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Abstract—In this paper, we study a Gaussian relay-interference
network, in which relay (helper) nodes are to facilitate competing
information flows between different source-destination pairs. We
focus on two-stage relay-interference networks where there are
weak cross links, causing the networks to behave like a chain of

Gaussian channels. Our main result is an approximate charac-
terization of the capacity region for such and networks.
We propose a new interference management scheme, termed in-
terference neutralization, which is implemented using structured
lattice codes. This scheme allows for over-the-air interference
removal, without the transmitters having complete access the
interfering signals. This scheme in conjunction a new network
decomposition technique provides the approximate characteriza-
tion. Our analysis of these Gaussian networks is based on insights
gained from an exact characterization of the corresponding linear
deterministic model.

Index Terms—Deterministic model, Gaussian wireless network,
interference neutralization, lattice codes, relay-interference net-
work, structured codes.

I. INTRODUCTION

T HE multicommodity flow problem, where multiple inde-
pendent unicast sessions need to share network resources,

can be solved efficiently over graphs using linear programming
techniques [1]. This is not the case for wireless networks,
where the broadcast and superposition nature of the wireless
medium introduces complex signal interactions between the
competing flows. The simplest example is the one-hop inter-
ference channel [2], where two transmitters with independent
messages are attempting to communicate with their respec-
tive receivers over the wireless transmission medium. Even
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for this simple one-hop network, the information-theoretic
characterization has been open for several decades. To study
more general networks, there is a clear need to understand and
develop sophisticated interference management techniques.

Recently, a new approach on the capacity characterization of
wireless networks has been initiated. This approach asks for ap-
proximate instead of exact characterization. The first such result
is the capacity of the two user Gaussian interference channel to
within one bit by Etkin, Tse, and Wang [3]. This characteriza-
tion involves new upper bounds for the capacity of the network
and showing that the Han-Kobayashi scheme [2] performs close
to these upper bounds. More recently, Avestimehr, Diggavi, and
Tse considered relay networks in [4], wherein a message has
to be transmitted from one transmitter to a (set of) receiver(s)
over a network with an arbitrary network topology and number
of nodes. Characterization of the capacity of such network has
been an open problem, even for very simple cases since 1979
[5]. The authors introduced a deterministic model for the ap-
proximation of wireless network. This model allows the anal-
ysis to focus on signal interactions rather than the randomness
of the noise. They first derived a complete characterization for
the capacity of deterministic relay networks, analogous to the
max-flow min-cut theorem in wired networks. Then the insight
obtained by this characterization is used to devise a new relaying
strategy called quantize-map-and-forward for Gaussian relay
networks. This scheme, unlike all the schemes previously pro-
posed in the literature, was demonstrated to be within a gap from
the cut-set upper bound which does not depend on the channel
parameters.

Building on this progress, a natural next step is to study the
approximate capacity region of small-scale interference-relay
networks, where there are potentially multiple hops from the
sources to destinations through cooperating relays. Studying
even simple two-hop topologies could help develop techniques
and build insight that would enable a (perhaps approximate)
characterization of capacity for more general networks. We are
interested in our work in a universal type of approximation,
in that it should characterize the capacity to within a constant
number of bits, independently of the signal-to-noise ratio and
the channel parameter values.

The focus of this paper is to study the two-stage relay-inter-
ference network illustrated in Fig. 1. In particular, we give an
approximate characterization of the capacity region for special
cases of these networks when some of the cross-links are weak.
These are illustrated in Figs. 3(a) and 4(a), which we refer to
as the and Gaussian models. These networks are formed
by concatenation of two layers of ( ) networks. A network
is able to model a common situation in a wireless network, that
is when two base stations communicate to two user nodes, one
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Fig. 1. Two-stage relay-interference network.

located close to one of the base-station, and the other one is on
the boundary of the coverage areas of two base-stations. The

network occurs for example when these user nodes act as
relays; it could also occur when the user nodes are replaced by
dedicated relay stations which have a similar connectivity. We
first study a deterministic version of these problems by using
the linear deterministic model introduced in [6]. An exact ca-
pacity region characterization in the deterministic case is then
translated into a universally approximate characterization for
the (noisy) Gaussian network. In particular, for and net-
works we have a capacity region characterization within 2 bits
(or less), independent of the operating signal-to-noise ratio and
the channel parameters. The outer bound as well as the encoding
schemes proposed for the Gaussian networks are inspired by the
analysis of the deterministic networks. We will discuss it later
in detail in Sections IV and V, where we illustrate the relaying
strategies used for the deterministic networks through some ex-
amples, and then give an outline for the encoding scheme pro-
posed for the Gaussian network.

The main tools used in literature for achievability are the
Han-Kobayashi coding scheme, which includes “interference
suppression” (i.e., decoding part of the interference and peeling
it away) and message splitting with appropriate power alloca-
tions. Another known technique for interference management
is interference alignment. In this work, we propose a new in-
terference management technique,1 called “interference neutral-
ization”, which in the Gaussian interference-relay network re-
quires the use of lattices to properly allow “over-the-air” cancel-
lation of parts of the interference, without the relays decoding
the interference. We do use the deterministic framework to get
insight into the problem, but the deterministic network solution
is new in this paper and leads to both new coding schemes as
well as outer bounds. The deterministic approach also suggests
a network “decomposition” approach to the achievability, which
we appropriately translate to the Gaussian case through mes-
sage/rate splitting. We also develop a new form of genie aided
outer bounds for the interference-relay network. These outer
bounds are in fact tighter than the information theoretic cut-set
bounds. These new ideas enable us to obtain an approximate
characterization to the networks studied in this paper, within a
universal constant.

1A noise nulling technique is proposed in [7] to mitigate correlated noise in an
amplify-forward relaying strategy for a single unicast “diamond” parallel relay
network. However, the difference in our technique is that we use the structure
of the codebooks (without necessarily decoding information) to neutralize in-
terference, and not noise statistics. Moreover the multiple-unicast nature of the
problem necessitates strategic partitioning and rate-splitting of different com-
ponents of the messages.

A way to interpret the achievability results for the net-
works is that the relays perform a partial-decoding of strate-
gically split messages from the sources, and then cooperate to
deliver the required messages to the destination, again through
strategically splitting the messages. The power allocated to each
of the sub-messages is determined using the insight derived
from the deterministic model, that messages that are not in-
tended be decoded arrive at the noise-level. The achievability
for the network is slightly more sophisticated, in the sense
that one of the relays is required to only decode a function of
the sub-messages. The function is chosen such that its signal
in combination with the transmission of the other relay causes
the unwanted interference to be canceled (neutralized) at the
destination. This interference neutralization is enabled in the
Gaussian channel using the group property of a structured lat-
tice code.

Work in the literature over the past decade has examined
scaling laws for multiple independent flows over wireless net-
works, see for example [8]–[10]. The goal there is to charac-
terize the order of the wireless network capacity as the net-
work size grows. In contrast, in our work, instead of seeking
order arguments and scaling laws, we try to characterize the ca-
pacity (perhaps within a universal constant of a few bits) for
specific topologies. The interference channel is a special case
of such networks, where there is only one-hop communication
between the sources and destinations. There has been a surge
of recent work on this topic including cooperating destinations
[11] and use of feedback in inducing cooperation at the transmit-
ters [12]. The deterministic approach developed in [6] has been
successfully applied to the interference channel in [13]. The fun-
damental role of interference alignment in -user interference
channel (still a one-hop network) has been demonstrated in [14],
[15].

The paper is organized as follows. Section II introduces our
notation and the basic network models we study. The main re-
sults are given in Section III. Section IV illustrates the transmis-
sion techniques used in this paper through simple deterministic
examples. These examples are followed by the proof outline for
the Gaussian networks in Section V. The achievability and con-
verse for the deterministic network is given in Section VI,
and many of these ideas are translated into the precise proof
for the corresponding Gaussian network in Appendix A.
Section VII follows a similar program for the network, by
first identifying the capacity region for the deterministic ver-
sion. This allows illustration of ideas such as interference neu-
tralization, as well as genie-aided outer bounding techniques.
The precise translation of these results into Gaussian net-
works is given in Appendix B. Section VIII concludes the paper
with a short discussion.

II. PROBLEM STATEMENT

A well accepted model for wireless communication is a linear
Gaussian model. In this, the received signal at time and
node , is related to the transmitted signals as

(1)
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where is i.i.d. (unit-variance) Gaussian noise, and rep-
resents the fading channel from transmitter to receiver .

A. Deterministic Model

In [6], a deterministic model was proposed, to capture the
essence of wireless interaction described in (1). The advantage
of the deterministic model is its simplicity, which allows exact
characterizations; its purpose is to build insights for the noisy
wireless network in (1). The deterministic model of [6] simpli-
fies the wireless interaction model by eliminating the noise and
discretizing the channel gains through a binary expansion of
bits. Therefore, the received signal , which is a binary vector
of size , is modeled as

(2)

where is a binary matrix representing the (discretized)
channel transformation between nodes and and is a
vector that contains the (discretized) transmitted signal. We will
drop the time index when it does not play a role for simplicity.
All operations in (2) are done over the binary field, . We use
the terminology deterministic wireless network when the signal
interaction model is governed by (2). The model in (2) is an
approximate representation of a Gaussian fading channel, which
attempts to capture the attenuation effect of the signal caused
by the channel gain. This can be interpreted as the number of
significant bits of a binary representation of the input, , that
is above the noise level. More precisely, typically the model in
(2) assigns , where is a shift matrix, i.e.,

...
. . .

. . .
. . .

. . .
(3)

For real channel gain in the Gaussian model (1), we calculate
as . The parameter is chosen such that

.
An example of a deterministic network is illustrated in Fig. 2.

Each node contains several channel inputs and outputs, which
are called sub-node or level through out this paper. Source
can only send one bit to node and no bit to node ; source

can send its two MSB to both and , and its LSB to node
. The transmitted bits from nodes and interfere on the

LSB that node receives.
In a deterministic network, given a cut that separates nodes

from node , the cut-value equals the rank of the transfer matrix
between the nodes in and . For example, in Fig. 2, the cut
that separates nodes and
equals

(4)

Fig. 2. Deterministic network.

The rows of this transfer matrix correspond to the six transmitted
inputs by nodes and , while the columns to the six receives
outputs at nodes and .

B. Interference-Relay Network Model

Our goal in this paper is to derive approximate capacity char-
acterizations for a class of 2-user relay-interference networks
shown in Fig. 1, which we call the network. We start by de-
scribing our notation for Gaussian channels.

Two transmitters, and , encode their messages and
of rates and , respectively, and broadcast the obtained

signals to the relay nodes, and . Denote the transmitted sig-
nals by and , and the received signals at the relays by
and . Then

(5)

where are unit-variance Gaussian noises, independent of
each other and of .

The relay nodes perform any (causal) processing on their re-
ceived signal sequences and respectively, to ob-
tain their transmitting signal sequences, and .
The received signals at the destination nodes can be written as

(6)

where and are independent zero-mean unit-variance
noises, which are also independent of and . There is a
power constraint for each transmitted signal, that is, ,

, and .
Each destination node , , is interested in decoding

its message , using its received signals . We define
a rate pair to be admissible if there exist a transmis-
sion scheme under which and can decode and ,
respectively, with arbitrary small (average) error probability in
the standard manner [16]. This would allow two end-to-end reli-
able unicast sessions at rates for the source/destination
pairs and .
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A useful tool to examine the network problem defined above
is to study its deterministic version, based on the model devel-
oped in (2). Using the deterministic approach, we can rewrite
(5)–(6) as

(7)

and

(8)

where the matrices and approximately model the
channels in (5)–(6), i.e., . The
matrix is defined as in (3), while and

.
It is worth mentioning that though this network looks like cas-

caded interference channels, there is an important difference.
Unlike the interference channel, the messages sent by the relays
at the second layer of transmission need not independent, i.e.,
we can try to induce cooperation at the relays to transmit in-
formation to the final destinations. This distinction makes this
network more interesting than a simple cascade of interference
channels. In this paper, we focus on two specific realizations of
the network, namely, the and the networks, which further
simplify the connectivity models of (5)–(6). We describe these
two networks in the following, and give an approximate charac-
terization of their admissible rate region in Section III.

Notation Alert: Throughout this paper, we use the lowercase
letters and for the signals transmitted by the sources and
received signals at the destinations in the Gaussian networks.
The received and transmitting signals by the relays are denoted
by and , respectively. Similarly, uppercase letters will be
used for the deterministic networks.

C. Network

The network is a special case of the interference-relay
network defined in (5)–(6). In the network one cross link in
each layer has a negligible gain and, therefore, does not cause
interference, as illustrated in Fig. 3(a). In particular, we assume

in the Gaussian network, and in
the deterministic network. The resulting Gaussian network is
shown in Fig. 3(a), and the deterministic model for this network
is given in Fig. 3(b).

D. Network

The network is another special configuration interference-
relay network, wherein one cross link in each layer has zero
gain. However, the difference is that, here the missing links
are in parallel. In particular, we assume and

in the Gaussian and deterministic networks,
respectively. The Gaussian and corresponding deterministic
networks are shown in Fig. 4.

III. MAIN RESULTS

In this section we present the main results of this paper, which
is the approximate capacity characterization of the Gaussian

Fig. 3. network. (a) The Gaussian network. (b) The deterministic
network.

and interference-relay networks. In order to obtain such an
approximate characterization, we have a complete characteriza-
tion of the deterministic versions of the and networks.
The coding strategies for the Gaussian problems are outlined
in Section V. The detailed analysis of these strategies and the
corresponding outer bounds which lead to Theorems 2 and 4
are given in Appendices A and B, respectively. Most of the in-
sights are obtained by analyzing the deterministic versions of
these problems, and the exact characterizations are summarized
in Theorems 1 and 3, respectively. We prove these results in
Sections VI and VII, respectively. The achievability and outer
bound results for the Gaussian cases are directly inspired by
these results.

A. Network

The deterministic network illustrated in Fig. 3(b) and the
corresponding Gaussian network is given in Fig. 3(a). The-
orems 1 and 2 give the exact and approximate (within 2 bits)
characterizations of their capacity regions.

Theorem 1 (Capacity Region of Deterministic Network):
The capacity region of the deterministic network is specified
by , where is the set of all rate pairs that
satisfy

( -1)

( -2)

( -3)

( -4)
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Fig. 4. network. (a) The Gaussian network. (b) The deterministic
network.

( -5)

( -6)

( -7)

( -8)

( -9)

( -10)

Here and elsewhere denotes the positive part of , which
is formally defined by

if
otherwise.

Theorem 2 (Approximate Capacity Region of Gaussian
Network): Let be the set of all rate pairs which
satisfy ( -1)–( -10) given below. Then is an outer
bound for the capacity region of the Gaussian network.
Moreover, for any , there exists a transmission

scheme with rates ,
where and are universal constants, independent
of the channel gain, and required rates.

( -1)

( -2)

( -3)

( -4)

( -5)

( -6)

( -7)

( -8)

( -9)

( -10)

The outer bound for the results above are fairly standard argu-
ments based on reducing a multiletter mutual information into
single-letter forms by appropriately using decodability require-
ments at the different destinations. The details of these are given
in Section VI-A and Appendix B.1, respectively.

The coding strategy achieving these regions is based on two
ideas. One is that of a network decomposition illustrated in Ex-
ample 1 in Section IV, for the deterministic network. The insight
from the network decomposition leads to the idea of strategic
rate-splitting and power allocation in the Gaussian channel. For
the Gaussian coding scheme, we need to strategically partition
the messages and allocate powers in order for the relays to par-
tially decode appropriate messages and setup cooperation. The
details of this strategy are outlined in Section V.

B. Network

The deterministic network illustrated in Fig. 4(b) and the
corresponding Gaussian network is given in Fig. 4(a). Al-
though superficially the and networks may look similar,
the subtle difference in the network connectivity, makes the two
problems completely different, both in terms of capacity charac-
terization, as well as transmission schemes. It will be shown that
a new interference management scheme, which we term as inter-
ference neutralization, is needed to (approximately) achieve the
capacity of this network. The most intuitive description for inter-
ference neutralization is to cancel interference over air without
processing at the destinations. This scheme can be used when-
ever there are more than one path for interference to get received
at a destination. We will explain it in more detail in Sections V
and VII.

Theorems 3 and 4 give the exact and approximate (within 2
bits) characterizations for the capacity region of the determin-
istic and the Gaussian networks, respectively. Another new
ingredient used here is a genie-aided outer bound that gives the
output of the first (noisy) cross link of the first (or correspond-
ingly second) layer to the first destination (or correspondingly
to the relay). This genie-aided bound allows us to develop outer
bounds that are apparantly tighter than the information-theoretic
cut-set bounds by utilizing the decoding structure needed.

Theorem 3 (Capacity Region of Deterministic Network):
The capacity region of the deterministic network is given by
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, where is the set of all rate pairs which
satisfy

( -1)

( -2)

( -3)

( -4)

( -5)

( -6)

Theorem 4 (Approximate Capacity Region of Gaussian
Network): Let be the set of all rate pairs which
satisfy ( -1)–( -6) given below

( -1)

( -2)

( -3)

( -4)

( -5)

( -6)

Then, any admissible rate pair for the Gaussian
network belongs to . Moreover, for any rate pair

, there exists an encoding scheme with rates

.

IV. EXAMPLES ILLUSTRATING TRANSMISSION TECHNIQUES

In this section, we illustrate through examples some of the
main interference management techniques we will use to (ap-
proximately) achieve the capacity of our relay-interference net-
works. For simplicity in demonstrating the ideas, we focus on
deterministic networks throughout the examples. However, sim-
ilar techniques will be used later for Gaussian networks as well.

We also present a simple Gaussian example at the end of this
section, to illustrate the message splitting idea used in many
places throughout this work.

Example 1 (Network Decomposition for the Network): A
deterministic network can be always decomposed into two
sub-node-disjoint networks, where the first partition consists of
a set of sub-nodes of , and , and looks like a line net-
work. The second partition is, however, a diamond network,
with a broadcast channel from to and in the first layer,

Fig. 5. Network partitioning for a deterministic network.

Fig. 6. Interference Neutralization; �� �� � � ��� �� is achievable.

and a multiple access channel from and to in the second
layer. This diamond network can be used to send information
from to . Since these two networks are sub-node disjoint,
there would be no interfering signal, and each of them can be
analyzed separately. This is more illustrated in Fig. 5.

In a Gaussian network the network decomposition can be
done using message splitting, superposition coding and proper
power allocation. We will use this technique to achieve an ap-
proximate capacity for the Gaussian network.

Example 2 (Interference Neutralization): This technique can
be used in networks which contain more than one disjoint path
from to for , where is not interested in de-
coding the message sent by the source node , and therefore, it
receives the interference through more than one link. The pro-
posed technique is to tune these interfering signals such that they
neutralize each other at the destination node. In words, the in-
terfering signal should be received at the same power level and
with different signs such that the effective interference, obtained
by adding them, occupies a smaller sub-space in the signal space
of the receiver. To the best of our knowledge, this technique is
new and has not been appeared in the literature before [17].

Fig. 6 shows a network in which interference neutralization is
essential to achieve the desired rate pair . Here

has only two sub-nodes who can receive information from
. These two sub-nodes are also connected to , and receive

interference from . However, notice that there are two disjoint
paths ( ) and ( ), which connect to . As
it is shown in Fig. 6, using a proper mapping (permutation) at
the relay nodes, one can make the interference neutralized at
the destination node , and provide two non-interfered links
from to . Note that this permutation does not effect the
admissible rate of the other unicast from to , and the cost
we pay, is to permute the received bits at . A more general
illustration of this phenomenon is given in Fig. 7.
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Fig. 7. Interference neutralization.

Example 3 (Use of Lattice Codes to Implement Interference
Neutralization Over Gaussian Network): The idea of inter-
ference neutralization illustrated in Example 2 can be also used
in Gaussian networks. In this case a group structured code, such
as lattice code, is required to play the role of composition and
decomposition of the signal and interference in two layers of the
network. Consider the Gaussian network in Fig. 4(a). We can
use message splitting and interference neutralization to improve
the achievable rate pairs of this network.

Let the second source split its message into two parts as
, namely, the functional (neutralization) and pri-

vate parts, of rates and . Both trans-
mitters use a common lattice code to encode and , and
map them into and , respectively. The other message

can be encoded to using a random Gaussian code.2

We assume that both the lattice code and the random Gaussian
code have average power equal to 1. Then, the transmitting sig-
nals would be a linear combination of the codewords with a
proper power allocation, i.e.,

(9)

where the power allocation coefficients satisfy and
. The transmitters choose the power allocated

to to in a way that they get received at with the
same power. In this way, their summation would be again a lat-
tice code and can be decoded at by treating as noise. A
similar strategy will be used for signaling at the relay for trans-
mission in the second layer of the network. The only difference
is that instead of sending , the relay node sends .
Then, the lattice point observed at would be exactly
and it can find . The other decoder can simply first reverse

to , and then decode it. This idea is illustrated in
Fig. 8.

Example 4 ( Gaussian Network): Consider the Gaussian
network shown in Fig. 9, with channel gains , ,
and .

2A random code of rate � and block length � from distribution ���� is a
collection of � random sequences of length �, say �� ��� � � � �� � � � � � �,
each picked independently and randomly according to the distribution
��� ���� � ��� ����. In particular, a random Gaussian code is a
random code whose codewords are element-wise picked independently from
the Gaussian distribution with zero mean and certain variance.

The source nodes wishes to encode and send message
to the destination node , for . Denoting the rate of
message by , an approximate capacity characterization
for this network is given by

(10)

It is easy to show that any achievable rate pair belongs
to , and hence, establishes an outer bound for the
capacity region. Moreover, one can show that the rate
pair is achievable provided that

. The encoding strategy to achieve such rate
pair involves message splitting and proper power allocation.
We will discuss this in more details in Appendix C.

V. GAUSSIAN CODING STRATEGIES

This section is devoted to providing the basic ideas of the
coding schemes used in the Gaussian and networks. We
also develop an outline of how to analyze these coding strate-
gies.

A. Gaussian Network: Achievability

The coding strategy for the Gaussian network is es-
sentially a partial-decode-and-forward strategy, along with a
strategic rate-splitting of the messages. Let the messages to
be sent from be denoted by , respectively [see
Fig. 3(a)]. We will break the network into two cascaded
interference channels, where we require particular messages
to be decoded at the relays and forwarded to the destinations.
The first stage is a interference channel, with messages

and message which is split into three parts:

. The intention of this strategic split is to
allow the node (which is relay in the original network)
to decode and node (which is relay

in the original network), to decode . This is

illustrated in Fig. 10. Here, plays the role of a common
message which can be decoded at both receivers, whereas
and are the private messages for and , respectively.

The next stage of the network is a interference channel
depicted in Fig. 11. Here we take the messages delivered and de-
coded by the interference channel of the first stage and further
process them to ensure delivery of the desired messages to the
destination. In particular, we further split the decoded messages
from the first stage into several parts and require delivery of mes-
sages as shown in Fig. 11. This splitting and delivery of appro-
priate pieces, finally ensures that and are decodable at
the destinations. This is the encoding strategy in the network.
In the following lemmas, we give the rates at which messages
at each stage can be delivered. Putting together Lemmas 1 and
2, we get the desired result given in Theorem 2. The proofs of
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Fig. 8. Using lattice codes for interference neutralization over a Gaussian network. The origin is specified by a cross “�”. Power allocated to the messages
at the transmitters are chosen such that the two lattice points corresponding to � and � get received at � at the same power level, and their summation
becomes a point on the scaled lattice. The same strategy is used by the relays. The relay node � also reverses its transmitting lattice point in order to neutralize
the interference caused in the first layer of the network.

Fig. 9. Gaussian network.

Fig. 10. interference channel with particular message requirements, captures
the proposed coding scheme for the first layer of the Gaussian network.

these lemmas follow fairly standard arguments, and are given in
Appendix C.

A formal statement of the argument above is given below.

Lemma 1: Consider the Gaussian interference network
with channel gains , and decoding requirements
as shown in Fig. 10. Denoting the rate of the sub-message
by , any rate tuple which satisfies

(11)

(12)

(13)

(14)

(15)

(16)

is achievable.

The next lemma gives an achievable rate region for the second
layer of the network, which is a interference network de-
picted in Fig. 11.

Lemma 2: Consider the Gaussian interference network
with channel gains , and decoding requirements
as shown in Fig. 11, where denotes the rate of message

. Any rate tuple
which satisfies

(17)

(18)

(19)

(20)

(21)

(22)

is achievable.

B. Gaussian Network: Achievability

The encoding scheme needed for the network is slightly
more sophisticated than the network. An additional compo-
nent to strategic message splitting is that of interference neutral-
ization. This was illustrated in Examples 2 and 3 in Section IV.
This along with message splitting inspired by the network de-
composition illustrated in example 1 of Section IV, form the
basis of the encoding scheme for the network.

More formally, the interference that has to be neutralized,
will be combined with the main message in the first layer ac-
cording to some partial-invertible function. In the second layer
the inverse of the function is applied on this combination and
the other interference received through the cross link. The re-
maining parts of the interference has to be either decoded or
treated as noise. The neutralization is implemented using lattice
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Fig. 11. interference channel with particular message requirements, depicting the proposed coding strategy for the second layer of the Gaussian network.

codes and the rate-splitting along with appropriate power allo-
cation is also used.

We formally define a partial-invertible function and a -neu-
tralization network in the following. The Gaussian network
is essentially a cascade of two -neutralization networks. An
achievable rate region for the -neutralization network is given
in Lemma 3 . This rate region will be later used to obtain an
achievable rate region for the Gaussian network. We will
analyze the performance of the Gaussian encoding/decoding
schemes in Appendix B.2.

Definition 1: Let and be two finite sets. A function
defined on is called partial-invertible, if and only if having

and , one can always reconstruct for any and
. Similarly, can be obtained from and .

An intuitive way of thinking about a partial-invertible
is the following. An arbitrary function defined on a finite sets
and creates a table with rows corresponding to the elements of

and columns corresponding to the elements of , and each cell
of the table consists the value assigned to its row and column by
the function. A function will be partial-invertible, if and only if
no two cells in the same column or row of its table be identical.

Note that summation over real numbers, and multiplication
over nonzero numbers are two examples of partial-invertible
functions. However, it is clear multiplication over real numbers
is not partial-invertible, since , and,
therefore, having and , can be anything.

Definition 2: Consider the network shown in Fig. 12, which
consists of a Gaussian broadcast channel from to the re-
ceivers and a Gaussian multiple access channel from and

to . A -neutralization network is a network, wherein
the first source node has two messages of rates
and , respectively. Similarly the second source observes two
independent messages of rates and .

The second receiver is interested in decoding and ,
while the first destination wishes to decode and

, where can be any arbitrary partial-invertible func-
tion. A rate tuple is called achievable if the re-
ceivers can decode their messages with arbitrary small error
probability.

Lemma 3: Consider the -neutralization network defined in
Definition 2 with channel gains (see Fig. 12). Let

(23)

and

(24)

Any rate tuple satisfying

(25)

(26)

(27)

(28)

is achievable.
As mentioned before, we strategically split the messages and

require functional reconstructions for some of them at the relay
nodes to facilitate neutralization at the destinations. More pre-
cisely, in the first layer of the network, each source node splits
its message into two parts, namely, “functional” and “private”
parts, and . The func-

tional parts both have the same rates . Both trans-
mitters use a common lattice code to encode their functional
sub-messages. Now the first layer encodes the message such that
the first receiver (which is relay in the original network)
can decode and , and the second one (relay
in the original network) can decode and . Lemma
3 gives the rates at which these can be sent reliably. The second
stage operates in a manner similar to the first stage, by splitting
the messages into functional and private parts. The first sender
(relay in the original network) uses and
as the private and functional parts and the other one (relay )
uses and as the private and functional parts.

The functional parts are sent appropriately, using a common
lattice code in both stages. Let and be the lattice code-
words, corresponding to and , respectively. The power
allocation in the first layer is done so that two lattice points get
received at at the same power (see Fig. 8). The group structure
of the lattice code implies that the summation of two received
lattice point, is still a valid codeword, and
can be decoded by . The function is in fact the decoded
message from . In the second stage, relay node , sends the
inverse of the the received lattice point, that is ,
while forwards the sum lattice point, . Again
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Fig. 12. Gaussian � channel.

these lattice points are scaled properly so that they get received
at at the same power. Thus, their summation would be a lat-
tice point and equals

, which will be decoded to . The other destination ,
receives , finds its inverse , and finally decodes it to

. This idea is illustrated in Example 3, and the precise de-
tails of this argument are given in Appendix B.2.

VI. DETERMINISTIC NETWORK

In this section, we prove Theorem 1 . We present this proof
in two parts. First we present the converse proof, which shows
any achievable rate pair belongs to . Then for any rate pair
in this region, we propose an encoding scheme which is able to
transmit messages up to the desired rates.

A. Outer Bound

In this section we show that any achievable rate pair
for the deterministic network belongs to . Assume there
exists a coding scheme with block length which can be used
to communicate at rates and over the network. We use
bold face matrices to denote copy of them, as the transfer ma-
trix applied over a codeword of length . Such matrices can be
written as the Kronecker product of identity matrix of size and
the single letter transfer matrix of the channel, e.g.,

. Here, the Kronecker product of matrices
and is defined as , where

for , , , and
.

The following simple lemma which relates the entropy of a
random projected vector to the rank of the projection matrix will
be frequently used in the following proof. We will prove this
lemma in Appendix C.

Lemma 4: For any matrix , the entropy of can be
upper bounded by

Moreover, for matrices and , we have

All of the bounds in Theorem 1 except ( -3) and ( -10)
can be obtained straight-forwardly using the generalized cut-set
bound in [18], which shows that in a linear finite-field network,
the maximum reliable rate can be transmitted through a cut is
upper bounded by the rank of the transition matrix of the cut.
Here, we only present the proof of ( -5) to illustrate this idea.

Then we prove the two remaining bounds, which are tighter than
the cut-set bound.

( -5) : Recall the
notation used in Fig. 3(b) for transmitting and receiving sig-
nals. This bound corresponds to the cut and

. The transition matrix from the input of the
cut to its output can be
written as

(29)

Therefore, from [18], we have

(30)

As mentioned before, we skip the proof of those bounds
which follow from the generalized cut-set bound. In the fol-
lowing we present the proof of the two remaining inequalities
which are tighter that the cut-set bound.

( -3) : In
order to prove this bound, we can start with

(31)

(32)

where in (31) we used the data

(33)

and (32) holds since is a deterministic function of in the
part of the network. Now, using Lemma 4 it is clear that

(34)
In order to bound the second term, we can write

(35)

(36)

(37)

(38)

(39)

where (35) holds since is completely determined by ,
and is also a deterministic function of in the part of the
network. We used Fano’s inequality in (36), where should
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be decodable based on . Here, as grows. Equality in
(37) holds, since is determined by , and finally, we used
Lemma 4 in (38). Summing up (34) and (39), we get the desired
bound.

Note that the cut-set bound for the cut and
gives us

(40)
in which the RHS can be arbitrarily larger than the RHS of the
presented bound. The reason for this difference is the following.
It is inherently assumed in deriving the cut-set bound that the
receivers can cooperate to decode the messages of rates and

, and no decodability requirement is posed for individual re-
ceivers. However, the setup of this problem imposes an extra
constraint, that is alone should be able to decode . Incor-
porating this decodability requirement shrinks the set of admis-
sible rates, and gives us a tighter bound.

( -10) : The
last inequality captures the maximum flow of information from
the relays to the destinations, such that and be able to
decode and , respectively. We again start with

(41)

The first term can be easily bounded by

(42)

In order to bound the second term, we use the fact that can
be decoded from . Therefore

(43)

(44)

(45)

In (43) we used the Fano’s inequality, as well as the fact that ,
, and are known having . We again used Lemma 4

in (44). Finally, the desired bound is obtained by replacing (42)
and (45) in (41).

It is worth mentioning that this bound is tighter than
the cut-set bound for the cut and

, which is

(46)

B. Achievability Proof

Network Decomposition: The achievability scheme pre-
sented here is based on decomposition of the deterministic
network into two sub-node-disjoint networks. In fact, such par-
titioning depends on the demanded rate pair .
The resulting family of separations immediately suggests a
simple coding scheme. We will show that this separation is
optimal, and does not cause any loss in the admissible rate
region of the network.

Before introducing the network decomposition, we define an
equivalence class for the sub-nodes (levels) in a network.

Definition 3: In a (or ) deterministic network, two sub-
nodes and are called related sub-nodes, and denoted by
if any of the following conditions hold:

• ;
• is connected to ;
• is connected to ;
• there exists a sub-node such that broadcasts to both

and ;
• there exists a sub-node where both and are connected

to.
Note that this relation is reflective, symmetric, and transitive.
Therefore, it forms equivalence classes for the sub-nodes.

We denote by and the partitions of the network. As-
sume we wish transmitting at rate
from to . The first part of the network , includes the top

levels as well as the lowest
levels of who are connected to . It also includes all the re-
lated sub-nodes of , and the receiver levels of and . Simi-
larly, in the second layer of the network, includes the lowest

levels as well as the top nodes
of the transmitter part of . All related sub-nodes of the trans-
mitter part of , as well as and also belong to . The
second part of the network , is formed by all the remaining
nodes.

We will use for transmitting data from to . Simi-
larly is only used to communicate from to . Therefore,
we have two unicast networks, and each pair of transmitter-re-
ceiver can communicate up to the capacity of their own partition,
which is the min-cut of the partition [6].

It is worth mentioning that any two “related” sub-nodes be-
long to the same partition. Therefore, these two networks are
sub-node-disjoint, and do not cause interference for each other.
This allows us to derive the capacity of each network separately,
and argue that can be achieved simultaneously for the
original network, if and are achievable for partitions
and .

Encoding Scheme: A transmission from and to
and is performed as follows. transmits only on its sub-
nodes which belong to , and keeps its other sub-nodes silent.
Similarly, encodes its message on the sub-nodes included in

, and sends zero on the other levels. Therefore, the effective
communication over each partition is a simple unicast.

Fig. 13 shows the effective parts of the network. It is easy
to see that the diamond network in Fig. 13(b) is also a linear
shift deterministic networks. However, note that the lowest
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Fig. 13. Effective separated network. (a) Effective channel for �� �� �.
(b) Effective channel for �� �� �.

levels of belong to . Therefore, the gain
of the channel from to in can be computed as

(47)

Similarly, the other channel gains can be written as

(48)

(49)

(50)

Achievable Rate Region: The cut values of can be easily
computed as

Therefore, any rate in can be
conveyed from to through .

The capacity of can be found using the generalized
max-flow min-cut theorem [6]. Hence, the rate region of the
second partition would be

(51)

(52)

(53)

(54)

Therefore, by using this decomposition, any rate pair in the set

can be achieved. It remains to prove the following
lemma.

Lemma 5: For any deterministic network

(55)

We will prove this lemma in Appendix C.

VII. DETERMINISTIC NETWORK

In this section, we prove Theorem 3 . This is done in two
parts, that provides the converse and achievability proofs.

A. Outer Bound

In the following we will show that any achievable rate pair
satisfies constraints ( -1)–( -6). The indi-

vidual rate bounds can be directly obtained by the generalized
cut-set bound introduced in [18], where the maximum flow of
information through a cut in a linear deterministic network is
upper bounded by the rank of the transition matrix from the
sender part of the cut to its receiver part. Hence, we skip the
proofs of ( -1)–( -4).

The sum-rate bounds in ( -5)–( -6) are, however,
genie-aided bounds which are tighter that the cut-set bounds. In
the following, we focus on these two bounds, and present their
proofs in detail. Again we assume that there exists a coding
scheme with block length which can be used to communicate
at rates and over the network.

( -5)
: In order to prove this inequality we focus on the flow of

information from the sources to the relays. The key idea here
is to provide with the information sent by to , as side
information. In such condition, the information has received
about is stronger than the information available at , and,
therefore, can decode since can do as well. Once
is decoded at , it can determine the transmitted codeword from

. By removing the interference from , can also partially
decode .

More precisely, we can write

(56)

where is the part of the signal received at
from as in Fig. 4(b). The first two terms are easily bounded
by and , respectively. Deriving an upper
bound for the last term is more involved.

Similar to , we define ,
where we have

(57)

(58)

where as grows. We have used the invertibility
property of the deterministic multiple access channel in (57),
and (58) follows from the Fano’s inequality, and the fact that
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can decode the message sent by . Therefore, we have
. Hence

(59)

where the derivation of the last inequality above is based on
Lemma 4 and very similar to that of (39), and hence, we skip
it here. Replacing the upper bound for each term in (56), we get

(60)

It is worth mentioning that the cut-set bound for
and gives us

(61)

which is looser than the genie-aided bound.
( -6) :

The last inequality captures the maximum flow of information
from the relays to the destinations. Intuitively, this inequality
says that the number of interfering bits can get neutralized at

cannot exceed the minimum of and . In order to
make this intuition formal, we provide , the partial informa-
tion about which is available at , as side information for

. We then have

Again, we can simply upper bound the first two terms by the
rank of the corresponding matrices. In order to bound the last
term, similar to the proof of ( -5), we use the following
bounding technique:

(62)

where (62) follows from the Fano’s inequality. This inequality
can be used as

(63)

We again used Lemma 4 in the last inequality. Now, we have

(64)

Again, it is easy to show that this bound is tighter than the
cut-set bound for and

(65)

This completes the proof of the converse part of Theorem 3.

B. Achievability Proof

In this part we will show that all rate pairs satisfying inequal-
ities ( -1)–( -6) are achievable. In particular, we intro-
duce a coding scheme which achieves such rates. Our coding
strategy provides the interference neutralization at the destina-
tion. This is performed by splitting the messages into two parts,
namely private and functional parts. The private sub-messages
can be decoded at the relays, and forwarded to the destinations.
The functional sub-message of the second source can be also
decoded at . However, only receives a combination ( )
of the functional sub-messages, and cannot decode them. It only
forwards such combination on proper (power) levels such that
the interference caused by the functional sub-message of get
neutralized over the second layer of the network, and can
decode the sub-message of its interest.

Our analysis is based on characterizing the number of pure
and combined bits can be sent through each layer of the net-
work. In the following we focus on one layer of the network,
and obtain an achievable rate region for these numbers. Next,
we use this region to build the encoding scheme for the net-
work, and obtain an achievable rate region, which matches with
the outer bound.

Definition 4: Consider a deterministic network, with
gains . as shown in Fig. 14. Each of the
transmitters has a set of information bits to transmit to the
receivers. This set for includes private bits and
functional bits, namely,
and . The second receiver
wishes to receive all the private and functional bits of , while
the first receiver is interested in receiving the private bits of ,
and the of the functional bits of and . More precisely,
denoting by the set of bits is interested in, we have

We term this network with the described decoding demands as
deterministic -neutralization network. The goal is to charac-
terize the set achievable tuples for the determin-
istic -neutralization network.

The following lemma gives an achievable rate region for the
deterministic -neutralization network. The proof of this lemma
can be found in Appendix C.
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Fig. 14. Deterministic -neutralization network with the message demands.

Lemma 6: Consider the deterministic -neutralization net-
work defined in Definition 4 with channel gains
(see Fig. 14). Any rate tuple satisfying

(66)

(67)

(68)

(69)

is achievable for this network.
Now, having an achievable rate region for the deterministic

-neutralization network, we are ready to present the coding
scheme and analyze its rate region for the network.

Recall that the network consists of two cascaded net-
work. In first layer, the source nodes split their message into
private and functional parts. They can send these parts to the re-
lays as long as their rates belong to the achievable rate region of
the first layer given in Lemma 6. Once the relays receive these
sub-messages, forward them to the destination nodes using the
same scheme for the private and functional sub-messages. This
can be done if the rate tuple for the sub-messages satisfy the cor-
responding inequalities for the second layer as well. Note that
functional bits received at the destination are

Therefore, the interference of these bits get neutralized, and pure
information bits will be received at the destination.

The achievable rate region of this scheme is given by

(70)

Here we used subscripts and to denote and parameters
for the first and the second layers of the network, respectively.
Applying Fourier–Motzkin elimination [1] on this set to project
it on the plane gives us the rate region claimed in the
theorem.

VIII. DISCUSSION

Interference management is perhaps the most fundamental
open problem in wireless networks. The recent progress in (ap-
proximate) characterization of the interference channel capacity
and the utility of the deterministic approach inspired the ques-
tions studied in this paper. Even though the interference-relay
networks studied in this work were special, they revealed several
new features needed for information transmission. In particular,
the interference neutralization and network flow decomposition
techniques were uncovered through the study of and net-
works. The main idea behind this technique is to reduce the
power of an interfering signal received at a destination through
different paths over the network. This is done by processing the
received signal at the relays in a way such that the total effec-
tive interference power becomes negligible. Note that even if
a complete neutralization is impossible, this technique can be
still used to reduce the interference power, and hence improve
the transmission rates. Moreover, we believe that the neutraliza-
tion technique is robust to channel uncertainties and one could
get partial neutralization in such situations. Although it is only
illustrated for the network in this paper, we believe that the
technique can be generalized to larger networks. This is a topic
of ongoing work.

We also saw the importance of using structured lattice codes
for interference neutralization. This result suggests that, unlike
the single unicast or multicast networks for which using random
codes is almost optimal, more structured codes are required
when there are more than one flow of information in the net-
work, which have to be delivered to different receivers.

We also believe that the outer bounding techniques developed
in this work could have more general applicability in the wire-
less multiple-unicast problem. The two-unicast problem in ar-
bitrary layered wireless networks would be a natural next step
arising out of our work. The deterministic approach for this
problem has already provided some interesting new techniques
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Fig. 15. Gaussian network.

[19]. In summary we believe that the deterministic approach is a
promising methodology to make progress on the wireless mul-
tiple-unicast problem.

APPENDIX A
GAUSSIAN NETWORK

A) Outer Bound: In the following we will prove each of
the inequalities in ( -1)–( -10), separately. We will use
the notation as shown in Fig. 15, and assume that the rate pair

can be achieved with small enough decoding error
probability using a code of length .

Lemma 7: Any achievable rate pair satisfies

(A.1)

(A.2)

(A.3)

Note that as grows.
This lemma is a consequence of the Fano’s lemma combined

with the decodability requirements imposed by the problem, and
its proof is given in Appendix C.

Most of the inequalities in ( -1)–( -10) are cut-set type
bounds, although the proof presented here is slightly different
than the standard argument. However, the sum-rate bounds in
( -3) and ( -10) are different from the well known cut-set
bounds. These two bounds are in general tighter than the cut
values for the corresponding cuts.This is because in deriving a
cut-set bound, the decoders are inherently allowed to cooperate,
while individual decoding abilities are imposed in this problem.
In the following we first present the proofs of ( -3) and
( -10), which are more involved, and then prove the cut-set
type bounds.

1) Proofs of Non-Cut-Set Type Bounds

• ( -3)

: We start with Lemma 7 for the sum-rate
which implies

(A.4)

(A.5)

where (A.4) follows from the data processing inequality.
Now, note that

Moreover

Therefore

(A.6)

(A.7)

(A.8)

where (A.6) holds since is a function of , and in (A.7)
we used the invertibility property of the function

. Replacing from (A.8)
in (A.5), we get the desired bound.

• ( -10)

: The sum-rate can be upper bounded as
in Lemma 7. Next, we have

(A.9)

The first term in (A.9) can be simply upper bounded as

(A.10)

In order to bound the second term, we can use the fact that
can be decoded from , and write

Therefore

(A.11)
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where the second inequality follows from the fact that
is a function of , and (A.11) holds since and are
independent if is given.
Finally, we bound the last term as follows:

(A.12)

Replacing the bound derived for the three terms, (A.10),
(A.11), and (A.12) in (A.9), we get the desired bound.

2) Proofs of Cut-Set Type Bounds

• ( -1) : We start by Lemma 7, and
write

(A.13)

(A.14)

(A.15)

where (A.13) follows from the data-processing inequality
for the Markov chain , and in
(A.14) we used the fact that and are independent. It
is worth mentioning that this inequality essentially bounds
the maximum flow that can be transmitted through the cut

and .
• ( -2) : Again starting from

Lemma 7, we have

(A.16)

(A.17)

where the data processing inequality implies (A.16) for the
Markov chain . Note
that this bound is essentially the cut-set bound for the cut

and .

• ( -4) : Again we
use Lemma 7 to upper bound as

(A.18)

(A.19)

Note that we used the fact that the second and fourth terms
in (A.18) are zero. This follows from:

and

• ( -5)
We start from Lemma 7 and write

(A.20)

(A.21)

where (A.20) follows from the data processing in-
equality for the Markov chain

. Note that this bound essentially
captures the maximum flow of information through the
cut and .
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• ( -6) :
Similar to the previous bounds, we start from Lemma 7 and
write

(A.22)

(A.23)

(A.24)

Note that in (A.22) we used the data processing inequality.
An argument similar to that is used in the proof of ( -4)
shows that the second and fourth terms in (A.23) are zero.
Now, we have

(A.25)

Finally, we obtain the desired bound by replacing (A.25) in
(A.24). It is worth mentioning that this bound is the same
as the cut-set bound for the cut and

.
• ( -7) : Using Lemma 7 and the

data processing inequality, we can write

(A.26)
• ( -8) : Starting

from Lemma 7 and applying the data processing inequality
for the Markov chain ,
we have

(A.27)

Note that and are not independent. However, their
variance is upper bounded by .

• ( -9) :
Consider the cut which partitions the network into

and . We have

(A.28)

(A.29)

We again used an argument similar to that is used in proof
of ( -4) to show that the second and fourth terms in
(A.28) are zero.
This completes the proof of the outer bound in Theorem 2.

B) Achievability Proof: In this section, we provide an en-
coding scheme for the Gaussian network, and show that the
rate region that can be achieved using this scheme is only a con-
stant bit gap away from the outer bound.

Large Channel Gains: In this part, we assume that all
channel gains are at least 1, i.e., , and . Note
that if any of the gains is small, then either one of the rates is
small (of the order of our constant bit gap), or the cross links
are negligible. We will discuss these cases later.

The encoding scheme proposed for the Gaussian
network consists of two separate parts. We first split the
message of the second source nodes as and

, where can be decoded at both
relay nodes and , and and can be decoded
only at and , respectively (see Fig. 10). Denoting the rate
of message by , the following rate constraints are
imposed by this message splitting

(A.30)

(A.31)

An achievable rate region for this message splitting is given in
Lemma 1.

In the second layer of the network (see Fig. 11),
relay node further splits its messages as follows:

, , and

. A similar message splitting is also

performed at node to obtain and

. This message splitting imposes the following rate
equations:

(A.32)

(A.33)

(A.34)

(A.35)

where denotes the rate of the message . Next, the relay
nodes have to convey the messages to the destination nodes such
that can decode , , and , and be able
to decode , , , , and . An achievable
rate region for this transmission scenario is given in Lemma 2.

Putting the rate constraints in Lemma 1 and Lemma 2 to-
gether with the equations in (A.30)–(A.31) and (A.32)–(A.35),
we obtain the following achievable rate region for the Gaussian

network:
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(A.36)

We apply the Fourier–Motzkin elimination on this region, to
project it on the coordinated and , and obtain the fol-
lowing rate region. After some simplifications, we get

Note that this rate region is characterized by a set of constraints
which are similar to the inequalities in the definition of ,
except for the additive constants, and the fact that is
replaced by . Note that since , we have

(A.37)

Hence, the difference between the RHS’s of two sets of inequal-
ities do not exceed 1 for , and for and . There-
fore, for any rate pair , we have

. This completes the proof.
Small Channel Gains: We will show in this part that if any

of the channel gains is small, then the outer bound in Theorem
2 is still within a constant bit gap of an achievable rate region.
This argument is based on the analysis of a modified version
of the network, in which all the links with gain smaller than
1 are removed. One can show that the capacity region of this
modified network is within a constant gap from that of the orig-
inal one. On the other hand, we can argue that the gap between
the achievable rate pairs of the modified network and the outer
bound in Theorem 2 is bounded by a constant. Therefore, we can
conclude that if then is
achievable for the original network, where and .

The main intuition behind this argument is the fact that since
all the nodes are assumed to have power constraint equal to 1,
the flow of information through a link with gain not exceeding
1 is upper bounded by
bit. Therefore, by removing such links from the network, the
achievable rates change by at most bit. On the other hand, the
incoming signals over small channel gains may act as an inter-
ference on the original network, which cause a total noise power
not exceeding 1. Therefore, by doubling the noise variances of
the original network, we guarantee that capacity region of the
modified network is always smaller than that of the original one.

The advantage of analyzing the modified network instead of
the original one is that some of the links are removed in the mod-
ified network, which convert it to simpler network to analyze.

A precise analysis of the modified networks requires consid-
ering several cases separately. However, similar techniques and
ideas will be used for all cases. In the following we present one
illustrating example, and skip the details for the other cases.

Example 5: Consider the Gaussian network in Fig. 3(a),
and assume that . Therefore, the first layer of the net-
work would be two parallel links as shown in Fig. 16, where

. Moreover, the rate region in ( -1)–( -10)
will be reduced to

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)



MOHAJER et al.: APPROXIMATE CAPACITY OF A CLASS OF GAUSSIAN INTERFERENCE-RELAY NETWORKS 2855

Fig. 16. Modified network obtained assuming � � �.

Fig. 17. Gaussian network.

The encoding strategy for this network is fairly simple. Let
be a rate pair satisfying (A.38)–(A.42). The goal is to

show that is achievable. Since
satisfies (A.38) and (A.39), transmission over the first layer of
the network from the source nodes to the relays is simply done
using random Gaussian codes.

The second layer of the network is a Gaussian network.
Once the relays decode the messages received from the first
layer of the network, they encode them using an encoding
strategy similar to that of the network in Example 4 in
Section IV. Note that the sum-rate bounds in (A.42) and the
outer bound of the network are slightly different. However,
their difference is upper bounded by

(A.43)

Therefore, the loss caused by this difference is at most bit,
and would be achievable. On the other hand,
as we argued before, the capacity of the modified network is an
inner bound for the original one, and hence,
is achievable for the network as well.

APPENDIX B
GAUSSIAN NETWORK

A) Outer Bound: In the following we present the proof
for each of the inequalities in ( -1)–( -6), separately. We
again present the Gaussian network in Fig. 17, to clarify the
notation used in the proof. In particular, we use two variables,
which are the noisy signals received at and through the
cross links assuming the direct links were absent, namely

Note that and .

Suppose that the rate pair is achieved with a small
decoding error probability using a code of length . The fol-
lowing chains of inequalities provide upper bounds on the in-
dividual rates as well as the sum-rate. We again use Lemma 7,
which essentially captures the decodability requirements of the
network.

The individual rate bounds in ( -1)–( -4) have
the same structure as the cut-set bound, although we derive
them through a slightly different argument. However, the two
sum-rate bounds in ( -5) and ( -6) are conceptually
different than the cut-set bounds. These two bounds which are
tighter than cut-set bounds are derived through a genie-aided
argument; that is, we assume that the signal sent over the cross
link of one layer is given by a genie to the receiver of the other
layer (relay node in layer 1 and destination node in layer
2). Therefore, we present the proofs of ( -5) and ( -6)
first. The more standard cut-set type bounds are provided later
for completeness.

1) Proof of the Genie-Aided Bounds

• ( -5)

We start with the sum-rate inequality in Lemma 7, and
write

(B.1)

Each of the terms in (B.1) can be bounded as follows. In
order to bound the first term, we can simply write

(B.2)

(B.3)

(B.4)

where in (B.2) we have used the fact that conditioning de-
creases the entropy, and the Markov chain
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. Also (B.3) follows from the same
Markov chain.
For the second term, we can write

(B.5)

where the last inequality holds since
.

In order to bound the third term in (B.1) we can write

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

where in (B.6) we have used the fact that conditioning
reduces the differential entropy, and (B.7) holds due to
the Markov chain . Then in
(B.8) we replaced by since there is an
one-to-one map, , between these joint
variables, and in (B.9) we used the fact that is inde-
pendent of to conclude

. Also (B.10) holds due to the Markov
chain . Finally, (B.11) is true due to re-
moving conditioning and the fact that is independent of

.
Finally for the last term in (B.1) we have

(B.13)

(B.14)

where (B.13) is due to the fact that
is a function of , and

(B.14) is just the Fano’s inequality.
Replacing (B.4), (B.5), (B.12), and (B.14) in (B.1), we get

(B.15)

• ( -6) Before proving this inequality, we present a
lemma which will be used in this proof. We will present
the proof of this lemma later in Appendix C.

Lemma 8: Let and be two (arbitrarily correlated)
random variables with variance constraints and

, which form a Markov chain for
some random variable . Also assume that is a zero-mean unit
variance Gaussian random variable independent of , and

. Then the conditional differential entropy of
is upper bounded by

(B.16)

Now, in order to prove ( -5), we start with Lemma 7

(B.17)

Since is independent of , the first term can be simply
bounded as

(B.18)

For the second term we can write

(B.19)

(B.20)

(B.21)

where (B.19) follows from the Markov chain
. In (B.20) we have used Lemma 8 for , and

which form a Markov chain, since
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The third term in (B.17) can be further upper bounded by

(B.22)

(B.23)

(B.24)

where both (B.22) and (B.23) follow from the Markov chain
. Now, we have

(B.25)

(B.26)

where (B.25) follows from the fact that is a function of .
Finally

(B.27)

(B.28)

Here, in (B.27) we have used the fact that conditioning de-
creases the differential entropy, and the fact that is indepen-
dent of . Replacing (B.18), (B.21), (B.26),
and (B.28) in (B.17), we will obtain the desired inequality.

2) Proofs of Cut-Set Type Bounds

• ( -1) : The individual rate bound
can be simply obtained from

(B.29)

(B.30)

where (B.29) follows from the data processing inequality
for the Markov chain , and (B.30)
follows from the Markov chain . Note
that as grows. It is worth mentioning that this
bound is similar to the cut-set bound for the cut
and .

• ( -2) :
For the second rate bound, we can start with Lemma 7 and
write

where we have used the data processing inequality and the
Markov chain in the second in-
equality. Note that this bound captures the maximum flow
of information through the cut specified by and

.
• ( -3) : In order to prove this

upper bound, we use the cut-set bound for the cut
and

• ( -4) : Starting from Lemma 7,
we can write

where the second inequality follows from the data pro-
cessing inequality for the Markov chain

.
This shows that the rate region in Theorem 4 is an outer bound
for the achievable region region of the Gaussian network.

B) Achievability Proof: In this section we present an en-
coding/decoding scheme, and derive an achieve rate region for
this strategy. We then show that the gap between the boundary
of this achievable rate region and that of the outer bound pre-
sented in Theorem 4 is upper bounded by a constant.

Similar to the Gaussian network, we only consider the
large channel gain case, where we assume that all the channel
gains are lower bounded by 1. A similar argument to that we
used for the network shows that for small channel gain cases
the network is reduced to a simple one and its gap analysis is
fairly simple.

We essentially use the result of Lemma 3 as an achievable
rate region for the -neutralization network. We use notation

and to distinguish between and parame-
ters for the first and the second layers of the network.

In the first layer of the network, each source node splits its
message into two parts, namely, functional and private parts,

and , where the func-
tional parts, have the same rate, i.e., . Both
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transmitters use a common lattice code to encode their func-
tional sub-messages into and ,
where is the one-to-one encoding map induced by the lattice
code. We define the partial-invertible function by

(B.31)
We denote the rates of the private sub-messages by and
, where , for . The goal is to encode and

forward messages to and in such a way that can decode
and , and can decode and . Based

on Lemma 3, this can be done provided that

The second layer of the network is another -neutralization
network with transmitters and , and receivers and .
We use , as
the functional and private messages of the first relay node, and

and for
the functional and private messages of second relay. Denoting
the corresponding rates by , , and , we have

(B.32)

The goal is to encode and send these messages to the destina-
tions, such that can decode and , and
can decode and . Again, we use the achievable rate
region proposed in Lemma 3

Note that the first destination observes , which is
equivalent to

(B.33)

(B.34)

Therefore, combining it with , the first destination
node can decode . The second destination node has
and , and can compute

(B.35)

and hence, it decodes .
This scheme can reliably transmit the messages with rate pair

in

(B.36)

(B.37)

It only remains to apply Fourier–Motzkin elimination to
project this region onto space. This gives us

Note that the RHS’s of the sum-rate bounds depend on the
order of the channel gains. For most of possible orderings,
these two inequalities would be consequences of the individual
rate bounds. For example, if , then the last bound is
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implied by the first and fourth bounds, since . It can
be shown in general that is equivalent to

Now, note that , , and . These imply

(B.38)

We also have

(B.39)

for all . Applying (B.38) and (B.39), we obtain the fol-
lowing achievable rate region, which is a subset of :

Therefore, for any rate pair , the rate pair
belongs to and, therefore, can be

achieved using the proposed encoding scheme.

APPENDIX C
PROOF OF LEMMAS

A) Discussion of Example 4 in Section IV: The converse
proof is fairly simple and follows from a similar argument we
used to prove ( -1), ( -2), and ( -3) in Appendix A.

In the following we will present an encoding strategy which
guarantees to achieve rate pair , provided that

. This gives us an approximate capacity charac-
terization for the Gaussian network. In order to do this, we
consider the following two cases.

Case A: : Assume be an achievable rate
pair. Then, the first receiver is able to decode sent at rate

, and remove the signal associated to from its received
signal. The remaining signal provides a higher to decode

than the signal received at . Therefore, in this particular
regime, the first receive would be able to decode both messages.
Hence, we have a Gaussian multiple access channel from
and to , combined with a line network from to .
Therefore, the intersection of the rate regions of the Gaussian
MAC and the line networks is simply achievable. That is

(C.1)

Note that the individual rate bounds in and are the
same. Moreover, the difference between the sum rate bounds is
bounded by

(C.2)

Therefore, the gap between each boundary point of and
is at most bit.

Case B: : The encoding scheme we introduce
for this case is similar to Han-Kobayashi’s scheme for 2-user
interference channel. We first split the second message into
the common and private parts, , with rates

and , respectively, where can be decoded at both re-
ceivers and is only decodable at . Sub-messages ,

, and are encoded by corresponding randomly generated
Gaussian codes to , and , and the resulting codewords
are sent over the channel.
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Fig. 18. Achievable rate region of the -neutralization network when � � � .

We allocate fraction of the transmission power
available at to , and the remaining power is
allocated to . Therefore, we have

The first receiver, , decodes and treating as
noise. Therefore, the effective noise power received at would
be . According to the capacity region
of Gaussian multiple access channel, this can be done provided
that

(C.3)

The second decoder first decodes treating as noise. It
then removes the corresponding codeword from the received
signal, and decodes . This can be done as long as

(C.4)

Note that we have two upper bounds for . However, it is
easy to show that , for ,
and, therefore, the first bound dominates the second one. Using
Fourier–Motzkin elimination to write the achievable region in
terms of and , and after some simplification,
we get that the region

(C.5)

(C.6)

(C.7)

is achievable. Therefore, if , then
is achievable.

B) Proof of Lemma 1 in Section V: The following achiev-
ability scheme simply uses superposition encoding of sub-mes-
sages at , and a successively decode and cancel strategy at

and . We use a random codebook with a proper number

of codewords, generated according to a zero-mean unit-variance
Gaussian distribution for each message. A proper power alloca-
tion for the messages at the transmitters allow the decoders to
apply a decode and cancel strategy. We denote the codeword
corresponding to the message by , and the power allo-
cated to this message by .

The available power at can be arbitrarily allocated to its
sub-messages. In particular, we choose the power coefficients so
that they satisfy , , and

. In the decoding part, and treat and ,
respectively, as noise. Therefore, the total noise at and
would be and

. However, the effective noise power cannot exceed 2 since
and .

The receiver observes a Gaussian multiple access channel
(with noise power upper bounded by 2), where is sent by
one user, and is sent by the other user. The bounds
in (11)–(14) guarantee that these rates are achievable over the
multiple access channel.

On the other hand, the channel from to is Gaussian
point-to-point channel with modified additive noise. Therefore,
any total rate not exceeding its capacity can be reliably trans-
mitted. This is condition is fulfilled here since sat-
isfies (16). Finally, the bound on the power allocated to
upper bounds its rate as in (15).

C) Proof of Lemma 2 in Section V: Again, the achievability
scheme we propose for the Gaussian interference network (il-
lustrated in Fig. 11) is based on superposition coding, and a suc-
cessively decode and cancel decoding strategy, such that the re-
quirements of the problem are fulfilled. A proper power allo-
cation is required to guarantee achievability of the rate tuples
mentioned in this lemma.

Note that does not decode and , and treats them
as noise. We choose the total fraction of power allocated to
and to be at most , that is .
Therefore, the total noise power received at is upper bounded
as .

Similarly, is treated as noise at . By bounding
the fraction of power allocated to this sub-message, we can
upper bound the effective noise power observed at by

.
The point-to-point Gaussian channel from to can sup-

port any sum-rate below its capacity as in (17). Moreover,
is bounded above since its allocated power does not exceed

.
On the other hand, we have a Gaussian multiple access

channel from and to , with total noise power not
exceeding 2. The bounds in (19)–(22) guarantee that the de-
sired rates belong to the capacity region of this channel, and,
therefore, they are achievable. We skip the details of power
allocation here, but we point out that the achievability of the
region is a consequence of the Gaussian multiple access rate
region achievability.

D) Proof of Lemma 3 in Section V: In this part we show
that any rate tuple satisfying (25)–(28) is achievable. The main
idea of this proof can be summarized as follows.
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• Use a common codebook with group structure, such as lat-
tice codes, for and , which maps them to
and

• Choose a proper power allocation for and such
that they get received at at the same power level; More
precisely, denoting their power allocation by and ,
they should satisfy . This condition guar-
antees that the two lattice points get scaled by the same
factor, and, therefore, the result is still a lattice point on the
scaled lattice and can be decoded as long as enough signal
to noise ratio is provided.

• Use random Gaussian codebooks to encode the private
sub-messages to and , and use proper power al-
location, and .

The first receiver needs to decode the partial-invertible
which we define as

where is the one-to-one encoding function which maps the
functional messages to the common lattice codebook. Note that
the group structure of the code impels that is still a
valid codeword. It is easy to check that this function is partial-
invertible.

Let us define

(C.8)

Depending on the minimizer in , we identify four cases. In
each case, the achievable rate region is a polytope, with a cer-
tain number of corner points. It suffices to show the achievability
only for the cornet points, since a standard time-sharing argu-
ment guarantees achievability for the rest of the region.

The proof details for each corner point includes message
splitting, and power allocation for sub-messages such that
the decoders be able to decode corresponding messages. In
the following we describe this strategy in details for the case
where . The extension of this method for other cases
is straight-forward, and, therefore, we skip it here to sake of
brevity.

Case I. : It is clear from the definition of that in
this case , and, therefore, and .
Hence, the desired region is characterized by all non-negative
rate tuples satisfying

This rate region is illustrated in Fig. 18. It suffices to show that
the corner points , and are achievable, since the points
and are degenerated from and , respectively.

•
The encoding strategy for this corner point is fairly simple.
The second transmitter uses all its available power to send

, while the first transmitter keeps silent. That is,

and . The first decoder has nothing to de-
code, and the second one can decode from as long
as . It is clear that in particular

is achievable.
•

The first encoder sends its lattice codeword with power
allocation . The second encoder splits
its private message into of rates

and where . Then it sends

where the power allocation coefficients are fixed
to be , , and

. The signal received at the
destinations are

(C.9)

(C.10)

The first node decode and cancel , ,
and in order, while the second one performs the
same decoding for , , and . It is easy to
show that the rates ,

, and are achiev-
able, which implies the private rates

for the second transmitter.
•

For this rate tuple, the rate of the functional message is
zero. The second transmitter splits its private message sim-
ilar to that of corner point . The transmission power is
distributed between among the sub-message as ,

, , , and . A
similar argument to that of corner point shows that the
rates , ,
and are achievable, which implies
the achievability of the rate point .

E) Proof of Lemma 4 in Section VI-A: The entropy of any
random variable can be simply upper bounded by the logarithm
of its alphabet size. In particular, we have

Note that this bound is tight and can be achieved by uniform
distribution on . In order to prove the second inequality, we
can write
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where is the image space of the matrix . The linear
structure of the underlying spaces implies that

is the same for every . Therefore

where is the kernel space of .

F) Proof of Lemma 5 in Section VI-B: Let
be an arbitrary rate pair which satis-

fies ( -1)–( -10). In particular .
We claim that for , and,
therefore, is achievable using network decomposition.
In order to do this we have to show that any satisfying
( -1)–( -10), fulfills the constraints in the definition of

.
Using ( -2) and ( -3), we have

(C.11)

(C.12)

where in (C.11) we have used the fact that

Moreover, since satisfies ( -3), ( -5), and ( -8),
we have

(C.13)

(C.14)

where (C.13) holds since

for non-negative , , , and .
In order to show that the third constraint is satisfied, we can

start with ( -4), ( -6), and ( -10)

(C.15)

Fig. 19. Deterministic -neutralization network. The upper 2 sub-nodes in�
are only connected to � , and, therefore � � �. The next 3 sub-nodes receive
information from both � and � , and hence, � � �. Although the lowest
sub-node is also connected to both transmitters, it only receives information
from � since � keeps silent on its sub-nodes below � .

Finally, using ( -8) and ( -10), we have

(C.16)

Putting inequalities in (C.12) and (C.14)–(C.16) together shows
that , and completes the proof.

G) Proof of Lemma 6 in Section VII-B: The coding strategy
we present here is based a network decomposition, where the
sub-nodes and the links of the deterministic -interference net-
work are partitioned into two disjoint sets. We analyze the rate
region of each network, and derive an achievable rate region for
the original network based on this analysis.

We just point out here that in this coding strategy, the second
sender , never sends a bit on a sub-node which is not received
at , even if .

The first partition of the network , consists of those sub-
nodes in which are connected to one of the top sub-
nodes of and one of the top sub-nodes of . All the sub-
nodes in the network which are related to (see Definition 3) any
of these sub-nodes also belong to the first network partition. The
remaining nodes and link form the second part of the network

. It is clear that these two networks are node-disjoint, and do
not cause interference on each other.

We first characterize the number sub-nodes in which be-
long to , by determining whether each of them can receive
a bit from , , or both of them. We denote the number of
levels in which are only connected to a transmitting level in

by . Similarly, the number of those only connected to a a
transmitting level (the top ) in by . Finally,

denotes the number of levels which are connected to trans-
mitting levels of both and (see Fig. 19).

First, we derive . Enumerate the levels of from 1 (for the
highest) to (for the lowest). Let be the index of a sub-node in

belong to , i.e., it receives bits from both and . Its
neighbors in and (if there is any) are indexed by
and , respectively. Therefore, belongs to if
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and only if and
. Therefore, the number of such sub-nodes is

given by

(C.17)

It is clear from the definition of that the remaining
lowest levels of are only connected to sub-nodes of , and
hence, . Similarly, sub-nodes in

are receiving information from , where of them are
also connected to . Therefore, the remaining sub-nodes are
only connected to . Thus, .

We partition the network into two parts: The first part consists
of the sub-nodes of connected to both and , and sub-
nodes connected to them. The remaining sub-nodes form the
second partition of the network. We characterize the achievable
tuples for each, denoted by and , re-
spectively. The fact that these two partitions are isolated allows
us to conclude that the summation of such achievable tuples is
also achievable for the original network.

Consider the first partition of the network. It is clear that any
of the levels of connected to both and and can
be used to communicate a functional bit, since naturally re-
ceives the of the transmitting bits. On the other hand, such
sub-node can be used to communicate one private bit from any
of or to by keeping the other one silent. Therefore,
any rate tuple satisfying

(C.18)

is achievable.
The non-interfered links of the second partition of the net-

work can be used to send private bits from the transmitters to
simultaneously. Moreover, each transmitter can use one of

its non-interfering sub-nodes to send a functional bit to , and
then, computes their , after receiving them separately.
This can provide up to new functional bits for .
Moreover, the lower sub-nodes of which are
connected to but not to can be used to send private bits
to without causing any interference at .

Hence, this strategy can transmit any rate tuple satisfying

(C.19)

Summing up the rates achieved on each partition of the net-
work, we have arrive at for , where

’s and satisfy (C.18) and (C.19), re-
spectively. It only remains to apply the Fourier–Motzkin elimi-
nation to project the rate region on the space. This
gives us

(C.20)

Some simple manipulations show that the RHS’s of the inequal-
ities in (C.20) are the same as that claimed in the lemma.

H) Proof of Lemma 7 in Appendix A.1: As mentioned be-
fore, we will use the Fano’s inequality in order to prove this
lemma. We have

(C.21)

(C.22)

where (C.21) is implied by the Fano’s inequality, and in (C.22)
we used the data processing inequality for the Markov chain

. Note that where as grows. The
proofs of the other two inequalities follow the same lines, and
we skip them to sake of brevity.

I) Proof of Lemma 8 in Appendix B.1: Note that is in-
dependent of everything else, and and are conditionally
independent. Without loss of generality we can also assume that

for (otherwise for any given
, we can shift by , while the entropy does not

change). Let for . Therefore,
the conditional variance of can be bounded as

(C.23)
Therefore

(C.24)

(C.25)

(C.26)

where in (C.24) we have used the fact that Gaussian random
variable has the maximum differential entropy among all
random variables with the same variance, and (C.25) follows
from the concavity of the function . Finally, (C.26) is just
the tower property, .
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