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Abstract In a gas-like ether, the duality between the oscillating electric and magnetic fields,
which are transverse to the direction of propagation of electromagnetic waves, becomes a
triality with the longitudinal oscillations of motion of the ether, if electric field, magnetic field
and motion are coexistent and mutually perpendicular. It must be shown, therefore, that if
electromagnetic waves comprise also longitudinal condensational oscillations of a gas-like ether,
analogous to sound waves in a material gas, then all three aspects of such waves must propagate
together along identical wave-fronts. To this end, the full characteristic hyperconoids are
derived for the equations governing the motion and the electric and magnetic field-strengths
in a gas-like ether, in three space variables and time. It is shown that they are, in fact,
identical. The equations governing the motion and the electric and magnetic field-strengths
in such an ether, and their common characteristic hyperconoid, are all invariant under Galilean
transformation.

1 Introduction

It has been shown1 that Planck’s energy distribution for black-body radiation
can be derived for an ethereal medium which behaves as an ideal gas with
Maxwellian statistics. Electromagnetic waves may propagate in such an ether,
and the oscillating electric and magnetic fields in such waves are observed to
be transverse to the direction of wave propagation. On the other hand, electric
field, magnetic field and motion are generally observed to be mutually perpen-
dicular and coexistent, and this suggests that such waves must also comprise
longitudinal oscillations in pressure and density. Thus, such waves would not
merely have the duality of being electromagnetic, but rather the triality of being
electromagnetic-condensational waves, and their condensational aspect would be
analogous to that of sound waves in a material gas.

To justify such a concept of the ether, it is, therefore, necessary to establish
such a triality of electromagnetic-condensational waves, by showing that all
three aspects of the waves propagate together contemporaneously along precisely
the same wave-fronts. In general, for three space-variables and time, the wave
fronts are given by the characteristic hypersurfaces of the partial differential
equations which govern the electric and magnetic field strengths and the motion
of such an ether. All such hypersurfaces which pass through a given point in
space-time have an envelope, the characteristic hyperconoid through the point.
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It is the purpose here to derive the characteristic hyperconoid both for the
equations of electricity and magnetism in a gas-like ether, and for the general
equations governing the unsteady motion of a gas in three space-variables, and
thus to show that they are, in fact, identical. Such a concept of the ether entails
no transformation difficulties. For the equations of electricity and magnetism
in a gas-like ether, the general equations of unsteady motion of a gas, and their
common characteristic hyperconoid, are all invariant under Galilean transforma-
tion. Moreover, with such a concept of the ether, there is no dichotomy between
the observed wave and particle properties of radiation, for these are essentially
no different from the wave and particle properties of sound in a material gas.

2 Characteristic hypersurfaces

Consider a system of m simultaneous linear first-order partial differential equa-
tions in n independent variables xi(i=1, ..., n), with m unknowns uα(α =1, ...,m)
whose coefficients ai,αβ and non-differential terms bα are all functions of the val-
ues of xi and uα. With the summation convention, such a system may be written
as

ai,αβ

∂uβ

∂xi
= bα (2.1)

If the values of uα are known at all points on a hypersurface ζ(xi) = const.
= K then, in general, the partial differential equations serve to determine the
derivatives duα/dζ at all points of the hypersurface, and thus the values of uα

on the neighbouring hypersurface ζ(xi) =K + dK. For the equations Eq.(2.1)
can be rewritten in the form(

ai,αβ
∂ζ

∂xi

)
duβ

dζ
= bα (2.2)

The hypersurface ζ(xi) =K is said to be characteristic2 if Eqs (2.2) are inde-
terminate, in which case ζ(xi) must satisfy the determinantal equation∣∣∣∣ai,αβ

∂ζ

∂xi

∣∣∣∣ =0 (2.3)

Alternatively,3 the hypersurface ζ(xi) =K is said to be characteristic if there
is a linear combination of Eqs (2.1) which involves only total derivatives with
respect to ζ. In order that the linear combination of Eqs (2.1), namely

λα

(
ai,αβ

∂ζ

∂xi

)
duβ

dζ
=λαbα

may involve only total derivatives with respect to ζ, it follows that

λαai,αβ
∂ζ

∂xi
= fβ (2.4)

for some function fβ of the values of xi and uα. Equations (2.4) are m equations
to determine the (m−1) independent ratios between the λα values and so must
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be indeterminate. Thus, again, the condition for ζ(xi) =K to be a character-
istic hypersurface is identical with Eq. (2.3), and so the two definitions of a
characteristic hypersurface are equivalent. In general, the characteristic hyper-
surfaces which pass through any point {xi} have an envelope in the form of a
hyperconoid. This may be determined in terms of differential displacements,
dxi, from the point, since any such displacement which lies in the hypersurface,
ζ(xi) =K satisfies

dζ =
∂ζ

∂xi
dxi =0 (2.5)

3 The characteristic hyperconoid of the ethereal motion

For one-dimensional unsteady motion of a gas, whose speed is denoted by u,
it is well-known that the two characteristic curves through any point, which
correspond to the wave-fronts, are given by

dx

dt
=u± c or (dx− udt)2 − c2(dt)2 =0 (3.1)

where c denotes the local wave-speed.
For unsteady flow of a gas in two space-variables, x1 and x2, when the

velocity components are denoted by u1 and u2 respectively, the characteristic
hyperconoid for the wave-fronts is derived2 as

(dx1 − u1dt)2 + (dx2 − u2dt)2 − c2(dt)2 =0 (3.2)

The results, Eqs (3.1) and (3.2), both express the same simple physical property,
namely that waves of infinitesimal amplitude propagate in all possible directions
at the local wave-speed c relative to the local fluid motion. The extension
to three space-variables may be inferred very easily but, nevertheless, a full
derivation is given here. For general unsteady motion of a gas in three space-
variables xi, (i=1, 2, 3) when the fluid velocity components are denoted by ui,
the governing equations may be written, again using the summation convention,

(Mass)
Dv

Dt
− v

∂ui

∂xi

= −Av2 (3.3)

(Momentum)
Dui

Dt
+ v

∂p

∂xi

=Biv (3.4a)

(Energy)
DS

Dt
=

v

T
(H −Apv) (3.5)

Here p denotes, pressure, v specific volume, S specific entropy, T absolute tem-
perature and the total time-derivative, moving with the fluid, is given by

D

Dt
≡ ∂

∂t
+ ui

∂

∂xi

(3.6)
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A,Bi and H denote, respectively, any external sources of mass, momentum and
energy, per unit volume per unit time.

Equations (3.3), (3.4a) and (3.5) are a simultaneous system of five equations
of the type considered in Section 2 above, in the four independent variables
xi, t, with five unknowns, namely {ui} and two independent thermodynamic
variables. In the (E, v, S) system of thermodynamics, with v and S as the two
independent thermodynamic variables,4 p may be expressed in terms of v and
S, in Eqs (3.4a), by means of the thermodynamic identities

p≡ − Ev, c2≡ v2Evv, Γ≡ − v
EvS

ES
, T ≡ES (3.7)

where E is the intrinsic energy per unit mass, Γ is the Grüneisen index, and
suffixes v and S denote partial differentiation. For then

∂p

∂xi

= − ∂Ev

∂xi

= − Evv
∂v

∂xi

− EvS
∂S

∂xi

and so
∂p

∂xi

= −
(

c2

v2

)
∂v

∂xi

+
(

ΓT

v

)
∂S

∂xi

(3.8)

allowing the three equations of Eqs (3.4a) to be written

Dui

Dt
−

(
c2

v

)
∂v

∂xi

+ ΓT
∂S

∂xi

=Biv (3.4b)

The condition of Eq. (2.3) for the hypersurface ζ(xi) =K to be characteristic
is then ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−v ∂ζ
∂x1

−v ∂ζ
∂x2

−v ∂ζ
∂x3

Dζ
Dt 0

Dζ
Dt 0 0 −

(
c2

v

)
∂ζ
∂x1

ΓT ∂ζ
∂x1

0 Dζ
Dt 0 −

(
c2

v

)
∂ζ
∂x2

ΓT ∂ζ
∂x2

0 0 Dζ
Dt −

(
c2

v

)
∂ζ
∂x3

ΓT ∂ζ
∂x3

0 0 0 0 Dζ
Dt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=0 (3.9)

and this reduces to (
Dζ

Dt

)3
[(

Dζ

Dt

)2

− c2δij
∂ζ

∂xi

∂ζ

∂xj

]
=0 (3.10)

where δij is the Kronecker delta function (= 0, i 6= j; = 1, i = j).
The relation (2.5) satisfied by a displacement in the hypersurface ζ(xi)= K

may be written in the form

Dζ

Dt
+

(
∂ζ

∂xi

) (
dxi

dt
− ui

)
=0 (3.11)
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It is clear from Eq. (3.11) that the vanishing of the first repeated factor Dζ/Dt
in Eq. (3.10) corresponds to the world-lines

dx1

du1

=
dx2

du2

=
dx3

du3

= dt

which must, therefore, be characteristic in the sense of the mathematical de-
finitions given above. The vanishing of the second factor in Eq.(3.10) which
corresponds to the wave-fronts, may, with the aid of Eq.(3.11), be written in a
form independent of ∂ζ/∂t, namely[

∂ζ

∂xi

(
dxi − uidt

)]2

= c2δij
∂ζ

∂xi

∂ζ

∂xj

(dt)2 (3.12)

The characteristic hyperconoid is thus the envelope of the displacements (dxi, dt)
given by Eq. (3.12) in terms of the three parameters ∂ζ/∂xi. This envelope
must, therefore, satisfy, in addition to Eq. (3.12), the three following relations
obtained by differentiating Eq. (3.12) successively with respect to these three
parameters, viz :

∂ζ

∂xi

(
dxi − uidt

) (
dxk − ukdt

)
= c2 ∂ζ

∂xk

(dt)2 (3.13)

By squaring and adding both sides of the three relations of Eq. (3.13) and
making use of Eq. (3.12), the characteristic hyperconoid is finally obtained as

δij

(
dxi − uidt

) (
dxj − ujdt

)
− c2(dt)2 =0

or (
dx1 − u1dt

)2
+

(
dx2 − u2dt

)2
+

(
dx3 − u3dt

)2 − c2(dt)2 =0 (3.14)

4 The characteristic hyperconoid of the equations of electricity and
magnetism

In the assembly of Maxwell’s equations, the time-derivatives which occur in
Ampère’s rule and in the laws of induction have invariably been interpreted as
the partial derivative ∂/∂t. This is not acceptable in the concept of a gas-like
ethereal medium, where the ethereal velocity may vary from point to point and
with time, and the Newtonian frame of reference may be chosen so that its
origin moves at any constant speed, independent of the ethereal motion. To
satisfy the requirements of a gas-like ether unambiguously, the time-derivative
in Ampère’s rule and the laws of induction can only be interpreted as the total
time-derivative moving with the ethereal flow, namely D/Dt, as defined in Eq.
(3.6) above. The equations for the electric and magnetic field-strengths in a
gas-like ether become then,5 again using the summation convention (i=1, 2, 3),
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∂Ei

∂xi
=0 (4.1)

∂Hi

∂xi
=0 (4.2)

ε0
DEi

Dt = εijk

∂Hk

∂xj

(4.3)

µ0

DHi

Dt = − εijk

∂Ek

∂xj

(4.4)

Here
{
Ei

}
is the electric field-strength,

{
Hi

}
the magnetic field-strength, µ0 is

the magnetic permeability of the ether, ε0 the permittivity and εijk the alternat-
ing tensor.

(
µ0ε0

)− 1
2 has the dimensions of a speed and is found observationally

to be equal to c, the local wave-speed in the ether.
The eight equations of Eqs (4.1)− (4.4) are not independent, and are, essen-

tially, a simultaneous system of six equations of the type discussed in Section
(2) above, in the four independent variables (xi) and t, with six unknowns,
namely

{
Ei

}
and

{
Hi

}
. (The components ui of the ethereal velocity are de-

termined by the governing equations, Eqs. (3.3), (3.4) and (3.5), of the ethereal
motion.) The condition (2.3) for the hypersurface ζ(xi) =K to be characteristic
necessitates now the vanishing of all the sixth-order determinants of the matrix∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ζ
∂x1

∂ζ
∂x2

∂ζ
∂x3

0 0 0

0 0 0 ∂ζ
∂x1

∂ζ
∂x2

∂ζ
∂x3

ε0
Dζ
Dt 0 0 0 − ∂ζ

∂x3

∂ζ
∂x2

0 ε0
Dζ
Dt 0 ∂ζ

∂x3
0 − ∂ζ

∂x1

0 0 ε0
Dζ
Dt − ∂ζ

∂x2

∂ζ
∂x1

0

0 ∂ζ
∂x3

− ∂ζ
∂x2

µ0
Dζ
Dt 0 0

− ∂ζ
∂x3

0 ∂ζ
∂x1

0 µ0
Dζ
Dt 0

∂ζ
∂x2

− ∂ζ
∂x1

0 0 0 µ0
Dζ
Dt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Since the eight equations in six unknowns are self-consistent, all but one of
the sixth order determinants of the above matrix vanish identically, and the
condition for the hypersurface ζ(xi)= K to be characteristic is found to reduce
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to (
Dζ

Dt

)2
[(

Dζ

Dt

)2

−
(

1
µ0ε0

)
δij

∂ζ

∂xi

∂ζ

∂xj

]2

=0 (4.5)

As in Section 3 above, the vanishing of the first repeated factor in Eq. (4.5)
corresponds to the world-lines. The second factor is now also repeated, as may
be expected from the duality of the Eqs (4.1)− (4.4) and, exactly as in Section
3 above, it leads to precisely the same characteristic hyperconoid (3.14) when
c2 is written for

(
ε0µ0

)−1. Alternatively, Eqs (3.3) − (3.5) and (4.1) − (4.4)
may be combined to form a system of essentially eleven equations of the type
discussed in Section 2 above, in the eleven unknowns

{
ui

}
, v, S,

{
Ei

}
,
{
Hi

}
,

and the vanishing of the pertinent eleventh-order determinant would then give,
as the condition for the hypersurface ζ(xi)= K to be characteristic,

(
Dζ

Dt

)5
[(

Dζ

Dt

)2

− c2δij

∂ζ

∂xi

∂ζ

∂xj

]3

=0 (4.6)

The triality of electromagnetic-condensational waves is now displayed by the
triple occurrence of the second factor in Eq. (4.6).

5 Galilean transformation

Let (xi, t) denote one non-rotating Newtonian frame of reference and (x′i, t
′) a

second such frame of reference whose origin O′ is at
{
Xi

}
in the first frame (Ẋi

is constant), and whose axes O′x′i have fixed direction cosines Lij in the first
frame. Then the Galilean transformation between the two frames of reference
is, again using the summation convention (i=1, 2, 3),

xi =Xi + Ljix
′
j ; x′i =Lij

(
xj −Xj

)
; t = t′ (5.1)

The ethereal velocity components in the two frames of reference are connected
by the relations

ui = Ẋi + Ljiu
′
j ; u′i =Lij

(
uj − Ẋj

)
(5.2)

and the wave-speed remains unchanged, so that

c′(x′i, t
′) = c(xi, t) (5.3)

Then, from Eq. (5.1)

dxi = Ẋidt + Ljidx′j ; dt= dt′ (5.4)

whence, using Eq. (5.2)(
dxi − uidt

)
=Lji

(
dx′j − u′jdt′

)
(5.5)

7



By squaring and adding both sides of the three relations of Eq.(5.5) it is found
that

δij

(
dxi − uidt

) (
dxj − ujdt

)
= δij (dx′i − u′idt′)

(
dx′j − u′jdt′

)
(5.6)

Equations (5.6) and (5.3) then show that the characteristic hyperconoid (3.14)
is invariant under the transformation (5.1).

It is already well-known that the governing equations of motion, Eqs (3.3)−
(3.5) are invariant under the transformation (5.1); likewise it is easily verified
that Eqs (4.1) − (4.4) for the electric and magnetic field-strengths are also in-
variant under the transformation (5.1). For the differential relations, Eq. (5.4),
lead to

∂

∂x′j
≡Lji

∂

∂xi

;
∂

∂t′
≡ Ẋi

∂

∂xi

+
∂

∂t
(5.7)

whence, using Eq. (5.2) it is found that

D

Dt′
≡ D

Dt
(5.8)

6 Local approximations

If a frame of reference is chosen so that it moves at the same speed as the ether
there, then, in the limit as the origin is approached,

{
ui

}
→ 0, Eqs (4.1)− (4.4)

governing the electric and magnetic field-strengths tend to Maxwell’s equations,
and the common characteristic hyperconoid tends to the limiting form(

dx1

)2
+

(
dx2

)2
+

(
dx3

)2 − c2 (dt)2 =0 (6.1)

Such limiting forms at the origin may serve as good approximations in the vicin-
ity of the origin, to an extent which depends on the smallness of the gradients
in

{
ui

}
near the origin.

There is no reason, however, why such local approximations should be invari-
ant under transformation from one frame of reference to another. But clearly
this may be achieved in practice by dropping the local approximation before
transforming, and then restoring the local approximation near the origin of a
new frame of reference, also chosen so that its origin moves with the local ether.
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