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Preface

With its high specific energy, zero emission, and lightweight nature, hydrogen can 
lead the green energy revolution. Internal combustion engines running on hydro-
gen fuel cells have at least twofold higher specific energy than those running on 
gasoline. Therefore, hydrogen storage is highly essential for next-generation trans-
portation fuel, considering the depleting fossil fuel reserves (and adverse effects 
arising from their combustion), thus escalating its industrial necessity. However, 
the limited reserve of hydrogen in the atmosphere has long been a limiting factor 
to realize hydrogen energy at large scale. In this context, splitting of water through 
electrochemical processes or solar power-driven techniques is paving the way 
for next- generation hydrogen production. Similar approach has also been taken 
toward the production of oxygen which helps in the combustion of hydrogen in 
hydrogen fuel cells and is also vital for the metal-air battery systems. State-of-the-
art catalysts for hydrogen evolution reaction (Pt/C), and oxygen evolution reaction 
(IrO2), make use of precious metals and thus are not suitable for industrial-scale 
production of both hydrogen and oxygen. However, several reports have tried to 
address the typical challenge to find the low-cost alternatives for these precious 
metal-based catalysts. Large-scale water splitting is essential not only for sustain-
able growth, promoting green energy, but also to reduce both carbon footprint and 
greenhouse gases. Photoelectrochemical water splitting is an effective and promis-
ing method to produce hydrogen and oxygen from water. A wide variety of metal-
based compounds, especially compounds having core cations from the transition 
(or d-block) group, have been investigated for their feasibility to be used as effi-
cient catalysts for water splitting reactions. These include carbon-based nanocom-
posites (metal-free catalysts), metal chalcogenides, oxides, phosphides, borides, 
carbides, nitrides, hydroxides, and so forth. Transition metal chalcogenides, as 
low-cost alternatives, have performed well as hydrogen evolution reaction (HER) 
catalysts. Their stability issues, however, still possess stiff challenges for the batch 
production process of hydrogen. In this context, metal oxide-based compounds 
have been investigated over the years along with the metal chalcogenides, and 
these oxide materials have been found to possess excellent stability even for over 
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thousands of reaction cycles. Several other materials that have been  mentioned, 
e.g., metal phosphides, borides, carbides, etc., have also been implemented as elec-
trocatalysts for HER.

This brief provides a detailed emphasis on the fundamentals of the water split-
ting process, underlying mechanism, and a niche of catalyst materials/composites to 
showcase their effectiveness toward both cost optimization and stability. Also, a 
rigorous comparison has been drawn to show the versatile nature of these catalytic 
compounds that can provide sufficient flexibility to facilitate the hydrogen produc-
tion process.

Khordha, Odisha, India  Aneeya Kumar Samantara
Bhubaneswar, Odisha, India  Satyajit Ratha
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About the Book

Hydrogen as fuel has a significant role to play in sustainable growth and as energy 
carrier can decarbonize the energy sector, both at household and industrial level. 
The current hydrogen economy is not promising, considering few strategic bottle-
necks such as the methods used for hydrogen production, storage, and transporta-
tion. Also, the move from gray hydrogen to green hydrogen is not going to be an 
easy task as these projects are still at a nascent stage (though laboratory-scale pro-
ductions have been technically proven). Thus, to see hydrogen as a clean and 
carbon- free source of fuel and as an industrial commodity, focus should be shifted 
toward the hydrogen generation from water through electrolysis technique. Though 
can be costly at initial stages, electrolysis through electrolyzers can solve both 
small- and large-scale energy requirements.

This book provides a detailed emphasis on the role of electrolysis for hydrogen 
production and materials that could prove significant to catalyze the electrolysis 
process. Various metal compounds such as metal oxides, sulfides, carbides, and 
phosphides and few carbon-based nonmetallic compounds have been scrutinized 
for their effectiveness in promoting the hydrogen evolution during water splitting 
process. These low-cost metallic/carbonaceous materials provide a wide range of 
alternatives to the state-of-the-art catalyzers based on precious metal components 
such as Pt and Ir, which could make the concept of hydrogen, being a sustainable 
fuel and energy carrier, realistic. This is critical for sustainable growth by limiting 
the consumption of fossil fuels, curbing greenhouse gases like CO2, and achieving 
100% decarbonized energy generation.
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Abstract This book presents a brief discussion on issues of traditional energy 
resources and types of nonrenewable/alternative energy resources. As an efficient 
device, more focus has been given to electrolyzers. Further fundamental discussion 
on different parameters used to evaluate performance of an electrocatalyst is elabo-
rately presented, followed by emergence of different electrocatalysts. Although the 
noble metal-based catalysts perform efficiently, their high cost and limited reserve 
motivate the researchers to think some alternatives. In this regard, low-cost transi-
tion metal-based electrocatalysts and composites with different conductive carbon 
materials were developed, but their catalytic activity yet remained far from that 
shown by the noble metals. Therefore, discussion on the synthesis, mechanism 
study, and catalytic performance of different electrocatalysts suitable for electro-
lyzer has been emphasized. The authors presume that this book will help the energy 
and materials researchers to gather more knowledge in this field and to explore new 
electrocatalysts with higher efficiencies for commercial application.

Keywords Electrolyzer · Hydrogen evolution · Oxygen evolution reaction · 
Energy conversion · Metal oxides · Metal chalcogenides
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