192.026

Figure supplement 3—source data 1. Correlation between instructed reversal parameter (p) and instructed reversal effects: Instructed Group Learners
(n = 20).

DOI: 10.7554/elife.15192.027

Figure supplement 3—source data 2. Correlation between instructed reversal parameter (p) and continued response to previous CS+ vs CS- (no rever-
sal effect): Instructed Group Learners (n = 20).

DOI: 10.7554/¢elife.15192.028

threshold of p <0.001, uncorrected. We found that the magnitude of the behavioral reversal effect
was positively correlated with instructed reversal effects in bilateral dorsolateral prefrontal cortex
(DLPFC), bilateral caudate tail and thalamus, dACC, and right anterior insula (see Figure 5C, Fig-
ure 5—figure supplement 3, and Figure 5—figure supplement 3—source data 1). Conversely, dif-
ferential responses in the amygdala (which did not reverse with instructions) were strongest in those
individuals whose behavior showed the weakest influence of instructions (see Figure 5C, Figure 5—
figure supplement 3, and Figure 5—figure supplement 3—source data 2).

Relationship between instructed reversal effects and dorsolateral
prefrontal cortex response to instructions

The results reported above reveal dissociable effects of instructions on individual brain regions
involved in aversive learning, and relate neural effects with observed behavior. Our final question
was whether responses to instructions themselves influence subsequent learning-related neural
responses. To understand how instructions influence aversive learning, we searched for brain regions
that were uniquely sensitive to instructions, i.e. that showed a group difference across trials (CS
onset, collapsed across CS+ and CS-). Although no regions survived FDR-correction, the left dorso-
lateral prefrontal cortex (DLPFC; middle frontal gyrus, peak voxel xyz = [-43 43 21]) showed greater
activation across all trials in the Instructed Group at an uncorrected threshold of p<0.001
(Figure 6A).

We then tested whether responses to instructions in this DLPFC region predicted the extent to
which regions reversed immediately with instructions. We extracted DLPFC activation to the presen-
tation of instructions for each Instructed Group participant (Figure 6B), and correlated this quantity
with the magnitude of the instructed reversal effect (the CS x Phase interaction reported above)
throughout the brain. We observed significant positive correlations in the right putamen (peak voxel
xyz = [24 8 11]) and negative correlations in the VMPFC/mOFC (peak voxel xyz = [-5 40 -17]; see
Figure 6C), although the VMPFC/mOFC cluster was slightly smaller than our cluster threshold (9
voxels rather than 10). In both cases, individuals who showed greater DLPFC activation during
instruction showed stronger reversals, with greater activation to the current CS+ than CS- in the
putamen, and greater deactivation to the current CS+ in the VMPFC/mOFC. Whole brain results are
reported in Figure 6—figure supplement 1 and Figure 6—figure supplement 1—source data 1.
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Figure 6. Relationship between dorsolateral prefrontal cortex response to instructions and instructed reversal effects. (A) The left dorsolateral prefrontal
cortex (DLPFC) showed group differences across all trials, with greater activation in the Instructed Group than the Uninstructed Group. (B) We extracted
the magnitude of the DLPFC response to instructions for each individual within the Instructed Group. C) The magnitude of the DLPFC response to
instructions was correlated with the magnitude of instructed reversals in VMPFC/OFC (left) and dorsal putamen (right). High DLPFC responders showed
larger reversals, with putamen activation to the new CS+ relative to the new CS-and VMPFC/OFC deactivation to the new CS+ relative to the new CS-.
See also Figure Supplement 1 and Figure 6—figure supplement 1—source data 1.

DOI: 10.7554/elLife.15192.029

The following source data and figure supplements are available for figure 6:

Figure supplement 1. Correlations with left dorsolateral prefrontal cortex response to instructions.

DOI: 10.7554/eLife.15192.030

Figure supplement 1—source data 1. Correlation between dorsolateral prefrontal response to instructions and instructed reversal effect: Instructed
Group Learners (n = 20).

DOI: 10.7554/eLife.15192.031

Discussion

The aim of this experiment was to determine how instructions modulate the neural mechanisms and
dynamics of aversive learning, and to assess whether potentially specialized threat-detection mecha-
nisms may be impervious to instructions, as previously hypothesized (Ohman and Mineka, 2001). We
combined a between-groups design with experimentally manipulated instructions during aversive
reversal learning, which allowed us to dissociate neural circuits that update with instructions from
those that respond to reinforcement alone. Consistent with previous studies (Wilson, 1968,
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Grings et al., 1973), SCRs updated immediately with instructions. Neuroimaging analyses revealed
dissociable effects of instructions on regions involved in affective learning, based on both quantitative
models and traditional task-based analyses. Quantitative modeling in the Uninstructed Group
revealed that in the absence of instructions, the amygdala, striatum, and VMPFC/OFC tracked feed-
back-driven expected value (EV), consistent with a large body of literature on the circuitry that under-
lies reinforcement learning across species. The amygdala also followed the same feedback-driven EV
timecourse in the Instructed Group, suggesting that the amygdala learned from reinforcement his-
tory, irrespective of instructions. In contrast to the amygdala, responses in the striatum and VMPFC/
OFC tracked learning-related responses that updated immediately with instruction in the Instructed
Group. Finally, instructed reversals in the striatum and VMPFC/OFC correlated with the DLPFC
response to instructions. Below, we discuss the implications of these findings, their relationship to
previous work, and important outstanding questions.

Recent studies indicate that instructions influence reward learning (Doll et al., 2009;
2011, Li et al., 2011a). When individuals are instructed about contingencies, the prefrontal cortex
influences responses in the striatum (Doll et al., 2009; 2011; Li et al., 2011a), and VMPFC/OFC
(Li et al., 2011a). Our results indicate that similar mechanisms drive instructed aversive learning:
Striatal and VMPFC/OFC learning-related responses updated with instructions, and the strength of
instructed reversals in these regions was correlated with the DLPFC response to instructions. The
striatum and VMPFC/OFC make up a well-characterized network that supports error-based learning
across both appetitive and aversive domains (Balleine and O’Doherty, 2010). The VMPFC/OFC has
been linked with expected value and reversal learning (Murray et al., 2007, Schiller et al., 2008;
Rudebeck et al., 2013), and the striatum is known to play a critical role in error-based learning
(Delgado et al., 2008b; Haber and Knutson, 2010). While the striatum and VMPFC/OFC both
updated with instructions, the valence of responses diverged: Striatal activation increased in antici-
pation of aversive outcomes, whereas the VMPFC/OFC deactivated. This is consistent with a large
number of studies suggesting that the VMPFC/OFC represents a valenced outcome expectancy sig-
nal, which correlates positively with reward magnitude or the strength of appetitive outcomes
(Montague and Berns, 2002; Rangel and Hare, 2010; Grabenhorst and Rolls, 2011; Clithero and
Rangel, 2013), and correlates negatively with the magnitude of aversive outcomes (Schiller et al.,
2008; Plassmann et al., 2010; Atlas et al., 2014). The signals in the striatum are also consistent
with previous work showing responses predicting aversive outcomes (Li et al., 2011b), although we
note that we found a mixture of appetitive and aversive signals here, consistent with previous work
(Seymour et al., 2005).

Task-based analyses confirmed conclusions from quantitative approaches and revealed that dif-
ferential responses in the striatum and VMPFC/OFC reversed immediately upon instruction.
Instructed reversals in these regions were linked with effects of instructions on the DLPFC, consistent
with findings in reward learning (Li et al., 2011a). The DLPFC has direct projections to the OFC
(Yeterian et al., 2012) and rostral striatum (Haber, 2006), and is critical for rule maintenance, work-
ing memory, and cognitive control (Smith and Jonides, 1999). One model of instructed reward
learning posits that the DLPFC maintains instruction information and influences striatal processing
through excitatory input (Doll et al., 2009). Our work suggests that similar mechanisms may underlie
aversive learning. Our findings are also related to previous work showing DLPFC involvement in fear
conditioning in the context of contingency awareness (Carter et al., 2006) and cognitive regulation
(Delgado et al., 2008a). Future studies should manipulate DLPFC (e.g. with transcranial magnetic
stimulation) to test whether this region plays a causal role in the effect of instructions on associative
learning in the striatum and VMPFC/OFC.

While findings in striatum, VMPFC/OFC, and DLPFC replicate and extend work on instructed
reward learning, findings in the amygdala reveal an important distinction. The amygdala responded
dynamically to threats in the environment similarly in both groups and showed no evidence for
updating with instructions. The idea that aversive learning involves a specialized threat detection
mechanism that is less sensitive to cognitive factors is consistent with suggestions concerning the
amygdala’s central role in automatic threat detection and salience (Ohman and Mineka, 2001,
Ohman, 2005). Our findings are consistent with previous work indicating the amygdala shows differ-
ential responses during aversive learning irrespective of contingency awareness (Tabbert et al.,
2011), and likewise that patients with unilateral temporal lobectomies exhibit differential SCRs dur-
ing fear conditioning when they make expectancy ratings (Coppens et al., 2009). Thus, when
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arousal is elicited by explicit information (e.g. through instruction or conscious expectancy), differen-
tial SCRs seem to be mediated by pathways that bypass the amygdala. Our work specifically impli-
cates the prefrontal cortex (VMPFC, DLPFC, and DMPFC), striatum, insula, dACC, and the PAG, as
these regions all updated immediately with instructions, and have been linked with skin conductance
in previous work (Boucsein, 2012). Our results suggest that instructions can influence physiological
arousal and responses in regions involved in pain and threat, consistent with previous work
(Keltner et al., 2006; Atlas et al., 2010), but the amygdala seems to hold a specialized role in learn-
ing and responding as a function of aversive reinforcement history and attention-demanding stimuli
in the environment.

Previous studies have attempted to isolate the role of instructions on the brain mechanisms of
aversive learning. Studies of instructed fear and threat-related anxiety have examined the effects of
instructions without reinforcement, and have shown that the amygdala can be activated by
instructed knowledge (Phelps et al., 2001) and that left amygdala damage impairs the physiological
expression of instructed fear (Funayama et al., 2001). Thus the amygdala might be more attuned to
instructed threat in the absence of aversive reinforcement. Other studies (Jensen et al., 2003;
Tabbert et al., 2006) paired instructions about contingencies with actual reinforcement, as we did
here. A key distinction between our paradigm and these previous studies is that we focused on the
effects of instruction in changing environments and examined dynamic learning-related responses,
whereas other studies manipulated instructions in stable environments with fixed outcome probabili-
ties, which precludes testing for dissociations in the dynamic computations that underlie instructed
and feedback-driven learning.

What are the computations subserved by these different brain regions, and why might they differ
in their sensitivity to instruction? We believe that the neural dissociations we identify here may reflect
distinct signals with separable functions. In particular, previous work using fMRI, lesions, and electro-
physiology indicates that much of the activity in VMPFC/OFC reflects the computation of expected
value (Padoa-Schioppa and Assad, 2006; Clithero and Rangel, 2013). However, correlates of EV in
amygdala and striatum may actually reflect two closely related quantities: associability (Pearce and
Hall, 1980; Behrens et al., 2007, Li et al., 2011a; Zhang et al., 2016) and PE (Bayer and Glimcher,
2005; Li et al., 2011a; Zhang et al., 2016), respectively. In the current task, associability and PE
each behave similarly to EV in their trial-by-trial dynamics. This is because PE reflects the difference
between the EV and the (infrequent) outcomes, and because (again due to the low reinforcement
rate) associability modulates up or down in the same direction as EV in response to each outcome.
The differences between these signals are largely unrelated to our primary question of interest —
how any of these decision variables is affected by instructions — an observation that enabled us to
use a single variable to compare signaling in all three areas and test for dissociations in the effects
of instructions. Thus, we chose to model the signals with a common EV variable for simplicity and
transparency, and to ensure that any apparent differences between the areas were not confounded
by incidental differences or artifacts of orthogonalization that arose in the modeling of three largely
similar signals. However we also considered the converse concern (i.e. that apparent differences in
instruction sensitivity might spuriously arise due to the fact that we are using a generic EV timeseries
as a stand-in for these other quantities). We verified this was not the case by testing the hybrid
model (Pearce and Hall, 1980; Li et al., 2011a; Zhang et al., 2016). When we model associability
and PE as separate variables from EV, we see substantially the same results, with feedback-driven
associability signals supported by the amygdala in both groups, and striatal PEs that update with
instruction (results not shown). Finally, returning to the question of the function of these areas, an
amygdala associability signal might be uniquely impermeable to instructions because of its differen-
tial function. The role of associability in models is to monitor the reliability of outcomes in the world
so as, in turn, to control the learning rate for separate experiential updating about predictions of
those outcomes (Pearce and Hall, 1980; Behrens et al., 2007; Li et al., 2011a). This function may
be necessarily experiential.

The fact that amygdala-based signaling responds uniquely to threats, irrespective of instructions,
might serve to prepare organisms to react to future threats in the environment. Though the vigilance
of this system may benefit survival, it might also run awry in conditions characterized by persistent
fear, such as anxiety and post-traumatic stress disorder. This might in turn underlie the critical role of
experiential learning in successful therapy for these disorders. A better understanding of the neural
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and computational underpinnings of instructed aversive learning might elucidate mediating mecha-
nisms and/or help produce more effectively targeted interventions for these disorders.

A critical outstanding question is whether the instruction-based effects and dissociations we iso-
late here have parallels in other species, or whether they reflect processes that are uniquely human.
While many studies show potentially homologous responses in humans, primates, and rodents, dis-
tinctions have been noted (Wallis, 2011). It is clear that the neural computations that support feed-
back-driven learning are highly conserved across species, and rely heavily on the striatum, amygdala,
and VMPFC/OFC. Are the modulatory effects of verbal instructions similarly conserved? Our verbal
instructions may recruit rule- and/or context-based modulatory mechanisms that operate similarly
across mammalian species. For example, the strong influence of instructions on expected value cod-
ing in VMPFC/OFC may be consistent with the view that this region represents task state
(Wilson et al., 2013), which would update when individuals are told that contingencies change. The
VMPFC/OFC has been shown to guide learning when value must be inferred (Jones et al., 2012;
Stalnaker et al., 2014), and inferred value can also influence learning-related signals in the dopami-
nergic midbrain, striatum and habenula (Bromberg-Martin et al., 2010; Sadacca et al., 2016). Like-
wise, rule-based processing in non-human primates is highly dependent on the prefrontal cortex
(Miller and Cohen, 2001; Wallis et al., 2001), and might be linked to the instruction-based DLPFC
modulation we observed here. Alternatively, it is possible that the instruction-based effects we have
identified may depend on a unique human capacity for language. Future studies should combine
context-based and feedback-driven reversals in other species to test for parallels with the dissociable
learning systems we identify here.

A novel feature of our paradigm was the inclusion of repeated instructed reversals, which enabled
us to use within-group comparisons to dissociate instructed and feedback-driven learning in the
Instructed Group. We also included an Uninstructed Group as a control group to isolate purely feed-
back-driven knowledge - this group was not informed during initial learning or upon reversal. Future
studies can use a full 2 x 2 design (instructed vs. uninstructed x initial learning vs. reversals) to deter-
mine the extent to which initial information influences subsequent learning.

Summary

We found dissociable effects of instructions on the brain regions involved in aversive learning. Many
regions, including the striatum and VMPFC/OFC, updated immediately with instructions. However,
responses in the amygdala were not shaped by instructions in our task, as the amygdala required
aversive feedback in order to update. These results indicate that the neural mechanisms of dynamic
aversive learning include processes that perform the same computations across appetitive and aver-
sive domains (i.e. striatal learning that updates with instructions), as well as unique patterns that may
be specific to aversive learning due to evolutionary adaptations and the biological relevance of
threat processing.

Materials and methods

Participants

Eighty right-handed English-speaking participants were enrolled in the experiment. Participants
were not enrolled if they were taking any anti-depressant or anti-anxiety medication, had heart or
blood pressure problems, were pregnant, or had completed a study that applied electric shocks
within the previous six months. All participants provided informed consent as approved by New
York University’s Institutional Review Board, the University Committee on Activities Involving Human
Subjects (UCAIHS; protocol #12-8965 and #13-9582). Participants were informed that the study was
voluntary, and that the goals of the study were to learn about emotional responses to images that
predict shock, and to learn more about how physiological responses and the activity of different
regions of the brain are related to emotion and learning. Three consented participants did not par-
ticipate in the experiment because we were unable to measure skin conductance. Data from eight
participants were not included in the analyses either because they did not complete the study due
to discomfort during the scan (n = 3) or because they slept for an extended period of time during
the experiment (n = 5). Finally, intermittent signal loss prevented us from analyzing skin conductance
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data for one participant, leaving a final sample of sixty-eight participants (46 Female; mean age =
22.1 years (SE = 0.42)).

Stimuli and apparatus

Participants received mild electric shocks (200 ms duration, 50 pulses per second) to the right wrist
using a magnetically shielded stimulator and electrodes (Grass Medical Instruments, West Warwick,
RI) attached by Velcro. We measured skin conductance using shielded silver-silver chloride electro-
des (BIOPAC Systems, Inc., Goleta, CA) filled with standard NaCl electrolyte gel, and attached by
Velcro to the middle phalanges of the second and third fingers of the left hand. Pupillometry data
were also collected, but data were corrupted for the majority of participants and are therefore not
included in the current analysis.

Experimental design

Breath-holding test and shock calibration procedure

Upon entering the scanner suite, we affixed skin conductance electrodes to the participants’ left
index and middle fingers. We used a 3-second breath-hold test to ensure we could record adequate
SCRs from each participant. Three participants did not show any SCR to the breath-hold, and were
excluded from the experiment.

Following the breath-hold test, shock electrodes were attached to the participant’s right inner
wrist. Shock intensity level was calibrated using a standard work-up procedure prior to the functional
portion of the experiment. Intensities started at 15V (200 ms, 50 pulses/s) and increased in 5V incre-
ments until the participant identified the maximum level he or she could tolerate without experienc-
ing pain, with a maximum intensity of 60V. Participants were told to identify a level that was
“annoying, aversive, and unpleasant but not quite painful.” This intensity was recorded and used
during the main experiment. The mean intensity selected across the full sample was 37.3V (SD =
1.1), and the two groups did not significantly differ in the voltage selected (p>0.5; Instructed Group:
M = 36.9, SD = 7.84; Uninstructed Group: M = 37.6, SD = 10.3) as calibration was performed prior
to random assignment. We performed the work-up procedure while the participant was in the fMRI
suite to avoid context shifts between calibration and experimental portion of the study.

Pavlovian aversive learning with reversals

During the main experiment, participants went through a Pavlovian fear conditioning procedure with
a 33% reinforcement rate (see Figure 1) while we acquired FMRI data. Two images of angry male
faces from the Ekman set (Ekman and Oster, 1979) were used as conditioned stimuli (CS; counter-
balanced across subjects), modeled after a previous study of aversive reversal learning
(Schiller et al., 2008). In addition, angry faces are biologically relevant (i.e. prepared) stimuli, which
have been shown to be less sensitive to verbal instructions in the context of instructed extinction
(Hugdahl and Ohman, 1977). Thus such stimuli may present a uniquely difficult test of the effects of
instructions during aversive reversal learning.

Contingencies reversed every twenty trials during the task. We used two pseudorandom trial
orders with the requirement that no two shocks were presented adjacent to one another, and that
the same condition never repeated three times in a row. At the end of the task, participants used 5-
point Likert scales to report how many reversals they had perceived (0 to >4), to rate their subjective
probability of shock for each CS (0-100% in 20% increments) and how they felt about each CS (0 =
very negative, 3 = neutral, 5 = very positive).

Instructed knowledge manipulation
Individuals were randomly assigned to an Instructed Group or an Uninstructed Group. At the start of
the task, participants in the Uninstructed Group saw the two CS images and were simply told “Your
job is to pay attention to the relationship between the stimuli you see and the shocks that you feel.”
The Instructed Group was informed about shock probabilities at the start of the experiment (see
Figure 1A) and upon contingency reversals. Reversal instructions were presented for 10 s. A fixation
cross was displayed during the same reversal period for the Uninstructed Group.

Forty participants were randomly assigned to either the Instructed Group or Uninstructed Group.
We analyzed the dataset at this point and determined that only a subset of participants had shown
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differential skin conductance prior to the first reversal. We then collected more data through
pseudorandom assignment until we had twenty ‘learners’ (those who showed greater SCRs, on aver-
age, to the CS+ than the CS- in the second half of the first run) in each group. Learners were defined
based on mean differences in SCR to the CS+ vs. CS- in late acquisition, but we did not require sta-
tistically significant differences due to the small number of trials included in the comparison (4 trials
of each condition). In total, 30 participants completed the task in the Instructed Group (20 learners),
and 40 participants completed the task in the Uninstructed Group (20 learners). Two Uninstructed
participants were excluded from analyses, leading to a final full sample of 68 participants. Results
that include all participants are presented in Supplemental Figures and Tables, and are entirely con-
sistent with the analyses reported in the main manuscript, which are limited to learners.

Physiological data acquisition, processing, and analysis

Skin conductance was recorded with Acgknowledge software (BIOPAC Systems, Inc., Goleta, CA) at
200 Hz. Data were filtered using a 25-Hz low-pass FIR filter and smoothed with a Gaussian kernel of
10 samples. Trained research assistants who were blind to condition processed the trial-by-trial skin
conductance data. We estimated base-to-peak amplitude in skin conductance to the first response in
the 0.5- to 4.5-s latency window after CS onset. US trials were scored relative to the US presentation.
Responses that were less than .02 microSiemens were considered non-responses (i.e. scores of 0).
Raw SCR amplitude scores were square-root transformed to account for non-normal distributions
(Schlosberg and Stanley, 1953) and normalized relative to the mean of the US response prior to
analysis.

Data were analyzed in Matlab (Mathworks, Natick, MA, USA) using custom code for linear mixed
models (available at http://wagerlab.colorado.edu/tools), and verified using the Ime4 package in R
(Bates et al., 2011). We used linear mixed models to test whether participants showed differential
responses to the CS+ relative to the CS-, whether these responses reversed, and whether the magni-
tude of these effects differed across groups. To do this, we created a matrix for each individual (First
level analyses in Table 1) that coded each trial as a function of Stimulus (Original CS+ versus Original
CS-) and Reversal (Original contingencies versus Reversed contingencies). The Reversal regressor was
coded relative to when instructions were delivered in the Instructed Group and relative to when the
new context was reinforced in the Uninstructed Group (i.e. when subjects received a shock following
the previous CS-). The linear mixed model evaluated trial-by-trial SCRs as a function of these two
effects as well as their interaction. The Stimulus x Reversal interaction assesses the extent to which dif-
ferential responses reverse, i.e. whether participants show greater SCRs to the current CS+ relative to
the current CS-, irrespective of the actual stimulus. We also included a linear effect of time in the
model to account for habituation, and an intercept for each subject. Group was coded at the second
level, and we tested whether the slopes of the individual effects or the intercept varied across groups.

Quantitative modeling

Our learning models assume that SCR correlates with dynamic quantities derived from feedback-
driven or instructed learning models. Below we describe the quantitative models we evaluated, fol-
lowed by our general procedures for model fitting.

Feedback-driven learning model

We fit learning models to trial-by-trial SCRs from the Uninstructed Group to test whether reinforce-
ment learning models can explain fear-conditioning behavior in the context of multiple reversals, and
to generate predictors that will isolate the brain mechanisms of feedback-driven learning irrespective
of instructed knowledge. The standard Rescorla-Wagner model learns an expected value (EV),
denoted as for each CS, and assumes a constant learning rate (a):

Vi1 (x,) = Vo (x,) + a8y, (M
6i’l :rnfvn(-xn) (2)

(where r =1 for shock, r =0 for no shock, n denotes the current trial, and 6§ = prediction error (PE),
and V = EV). To derive the best fits for the Rescorla-Wagner model, we assumed V;, = 0.5 and set a as
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a free parameter, and evaluated regressions that assumed trial-by-trial SCRs correlate with EV (see
“General procedures for model fitting and model comparison”, below).

Instruction-based learning model

To account for the influence of instructions, we introduced a new model that incorporated an addi-
tional reversal parameter (p) that determines the extent to which expected value reverses at the
time when instructions are delivered. Learning proceeded as in the uninstructed learning model
above until instructions were delivered (i.e. immediately following trials 20, 40, and 60). At the time
of instructions, for each of the two cues (x, and x,), EV was computed as the sum of the current
cue’s value multiplied by 1 — p, plus the other cue’s value multiplied by p:

Vst (X¥a) = p" Vi) + (1 = p) Vi (xa) ©)

Vir1(6p) = p* Vi (xa) + (1 = p)*vn(xh) 4

Thus if p=0, each cue retains its value, whereas if p=1, cue x, acquires the value of cue x;,.

Learning then proceeded according to the feedback-driven model until the next instructions were
delivered. Because the Instructed Group was informed about the original cue contingencies, we
assumed asymmetrical initial expected values (Vy(CS+) = 0.75, Vo (CS—) = 0.25). p was modeled as
an additional free parameter.

General procedures for model fitting and model comparison

We performed two types of model fitting, which differ in how flexibly they allow for individual differ-
ences between subjects in the model's free parameters. First, we used a mixed effects model
("Across-subjects analysis’), wherein learning parameters were modeled as fixed parameters constant
within each group but we allowed slopes to vary to compensate for variability across participants
(Daw et al., 2006). This offers a clear picture of group-level learning effects and provides clean esti-
mates appropriate for modeling fMRI data (Daw, 2011). We focus on these results in the main man-
uscript, and parameters from these models were used to create regressors for fMRI analyses.
Second, we verified that the conclusions from these aggregate fits were consistent those from with
more flexible (but noisier) estimates derived from an ensemble of individual fits to each subject’s
data separately ("Within-subjects analysis’). Results of within-subjects analyses were entirely consis-
tent with across-subject analyses, and are provided in Table 2. We used maximum likelihood estima-
tion and Matlab’s fminsearch function to determine best-fitting parameters in all models.

Our main analyses focus on fits from the across-subjects / mixed effects analysis. For each itera-
tion of model fitting (i.e. test of a given parameter value) in Matlab’s fminsearch.m program, candi-
date parameters were applied to each individual subject’s trial order to generate a predicted
timecourse of EV. For each participant, the resulting regressor was combined with an overall inter-
cept. We used standard linear regression (through Matlab’s glmfit.m function) to determine regres-
sion coefficients (based on minimizing the sum of squared errors), and then combined the regressors
and the estimated coefficients to generate a predicted fit (using glmval.m). The predicted fit from
each individual subject was concatenated with all other subjects to generate a group prediction,
which was compared to the actual concatenated data, and aggregated residuals were used as a
measure of goodness-of-fit, which were minimized over the course of ten iterations of fminsearch
per model. This across-subjects approach, which estimates free parameters as fixed effects but
allows slopes to vary, was used in order to avoid fixed effects model fitting (i.e. concatenating all
data and treating observations as one large subject), which assumes all subjects show the same rela-
tionships with predictors and does not acknowledge that observations are nested within subjects.

To verify that the conclusions of across-subjects models held at the level of the individual, we also
performed within-subjects analyses, which fit models separately for each participant. These pro-
ceeded in the same way as the mixed effects models (i.e. minimization of the sum squared error
from a linear model that included an intercept and a slope for the parameters of interest) but best-
fitting parameters were identified separately for each individual. We used these distributions to sta-
tistically compare the magnitude of the estimated p parameter across groups, and to examine brain-
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behavior correlations (Figure 5C, Figure 5—figure supplement 3, Figure 5—figure supplement
3—source data 1 and 2).

FMRI data acquisition and analysis

Data acquisition

Data were acquired on a 3T Siemens Allegra head-only scanner. Functional images were acquired
with a single shot gradient-echo echoplanar imaging sequence (64 x 64 matrix, TR = 2000 ms, TE =
30 ms, FOV = 192 cm, flip angle = 90°). We proscribed 36 continuous oblique angle slices (3 x 3 x
3 mm voxels) using a 30-degree head tilt relative to the plane defined by the anterior commissure-
posterior commissure to maximize signal in the OFC / VMPFC (Deichmann et al., 2003). Minimizing
dropout in this region reduced parietal cortex coverage for a number of participants; thus findings
are agnostic with respect to the contribution of parietal cortex regions to aversive learning. Anatom-
ical images were acquired with a T1-weighted protocol (256 x 256 matrix, 176 1 mm sagittal slices).

Preprocessing

We discarded the first five volumes and performed slice time correction, coregistration, and filtering
(120 Hz high-pass filter) with SPM8 (Wellcome Center Department of Imaging Neuroscience, Lon-
don, UK). Functional data were smoothed with a 4mm FWHM Gaussian kernel and coregistered to
anatomical data. Data were normalized to MNI space using SPM’s ‘avg152T1.nii’ template.

General procedures for neuroimaging analyses

We conducted four first-level whole-brain analyses using SPM8: 1) An analysis of feedback-driven
aversive learning in all participants, based on EV regressors from the quantitative model fitted to
SCRs from the Uninstructed Group; 2) An analysis of instructed aversive learning in the Instructed
Group, based on EV regressors from the instructed learning model fitted to SCRs from the
Instructed Group; 3) a direct comparison between feedback-driven and instruction-driven EV within
the Instructed Group (described in more detail below) and 4) An analysis of the immediate effects of
instructed reversals in the Instructed Group. First-level analyses employed the general linear model
(GLM) in SPM8 without default implicit thresholding. We modeled cue onset and offset, and each EV
regressor was included as a parametric modulator of the CS onset event. All events were convolved
with a canonical gamma-variate hemodynamic response function (HRF). To evaluate the direct com-
parison between feedback-driven and instruction-driven EV within the Instructed Group, we disabled
SPM’s orthogonalization (in the functions spm_get_ons.m and spm_fMRI_design.m). This removes
any shared variance between the two EV regressors without prioritizing one regressor over the
other, which would otherwise be standard in SPM's default GLM approach when multiple regressors
are included. In this analysis, we computed a second-level contrast within subjects to directly com-
pare feedback-driven and instruction-driven EV, and contrast estimates were carried to the group
level.

Group results were obtained using robust regression, which minimizes the influence of outliers
(Wager et al., 2005). Matlab-based code is freely available at http://wagerlab.colorado.edu/tools.
We also performed ROl-wise t-tests and ANOVAs using standard functions (ttest.m, ttest2.m, and
anovan.m) in Matlab’s Statistics and Machine Learning Toolbox. ANOVAs focusing on the feedback-
driven learning model assess main effects of Group (Instructed vs. Uninstructed) and Laterality.
ANOVAs focusing on the Instructed Group assess main effects of Model (instructed learning vs.
feedback-driven learning) and Laterality.

In the main manuscript, we focus on results in our a priori ROls: amygdala, striatum, and VMPFC/
OFC (see Figure 3—figure supplement 3). Amygdala ROIls were defined based on the MNI tem-
plate, and are available at http://wagerlab.colorado.edu/tools. Striatum ROls were acquired from
the Automated Anatomical Labeling atlas for SPM8 (http://www.gin.cnrs.fr/AAL, [Tzourio-
Mazoyer et al., 2002]), and created by combining putamen and caudate regions to single striatal
ROIs. The VMPFC/OFC ROI was functionally defined, based on the deactivation to shock in the
entire sample (peak voxel xyz = [-6 38 -16]). We chose to functionally define the VMPFC/OFC
because we optimized imaging parameters to recover signal in this region, and thus the center of
activation lied inferior to masks based on previous data (Schiller and Delgado, 2010). However,
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analyses that used this more superior ROl were consistent with the VMPFC/OFC effects reported
here.

We used custom Matlab code (available at http://wagerlab.colorado.edu/tools) to extract and
average across ROl-wise data, and we report ROl-wise analyses at standard p<0.05. We used false
discovery rate (FDR) to correct for multiple comparisons in whole-brain voxel-wise analyses. For all
main effects, activation clusters were defined as FDR-corrected voxels (q< 0.05) contiguous with vox-
els at uncorrected p<0.001 and p<0.01. Figures in the main manuscript display a maximum voxel-
wise thresholds p<0.005 for precise localization. Correlations with individual difference measures
(i.e. brain-behavior correlations with p parameters; connectivity with DLPFC), which are more explor-
atory, are reported at p<0.001, uncorrected (clusters required to have contiguous voxels at p<0.005
and p<0.01). For all voxelwise analyses, we imposed a minimum cluster extent of 10 voxels. We
report coordinates in Montreal Neurological Institute (MNI) space. Anatomical labels were based on
the SPM anatomy toolbox (Eickhoff et al., 2005) and verified using the Mai Atlas (Mai et al., 2016).

Neural correlates of feedback-driven and instructed aversive learning
Regressors for fMRI analyses of learning-related signals were derived from the across-subjects fits to
SCR, which generated best-fitting parameters. Our design had two trial orders, so we applied the
best-fitting parameters to each sequence of stimuli to generate EV regressors for that were specific
to each trial order. We used parameters fit across the Uninstructed Group to generate regressors
for each trial order that were used to identify neural correlates of feedback-driven EV in all partici-
pants. Thus, the feedback-driven learning analyses use identical regressors for both the Uninstructed
Group and Instructed Group, varying only as a function of trial order. Analyses focusing on the neu-
ral correlates of instructed aversive learning were based on parameters from the instructed learning
model fit across participants in the Instructed Group.

Learning model-based neuroimaging analyses modeled cue onset and cue offset as two discrete
events. EV regressors were included as parametric modulators of cue onset. Shock occurrence (0 for
trials with no shock, 1 for shock trials) and PE were modeled as parametric modulators of cue offset,
but are not discussed in this paper due to algebraic collinearity with EV.

Instructed reversal analysis

We analyzed the effects of instructed reversals by examining the trials that occurred in the window
between the delivery of instructions and the first time the new CS+ was reinforced with a shock (see
Figure 5). We compared responses on these trials (new CS+ and new CS-) with responses with the
same number of trials of each condition immediately prior to each reversal (previous CS+ and previ-
ous CS-). Thus we assessed a Stimulus ([Previous CS+ - Previous CS-]) x Reversal Phase ([Post — Pre])
interaction analysis. Our analysis collapsed across all three reversals at the first level. Thus regions
that were identified as showing greater activation to the previous CS+ than CS- across pre- and
post-reversal (i.e. Main Effect without interaction) were required to have updated over the course of
the run (i.e. with reinforcement), as they had to show greater activation to the opposite contingen-
cies by the time the next reversal was modeled. This model also coded the instruction events at the
first level (10-second boxcar at the time of instructions). Beta estimates from this instruction period
estimate were extracted from the DLPFC cluster identified in a between-groups comparison across
all CS onset trials and correlated with the magnitude of instructed reversals in a whole-brain search.
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