
MTH 562 Complex Analysis

Spring 2007

Abstract

Rigorous development of theory of functions. Topology of plane, com-
plex integration, singularities, conformal mapping.

1 Complex Numbers

Definition. We define
C = {(a, b) : a, b ∈ R}

equipped with the following rules of addition and multiplication:

(a, b) + (c, d) = (a+ c, b+ d)
(a, b)(c, d) = (ac− bd, bc+ ad)

It is easy and boring to check that

1. C is an Abelian group under addition with identity (0, 0).

2. C \ {(0, 0)} is an Abelian group under multiplication with identity (1, 0).

3. Multiplication distributes over addition; that is,

(a, b)((c, d) + (e, f)) = (a, b)(c, d) + (a, b)(e, f)
((a, b) + (c, d))(e, f) = (a, b)(e, f) + (c, d)(e, f)

These three conditions imply that C is a field.
The set {(a, 0) : a ∈ R} is a subfield of C, and the mapping

R 3 a 7→ (a, 0) ∈ C

is an isomorphism of fields. This shows that R sits inside C. (From now on,
forget about the identification and write a instead of (a, 0).)

The special number i := (0, 1) satisfies i2 = −1.
Any complex number z = (a, b) can be expressed uniquely as

z = (a, b) = (a, 0) + (0, b) = (a, 0) + (b, 0)(0, 1),

which using our identification above, we can write as

z = a+ ib.
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From now on, we will write complex numbers in this so-called Cartesian form.
For z = a+ ib, a is called the real part of z, Re z, and b is called the imaginary
part of z, Im z.

Two important operations on C (which are not field operations) are

1. Conjugation: If z = a+ ib, then the conjugate z is given by

z = a− ib.

2. Modulus (or Absolute Value): If z = a+ ib, then the modulus or absolute
value |z| is given by

|z| =
√
a2 + b2.

The following are some easy facts about these two operations:

• zz = |z|2.

• If z 6= 0, then 1/z = z/ |z|2.

•
Re z =

z + z

2
and Im z =

z − z
2i

.

• (z + w) = z + w and zw = zw.

• |zw| = |z| |w| .

• |z/w| = |z| / |w| provided w 6= 0.

• |z| = |z|.

• The triangle inequality: |z + w| 6 |z|+ |w|.

• The reverse triangle inequality: |z − w| > ||z| − |w||.

Since a point (a, b) ∈ R2 can also be represented in terms of polar coordinates
(r, θ), where

r =
√
a2 + b2 and tan θ =

b

a
or

a = r cos θ and b = r sin θ,

we can represent a complex number z = a+ ib as

z = r cos θ + ir sin θ = r(cos θ + i sin θ),

where
r =

√
a2 + b2 = |z| and tan θ =

b

a
.

The number θ is called the argument of z, Arg z. Note that Arg z is a only
defined up to an integer multiple of 2π. (We will meet the more usual form
z = reiθ later, after we have done some work on complex power series.)
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A Little Topology

Definition. We define the open disk centered at z ∈ C of radius r as

D(z, r) = {w ∈ C : |w − z| < r} .

Definition. U ⊂ C is said to be open if for every z ∈ U , there exists ε > 0
such that D(z, ε) ⊂ U .

Definition. F ⊂ C is closed if C \ F is open.

Proposition. F ⊂ C is closed if and only if every convergent sequence of points
in F has its limit in F .

Definition. K ⊂ C is compact if given any cover {Uα}α∈Λ of K by open sets,
there is a finite subcover.

Theorem. The following are equivalent:

1. K ⊂ C is compact.

2. Every sequence of points in K has a convergent subsequence.

3. K is closed and bounded.

Theorem. If f is a continuous real-valued function on a compact set K, then
f attains its maximum and minimum values on K.

2 Differentiability

2.1 Definition. Let U ⊂ C be open. Then f : U → C is differentiable at
z0 ∈ U if

lim
z→z0

f(z)− f(z0)
z − z0

exists. If the limit exists, we call it the derivative of f at z0. We write f ′(z0)
or df/dz |z=z0 . We say that f is differentiable in U if f is differentiable at
each point in U . We say that f is holomorphic in U if it is differentiable in U
and f ′ is continuous in U .

2.2 Proposition. If f is differentiable at z0, then f is continuous at z0.

2.3 Proposition. If f and g are differentiable at z0, c ∈ C, so are f +g, f −g,
cf , fg, and f/g provided g(z0) 6= 0, and the usual calculus formulae hold for
these derivatives.

2.4 Proposition. Let g be the inverse of f at f(z0). Suppose f is continuous
at g(z0), then g is continuous at z0. Then if f is differentiable at g(z0), and if
f ′(g(z0)) 6= 0, g is differentiable at z0 and

g′(z0) =
1

f ′(g(z0))
.
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2.5 Proposition (Chain Rule). Let f, g be differentiable on open sets U and
V , respectively. Suppose f is differentiable at z0 ∈ U and g is differentiable at
f(z0) ∈ V . Then g ◦ f is differentiable at z0 and

(g ◦ f)′(z0) = g′(f(z0)) · f ′(z0).

Proof. Let r > 0 be such that D(z, r) ⊂ U where U is open. Without loss of
generality, it suffices to show that given any sequence {hn} with 0 < |hn| < r
for all n ∈ N and hn → 0 as n→∞, we have to show

lim
n→∞

g(f(z0 + h))− g(f(z0))
hn

= g′f(z0)) · f ′(z0).

Case 1: Assume f(z0 + hn) 6= f(z0) for all but finitely many n. Then

g(f(z0 + h))− g(f(z0))
hn

=

(2.1)︷ ︸︸ ︷
g(f(z0 + hn))− g(f(z0))
f(z0 + hn)− f(z0)

·

(2.2)︷ ︸︸ ︷
f(z0 + hn)− f(z0)

hn
.

We can do this since f(z0 + hn) 6= f(z0) provided n is sufficiently large. Since
f is differentiable at z0, it is continuous at z0, so f(z0 + hn) → f(z0). Hence
(2.1) tends to g′(f(z0)) while (2.2) tends to f ′(z0). This completes Case 1.

Case 2: Assume f(z0 + hn) = f(z0) for infinitely many n. Split {hn} into
two sequences {kn} and {`n}, where

f(z0 + kn) 6= f(z0) for all n ∈ N,
f(z0 + `n) = f(z0) for all n ∈ N.

Note that {kn} may be finite or empty. f is differentiable at z0, so

lim
n→∞

f(z0 + `n)− f(z0)
`n

= f ′(z0),

and since f(z0+`n) = f(z0) for all n, this means that f ′(z0) = 0. Also, similarly,

lim
n→∞

g(f(z0 + `n))− g(f(z0))
`n

= 0.

Now, apply Case 1 to {kn} to get

lim
n→∞

g(f(z0 + kn))− g(f(z0))
kn

= g′(f(z0)) · f ′(z0) = 0

since f ′(z0) = 0. We get the same answer for {kn} and {`n}, which finishes the
proof.
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3 The Cauchy-Riemann Equations

3.1 Proposition. If f(z) = u(z) + iv(z) is differentiable at z0, then the first-
order partial derivatives of u and v exist at z0 and satisfy the Cauchy-Riemann
Equations:

∂u

∂x
(z0) =

∂v

∂y
(z0),

∂u

∂y
(z0) = −∂v

∂x
(z0).

Proof. If h is real and h→ 0, then

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)
h

= fx(z0) = ux(z0) + ivx(z0).

If h = ik is imaginary and h→ 0, then

f ′(z0) = lim
h→0

f(z0 + ik)− f(z0)
ik

=
1
i

lim
h→0

f(z0 + ik)− f(z0)
k

=
1
i
(uy(z0) + ivy(z0)) = −iuy(z0) + vy(z0).

So
fx(z0) =

1
i
fy(z0).

Equating real and imaginary parts

ux(z0) = vy(z0), vx(z0) = −uy(z0)

or uy(z0) = −vx(z0).

3.2 Proposition. Satisfying the Cauchy-Riemann equations does not imply
differentiability.

Example. Define f : C→ C by

f(z) = f(x+ iy) =

{
xy

x2+y2 (x+ iy), z 6= 0
0, z = 0.

Note that f = 0 on both axes, so all partial derivatives are 0 and satisfy the
Cauchy-Riemann Equations. But if y = αx for some α ∈ R,

lim
z→0

f(z)− f(0)
z

= lim
x→0

f(x(1 + iα))− 0
x(1 + iα)

= lim
x→0

xαx

x2 + i2α2
=

α

1 + α2
,

which is non-constant. Hence this f is not differentiable even though it satisfies
the Cauchy-Riemann Equations.

3.3 Proposition. If the first order partial derivatives of f = u + iv exist on
a neighborhood of a point z0 = x0 + iy0 are continuous at z0 and satisfy the
Cauchy-Riemann Equations at z0, then f is differentiable at z0.
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Proof. We want to show that

f(z0 + h)− f(z0)
h

→ fx(z0) = ux(z0) + ivx(z0)

as h→ 0. We will use the Mean Value Theorem. Let h = ξ + iη. Then

u(z0 + h)− u(z0)
h

=
u(x0 + ξ, y0 + η)− u(x0, y0)

ξ + iη
,

which then equals

u(x0 + ξ, y0 + η)− u(x0 + ξ) + u(x0 + ξ)− u(x0, y0)
ξ + iη

.

By the Mean Value Theorem, the latter equals

η

ξ + iη
uy(x0 + ξ, y0 + θ1η) +

ξ

ξ + iη
ux(x0 + θ2ξ, y0),

where 0 < θ1, θ2 < 1. Similarly

v(z0 + h)− v(z0)
h

=
η

ξ + iη
vy(x0 + ξ, y0 + θ3η) +

ξ

ξ + iη
vx(x0 + θ4ξ, y0)

for some 0 < θ3, θ4 < 1. For convenience, set

z1 = x0 + ξ + i(y0 + θ1η), z2 = x0 + θ2ξ + iy0, z3 = · · · , z4 = · · · .

Then
f(z0 + h)− f(z0)

h
=

η

ξ + iη
[uy(z1) + ivy(z3)] +

ξ

ξ + iη
[ux(z2) + ivx(z4)] (1)

By the Cauchy-Riemann equations at z0,

fy(z0) = ifx(z0).

Then
fx(z0) =

ξ + iη

ξ + iη
fx(z0) =

η

ξ + iη
fy(z0) +

ξ

ξ + iη
fx(z0).

Subtract this from (??) to get

f(z0 + h)− f(z0)
h

− fx(z0) = · · ·

· · · = η

ξ + iη
[(uy(z1)− uy(z0)) + i(vy(z3)− vy(z0))] + · · ·

· · ·+ ξ

ξ + iη
[(ux(z2)− ux(z0)) + i(vx(z4)− vx(z0))].

Since

0 6

∣∣∣∣ η

ξ + iη

∣∣∣∣ , ∣∣∣∣ ξ

ξ + iη

∣∣∣∣ 6 1

and z1, z2, z3, z4 → z0 as h → 0 and the partial derivatives ux, uy, vx, vy are
continuous at z0, this right hand side tends to zero as h → 0, which gives us
what we want.
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Suppose f is differentiable on U ⊂ C open. Suppose also that f is C2 on
U ; that is, partial derivatives up to and including second-order exist and are
continuous on U . Then

ux = vy, uy = −vx on U.

Also,
uxx(ux)x = (vy)x = vyx = vxy = (vx)y = (−uy)y = −uyy.

So, uxx + uyy = 0 on U . Similarly, vxx + vyy = 0. Such functions are called
harmonic. (Note: we need C2 for the step in which vxy = vyx.)

4 Power Series

4.1 Definition. A power series about z0 ∈ C is an infinite series of the form

∞∑
n=0

an(z − z0)n.

There is a different power series for each different value of z. We say that
the power series at some particular value of z converges if the corresponding
sequence of partial sums converges. The power series converges absolutely
at z if

∞∑
n=0

|an(z − z0)n| =
∞∑
n=0

|an| |z − z0|n

converges. Absolute convergence at z implies ordinary convergence at z. The
converse is not true; consider

∞∑
n=1

zn

n
.

The series converges at −1 but not absolutely convergent at 1.
For a sequence of real numbers {bn}, we define the limit superior and limit

inferior, respectively, as

lim
n→∞

bn = lim
n→∞

(
sup
m>n

bm

)
and

lim
n→∞

bn = lim
n→∞

(
inf
m>n

bm

)
.

The following are important facts about limit superior and limit inferior.

1. If lim bn = L, then for all N ∈ N and all ε > 0, there exists n > N such
that bn > L− ε.

2. If lim bn = L, then for all ε > 0, there exists N ∈ N such that bn < L+ ε
for all n > N .
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3. lim kbn = k lim bn for k > 0.

4. lim bn > lim bn.

5. lim bn = lim bn if and only if lim bn exists.

From now on, for the sake of simplicity, we shall work (mostly) with power series
about zero. The proofs for series about other points are the same.

For a power series
∞∑
n=0

anz
n,

let
R =

1

lim
n→∞

|an|1/n
.

R is called the radius of convergence for the power series.

4.2 Theorem (Radius of Convergence Theorem - Abel). Consider the power
series

∞∑
n=0

anz
n

with radius of convergence R.

1. If R = 0, the series converges only at z = 0.

2. If R =∞, the series converges absolutely for all z ∈ C.

3. If 0 < R <∞, the series converges absolutely for |z| < R and diverges for
|z| > R.

Proof. Case 1: Let R = 0. Then lim |an|1/n =∞. For all z 6= 0,

|an|1/n >
1
|z|

for infinitely many n.

Hence |anzn| > 1 for infinitely many n. Then the series diverges by the diver-
gence test.

Case 2: Assume R =∞. Then

lim
n→∞

|an|1/n = 0.

Hence
lim
n→∞

|an|1/n|z| = 0 for any fixed z ∈ C.

Hence for all z ∈ C, there exists N ∈ N (possibly depending on z) such that∣∣∣a1/n
n z

∣∣∣ < 1
2

for all n > N.
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That implies that

|anzn| <
1
2n

for all n > N.

If we use the comparison test to compare this with the geometric series
∞∑
n=0

1
2n
,

we get absolute convergence.
Case 3: Assume 0 < R < ∞. Suppose first that |z| < R and let δ > 0 be

such that
|z| = R(1− 2δ).

Then
lim
n→∞

|an|1/n |z| = |z| ·
1
R

= (1− 2δ).

Hence by Fact 2, there exist N ∈ N such that

|an|1/n|z| < (1− δ) for all n > N.

Now compare with the convergent geometric series
∞∑
n=0

(1− δ)n

to get the desired result. Now suppose |z| > R. Then

lim
n→∞

|an|1/n |z| >
R

R
.

Hence for infinitely many n, |an|1/n|z| > 1 and |anzn| > 1. Hence the series
diverges by the divergence test.

4.3 Example.

i)
∞∑
n=0

zn ii)
∞∑
n=1

zn

n
iii)

∞∑
n=1

zn

n2

All three series have radius of convergence 1, so all three converge for |z| < 1
and diverge for |z| > 1. On the unit circle C(0, 1),

i) diverges everywhere;

ii) diverges at 1, but converges everywhere else on C(0, 1);

iii) converges everywhere.

iv)
∞∑
n=0

n!zn has radius of convergence 0.

v)
∞∑
n=0

zn

n!
has radius of convergence ∞.
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4.4 Lemma (M -Test). Let U ⊂ C be open and suppose for each n > 1, fn is
continuous in U . If |fn| 6 Mn on U and

∞∑
n=1

Mn

converges, then
∞∑
n=1

fn

is convergent to a function f which is continuous in U .

Proof. Let

fn =
n∑

m=1

fm and Sn =
n∑

m=1

Mm.

If m < n,

|Sn − Sm| 6

∣∣∣∣∣
n∑

i=m+1

fi

∣∣∣∣∣ 6
n∑

i=m+1

|fi| 6
n∑

i=m+1

Mi on U.

Since
∑
Mn is convergent, Sn is convergent. So Sn is Cauchy. Hence fn is

uniformly Cauchy in U , and so fn(z) converges for every z ∈ U to a limit
function f(z). f(z) is a uniform limit of continuous functions, so it is continuous
itself.

4.5 Corollary. Let

f(z) =
∞∑
n=0

anz
n

be a power series with radius of convergence R > 0. Then f is continuous in
D(0, R).

Proof. In any smaller disk D(0, R−δ), we see that the convergence of the power
series was dominated by the convergence of the geometric series. By the M -test,
the power series gives a function which is continuous in D(0, R − δ). Letting
δ > 0 gives the result.

Differentiation and Uniqueness of Power Series

Suppose
∞∑
n=0

anz
n

has radius of convergence R > 0. Formally, we can differentiate this series term
by term to get

∞∑
n=1

nanz
n−1.
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Can we do this?
We start by observing that for this series has the same radius of convergence.

Recall that
lim
n→∞

n1/(n−1) = 1

by L’Hôpital’s Rule. Then

lim
n→∞

|nan|1/(n−1) = lim
n→∞

n1/(n−1) |an|1/(n−1) = lim
n→∞

|an|1/(n−1)

from above. lim |an|1/(n−1) is the radius of convergence for the series

∞∑
n=1

anz
n−1.

Suppose this series has radius of convergence R′. Since

∞∑
n=0

anz
n = a0 + z

∞∑
n=1

anz
n−1,

R′ 6 R. Since

∞∑
n=1

anz
n−1 = −a0

z
+

1
z

∞∑
n=0

anzn, z 6= 0, z ∈ D(0, R),

R 6 R′. Hence R = R′ and we’re done. That is,

∞∑
n=1

nanz
n−1

also has radius of convergence.

4.6 Theorem. Suppose

f(z) =
∞∑
n=0

anz
n

has radius of convergence R > 0. Then f is differentiable on D(0, R) and

f ′(z) =
∞∑
n=1

nanz
n−1 on D(0, R).

Proof. Without loss of generality, suppose 0 < R < ∞. (If R = ∞, take a
suitably large disk.) Let |z| = R − 2δ for some δ > 0 and let |h| < δ. We want
to show that

lim
h→0

f(z + h)− f(z)
h

=
∞∑
n=1

nanz
n−1,
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or equivalently that

f(z + h)− f(z)
h

−
∞∑
n=1

nanz
n−1 → 0 as h→ 0.

Observe

f(z + h)− f(z)
h

−
∞∑
n=1

nanz
n−1 =

∞∑
n=0

an(zn + h)n −
∞∑
n=0

anz
n

h
−
∞∑
n=1

nanz
n−1.

Subtract term by term to obtain that the latter equals

∞∑
n=0

an((zn + h)n − zn)

h
−
∞∑
n=1

nanz
n−1.

By the Binomial theorem, the above equals

=

∞∑
n=0

(an
∞∑
k=0

(
n
k

)
hkzn−k − zn)

h
−
∞∑
n=1

nanz
n−1

=

∞∑
n=0

an(
∞∑
k=1

(
n
k

)
hkzn−k)

h
−
∞∑
n=1

nanz
n−1

=
∞∑
n=0

an

( ∞∑
k=1

(
n

k

)
hk−1zn−k

)
−
∞∑
n=1

nanz
n−1

=
∞∑
n=0

an

( ∞∑
k=1

(
n

k

)
hk−1zn−k

)

=
∞∑
n=0

anbn,

where

bn =
∞∑
k=2

(
n

k

)
hk−1zn−k.

If z = 0, bn = hn−1 and

f(z + h)− f(z)
h

=
f(h)− f(z)

h
=
∞∑
n=1

anh
n−1 → 0 as h→ 0

by continuity of power series at zero since
∑
anz

n−1 has radius of convergence
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R > 0. If z 6= 0, first note that(
n

k

)
=

n(n− 1) · · · (n− k + 2)(n− k + 1)
k(k − 1) · · · (2)(1)

6
n(n− 1) · · · (n− k + 3)n · n

(k − 2)(k − 3) · · · (2)(1)

= n2

(
n

k − 2

)
.

Hence for z 6= 0,

bn 6
n2|h|
|z2|

n∑
k=2

(
n

k − 2

)
|h|k−2|z|n−(k−2)

=
n2|h|
|z2|

n−2∑
j=0

(
n

j

)
|h|j |z|n−j

6
n2|h|
|z2|

n∑
j=0

(
n

j

)
|h|j |z|n−j

=
n2|h|
|z|2

(|h|+ |z|)2 6
n2|h|
|z|2

(R− δ)n.

Hence ∣∣∣∣∣f(z + h)− f(z)
h

−
∞∑
n=1

nanz
n−1

∣∣∣∣∣ 6 |h|
|z|2

∞∑
n=1

n2|an|(R− δ)n.

The series on the right also has radius of convergence R, so the series on the
right hand side is bounded by some constant A. Hence∣∣∣∣∣f(z + h)− f(z)

h
−
∞∑
n=1

nanz
n−1

∣∣∣∣∣ 6 A
|h|
|z|2

.

Let h→ 0 and we get our result. (Note that A does not depend on h and z.)

4.7 Corollary. Power series are infinitely differentiable inside their radii of
convergence.

4.8 Corollary. Let

f(z) =
∞∑
n=0

anz
n

have radius of convergence R > 0. Then

an =
f (n)(0)
n!

, n > 0.
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4.9 Corollary. If

f(z) =
∞∑
n=0

anz
n.

has radius of convergence R > 0, then

F (z) =
∞∑
n=0

a

n+ 1
anz

n+1

also has radius of convergence R and F ′ = f on the disk of convergence.

4.10 Definition. If a function f has a power series representation on some disk
D(z0, r) of radius r about z0; i.e. there exists a power series

∞∑
n=0

an(z − z0)n

such that

f(z) =
∞∑
n=0

an(z − z0)n on D(z0, r),

then we say that f is (complex) analytic at z0. If U ⊂ C is open and f : U → C
has a power series representation about every point of U , we say f is analytic
on U .

To clarify

analytic =⇒ holomorphic =⇒ differentiable.

In fact, they are equivalent, as we will show later.

4.11 Corollary. We define the exponential function ez by

ez =
∞∑
n=0

zn

n!
.

Since ez has infinite radius of convergence, ez is infinitely differentiable on all
of C and

d
dz

[ez] = ez.

Note that if z = x ∈ R, ez = ex. Also

e0 = 1 and ez+w = ezew for all z, w ∈ C.

We can also define

sin z =
∞∑
n=0

(−1)n+1 zn+1

(2n+ 1)!
and cos z =

∞∑
n=0

(−1)n
z2n

(2n)!
.

14
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Both series have infinite radius of convergence. It is easy to see that

sin z =
eiz − e−iz

2i
and cos z =

eiz + e−iz

2

and
eiz = cos z + i sin z.

If z = θ and θ ∈ R, then sin z = sin θ and cos z = cos θ, and

eiθ = cos θ + i sin θ.

For z = x+ iy, ez = ex+iy = exeiy = ex(cos y + i sin y). So

|ez| = ex = eRe z.

Try to solve ew = z = reiθ for w. Let w = x+ iy. Then

ew = ex+iy = exeiy = reiθ.

So comparing moduli, ez = r. So, there is no solution at all if z = 0. Otherwise

x = log r = log |z|.

Also,
cos y + i sin y = eiy = eiθ = cos θ = i sin θ.

So y is only defined up to an integer multiple of 2π. Hence, we can say that

y = Arg z.

So for z 6= 0,
Log z = log |z|+ iArg z

is only defined up to an integer multiple of 2π.

4.12 Definition. A subset Ω of C which is open and connected is called a
domain or a region.

4.13 Definition. Let Ω be a domain and f be holomorphic in Ω with f(z) 6= 0
for all z ∈ Ω; that is, f is non-vanishing. A holomorphic function g on Ω is
called a branch of the logarithm of f in Ω if

eg(z) = f(z) for all z ∈ Ω.

4.14 Example. Let Ω = C \ R−; i.e.

Ω = C \ {z ∈ C : Re z 6 0, Im z = 0} .

On Ω, define a branch of the logarithm of z, log z, by

log z := log r + iθ, z = reiθ

where −π 6 θ 6 π. This is usually referred to as the principal branch of the
logarithm.

15
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Note that if z = x ∈ R, x > 0, then log z = log x. Also, if z1, z2 ∈ Ω and
z1z2 ∈ Ω, then

log(z1z2) = log z1 + log z2.

4.15 Proposition (Uniqueness of Power Series). Suppose

∞∑
n=0

anz
n

has radius of convergence R > 0 and is zero at points of a nonzero sequence
{zn} which tends to infinity. Then the power series is zero on the whole disk of
convergence and an = 0 for all n > 0.

Proof. Set

f0(z) =
∞∑
n=0

anz
n.

By 4.6, continuity of power series,

a0 = f0(0) = lim
z→0

f0(z) = lim
n→∞

f0(zn) = 0.

Now set

f1(z) =
∞∑
n=1

anz
n−1 =

f1(z)
z

, if z 6= 0.

This series has the same radius of convergence and

a1 = f1(0) = lim
z→0

f1(z) = lim
n→∞

f1(zn)
zn

= 0.

Next set

f2 =
∞∑
n=2

anz
n−2 =

f2(z)
z2

, z 6= 0.

We find that a2 = 0, and so on.

4.16 Corollary. If a power series is zero at all points of an infinite set with an
accumulation point at zero, then the power series is identically zero.

4.17 Corollary. If

∞∑
n=0

anz
n and

∞∑
n=0

bnz
n

each have radius of convergence greater than zero and agree on an infinite set
with an accumulation point at zero, then an = bn for all n > 0.

Proof. Subtract term by term within a common disk of convergence.

16
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Of course, one can make similar conclusions for power series

∞∑
n=0

an(z − z0)n

about any point z0 ∈ C.

4.18 Abel’s Limit Theorem (Non-Tangential Convergence). If

∞∑
n=0

an

is convergent and

f(z) =
∞∑
n=0

anz
n,

then

f(z)→ f(1) =
∞∑
n=0

an as z → 1

in such a way that
|1− z|
1− |z|

remains bounded. [Note that |1− z| > 1− |z| by the reverse triangle inequality.]

Proof. Without loss of generality, assume

∞∑
n=0

an = 0.

Let Sn be the partial sum

Sn = a0 + · · ·+ an

and
Sn(z) = a0 + · · ·+ anz

n.

Then

Sn(z) = a0 + (S1 − S − 0)z + · · ·+ (Sn − Sn−1)zn

= S0(1− z) + S1(z − z2) + · · ·+ Sn−1(zn−1 − zn) + Snz
n.

But Snzn → 0 as n→∞ by the convergence of
∑
an, and formally we have

f(z) = (1− z)
∞∑
n=0

Snz
n. (2)

17
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Well
∞∑
n=0

an = lim
n→∞

Sn

is convergent, and so since {Sn} is in particular bounded, the series

∞∑
n=0

Snz
n

has radius of convergence greater than 1 by Abel’s Theorem. Hence the series
(??) does converge for |z| < 1 and multiplying by (1 − z) gives f(z). Now we
assume that |1− z| 6 K(1− |z|) for some suitable K. Since

∞∑
n=0

an = 0,

Sn → 0 as n→∞. Let ε > 0 and choose M such that |Sn| < ε for all n > M .
Then

∞∑
n=0

Snz
n

is dominated by

ε

∞∑
n=0

zn,

and so

|f(z)| =

∣∣∣∣∣(1− z)
∞∑
n=0

Snz
n

∣∣∣∣∣ ,
by (∗)

6 |1− z|

∣∣∣∣∣
n−1∑
n=0

Snz
n

∣∣∣∣∣+ |1− z|

∣∣∣∣∣
∞∑
n=m

Snz
n

∣∣∣∣∣
6 |1− z|

∣∣∣∣∣
n−1∑
n=0

Snz
n

∣∣∣∣∣+K(1− |z|)
∞∑
n=m

ε|z|n

6 |1− z|

∣∣∣∣∣
n−1∑
n=0

Snz
n

∣∣∣∣∣+K(1− |z|) ε|z|
n

1− |z|

= |1− z|

∣∣∣∣∣
n−1∑
n=0

Snz
n

∣∣∣∣∣+Kε|z|n

6 |1− z|

∣∣∣∣∣
n−1∑
n=0

Snz
n

∣∣∣∣∣+Kε

6 |1− z| .

18
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5 Line Integrals

5.1 Definition. Let f(t) = u(t) + iv(t), a 6 t 6 b, be a continuous complex
valued function of the real variable t defined on [a, b]. Define∫ b

a

f(t) dt,

the integral of f over [a, b] to be∫ b

a

f(t) dt :=
∫ b

a

u(t) dt+ i

∫ b

a

v(t) dt.

5.2 Definition. Let z(t) = a(t) + ib(t) be a complex function on a 6 t 6 b.

a) The curve γ determined by z(t) is piecewise differentiable and we set

z′(t) = a′(t) + ib′(t).

If x, y are continuous on [a, b] and C1 on each subinterval [a, t1], [t1, t2], . . . ,
[tn−1, b] of a partition of [a, b] (i.e. C1 on the interior of each subinterval
and the derivatives have one-sided limits at the endpoints).

b) The curve γ is also piecewise smooth if z′(t) 6= 0 except at (possibly)
finitely many points in [a, b].

5.3 Definition. Let γ be a piecewise smooth curve given by z(t), a 6 t 6 b,
and let f be complex valued continuous at each point z(t), a 6 t 6 b (this is
called the track of γ, written [γ]). We define the integral of f along γ by∫

γ

f(t) dt :=
∫ b

a

f(z) · z′(t) dt.

That is, ∫
γ

f(t) dt :=
n∑
i=1

∫ ti

ti−1

f(z) · z′(t) dt

where a = t0 < t1 < · · · < tn−1 < tn = b is a partition as in Definition 5.2.

5.4 Definition. The two curves γ1 : z(t), a 6 t 6 b, and γ2 : w(t), c 6 t 6 d, are
smoothly equivalent and write γ1 ∼ γ2 if there exists a one-to-one mapping
λ(t) : [c, d] → [a, b] such that λ(c) = a and λ(d) = b, λ′(t) > 0, c < t < d and
w(t) = z(λ(t)). It is easy to show that ∼ is an equivalence relation.

5.5 Proposition. Suppose γ1 ∼ γ2 both piecewise differentiable and f is con-
tinuous at all points in [γ1] = [γ2]. Then∫

γ1

f(z) dz =
∫
γ2

f(z) dz.
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Proof. Let f(z) = u(z) + iv(z), γ1 : z(t), γ2 : z(λ(t)) on a 6 t 6 b. Then

∫
γ1

f(z) dz =
∫ b

a

u(z(t)) · x′(t) dt−
∫ b

a

v(z(t)) · y′(t) dt+ · · ·

· · ·+ i

∫ b

a

u(z(t)) · y′(t) dt+ i

∫ b

a

v(z(t)) · x′(t) dt.

Also,∫
γ2

f(z) dz =
∫ d

c

[u(z(λ(t))) + iv(z(λ(t)))] · [x′(λ(t)) + iy′(λ(t))] · λ′(t) dt.

We can also multiply this out to again get four terms. Now compare each of
them term by term with the corresponding one from the first integral over γ1.
For example,∫ d

c

u(z(λ(t))) · x′(λ(t)) · λ′(t) dt =
∫ b

a

u(z(s)) · x′(s) ds

by substitution where s = λ(t), ds = λ′(t) dt. Similarly we show the other three
terms and equal.

5.6 Definition. Given a curve γ defined by z(t), a 6 t 6 b, we call −γ the
curve defined by z(b+ a− t), a 6 t 6 b.

5.7 Proposition. Let γ : z(t), a 6 t 6 b be piecewise differentiable and f
continuous on [γ]. Then ∫

−γ
f(z) dz = −

∫
γ

f(z) dz.

Proof. Writing out the integral∫
−γ

f(z) dz =
∫ b

a

f(z(b+ a− t)) · d
dt

(z(b+ a− t)) · dt.

Let u = b+ a− t, du = −dt. Then the latter equals∫ b

a

f(z(u)) · d
du

(z(u)) · du
dt
· du =

∫ b

a

f(z(u)) · z′(u) du

= −
∫ b

a

f(z(u)) · z′(u) du

=
∫
γ

f(z) dz.
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5.8 Example. 1. Let f(z) = x2 + iy2 for z = x+ iy. Define γ : z(t) = t+ it,
0 6 t 6 1. Then∫
γ

f(z) dz =
∫ 1

0

(t2 + it2)(1 + i) dt = (1 + i)2

∫ 1

0

t2 dt = 2i
∫ 1

0

t2 dt =
2i
3
.

2. Consider

f(z) =
1
z

=
1

x+ iy
=

x

x2 + y2
− iy

x2 + y2
.

Define γ : z(t) = R cos(t) + iR sin(t) for 0 6 t 6 2π and R 6= 0. Then∫
γ

f(z) dz =
∫ 2π

0

(
cos t
R
− i sin t

R

)
(−R sin t+ iR cos t) dt

=
∫ 2π

0

i dt = 2πi.

3. Let f(z) = 1 and γ be piecewise differentiable. Then∫
γ

f(z) dz =
∫ b

a

z′(t) dt = z(b)− z(a).

5.9 Proposition. Let γ be piecewise differentiable, f, g be continuous on [γ]
and let α ∈ C be any constant, then

1.
∫
γ

(f(z)± g(z)) dz =
∫
γ

f(z) dz ±
∫
γ

g(z) dz.

2.
∫
γ

αf(z) dz = α

∫
γ

f(z) dz.

5.10 Lemma. Let G(t) be a continuous complex valued function on [a, b]. Then∣∣∣∣∣
∫ b

a

G(t) dt

∣∣∣∣∣ 6
∫ b

a

|G(t)| dt.

Proof. Suppose ∫ b

a

G(t) dt = Reiθ, R > 0.

From 5.9, ∫ b

a

e−iθG(t) dt = R.

21



Spring 2007 MTH 562 - Complex Analysis

Write e−iθG(t) = A(t) + iB(t). Then

R =

∣∣∣∣∣
∫ b

a

A(t) dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

Re(e−θG(t)) dt

∣∣∣∣∣
6

∫ b

a

∣∣Re(e−iθG(t))
∣∣ dt

6
∫ b

a

∣∣e−iθG(t)
∣∣ dt

=
∫ b

a

|G(t)| dt,

as |Re z| 6 |z| and |e−iθ| = 1.

5.11 Definition. For a piecewise differentiable curve γ, we define the length
of γ, `(γ) by

`(γ) =
∫ b

a

|z′(t)| dt.

5.12 Proposition (M -L Formula). Suppose γ is piecewise differentiable of
length L and f is continuous on [γ] with |f | 6 M on [γ]. Then∣∣∣∣∫

γ

f(z) dz
∣∣∣∣ 6 ML.

Proof. Let γ : z(t) = x(t) + iy(t) on a 6 t 6 b. Then∣∣∣∣∫
γ

f(z) dz
∣∣∣∣ =

∣∣∣∣∣
∫ b

a

f(z(t)) · z′(t) dt

∣∣∣∣∣
6

∫ b

a

|f(z(t))| · |z′(t)| dt

6
∫ b

a

M · |z′(t)| dt

= M

∫ b

a

|z′(t)| dt = ML.

5.13 Example. Let γ = C(0, 1) oriented counter clockwise. Let |f | 6 1 on
C(0, 1). Then ∣∣∣∣∫

γ

f(z) dz
∣∣∣∣ 6 2π.

5.14 Proposition. Let γ be piecewise differentiable and let fn be a sequence
of continuous functions on [γ] which converges uniformly to a function on [γ].
Then ∫

γ

f(z) dz = lim
n→∞

∫
γ

fn(z) dz.
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Proof. Observe∣∣∣∣∫
γ

f(z) dz −
∫
γ

fn(z) dz
∣∣∣∣ =

∣∣∣∣∫
γ

(f(z)− fn(z)) dz
∣∣∣∣ 6 ∫

γ

|f(z)− fn(z)| dz.

Let ε > 0 and n0 ∈ N be such that

|f(x)− fn(x)| 6 ε on [γ] for all n > n0.

Then by 5.12, ∣∣∣∣∫
γ

f(z) dz −
∫
γ

fn(z) dz
∣∣∣∣ 6 ε`(γ).

Since ε > 0 was arbitrary, the result follows.

5.15 Proposition. Let U ⊂ C be open. Let f be differentiable on U and γ be
a piecewise smooth curve lying inside U . Then if f has a primitive F on U ,∫

γ

f(z) dz = F (z(a))− F (z(b)) where γ : z(t), a 6 t 6 b.

Proof. Suppose without loss of generality that γ is smooth. Let H(t) := F (z(t)).
Then

H ′(t) = lim
h→0

F (z(t+ h))− F (z(t))
h

.

Differentiate complex-valued fuctions of a real variable by differenti-
ating real and imaginary parts, respectively, in the sense of single-variable
calculus.

= lim
h→0

F (z(t+ h))− F (z(t))
z(t+ h)− z(t)

· z(t+ h)− z(t)
h

Since z′(t) 6= 0 since z is smooth by the mean value theorem of cal-
culus, we can find δ > 0 such that if |h| < δ and z(t) = u(t) + iv(t),
then

z(t+ h) = u(t+ h)− u(t) + iv(t+ h)− iv(t)

= hu′(t+ θ1h) + ihv′(t+ θ2h)

for some 0 < θ1, θ2 < 1. Since at least one of u′, v′ is nonzero on a
δ-neighborhood of t (since γ is C1), it follows from above that for |h| < δ,

z(t+ h) 6= z(t).

Thus, by letting h→ 0, we see that

H ′(t) = F ′(z(t)) · z′(t)
= f(z(t)) · z′(t).

Then ∫
γ

f(z) dz =
∫ b

a

f(z(t)) · z′(t) dt.
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By the Fundamental Theorem of Calculus, since H(t) is a primative for f(z(t)) ·
z′(t), the above is simply

H(b)−H(a) = F (z(b))− F (z(a))

as required.

6 Cauchy’s Theorem for a Rectangle

Let us denote by R a filled and closed rectangle with sides parallel to the real
and imaginary axes. By ∂R, we denote a closed curve which traces out the
perimeter of R in a counter clockwise direction starting at the bottom right
corner. n.b. This is a well-defined concept.

6.1 Theorem. Let f be differentiable on an open set U which contains the
rectangle R. Then ∫

∂R

f(z) dz = 0.

Proof using the Bisection argument. For any rectangle S ⊂ U , define

η(S) =
∫
∂S

f(z) dz.

If we divide R into four congruent rectangles R(1), . . . , R(4), then

η(R) =
4∑
i=1

η(R(i).

By the triangle inequality, for at least one i,∣∣η(R(i))
∣∣ > 1

4
|η(R)| .

Otherwise,

|η(R)| =
˛̨
η(R(1)) + · · ·+ η(R(4))

˛̨
6

˛̨
η(R(1))

˛̨
+ · · ·+

˛̨
η(R(4))

˛̨
<

1

4
|η(R)|+ · · ·+ 1

4
|η(R)|

= |η(R)| ,

which is a contradiction.

Call this chosen rectangle R1. Now repeat the argument to divide R1 into
four congruent rectangles to get R2. Etc. Then we get a nested sequence of
rectangles R1 ⊂ R2 ⊂ · · · such that

|η(Rn)| > 1
4
|η(Rn−1)| .
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Hence |η(Rn)| > 4−n |η(R)|. Then since diamRn = 2−n diamR, and each Rn
is closed, ⋂

n

Rn = {z∗} for some z∗ ∈ C.

To see this, pick a point zn ∈ Rn for each n. Since the rectangles are
nested and diamRn = 2−n diamR. The sequence {zn} is Cauchy. Hence
zn → z∗. It is easy to see that z∗ will not depend on our choice of {zn}.

Now let δ > 0 be such that f(z) is differentiable on D(z∗, δ). Given ε > 0, by
differentiability of f at z∗, we can make δ smaller if needed so that∣∣∣∣f(z)− f(z∗)

z − z∗
− f ′(z∗)

∣∣∣∣ < ε

if |z − z∗| < δ. Then

|f(z)− f(z∗)− (z − z∗)f ′(z∗)| < ε|z − z∗|

if |z − z∗| < δ. Now by 5.15, for each n,∫
∂Rn

dz = 0 and
∫
∂Rn

z dz = 0.

Since if g,G are such that G′ = g on U , then∫
∂S

g(z) dz = 0 if S ⊂ U is a closed path.

Hence

η(Rn) =
∫
∂Rn

f(z) dz

=
∫
∂Rn

(f(z)− f(z∗)− (z − z∗)f ′(z∗)) dz.

Hence by 5.10,

|η(Rn)| 6
∫
Rn

|z − z∗||dz|

6 ε diamRn ·
∫
Rn

|dz|

= ε · 2−n diamR · `(∂Rn)
= ε · 2−n diamR · 2−n`(∂R).
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Hence
4−n |η(R)| 6 |η(Rn)| 6 ε · 4−n diam(R)`(∂R),

and so
|η(R)| < ε · diam(R) · `(∂R).

Since ε > 0 was arbitrary, η(R) = 0 as required.

Note that we only used that f was differentiable. We didn’t need that f was
holomorphic or analytic. We need to generalize the result.

6.2 Theorem. Let f be differentiable on an open set U containing a rectangle
R except at possibly finitely many points where it is continuous. Then∫

∂R

f(z) dz = 0.

Proof. Without loss of generality, we need only consider when there is just one
point, a, where f may not be differentiable. There are three cases.

Case 1: Suppose a /∈ R. Just make U smaller and apply the previous result.
Case 2: Suppose a ∈ ∂R. Divide up R as follows:

R

R0

a

R

R0

a

By the previous result and cancellation, if∫
∂R0

f(z) dz = 0, then
∫
∂R

f(z) dz = 0.

Let ε > 0 and assume without loss of generality that `(∂R0) < ε. Now if f is
continuous at a so there exists δ > 0 such that we can find some M such that

|f(z)| 6 M if |z − a| < δ.

Then ∣∣∣∣∣∣
∫
∂R0

f(z) dz

∣∣∣∣∣∣ 6 Mε by 5.12.
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R

a

Since ε > 0 was arbitrary, the result follows in this case.
Case 3: Suppose a ∈ Int(R). Then the case reduces to Case 2, and the result

follows.

6.3 Corollary. Let f be differentiable on U ⊂ C open, let a ∈ U , and define
g(z) on U by

g(z) =

{
f(z)−f(a)

z−a , z 6= a

f ′(a), z = a.

Then ∫
∂R

g(z) dz = 0 for all rectangles R ⊂ U.

Primitives - (First Version)

6.4 Theorem. Let f be continuous on an open disk D = D(a,R) and suppose∫
∂R

f(z) dz = 0

for every rectangle R ⊂ D. Then f has a primitive F on D.

Proof. Define F (z) on D by

F (z) =
∫
γ

f(z) dz

where γ is any path from a to z in D containing one vertical and one horizontal
line segment. Since ∫

∂R

f(z) dz = 0 for all rectangles R ⊂ U,

F (z) is well-defined. Let f(z) = u(z) + iv(z) and F (z) = U(z) + iV (z). Let h
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a 

z 

z          + ik 

z        + h 

D 

be real. Then if z0 ∈ D,

F (z0 + h)− F (z)
h

− f(z0) =
1
h

∫
[z0,z0+h]

f(z) dz − f(z0)

=
1
h

∫
[z0,z0+h]

(f(z)− f(z0)) dz.

By continuity of f at z0, given ε > 0, there exists δ > 0 such that

|f(z)− f(z0)| < ε whenever |z − z0| < δ.

Hence if |h| < δ,∣∣∣∣F (z0 + h)− F (z0)
h

− f(z0)
∣∣∣∣ 6 1

h

∫
[z0,z0+h]

ε dz = ε.

Since h ∈ R, z0 ∈ D was arbitrary, the partial derivatives Ux and Vx exist on D
and

Ux = u and Vx = v on D.

Since f is continuous on D, so are Ux and Vx. Similarly if we look at

F (z0 + ik)− F (z0)
ik

− f(z0)

for k ∈ R, we see that Uy and Vy exist on D and

Vy = u and Uy = v on D.
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So, in particular, Uy and Vy are continuous on D. Hence the first-order partial
derivatives of U and V exist on D, are continuous on D, and satisfy the Cauchy-
Riemann equations on D. Hence by Proposition 3.3, F is differentiable on D
and

F ′(z) = Fx(z) · f(z) on D.

6.5 Corollary. Let f be differentiable on an open disk D = D(a,R). Then∫
γ

f(z) dz = 0 for all piecewise smooth closed paths γ ⊂ D.

Proof. Let γ : z(t), a 6 t 6 b be a closed piecewise smooth path in D. By 6.1,∫
∂R

f(z) dz = 0 for all rectangles R ⊂ D,

and f is continuous on D since f is differentiable on D. Hence by 5.15, f has a
primitive F on D. Then by 5.15,∫

γ

f(z) dz = F (z(b))− F (z(a)) = 0.

6.6 Corollary. Let Ω be a domain and f be continuous and complex-valued on
Ω. Then if∫

γ

f(z) dz = 0 for all piecewise smooth closed curves γ in Ω,

then f has a primitive F in Ω.

Proof. Pick a ∈ Ω. For any z ∈ Ω, define

F (z) =
∫
γ

f(z) dz

where γ is any piecewise smooth path in Ω from a to z. By hypothesis, F is
well-defined (doesn’t depend on the choice of γ). If we now let δ > 0 be such
that D(z, δ) ⊂ Ω, then the same proof as for 6.4 shows that F ′(z) = f(z). Since
z ∈ Ω was arbitrary, the result follows.

7 Cauchy’s Integral Formula in a Disk, Taylor’s
Theorem, Applications

Notation. C(a,R) denotes the circle centered at a with radius R with a counter
clockwise orientation.
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7.1 Lemma. For any a ∈ C, R > 0 and any b ∈ D(a,R),∫
C(a,R)

dz
z − b

= 2πi.

Proof. Suppose z ∈ C(a,R). Then

1
z − b

=
1

z − b− (b− a)
=

1
z − a

· 1

1−
(
b−a
z−a

) .
Since |b− a| < R = |z − a|,

|b− a|
|z − a|

< 1

and we can expand this expression as a geometric series which converges uni-
formly for every z ∈ C(a,R).

=
1

z − a

(
1 +

(
b− a
z − a

)
+
(
b− a
z − a

)2

+ · · ·

=
1

z − a
+

(b− a)
(z − a)2

+
(b− a)2

(z − a)3
+ · · · .

By Proposition 5.14 on path integrals for uniform convergent sequences of func-
tions, ∫

C(a,R)

dz
b− a

=
∫

C(a,R)

dz
z − a

+
∫

C(a,R)

(b− a)
(z − a)2

dz + · · ·

= 2πi+ 0 + 0 + · · · = 2πi.

7.2 Cauchy’s Integral Formula in a Disk. Let f be differentiable on an
open set U containing the closed disk D = D(a,R) (0 < R < ∞). Then if
b ∈ D(a,R) (open disk),

1
2πi

∫
C(a,R)

f(z)
z − b

dz = f(b).

Proof. By the compactness of D(a,R), we can find a bigger radius R′ > R such
that

D(a,R) ⊂ D(a,R) ⊂ D(a,R′) = D′ ⊂ U.

For z ∈ U , let

g(z) =

{
f(z)−f(b)

z−b , z 6= b

f ′(b), z = b.
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By 6.3, ∫
∂R

g(z) dz = 0 for all rectangles R ⊂ D′.

So by Theorem 6.4, g has a primitive G on D′. Hence by 5.15,∫
γ

g(z) dz = 0 for all piecewise smooth closed curves γ ⊂ D′.

In particular, ∫
C(a,R)

g(z) dz = 0.

Hence ∫
C(a,R)

f(z)− f(b)
z − b

dz = 0,

which implies ∫
C(a,R)

f(z)
z − b

dz =
∫

C(a,R)

f(z)
z − b

dz = 2πif(b).

7.3 Taylor’s Theorem. Let f be differentiable on an open set U containing
D(a,R), 0 < R 6∞. Then f has power series expansion

f(z) =
∞∑
n=0

an(z − a)n.

This series converges on D(a,R) and converges uniformly on D(a, ρ) for any
ρ 6 R, and the series has radius of convergence greater or equal to R. Also for
any 0 < ρ < R,

an =
f (n)(z)
n!

=
1

2πi

∫
C(a,ρ)

f(z)
(z − a)n+1

dz, n > 0.

In particular, f is infinitely differentiable on D(a,R).

Proof. Let 0 < ρ < R and let z ∈ D(a, ρ). Use the same trick as for Lemma
7.1. By the Cauchy integral formula 7.2,

f(z) =
1

2πi

∫
C(a,ρ)

f(w)
w − z

dw.
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Now

1
w − z

=
1

w − a(z − a)
=

1
w − a

· 1

1−
(
z−a
w−a

)
=

1
w − a

∞∑
n=0

(z − a)n

(w − a)n+1
,

and the series converges uniformly on C(a, ρ). So,

f(z) =
1

2πi

∫
C(a,ρ)

{ ∞∑
n=0

(z − a)n

(w − a)n+1

}
f(w) dw.

By 5.14, we can write this as

f(z) =
1

2πi

∞∑
n=0

∫
C(a,ρ)

(z − a)n

(w − a)n+1
f(w) dw

=
1

2πi

∞∑
n=0


∫

C(a,ρ)

f(w)
(w − a)n+1

dw

 (z − a)n.

We can write the latter as

f(z) =
∞∑
n=0

an(z − a)n,

where

an =
1

2πi

∫
C(a,ρ)

f(w)
(w − a)n+1

dw, n > 0.

By reversing the argument, we see that this series converges for every z ∈ D(a, ρ)
(and in fact the convergence is uniform). By the radius of convergence theorem
4.3, the radius of convergence of

∑
an(z − a)n is greater than or equal to ρ.

Since an = f (n)(a)/n! or by the uniqueness of power series, we see that an does
not depend on ρ. Since ρ < R was arbitrary, the radius of convergence of

∞∑
n=0

an(z − a)n

is greater or equal to R. Since power series converge uniformly on smaller disks
than the disk of convergence,

∞∑
n=0

an(z − a)n

converges uniformly on D(a, ρ) for any ρ < R.
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Corollaries to Taylor

7.4 Corollary. Let f be differentiable on a neighborhood of D(a,R). Then f
is analytic on D(a,R) and in particular is infinitely differentiable on D(a,R).

Proof. Combine Taylor with infinitely differentiable inside the disk of conver-
gence.

This shows how much stronger complex differentiability is compared to Rie-
mann differentiability.

7.5 Morera’s Theorem. Let U be an open set and let f : U → C be a
continuous complex-valued function such that∫

∂R

f(z) dz = 0

for all rectangles R ⊂ U . Then f is analytic on U .

Proof. Suffices to show that if a is any point in U and D(a, r) ⊂ U , then f
is analytic on D(a, r). By 6.4, f has a primitive F on D(a, r). By 7.4, F is
analytic on D(a, r) and infinitely differentiable. Since F ′ = f , f is infinitely
differentiable on D(a, r). Hence f is infinitely differentiable and hence analytic
on D(a, r) by 7.4.

7.6 Corollary. Let f be differentiable on an open set U , let a ∈ U , and let g(z)
be given by

g(z) =

{
f(z)−f(a)

z−a , z 6= a

f ′(a), z = a.

Then g is differentiable; in fact, g is analytic.

Proof. By 6.3, ∫
∂R

g(z) dz = 0 for all rectangles R ⊂ U .

Hence g is analytic by Morera’s Theorem.

7.7 Goursat’s Theorem. Let U ⊂ C be open and let f : U → C be differen-
tiable. Then f is analytic on U .

Proof. Immediate from 7.4.

7.8 Cauchy’s Estimates. Let f be differentiable on a neighborhood of D(a,R)
and suppose |f(z)| 6 M on C(a,R). Then for all n > 0 and z ∈ D(a,R),∣∣∣f (n)(z)

∣∣∣ 6 Mn!
Rn

.
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Proof. Recall that by Taylor, f has a power series
∞∑
n=0

an(z − a)n

on D(a,R′) for some R′ > R. Then by Taylor again:

|an| =
∣∣∣∣f (n)(a)

n!

∣∣∣∣ =

∣∣∣∣∣∣∣
1

2πi

∫
C(a,R)

f(z)
(z − a)n+1

dz

∣∣∣∣∣∣∣ 6
1

2π

∫
C(a,R)

|f(z)|
|(z − a)n+1|

dz.

Now by 5.12,

6
1

2π
M

Rn+1
· 2πR =

M

Rn
.

The result follows.

7.9 Liouville’s Theorem. If f is a bounded entire function, then f is constant.

Proof. Suppose |f(z)| 6 M on C. Let z ∈ C. Then if R > 0, f is analytic on
D(z,R). Hence, by Cauchy,

|f ′(z)| 6 M

R
.

Letting R → ∞ and using the fact that z was arbitrary shows that f ′ ≡ 0 on
C. Hence f is constant.

7.10 Fundamental Theorem of Algebra. Let P be a polynomial with com-
plex coefficients and degree d > 1. Then P has a root in C.

Proof. Suppose not. Write

P (z) = adz
d + ad−1z

d−1 + · · ·+ a0

with ad 6= 0. The latter can be rewritten

P (z) = adz
d

(
1 +

ad−1

ad
· 1
z

+ · · ·+ a0

adzd

)
.

Thus shows that for R sufficiently large,

|P (z)| > |nd|R
d

z
if |z| > R.

Now consider
Q(z) =

1
P (z)

.

Q is entire since P has no zeros. Also

|Q(z)| 6 z

|adRd|
for |z| > R.

Q is also bounded on D(0, R) since it is continuous and D(0, R) is compact.
Hence Q is bounded and entire. By Liouville’s Theorem, Q is constant. Hence
P is constant, which is impossible as deg P > 1.

34



MTH 562 - Complex Analysis Spring 2007

8 A Mixed Bag

8.1 The Identity Principle. Let f be analytic on a domain Ω and let a ∈ Ω.
The following are equivalent:

(1) f ≡ 0 on Ω,

(2) f (n)(a) = 0 for all n > 0.

(3) There exists a sequence of points zn with zn 6= a for all n, zn → a and
f(zn) = 0 for all n.

Proof. (1) ⇒ (2) trivially. (2) ⇒ (3): Suppose that D(a, r) ⊂ Ω. Then f has a
Taylor series about a on the disk D(a, r). Hence f ≡ 0 on the disk. (3) ⇒ (1):
As above, f has a Taylor series on D(a, r). So by uniqueness of power series,
f ≡ 0 on the disk. Now let

A = {z ∈ Ω : z is a limit of zeros of f} .

The same argument as above shows that A is open in Ω. By the continuity of
f , A is closed in Ω. Since A is both open and closed, it is either empty or the
entire set. Since a ∈ A, A 6= ∅. Hence A = Ω. By continuity again, f ≡ 0 on
Ω.

8.2 Corollary. If two functions f and g are analytic on a domain Ω agree on
an infinite set of points which has an accumulation point in Ω, then

f ≡ g on Ω.

Proof. Apply 8.1 to f − g.

8.3 Mean Value Theorem. Suppose U ⊂ C is open, f is analytic on U ,
a ∈ U and r > 0 such that D(a, r) ⊂ U . Then

f(a) =
1

2π

∫ 2π

0

f(a+ reiθ) dθ.

Proof. Cauchy Integral Formula on a disk

f(a) =
1

2πi

∫
C(a,r)

f(z)
z − a

dz.

On C(a, r), let z = a+ reiθ, 0 6 θ 6 2π and dz = ireiθ dθ. So,

f(a) =
1

2πi

∫ 2π

0

f(a+ reiθ)
reiθ

· ireiθ dθ =
1

2π

∫ 2π

0

f(a+ reiθ) dθ.
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8.4 Maximum Modulus. Let f be analytic on a domain Ω and suppose a ∈ Ω
is such that

|f(a)| > |f(z)| for all z ∈ Ω.

Then f is constant.

Proof. Let A = {z ∈ Ω : |f(z)| = |f(a)|}. By 8.3, if D(a, r) ⊂ Ω and 0 6 ρ 6 r,

|f(a)| 6 1
2π

∫ 2π

0

|f(a+ reiθ)| dθ 6
1

2π
|f(a)| · 2π = |f(a)|.

Hence
1

2π

∫ 2π

0

(|f(a)| − |f(a+ reiθ)|) dθ = 0.

This is the integral of a continuous nonnegative function and so

|f(z)| = |f(a)| on C(a, ρ).

Hence since 0 6 ρ 6 r was arbitrary,

|f(z)| = |f(a)| on D(a, r).

This argument shows A is open in Ω ans A is closed by the continuity of f .
Since Ω is connected and a ∈ A, |f | is constant on Ω. Then, f is constant on
Ω.

8.5 Corollary. Let Ω be a domain, f be analytic and non-constant on Ω and
continuous on Ω. Then if a is such that

|f(a)| > |f(z)| for all z ∈ Ω,

then a ∈ ∂Ω.

8.6 Minimum Modulus. If f is a non-constant analytic function on a domain
Ω, then no point z ∈ Ω can be minimum for |f | unless f(z) = 0.

Proof. Suppose note. Apply the Maximum Modulus Theorem to g = 1/f .

8.7 Open Mapping Theorem. The image of a domain Ω under a non-
constant analytic function f is again a domain.

Proof. f(Ω) is connected since Ω is connected and f is continuous. To show
f(Ω) is open, let a ∈ Ω and we show the image of a disk around a contains a
disk around f(a). Without loss of generality, assume f(a) = 0. By the Identity
Principle, there exists a circle C(a, r) ⊂ Ω such that f(z) 6= 0 on C(a, r). Let

2ε = min
z∈C(a,r)

|f(z)|.

We want to show that
f(D(a, r)) ⊃ D(0, ε).
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w-planez-plane

C

u

z

w

f(C)

2"

"

Let w ∈ D(0, ε) and consider f(z)− w. For z ∈ C(a, r),

|f(z)− w| > |f(z)| − |w| > 2ε− ε = ε.

While at a,
|f(z)− w| = |0− w| = |w| < ε.

Hence, |f(z)−w| assume its minimum value inside C(a, r). By Minimum Mod-
ulus Theorem,

f(z)− w = 0 somwhere inside C(a, r).

Thus, w is in the range of f |D(a,r).

8.8 Corollary. Suppose Ω ∈ C is open is open and f : Ω→ G is bijective and
analytic. Then f−1 : G→ Ω is analytic and

(f−1)′(z) =
1

f ′(f−1(z))
.

Proof. By Open Mapping Theorem, G is a domain and f−1 is continuous on G.
Result follows from Proposition 2.4.

8.9 Schwarz’ Lemma. Suppose f : D→ D is analytic with f(0) = 0. Then

(i) |f(z)| 6 |z|;

(ii) |f ′(0)| 6 1,

with equality in either of the above if and only if f(z) = zeiθ for some θ ∈ R.

Proof. Define

g(z) =

{
f(z)
z , z 6= 0

f ′(z), z = 0.
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By 7.6, g is analytic on D. If 0 < r < 1, then

|g| 6 1
r

on C(0, r)

by Maximum Modulus (8.4). If we now let r increase to 1, then we see that
|g| 6 1 on D which proves (i) and (ii). Also if |g(z0)| = 1 for some z0 ∈ D, then
|g| = 1 on D by Maximum Modulus and so g(z) ≡ eiθ on D for some θ ∈ R.
Thus, f(z) = zeiθ.

9 The Homotopic Version of Cauchy’s Theorem,
Simple Connectedness, Integrals Over a
Continuous Path

Let U ⊂ C be open and let γ : [a, b] → U be a continuous path. From now on,
for the sake of convenience, we shall assume that γ : [0, 1]→ U . We can always
ensure this anyway by reparameterizing. From now on, denote [0, 1] by I.

9.1 Definition. Let U ⊂ C be open. Two closed continuous paths γ0, γ1 :
I → U are said to be homotopic in U if there exists a continuous function
Γ : I × I → U which satisfies

Γ(s, 0) = γ0(s) and Γ(s, 1) = γ1(s) for 0 6 s 6 1,

and Γ(0, t) = Γ(1, t) for all t ∈ I. t measures which path you are on and s
measures how far along a given path you are. Two continuous paths γ0, γ1 :
I → U (not necessarily closed) are fixed-endpoint homotopic in U if they
have the same endpoints and there exists Γ : I × I → U where Γ is continuous
and satisfies

Γ(s, 0) = γ0(s) and Γ(s, 1) = γ1(s) for 0 6 s 6 1

and

Γ(0, t) = γ0(0) = γ1(0) and Γ(1, t) = γ0(1) = γ1(t) for 0 6 t 6 1.

From now on, abbreviate fixed-endpoint homotopic by FEH.

9.2 Proposition. For any U ⊂ C open, homotopy in U and FEH in U are
equivalence relations.

Proof. We shall only prove the case for homotopy. Reflexivity: If γ0 ≈ γ1 in U
via the homotopy Γ, then γ1 ≈ γ0 in U via the homotopy Γ′(s, t) = Γ(s, 1− t).
Symmetry: If γ is a loop in U , then γ ≈ γ via Γ : I2 → U where Γ(s, t) = γ(s).
Transitivity: Suppose γ0 ≈ γ1 in U via Γ and γ1 ≈ γ2 in U via Λ. Then
Φ : I2 → U defined by

Φ(s, t) =

{
Γ(s, 2t), 0 6 t 6 1

2

Λ(s, 2t− 1), 1
2 6 t 6 1.
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Homotopy

Fixed-Endpoint Homotopy

t

ss        

°
0

°
1

¡(s,t)

t

°
1

°
0

¡(s,t)

s        

s        

is a homotopy from γ0 to γ2.

9.3 Definition (Composition of Paths). For two paths (not necessarily closed)
γ, η with γ(1) = η(0), we define the composition η ◦ γ to be the path

(η ◦ γ)(t) =

{
γ(2t), 0 6 t 6 1

2

η(2t− 1), 1
2 6 t 6 1.

Note that if γ, η are piecewise differentiable and f is continuous on [γ], [η],
then ∫

η◦γ

f(z) dz =
∫
γ

f(z) dz +
∫
γ

f(z) dz.

9.4 Proposition. Let U ⊂ C be open. If γ0, γ1, η0, η1 are continuous paths in
U (not necessarily closed) with

γ0(1) = η0(0) and γ1(1) = η1(0).

If γ0 is FEH to γ1 in U and η0 is FEH to η1 in U , then

η0 ◦ γ0 is FEH to η1 ◦ γ1 in U.
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t
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Proof. Let Γ,Λ be FEHs between γ0, γ1 and η0, η1, respectively. Define Φ :
I2 → U by

Φ(s, t) =

{
Γ(2s, t), 0 6 s 6 1

2

Λ(2s− 1, t), 1
2 6 s 6 1.

t

s

¤¡

´
0

°
1

°
0

´
1

Then Φ is continuous since

Φ
(

1
2
, t

)
= Γ(1, t) = γ0(1) = η0(0) = Λ(2s− 1, t).

Also

Φ(s, 0) =

{
Γ(2s, 0), 0 6 s 6 1

2

Λ(2s− 1, 0), 1
2 6 s 6 1

=

{
γ0(2s), 0 6 s 6 1

2

η0(2s− 1), 1
2 6 s 6 1

= η0 ◦ γ0.
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Similarly, Φ(s, 1) = (η1 ◦ γ1)(s). Finally,

Φ(0, t) = Γ(0, t) = γ0(0) = γ1(0) = (η0 ◦ γ0)(0) = (η0 ◦ γ0)(0)

and
Φ(1, t) = Λ(1, t) = η0(1) = η1(1) = (η0 ◦ γ0)(1) = (η1 ◦ γ1)(1).

Hence Φ is a FEH in U from η0 ◦ γ0 to η1 ◦ γ1.

9.5 Definition. If U ⊂ C is open and γ is a closed path (loop) in U , we say
γ is null-homotopic in U or homotopic to zero in U if γ is FEH in U to the
constant path γ(0) = γ(1). Write γ ≈ 0.

9.6 Proposition. If U ⊂ C is open and γ is a path in U (not necessarily
closed), then

−γ ◦ γ ≈ 0 in U

γ ◦ −γ ≈ 0 in U.

9.7 Proposition. Let U ⊂ C be open and z0 ∈ U . Then the set of equivalence
classes under FEH in U of loops starting and ending at z0, together with the
operation of composition of paths, forms a group. Call this the fundamental
group of U with basepoint z0 and write π1(U, z0).

9.8 Proposition. Let U ⊂ C be open and let z1, z2 be points in U for which we
can find a path γ in U with γ(0) = z1 and γ(1) = z2. Then π1(U, z1) ' π1(U, z2).

Hence, we usually omit the basepoint from the notation.

9.9 Definition. A domain Ω ⊂ C is simply connected if every loop in Ω is
null-homotopic in Ω.

9.10 Cauchy’s Theorem (Homotopic Version for Piecewise Differentiable
Paths). If U ⊂ C is open and γ0, γ1 are two piecewise differentiable paths in U
which are homotopic in U , then∫

γ0

f(z) dz =
∫
γ1

f(z) dz

for all analytic functions f in U .

Proof. Let Γ : I2 → U be the homotopy from γ0 to γ1. Since Γ is continuous
and I2 is compact, Γ is uniformly continuous on I2 and Γ(I2) is a compact
subset of U . Hence

r = dist(Γ(I2),C \ U) = inf
z∈Γ(I2)

inf
w∈C\U

|z − w| > 0.

By uniform continuity, we can find n ∈ N such that s, s′, t, t′ ∈ I and√
(s− s′)2 + (t− t′)2 <

2
n
,

41



Spring 2007 MTH 562 - Complex Analysis

then
|Γ(s, t)− Γ(s′, t′)| < r.

Let

Zjk = Γ
(
j

n
,
k

n

)
for 0 6 j, k 6 n

and set

Jjk =
[
j

n
,
j + 1
n

]
×
[
k

n
,
k + 1
n

]
for 0 6 j, k 6 n− 1.

Now

diam(Jjk) =
√

2
n

<
2
n
,

and so
Γ(Jjk) ⊂ D(Zjk, r) ⊂ U

by the definition of Γ.
If we let Pjk be the closed polygon

[Zjk, Zj+1,k, Zj+1,k+1, Zj,k+1, Zjk] for 0 6 j, k 6 n− 1,

then the vertices of Pjk lie in D(zjk, r), and since disks are convex, Pjk ⊂
D(Zjk, r). Then by Corollary 6.5, if f is analytic in U , then∫

Pjk

f(z) dz = 0. (3)

We now show ∫
γ0

f(z) dz =
∫
γ1

f(z) dz

for any f analytic in U by the “ladder” we have constructed one rung at a time.
For 0 6 k 6 n, let Qk be the polygon

Qk = [Z0k, Z1k, . . . , Znk = Z0k].

We show that∫
γ0

f(z) dz =
∫
Q0

f(z) dz =
∫
Q1

f(z) dz = · · · =
∫
Qn

f(z) dz =
∫
γ1

f(z) dz.

To see that ∫
γ0

f(z) dz =
∫
γ1

f(z) dz

for 0 6 j 6 n− 1, set

σj(t) = γ0(t) for
j

n
< t <

j + 1
n

.

Then σj − [Zj0, Zj+1,0] is a closed path in D(Pjk, r) where∫
σj−[Zj0,Zj+1,0]

f(z) dz = 0.
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Note: This is where we use the fact that γ0 is piecewise differentiable
so that γ0 − [Zj0, Zj+1,0] is piecewise differentiable. Remember, we only
know how to integrate over piecewise differentiable paths.

Hence, ∫
σj

f(z) dz =
∫

[Zj0,Zj+1,0]

f(z) dz.

Summing over j gives ∫
γ0

f(z) dz =
∫
Q0

f(z) dz.

The same argument gives that∫
γ1

f(z) dz =
∫
Qn

f(z) dz.

To show ∫
Qk

f(z) dz =
∫
Qk+1

f(z) dz for 0 6 k 6 n− 1,

first note that by (??),
n−1∑
j=0

∫
Pjk

f(z) dz = 0. (4)

Each of the “vertical” sides appears twice, once as [Zjk, Zj,k+1] and once as
[Zj,k+1, Z0k], and so the integrals over these sides cancel.

The integral over [Z0,k+1, Z0k] cances with that over [Znk, Zn,k+1] by
the definition of homotopy where

Γ(0, t) = Γ(1, t) for 0 6 t 6 1.
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Each of the “horizontal” sides [Zjk, Zj,k+1] is traversed exactly once. Each of
the horizontal sides
[Zj,k+1, Zj+1,k+1] is also traversed exactly once but in the opposite direction as
[Zj+1,k+1, Zjk]. Combining these three observations with (??) gives∫

Qk−Qk+1

f(z) dz = 0,

so ∫
Qk

f(z) dz =
∫
Qk+1

f(z) dz

as required and the proof is complete.

9.11 Corollary (Independence of Paths Theorem). If U ⊂ C is open and γ0, γ1

are two piecewise differentiable paths with the same endpoints (not necessarily
closed) which are FEH in U , then∫

γ0

f(z) dz =
∫
γ1

f(z) dz

for all f analytic in U .

Proof. Let Γ : I2 → U be the FEH. Then Λ : I2 → U given by

Λ(s, t) =


Γ(3s(1− t), t), 0 6 t 6 1

3

Γ(1− t, t+ (3s− 1)(1− t)), 1
3 6 t 6 2

3

γ((3− 3s)(1− t)), 2
3 6 t 6 1

is a FEH from −γ1 ◦ γ0 to γ0(0) = γ1(0). Now apply 9.10.

t
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°
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∙t∙
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Integrals over General Continuous Paths

How to integrate an analytic function over a path which may not be piecewise
differentiable.

9.12 Lemma. Let U ⊂ C be open and let γ : I → U be a continuous path. Then
there exists another piecewise differentiable path γ′ consisting of horizontal and
vertical line segments which has the same start and endpoints of γ and which is
FEH to γ in U .

Proof. Since γ is continuous and I is compact, γ is uniformly continuous on I
and γ(I) is a compact subset of U . Hence

r = dist(γ(I),C \ U) > 0.

(Note that γ(I) = [γ].) By uniform continuity, we can find n such that if
|s− s′| < 1/n, then

|γ(s)− γ(s′)| < r.

Set zj = γ(j/n) for 0 6 j 6 n and σj(t) = γ(t) for j/n 6 t 6 (j + 1)/n and
0 6 j 6 n− 1. Then

[σj ] ⊂ D(zj , r).

Since disks are simply connected, we can replace σj by a path σ′j in D(zj , r)
which consists of one horizontal and vertial line segment which runs from zj to
zj+1. Then clearly σj is FEH to σ′j in D(zj , r).

Then the path
γ′ = σ′n−1 ◦ σ′n−1 ◦ · · · ◦ σ1 ◦ σ0

is a path in U which is FEH in U to γ and is clearly piecewise smooth.

Note that in fact we can take our path to be smooth and not just piecewise
smooth.

)

We can now define the integral of an analytic function defined on an open
set over a general continuous path.
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9.13 Definition. Let U ⊂ C be open and let γ : I → U be a continuous path.
If f : U → C is analytic, we define the integral of f over γ by∫

γ

f(z) dz =
∫
γ′
f(z) dz

where γ′ is a piecewise differentiable path which is FEH to γ in U .

Lemma 9.12 shows we can always find a suitable path γ′. However, we still
need to show this is well-defined. As the integral over γ′ does not depend on
the choice of γ′.

So suppose γ′, γ′′ are two such paths which both are FEH to γ in U . Then
by Proposition 9.2, γ′ and γ′′ are FEH in U , and so by 9.11,∫

γ′
f(z) dz =

∫
γ′′
f(z) dz.

Note that we can now integrate analytic functions over paths which are:

• nowhere differentiable and • infinite-length (non-rectifiable).

Example. Consider the Koch curve:

This is nowhere differentiable. It also has Hausdorff dimension

log 4
log 3

= 1.26;

whereas, it has infinite length.

9.14 Cauchy’s Theorem (The General Version of the Homotopic Form). If
U ⊂ C is open and γ0 and γ1 are two continuous closed paths which are homo-
topic in U , then ∫

γ0

f(z) dz =
∫
γ1

f(z) dz

for all analytic functions f on U .
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Proof. By 9.12, we can find piecewise differentiable paths γ′0 and γ′1 in U such
that γ′0 is FEH to γ0 in U and γ′1 is FEH to γ1 in U . Then since for closed paths
if γ and η are FEH in U , then they are homotopic, we see by 9.2 that γ′0 and
γ′1 are homotopic in U . Then if f is analytic in U ,∫

γ0

f(z) dz =
∫
γ′0

f(z) dz =
∫
γ1

f(z) dz =
∫
γ′1

f(z) dz

by 9.10.

9.15 Corollary (The General Version of Independence of Paths). If U ⊂ C is
open and γ0 and γ1 are continuous paths in U with the same endpoints which
are FEH in U , then ∫

γ0

f(z) dz =
∫
γ1

f(z) dz

for all analytic functions f in U .

Proof. Similar to 9.14.

9.16 Theorem. If Ω is simply connected and f is analytic on Ω, then∫
γ

f(z) dz = 0

for all closed continuous paths γ in Ω.

9.17 Corollary. If Ω is simply connected and f : Ω → C is analytic, then f
has a primitive on Ω.

Proof. By preceding result, ∫
γ

f(z) dz = 0

for all continuous paths γ in Ω. In particular, this holds for all piecewise smooth
closed curves and so by Corollary 6.5, f has a primitive F on Ω.

9.18 Proposition. Let Ω be simply connected and f be analytic and non-
vanishing on Ω. Then there exists an analytic branch of log(f) on Ω; i.e. there
exists g : Ω→ C analytic with

f(z) = eg(z).

If z0 ∈ Ω and ew0 = f(z0), we can choose g such that g(z0) = w0.

Proof. Since f never vanishes, f ′/f = [log(f)]′ is analytic on Ω and so by the
Corollary 9.17, f ′/f has a primitive g on Ω. If h(z) = eg1(z), then h is analytic
on Ω and never vanishes (as ez 6= 0 for all z ∈ C). So, f/h is analytic and its
derivative is

hf ′ − h′f
h2

.
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But

h′ = g′1h =
f ′h

f
.

So,

hf ′ − h′f = hf ′ − f ′h

f
· f = 0.

Hence f/h is a constant c on Ω. Hence

f = ch = ceg1 = eg1+c1 for some c1.

Now let g(z) = g1(z) + c. For the last part, we have

ew0 = z0 − eg(z0).

Hence by adding a suitable integer multiple of 2πi to g(z), we get a primitive
satisfying g(z0) = w0.

10 Winding Numbers

10.1 Definition. If γ is a continuous closed path which does not pass through
a point a, we define the winding number or index of γ about a, n(γ, a)

n(γ, a) =
1

2πi

∫
γ

dz
z − a

.

Note that in view of the results of the previous section, without loss of
generality, we can take γ to be piecewise smooth when doing any calculations.

10.2 Lemma. If a continuous path γ that does not pass through a, then n(γ, a)
is an integer.

Attempt at proof:∫
γ

dz
z − a

=
∫
γ

d(log(z − a))

=
∫
γ

d(log(z − a)) + i

∫
γ

d(Arg(z − a))

= 0 +
∫
γ

d(Arg(z − a)).

So the answer should be given by how many times the vector γ(t) − a turns
‘around’ a, when we let t go from 0 to 1.

This can be made precise, but it easier to do the following.

Proof. Let γ : I → C be our path. Remember that we are allowed to assume
that γ is piecewise smooth. Define g : I → C by

g(t) =
∫ t

0

γ′(s)
γ(s)− a

ds.
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Hence g(0) = 0 and

g(1) =
∫
γ

dz
z − a

= 2πi · n(γ, a).

Also,

g′(t) =
γ′(s)

γ(s)− a
for 0 6 t 6 1

by the Fundamental Theorem of Calculus (second part). Hence

d
dt

(e−g(t) · (γ(t)− a) = −e−g(t)g′(t)(γ(t)− a) + e−g(t)γ′(t)

= e−g(t) · −γ
′(t)

γ(t)− a
(γ(t)− a) + e−g(t)γ′(t)

= 0.

So e−g(t)(γ(t)− a) is equal to the constant

e−g(t)(γ(0)− a) = γ(0)− a.

Hence

e−g(t)(γ(1)− a) = γ(0)− a
⇒ e−g(t)(γ(0)− a) = γ(0)− a
⇒ e−g(1) = 1
⇒ g(1) = 2πik for k ∈ Z
⇒ n(γ, a) = k.

10.3 Remark. It is clear that n(−γ, a) = −n(γ, a).

10.4 Lemma. If the continuous closed path γ lies inisde some disk, then
n(γ, a) = 0 for all points a outside the disk.

Proof. Suppose [γ] ⊂ D(z, r) for some z and r. If a ∈ D(z, r), then 1/z − a is
analytic and non-vanishing on this disk which is simply connected. Hence by
9.18, there exists a branch of log(z − a) on the disk and so n(γ, a) = 0.

10.5 Definition. If γ : I → C is a continuous path, [γ] is compact, and so
C\ [γ] is open and consists of a number of connected components. We call these
connected components the regions determined by γ.

10.6 Theorem. As a function of a, the winding number n(γ, a) is constant on
each of the regions determined by γ and 0 on the unbounded region.
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Proof. Any two points in the same region determined by γ can be joined by a
polygonal path consisting of horizontal and vertical line segments (9.12). Hence
it suffices to show the winding number is constant on a line segment connecting
two points in some region determined by γ. (i.e. [γ] does not meet the line
segment.) Let a and b be two such consider the function

z − a
z − b

.

a

b

0¡1

z   ¡  a
z   ¡  b

Off the line segment [a, b], this function is never zero and real. Hence we can
use the principal branch of the logarithm to define a branch of

log
(
z − b
z − a

)
off [a, b].

The derivative of

log
(
z − a
z − b

)
=

1
z − a

− 1
z − b

and hence if γ ∩ [a, b] = ∅,

a

b

∫
γ

(
1

z − a
− 1
z − b

)
dz = 0
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and n(γ, a) = n(γ, b). Finally, if |a| is sufficiently large, γ is contained in D(0, ρ)
where ρ = |a| and so n(γ, a) = 0 by Lemma 10.3.

11 Homology

Motivation

Ω

Often we have domains which look like the above. ∂Ω consists of several
pieces and we would like to treat it so one object rather than several closed
curves. This leads to the following definition.

11.1 Definition. A chain is a formal sum of the form

Γ = γ1 + γ2 + · · ·+ γn

where γ1, . . . , γn are continuous paths in C.

We wish to integrate over chains and so if f is analytic on a neighborhood
of each [γi], then we define∫

Γ

f(z) dz =
∫
γ1

f(z) dz + · · ·+
∫
γn

f(z) dz.

Technically speaking, the continuous paths are elements of the free abelian group
on 1-simplices (chain group C1).

Guiding principle is that two chains are considered equivalent if they yield
the same line integral for all suitable analytic functions f . Given this, the
integral above doesn’t change if we

1. permute two paths.

2. subdivide a path.

3. compose two paths.
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4. reparameterize a path.

5. cancel opposite paths.

Can make these conditions give us an equivalence relation and then formally
consider chians as equivalence classes with this relation.

Chains can be added in the obvious way and using (1) - (5), we can write
any chian in the form

Γ = a1γ1 + · · ·+ anγn

where the γi are distinct and ai ∈ N. Also, if f is analytic on a neighborhood
of each [γi], then∫

Γ

f(z) dz = a1

∫
γ1

f(z) dz + · · ·+ an

∫
γn

f(z) dz.

A chain is a cycle if it can be represented as a sum of closed curves. Easy to
see that the following are equivalent:

1. Γ is a cycle.

2. The initial and endpoint of Γ are in one-to-one correspondence.

3.
∫
γ

dz = 0.

Technically, the mapping ∫
Γ

dz

is the boundary mapping ∂1, which sends 1-chains to 0-chains (which are formal
sums of 0-simplices or points). Note that if f is analytic and has a primitive on
an open set U containing the curves of Γ, then∫

Γ

f(z) dz = 0.

The winding number for cycles is defined in the obvious way. Clearly if Γ1 and
Γ2 are cycles, a ∈ [Γ1], [Γ2], then

n(Γ1 + Γ2, a) = n(Γ1, a) + n(Γ2, a).

Definition. If Ω is a domain and Γ is a cycle in Ω, then we say Γ is homologous
to zero in Ω if

n(Γ, a) = 0 for all a ∈ C \ Ω.

Write Γ ≈ 0. Two cycles are homologous to each other in Ω if Γ1−Γ2 ≈ 0 in Ω.

11.2 Lemma. If γ1 and γ2 are two continuous closed paths in U ⊂ C open and
γ1 and γ2 are FEH in U , then

γ1 ≈ γ2 in U.
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Proof. Let a /∈ U . Then 1/z − a is analytic on U and so by Cauchy (9.15),∫
γ1

dz
z − a

=
∫
γ2

dz
z − a

.

Hence, n(γ1 − γ2, a) = 0.

11.3 Corollary. Let Ω ⊂ C be a domain. Then if Ω is simply connected, Γ ≈ 0
in Ω for all cycles Γ in Ω.

Proof. Every loop γ in Ω is FEH to the constant path. Apply 11.2.

11.4 Lemma. Suppose γ is a piecewise smooth path in C and ϕ is continuous
on [γ]. Then for each n > 1, the function Fn,

Fn(z) :=
∫
γ

ϕ(ζ)
(ζ − z)n

dζ

is analytic on each of the regions determined by γ and

F ′n(z) = nFn+1(z).

Proof. Show first that F1 is continuous. Let z0 /∈ [γ] and let δ > 0 be such that
D(z0, δ) ∩ [γ] = ∅. If z ∈ D(z0, δ/2), then

|ζ − z| > δ

2
for all ζ ∈ [γ].

Then if z ∈ D(z0, δ/2), from

F1(z)− F1(z0) = (z − z0)
∫
γ

ϕ(ζ)
(ζ − z)(ζ − z0)

dζ,

we obtain by the M -L formula (5.12),

|F1(z)− F1(z0)| < |z − z0| ·
2
δ2

∫
γ

|ϕ(ζ)||dζ|

6 |z − z0| ·
2
δ2

max
ζ∈[γ]

|ϕ(ζ) · `(γ)| .

As |z − z0| → 0 and the integral on the right is bounded, continuity of F1 at z0

is proved.
Now apply the above continuity to the function

ϕ(ζ)
ζ − z0

to conclude that
F1(z)− F1(z0)

z − z0
=

∫
γ

ϕ(ζ)
(ζ − z)(ζ − z0)

dζ

→
∫
γ

ϕ(ζ)
ζ − z0

dζ

= F2(z0) as z → z0.
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Hence F1 is analytic on each of the regions determined by γ and F ′1(z) = F2(z).
The general case is shown by induction.

Suppose we have that F ′n−1(z) = (n− 1)Fn(z). Then one can check that

Fn(z)− Fn(z0) =
[∫

γ

ϕ(ζ)dζ
(ζ − z)n−1(ζ − z0)

−
∫
γ

ϕ(ζ) dζ
(ζ − z)n

]
+

(z − z0)
∫
γ

ϕ(ζ) dζ
(ζ − z)n(ζ − z0)

. (5)

The first part in brackets goes to zero by the continuity of Fn−1 for

ϕ(ζ)
ζ − z0

.

The second part goes to zero by a similar argument, by using the M -L formula,
to that. For the continuity of F1 in the base case. Now divide both sides of
(??) by z − z0. The first part of the right hand side of (??) by the induction
hypothesis applied to Fn−1 for

ϕ(ζ)
ζ − z0

gives nFn for
ϕ(ζ)
ζ − z0

.

The second part of the right hand side of (??) gives∫
γ

ϕ(ζ)
(ζ − z)n(ζ − z0)

dζ,

and by continuity we’ve just proved applied to Fn for

ϕ(ζ)
ζ − z0

,

as z → z0, we get ∫
γ

ϕ(ζ)
(ζ − z)n(ζ − z0)

dζ =
∫
γ

ϕ(ζ)
(ζ − z)n+1

dζ.

Adding these gives

(n+ 1)
∫
γ

ϕ(ζ)
(ζ − z0)n+1

= (n+ 1)Fn+1(z0).

This completes the induction and the proof.

11.5 Homological Cauchy’s Integral Formula. Let U ⊂ C be open and
f : U → C be analytic. If Γ is a cycle which is homologous to zero in U , then
for a ∈ C \ [γ],

n(Γ, a)f(a) =
1

2πi

∫
Γ

f(z)
z − a

dz.
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Proof. Without loss of generality, Γ is piecewise smooth. Define ϕ : U ×U → C
by

ϕ(z, w) =

{
f(z)−f(w)

z−w , z 6= w

0, z = w.

Then ϕ is continuous on U × U and by 7.6, for each fixed w ∈ U , z 7→ ϕ(z, w)
is analytic.

Let
H = {z ∈ C : n(Γ, z) = 0} .

Since [Γ] is closed and n(Γ, z) = 0 is continuous and integer-valued on each of
the (open) regions determined by Γ, it follows that H is open. Moreover, if
z /∈ U , then n(Γ, z) = 0 since Γ ≈ 0 in U by definition. Hence, z ∈ H and
H ∪ U = C.

Now define g : C→ C by

g(z) =

{∫
Γ
ϕ(z, w) dw, z ∈ U∫

Γ
f(w)
w−z dw, z ∈ H.

We need to show that g is well-defined. Let z ∈ H ∩ U . Then∫
Γ

ϕ(z, w) dw =
∫

Γ

f(z)− f(w)
z − w

dw

=
∫

Γ

f(z)
z − w

dw −
∫

Γ

f(w)
z − w

dw

= f(z)
∫

Γ

dw
z − w

−
∫

Γ

f(w)
z − w

dw

= f(z)2πin(Γ, z)−
∫

Γ

f(w)
z − w

dw

= 0 +
∫

Γ

f(w)
z − w

dw,

and g is well-defined.
By 11.4 applied to f(w)/(w − z) and by the fact that a uniform limit of

analytic functions is analytic, g is entire on C. By Lemma 10.5, we can find
R > 0 such that

C \D(0, R) ⊂ H.

(Say H contains a neighborhood of infinity.) Since f is bounded on Γ and

lim
z→∞

1
w − z

= 0

uniformly on [Γ],

lim
z→∞

g(z) = lim
z→∞

∫
Γ

f(w)
w − z

= 0. (6)
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Hence, we can find R′ > 0 such that

|g(z)| 6 1 if |z| > R′.

Since g is continuous it is bounded on D(0, R′). Hence g is bounded on C and
entire, and so constant by Liouville’s Theorem. It then follows from (??) that
g(z) = 0 on C.

Hence if a ∈ U \ [Γ],

0 = g(a) =
∫

Γ

f(z)− f(a)
z − a

dz

=
∫

Γ

f(z)
z − a

dz −
∫

Γ

f(a)
z − a

dz.

Hence
1

2πi

∫
Γ

f(z)
z − a

dz = f(a)n(Γ, a)

as required.

11.6 Homological Cauchy’s Theorem. Let U ⊂ C be open, f : U → C be
analytic. If Γ ≈ 0 in U , then ∫

Γ

f(z) dz = 0.

Proof. Apply 11.5 to f(z)(z − a) for any point a ∈ U \ [Γ].

11.7 Corollary. Let U ⊂ C be open, f : U → C be analytic. Then if Γ ≈ 0 in
U and a is any point in U \ [Γ]

f (n)(a)n(Γ, a) =
n!

2πi

∫
Γ

f(z)
(z − a)(n+1)

dz.

Proof. Use 11.4 on term under the integral sign to diffeerentiate the equation
in the statement of 11.5 n times (with respect to a). (We assume without loss
of generality that Γ is piecewise smooth.)

11.8 Corollary. Let U ⊂ C be open and let Γ be a cycle in U . Thus∫
Γ

f(z) dz = 0 for all f analytic on U

if and only if
Γ ≈ 0 in U.

Proof. (⇒) Let a ∈ C\U and f(z) = 1/z − a. (⇐) 11.6.
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12 Counting Zeroes

Let f be analytic on U ⊂ C open. Suppose f(a) = 0 for some a ∈ U . We saw
earlier that using Taylor that the function

g(z) =

{
f(z)−f(a)

z−a , z 6= a

f(a), z = a

is analytic on U . We can then write

f(z) = (z − a)g(z)

a formula which remains true at z = a since f(a) = 0.
Continuing this way if a1, . . . , am are all the zeroes of f in U are all the

zeroes of f in U (possibly repated for multiple roots), then we can write

f(z) = (z − a1) . . . (z − am)g(z)

where g(z) is analytic on U and never vanishes on U . Hence, by logarithmic
differentiation, we obtain

f ′(z)
f(z)

=
1

z − a1
+ · · ·+ 1

z − am
+
g′(z)
g(z)

(7)

for z 6= ai. We then have the following theorem.

12.1 Theorem. Let U ⊂ C be open and let f be analytic on U with finitely
many roots a1, . . . , am (repeated according to multiplicity). If Γ is a cycle on U
which doesn’t pass through any of the ai, and if Γ ≈ 0 in U , then

1
2πi

∫
Γ

f ′(z)
f(z)

dz =
m∑
i=1

n(Γ, ai).

Proof. Integrate both sides of (??) over Γ.

12.2 Corollary. Let U , f , Γ be as in the last theorem, except that a1, . . . , am
are points where f(z) = α for some α ∈ C. Then:∫

Γ

f ′(z)
f(z)− α

dz =
m∑
i=1

n(Γ, ai).

13 Isolated Singularities and Laurent Series

Suppose f is analytic on U ⊂ C open except at a ∈ U . What does f do near a?

13.1 Proposition. A function f has an isolated singularity at z = a if
there exists r > 0 such that f is analytic on D(a, r) \ {a} but not on D(a, r). a
is called a removable singularity if there exists g analytic on D(a, r) where
g(z) = f(z) on D(a, r) \ {a}.
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13.2 Theorem. If f is analytic on U ⊂ C open except for an isolated singularity
at a ∈ U then z = a is a removable singularity if and only if

lim
z→a

(z − a)f(z) = 0.

Proof. (⇒) Obvious.
(⇐) Suppose lim

z→a
(z − a)f(z) = 0. Let h(z) be defined as

h(z) =

{
(z − a)f(z), z 6= a

0, z = a
.

If h is analytic on U , then we’re done since by Taylor we can find g(t) such that

h(t) = (z − a)g(t)→ f(z) = g(z), for z 6= a.

By 6.2, given any rectangle R contained in U (including the inside), h is differ-
entiable on U \ {a} and at a, so∫

∂R

h(z) dz = 0 for all rectangles R ⊂ U.

Hence, by Morera, h is analytic in U and we’re done.

13.3 Definition. If z = a is an isolated singularity of f , then a is a pole of f
if

lim
z→a
|f(z)| =∞

and if z = a is an isolated singularity, which is neither removable nor a pole, it
is an essential singularity of f .

Suppose that f has a pole at z = a. Then 1/f(z) has a removeable singularity
at z = a since

lim
z→a

∣∣∣∣(z − a)
1

f(z)

∣∣∣∣ = lim
z→a
|z − a| lim

z→a

1
|f(z)|

= 0 · 1
∞

= 0.

Then 1/f has a removeable singularity by 13.2. Hence

g(z) =

{
1/f(z), z 6= a

0, z = a

is analytic in D(a, r) for some r > 0, and it follows that we can write

g(z) = (z − a)mh(z)

for some m > 1, where h is analytic on D(a, r) and h(z) 6= 0 on D(a, r) (may
need to make r smaller). Hence

(z − a)mf(z) =
1

h(z)

has a removeable singularity at z = a. We then get the following:
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13.4 Proposition. Let U ⊂ C be open, a ∈ U , and f analytic on U \ {a} with
a pole at z = a. Then there is a natural number m > 1 and an analytic function
g(z) on U such that

f(z) =
g(z)

(z − a)m
for z ∈ U \ {a} .

13.5 Definition. If f has a pole at a and m is the smallest number for which
the above holds, we say that f has a pole of order m at a.1

Suppose now that f has a pole of order m at z = a and set

f(z) =
g(z)

(z − a)m

as in the definition of a pole of order m. Since g is analytic on D(a, r) for some
r > 0, we can write

g(z) = Am +Am−1(z − a) + · · ·+A1(z − a)m−1 + (z − a)m
∞∑
k=0

ak(z − a)k.

Hence
f(z) =

Am
(z − a)m

+ · · ·+ A1

z − a
+ g1(t),

where Am 6= 0 and g1 is analytic on D(a, r).

13.6 Definition. If f has a pole of order m at a and we then have an expansion
as above, we call

Am
(z − a)m

+ · · ·+ A1

z − a
the singular part of f at a.

Example (Rational Function). Let

R(z) =
P (z)
Q(z)

,

where P and Q are polynomials with no common factors (which implies that
the poles of R are precisely the poles of Q. Also, the order of a pole of R at a
is the order of the zero of Q at a.).

So suppose Q(a) = 0 and let S(z) be the singular part of R at a. Then

R1(z) = R(z)− S(z)

is another rational function whose poles are poles of R but which doesn’t have
a pole at a.

1Note that this implies that g(a) 6= 0.
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Continuing by induction, we find that if a1, . . . , an are the poles of R and
S1, . . . , Sn are the corresponding singular parts, we can write

R =
∞∑
k=1

Sk(z) + P̃ (z),

where P̃ is a rational function without any poles. But a rational function without
poles is a polynomial and so we have obtained the partial fraction expansion of
R.

13.7 Definition. If {zn}∞n=−∞ is a doubly infinite sequence, we say
∞∑

n=−∞
zn

is absolutely convergent if

∞∑
n=0

zn and
∞∑
n=1

z−n

are both absolutely convergent. In this case, we get

∞∑
n=−∞

zn =
∞∑
n=0

zn +
∞∑
n=1

z−n.

If {un}∞n=−∞ is a doubly infinite sequence of functions defined on some set

S and
∞∑

n=−∞
un is absolutely convergent at each point of S, we say

∞∑
n=−∞

un is

uniformly convergent if

∞∑
n=0

un and
∞∑
n=1

u−n

are both uniformly convergent on S.

Notation. A(a, r1, r2) = {z ∈ C : r1 < |z − a| < r2} for 0 6 r1 < r2 6∞.

13.9 Laurent Series Development. Let f be analytic on
A(a,R1, R2). Then

f(z) =
∞∑

n=−∞
an(z − a)n,

where the convergence is uniform and absolute over any A(a, r1, r2) where R1 <
r1 < r2 < R2. Also the coefficients an are given by the formula

an =
1

2πi

∫
C(a,r)

f(z)
(z − a)n+1

dz, (8)

where R1 < r < R2 (any such r will do). Moreover, the series is unique.
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Proof. If R1 < r1 < r2 < R2, let γ1 = C(a, r1) and γ2 = C(a, r2). Then γ1 ≈ γ2

in A := A(a,R1, R2). By Homological Cauchy, if g is analytic on A, then∫
γ1

g(z) dz =
∫
γ2

g(z) dz.

In particular, the integrals in (??) do not depend on r so that for each n ∈ Z,
an is a constant. Moreover, f2 : D(a,R2)→ C given by

f2(z) =
1

2πi

∫
C(a,r2)

f(w)
w − z

dw,

where |z − a| < r2, R1 < r2 < R2 is a well-defined function. By Lemma 11.4,
f2 is analytic in D(a, r2).

Similarly, if

G = {z ∈ C : |z − a| > R1} = A(a,R1,∞),

then f1 : G→ C defined by

f1(z) = − 1
2πi

∫
C(a,r1)

f(w)
w − z

dw,

where |z − a| > r1 and R1 < r1 < R2 is well-defined and analytic on G.

If z ∈ A = (A,R1, R2), choose r1, r2 > 0 such that R1 < r1 < |z − a| < r2 <
R2 and let γ1 = C(a, r1) and γ2 = C(a, r2). Then Γ = γ2 − γ1 ≈ 0 in A, and so
by Cauchy’s Homological Integral Formula, 11.5, that since n(Γ, z) = 1,

f(z) =
1

2πi

∫
Γ

f(w)
w − z

dw

=
1

2πi

∫
γ2

f(w)
w − z

dw − 1
2πi

∫
γ1

f(w)
w − z

dw

= f2(z)− f1(z).

The plan is to expand f1 and f2 as power series in (z − a) (with f1 having
negative powers).

Since f2 is analytic on D(a,R2), we have a Taylor series expansion by Tay-
lor’s Theorem with,

f2(z) =
∞∑
n=0

an(z − a)n

where

an =
f

(n)
2 (a)
n!

=
1

2πi

∫
C(a,r2)

f(w)
(w − a)n+1

dw

which matches the form of the statement.
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Now define g(ζ) for 0 < |ζ| < 1/R1 by

g(ζ) = f1

(
a+

1
ζ

)

so that ζ = 0 is an isolated singularity.

Claim. ζ = 0 is removeable.

In fact if r > R1 and we let p(z) = dist(z, C(a, r)) and M = max
w∈C(a,r)

|f(w)|,

then for |z − a| > r,

|f1(z)| 6 1
2π

M2πr
p(z)

=
Mr

p(z)
.

But lim
z→∞

p(z) =∞, so

lim
ζ→0

g(ζ) = lim
ζ→0

f1

(
a+

1
ζ

)
= 0.

Hence if we define g(0) = 0, then g is analytic in D(a, 1/R1).

Using Taylor’s Theorem, let

g(ζ) =
∞∑
n=1

Bnz
n

be its continuous power series expansion about 0. Since z = a+1/ζ, ζ = 1/(z−a)
and thus gives

f1(z) = g

(
1

z − a

)
=
∞∑
n=1

Bn

(
1

(z − a)n

)
.

This gives

f1(z) =
∞∑
n=1

a−n(z − a)−n
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where

a−n = Bn =
1

2πi

∫
C(0,1/r1)

g(ζ)
ζn+1

dζ

=
1

2πi

∫
C(0,1/r1)

f1(a+ 1
ζ )

ζn+1

=
1

2πi

∫
−C(0,r1)

f1(z)
(z − a)−(n+1)

· −dz
(z − a)2

=
1

2πi

∫
C(a,r1)

f1(z)
(z − a)−n+1

dz

=
1

2πi

∫
C(a,r1)

f(z) dz
(z − a)−n+1

− 1
2πi

∫
C(a,r1)

f(z)(z − a)n−1 dz

=
1

2πi

∫
C(a,r1)

f(z) dz
(z − a)−n+1

which gives us the formula for the remaining an in the statement.
Also, by the convergence properties of the series f1 and f2, the Laurent series

∞∑
n=−∞

an(z − a)n

converges uniformly and absolutely on proper subannuli A(a, r1, r2) with R1 <
r1 < r2 < R2.

For uniqueness, suppose
∞∑

n=−∞
bn(z − a)n

is another Laurent series expansion for f which converges uniformly on proper
subannuli of some A(a,R′1, R

′
2) where

R1 6 R′1 6 R′2 6 R2.

Then if R′1 < r < R′2,

1
2πi

∫
C(a,r)

∞∑
m=−∞

bm(z − a)m

(z − a)n+1
dz =

∞∑
m=−∞

bm
2πi

∫
C(a,r)

(z − a)m+n−1 dz

an =
1

2πi

∫
C(a,r)

f(z)
(z − a)n+1

dz =
bn
2πi

∫
C(a,r)

dz
z − a

= bn.

So, an = bn for all n and the series is unique.
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14 Using the Laurent Series Expansion to
Classify Isolated Singularities

14.1 Corollary. Let z = a be an isolated singularity of f and let

f(z) =
∞∑

n=−∞
an(z − a)n

be its Laurent series expansion in A(a, 0, R) for some R > 0. Then

(a) z = a is a removeable singularity if and only if an = 0 for n 6 −1.

(b) z = a is a pole of order m if and only if a−m 6= 0 and an = 0 for all
n < −m.

(c) z = a is an essential singularity if and only if an 6= 0 for infinitely many
negative n.

Proof. (a) If an = 0 for n 6 −1, let g(z) be defined in D(a,R) by

g(z) =
∞∑
n=0

an(z − a)n.

Then g is analytic on D(a,R) and agrees with f on A(a, 0, R). The converse is
equally easy (uses uniqueness of Laurent series expansion).

(b) Suppose an = 0 for n 6 m−1 and a−m 6= 0. (z−a)mf(z) has a Laurent
series expansion with no negative power of f(z). By (a), (z − a)mf(z) has a
removeable singularity at z = a. Then f has a removeable singularity z = a
and f has a pole of order m at a. The converse is obtained by reversing the
argument.

(c) Follows directly from (a) and (b).

We already know that
lim
z→a
|f(a)|

fails to exist in the neighborhood of an essential singularity. Can we say more?

14.2 Casorati-Weierstrass Theorem. If f has an essential singularity at
z = a, then for all δ > 0,

f(A(a, 0, δ)) = C;

that is, the image of any punctured disk about a is dense in all of C.

Proof. Let R > 0 be such that f is analytic on A(a, 0, R). We need to show
that for all c ∈ C and all ε > 0, for all δ > 0, there exists z ∈ A(a, 0, δ) for
which |f(z)− c| < ε. Assume this is false:

∃c ∈ C, ∃ε > 0, ∃δ > 0,
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such that for all z ∈ A(a, 0, δ),

|f(z)− c| > ε.

Thus

lim
z→a

|f(z)− c|
|z − a|

=∞,

and so f(z)− c/z − a has a pole of some order m at z = a. Hence

lim
z→a
|z − a|m |f(z)− c| = 0.

Hence since

|z − a|m|f(z)| 6 |z − a|m|f(z)− c|+ |z − a|m|c|,

we see that
lim
z→a
|(z − a)m||f(z)| = 0.

Hence by an earlier result (derivation of the singular part for poles), f has a pole
of order less than m or a removeable singularity at z = a. This is impossible as
we had assumed that f had an essential singularity at z = a.

One can actually prove a stronger result. The proof of which is readily
accessible in Conway.

14.3 Great Picard Theorem. Suppose an analytic function f has an essential
singularity at z = a. Then in every neighborhood of a, f assumes each complex
number with at most one possible exception infinitely many times.

15 Residues

15.1 Definition. Let f have an isolated singularity at z = a and let

f(z) =
∞∑

n=−∞
an(z − a)n

be its Laurent series expansion. The residue of f at a is the coefficient a−1.
Write Res (f ; a) = a−1.

15.2 The Residue Theorem. Let f be analytic on U ⊂ C open except for
isolated singularities at points a1, . . . , am. If Γ is a cycle in U which does not
pass through any of the points ak and Γ ≈ 0 in U , then

1
2πi

∫
Γ

f(z) dz =
m∑
k=1

n(Γ, ak) Res (f ; ak) .
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Proof. Let U ′ = U \{a1, . . . , am} and let mk = n(Γ, ak) for each k. Now choose
positive radii rk such that the closed disks D(ak, rk) are pairwise disjoint and
contained in U ′.

Now let Γ′ be the cycle in U ′ given by

Γ′ = Γ−
m∑
k=1

mkC(ak, rk).

Then Γ ≈ 0 in U ′ and f is analytic in U ′ as we have removed all singularities.
Hence by Cauchy, 11.6, ∫

Γ′
f(z) dz = 0;

i.e. ∫
Γ

f(z) dz =
m∑
k=1

mk

∫
C(ak,rk)

f(z) dz.

By our choice of the r′ks, for each k we can find Rk > rk such that f is analytic
on A(a, 0, Rk) (by the compactness of D(ak, rk)). For a fixed k, suppose the
Laurent series expansion on f on A(ak, 0, Rk) is given by

∞∑
n=−∞

an,k(z − ak)n.

This series converges uniformly and absolutely on proper subannuli by the the-
orem about Laurent series development and so by the theorem of line integrals
of uniformly convergent sequences of functions, 5.14,∫

C(ak,rk)

f(z) dz =
∞∑

n=−∞
an,k

∫
C(ak,rk)

(z − a)n dz.

Since ∫
C(ak,rk)

f(z) dz =

{
0, n 6= −1
2πi, n = −1,

and the result follows.

Calculating Residues

Suppose f has a pole of order m > 1 at z = a. Then we have

f(z) =
b−m

(z − a)m
+ · · ·+ b−1

z − a
+ b0 + b1(z − a) + · · ·

on some annulus centered about a, where b−m 6= 0. Also

g(z) := (z − a)mf(z)
= b−m + b−m+1(z − a) + · · ·+ b−1(z − a)m−1 + b0(z − a)m + · · ·
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is analytic on a disk about a. Hence by Taylor

b−1 =
1

(m+ 1)!
dm+1

dzm+1
[(z − a)mf(z)]|z=a.

15.3 Proposition. If f has a pole of order m at z = a, then

Res (f ; a) =
1

(m+ 1)!
dm+1

dzm+1
[(z − a)mf(z)]|z=a.

A Neat Trick : Suppose f(z) = g(z)/h(z) where g and h are analytic on a disk
about a. Suppose also that g′(a) 6= 0 and h has a simple zero at z = a. Let

g(z) = a0 + a1(z − a) + · · · a0 6= 0
h(z) = b1(z − a) + b2(z − a)2 + · · · b1 6= 0.

Then f has a simple pose at z = a and by 15.3,

Res (f ; a) = lim
z→a

(z − a)f(z) = lim
z→a

(z − a)
g(z)
h(z)

= lim
z→a

a0(z − a) + a1(z − a)2 + · · ·
b1(z − a) + b2(z − a)2 + · · ·

= lim
z→a

a0 + a1(z − a) + · · ·
b1 + b2(z − a) + · · ·

=
a0

b1

by continuity of power series. But this is just g(a)/h′(a) by Taylor. Hence we
have:

15.4 Proposition. Let f(z) = g(z)/h(z) where g and h are analytic on some
neighborhood of some point a. If g(a) 6= 0 and h has a simple zero at z = a,
then f has a simple pole at a and

Res (f ; a) =
g(a)
h′(a)

.

16 Using the Residue Theorem to do
Integrals - Contour Integration

1. Integrals of the form ∫ ∞
−∞

R(x) dx

where R(x) = P (x)/Q(x) is a rational function. Usually P,Q ∈ R[x]. Standard
estimates show that this improper integral will converge if and only if

1. Q(x) 6= 0 on R.
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2. degQ > degP + 2.

So we will assume from now on that these conditions are satisfied.
Let CR be the contour consisting of this line segment which runs from −R

to R on the real axis and traverses the upper half of the circle C(0, R) from R
to −R.

{iR

{R R

CR

By the Residue theorem, if R is sufficiently large,∫
CR

R(z) dz = 2πi
∑
k

Res
(
P

Q
; zk

)

where zk are the zeros of Q lying in the upper half plane H. [Note: It is very
easy to see (using homotopy) that n(CR, a) = 1 for all points lying inside the
semicircle.]

Thus if we let ΓR denote the curved part of CR, then∫ R

−R
R(x) dx+

∫
ΓR

R(z) dz = 2πi
∑
k

Res
(
P

Q
; zk

)
.

However, since degQ > 2 + degP , it follows from ML-formula that∣∣∣∣∫
ΓR

R(z) dz
∣∣∣∣ 6 πR · A

R2

for some constant A. Hence

lim
R→∞

∫
ΓR

R(z) dz = 0.

And letting R→∞,∫ ∞
−∞

R(x) dx = 2πi
∑
k

Res
(
P

Q
; zk

)
.
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Example. The function 1/(1 + z4) has simple poles at eiπ/4, e3iπ/4, e5iπ/4, and
e7iπ/4. Of these, only eiπ/4, e3iπ/4 ∈ H. Using our trick for simple poles,

Res
(

1
1 + z4

; eiπ/4
)

=
1

4z3
|z=eiπ/4 =

1
4e3iπ/4

=
1

4
√

2(−1 + i)

=
1

4 · 1√
2
· 2

(−1− i)

=
1

4
√

2
(1 + i).

Similarly,

Res
(

1
1 + z4

; e3iπ/4

)
=

1
4
√

2
(1− i).

Hence, since degQ = degP + 4 and has no singularities on R,∫ ∞
−∞

1
1 + z4

dz = 2πi
(

1
4
√

2
(1 + i) +

1
4
√

2
(1− i)

)
=

2πi(−2i)
4
√

2
=

π√
2
.

2. Integrals of the form∫ ∞
−∞

R(x) cosx dx or
∫ ∞
−∞

R(x) sinx dx

where R(x) = P (x)/Q(x) and P,Q are polynomials. Hence the improper inte-
grals converge if

1. Q 6= 0 on R.

2. degQ > degP + 1.

However, we cannot use the same contour as before and do

lim
R→∞

∫
CR

R(z) cos z dz

(or similarly with sinx). Instead we do

lim
R→∞

∫
CR

R(z)eiz dz

and then ∫ ∞
−∞

R(x) cosx dx and
∫ ∞
−∞

R(x) sinx dx
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are just the real and imaginary parts of this limit (provided P,Q ∈ R[x]) as long
as the integral along ΓR → 0 as R→∞.

To show that ∫
ΓR

R(z)eiz dz → 0 as R→∞,

let h > 0 and split ΓR into two subsets:

A = {z ∈ ΓR : Im z > h} and B = {z ∈ ΓR : Im z < h} .

{iR

{R R

BB

A

h

For now, we leave h arbitrary, but we will make a choice later.
Now |ez| = eRe z, and for |z| large,

degQ > degP + 1 implies |R(z)| 6 K

|z|

for some K > 0. Then∣∣∣∣∫
A

R(z)eiz dz
∣∣∣∣ 6

∫
A

∣∣R(z)eiz
∣∣ |dz|

=
∫
A

|R(z)|
∣∣eiz∣∣ |dz|

=
∫
A

|R(z)| e− Im z |dz|

6
∫
A

|R(z)| e−h |dz|

6
∫
A

K

|z|
e−h |dz|

6 πR · K
|z|
e−h

= c1e
−h
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for some constant c1. Similarly,∣∣∣∣∫
B

R(z)eiz dz
∣∣∣∣ 6

∫
B

|R(z)| e− Im z |dz|

6
∫
B

|R(z)| · 1 · |dz|

6
∫
B

K

|z|
|dz|

=
K

R
· `(B)

6
K

R
· 2 · 2h

(since each piece of B is nearly a line segment of length h)

=
4Kh
R

=
c2h

R

for some constant c2.
So ∣∣∣∣∫

ΓR

R(z)eiz dz
∣∣∣∣ 6 c1e

−h + c2
h

R
.

Now choose h =
√
R so that∣∣∣∣∫

ΓR

R(z)eiz dz
∣∣∣∣ 6 c1e

−
√
R +

c2√
R
.

And so as R→∞, ∣∣∣∣∫
ΓR

R(z)eiz dz
∣∣∣∣→ 0.

Hence ∫ ∞
−∞

R(x)eix dx = 2πi
∑
k

Res
(
R(z)eiz; zk

)
where zk are the residues of R(z)eiz in H. Now take real imaginary parts to get
what you want: ∫ ∞

−∞
R(x) cosx dx or

∫ ∞
−∞

R(x) sinx dx.

Example. Consider ∫ ∞
−∞

sinx
x

dx.

We cannot simply say ∫ ∞
−∞

sinx
x

dx = Im
∫ ∞
−∞

eix

x
dx
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because x = 0 at 0 ∈ R and eiz/z has a pole at 0. Very clever trick:∫ ∞
−∞

sinx
x

dx = Im
∫ ∞
−∞

eix − 1
x

dx.

Now ∫
CR

eiz − 1
z

dz =
∫ R

−R

eix − 1
x

dx+
∫

ΓR

eiz − 1
z

dz = 0

by Cauchy as (eiz − 1)/z has no poles anywhere, it has removeable singularities
at z = 0. Thus ∫ R

−R

eix − 1
x

dx =
∫

ΓR

1− eiz

z
dz

=
∫

ΓR

dz
z
−
∫

ΓR

eiz

z
dz

→ πi as R→∞.

Hence ∫ ∞
−∞

eiz − 1
x

dx = πi,

and so ∫ ∞
−∞

sinx
x

dx = Imπi = π.

[Note that we didn’t need residues at all to do this integral!]

Summing Series

Suppose we want to sum a series of the form
∞∑

n=−∞
f(n).

We need a function g such that

Res (g;n) = f(n) for n ∈ Z.

In view of our trick for calculating residues at simple poles, such a function is
given by

ϕ(z) =
π cosπz
sinπz

.

Since if n is not a pole of f , setting g(z) = ϕ(z)f(z),

Res (f(z)π cotπz;n) = f(n)
π cosπz
π cosπz

= f(n).

Now apply the Residue theorem to∫
CN

f(z)π cotπz dz
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where CN is a contour that contains (only) the integers {−N, . . . , 0, . . . , N}.
Let

CN = ∂

([
−N − 1

2
, N +

1
2

]2
)
.

N+1/2

CN

N+1/2

¡N¡1/2

¡N¡1/2

This contour avoids the poles of cotπz which are precisely Z. In fact,
|cotπz| < 2 on CN . Then

|cotπz| =
∣∣∣cosπz
sinπz

∣∣∣ =

∣∣∣∣∣ e
πz+e−iπz

2
eπz−e−iπz

2i

∣∣∣∣∣
=

∣∣∣∣ i(e2iπz + 1)
e2πiz − 1

∣∣∣∣ =
∣∣∣∣e2πiz + 1
e2πiz − 1

∣∣∣∣
=

∣∣∣∣e2πi(N+1/2+iy) + 1
e2πi(N+1/2+iy) − 1

∣∣∣∣
=

∣∣∣∣e2πiN+πi+2πy + 1
e2πiN+πi+2πy − 1

∣∣∣∣
=

∣∣∣∣eπi−2πy + 1
eπi−2πy − 1

∣∣∣∣ as e2πiN = 1

=
∣∣∣∣−e2πy + 1
−e2πy − 1

∣∣∣∣ as eπi = −1

< 1.

Similarly, we ahve that |cotπz| < 1 if Re z = −N −1/2 and −N −1/2 6 Im z 6
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N + 1/2. If Im z = y = N + 1/2 and −N − 1/2 6 x 6 N + 1/2, then

|cotπz| =
∣∣∣∣e2πi + 1
e2πi − 1

∣∣∣∣
=

∣∣∣∣e2πi(x+i(N+1/2)) + 1
e2πi(x+i(N+1/2)) − 1

∣∣∣∣
=

∣∣∣∣ε2πix−π(2N+1) + 1
e2πix−π(2N+1) − 1

∣∣∣∣
6

∣∣∣∣1 + e−π(2N+1)

e−π(2N+1) − 1

∣∣∣∣
=

1 + e−π(2N+1)

1− e−π(2N+1)

6
1 + e−π

1− e−π
< 2.

Similarly, |cotπz| < 2 for Im z = y = −N−1/2 and −N−1/2 6 Re z 6 N+1/2.
Hence |cotπz| < 2 on CN and so∣∣∣∣∫

CN

f(z)π cotπz dz
∣∣∣∣ 6 (8N + 4) · 2 · π · max

z∈CN
|f(z)|

6 A max
z∈CN

|zf(z)| (9)

for some constant A since |z| is comparable to N on CN . By the Residue
theorem,

∫
CN

f(z)π cotπz dz = 2πi

 N∑
n=−N
n 6=zk

f(n) +
∑
k

Res (f(z)π cotπz; zk)


where zk are the poles of f inside CN . Assume that we have |f(z)| 6 B for |z|
large for some constant B. This guarantees that

∑
f(n) converges except for

the possibility of the poles in Z, and also that

max
z∈CN

|zf(z)| → 0 as N →∞.

So then by (??), ∣∣∣∣∫
CN

f(z)π cotπz dz
∣∣∣∣→ 0

as N →∞. So letting N →∞, we have

N∑
n=−N
n 6=zk

f(n) = −
∑
k

Res (f(z)π cotπz; zk)

where zk are the poles of f .
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Example. Consider
∞∑
n=1

1
n2

. Then

∞∑
n=1

1
n2

=
1
2

∞∑
n=−∞
n 6=0

1
n2
.

So let f(z) = 1/z2 and

∞∑
n=1

1
n2

= −1
2

Res
(
π cotπz
z2

; 0
)
.

cot z has Laurent series expansion

cot z =
1
z
− z

3
− 1

45
z2 + · · ·

on A(0, 0, π). So
π cotπz
z2

=
1
z3
− π2

3
1
z
− π4z

45
+ · · ·

on A(0, 0, π). So

Res
(
π cotπz
z2

; 0
)

=
−π3

3
.

Hence
∞∑
n=1

1
n2

=
π2

6
.

For free, we also get that
∞∑
n=1

1
n4

=
π4

90
.

3. Integrals of the form ∫ 2π

0

R(cos θ, sin θ) dθ

where R is a rational function. Natural substitution with z = eiθ, dz = ieiθ,
and

dθ = −idz
z
.

We get

−i
∫

C(0,1)

R

[
1
2

(
z +

1
z

)
,

1
2i

(
z − 1

z

)]
dz
z

as

cos θ =
eiθ + e−iθ

2
=
z + 1

z

2
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and

sin θ =
eiθ − e−iθ

2i
=

1
2i

(
z − 1

z

)
.

Now all we need to do is find residues of this new rational function at each of
its poles inside D.

Example. Consider ∫ π

0

dθ
a+ cos θ

for a > 1,

and ∫ π

0

dθ
a+ cos θ

=
1
2

∫ 2π

0

dθ
a+ cos θ

= −i
∫

C(0,1)

dz
2z(a+ 1

2 (z + 1
z ))

= −i
∫

C(0,1)

dz
z2 + 2az + 1

.

Then z2 +2az+1 = (z−α)(z−β) for α = −a+
√
a2 − 1 and β = −a−

√
a2 − 1

where
√

is the ordinary square root function on R. Clearly αβ = 1 and
|α| < |β|. Hence |α| < 1 and |β| > 1. Residue at z = a is

lim
z→α

(z − α)
z2 + 2az + 1

= lim
z→α

1
z − β

=
1

α− β
=

1
2
√
a2 − 1

.

Hence by the Residue theorem∫ π

0

dθ
a+ cos θ

= 2πi · −i · 1
2
√
a2 − 1

=
π√
a2 − 1

17 The Argument Principle
and Rouché’s Theorem

Suppose f is analytic in U ⊂ C open, a ∈ U is such that f has a zero of order m
at a. Then f(z) = (z − a)mg(z) where g is analytic on U and g(a) 6= 0. Hence

f ′(z)
f(z)

=
m

z − a
+
g′(z)
g(z)

for z ∈ U , z 6= a, and g(z) 6= 0. Now suppose f is analytic on U except at z = a,
where is has a pole of order m. Then

f(z) =
h(z)

(z − a)m
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where h is analytic on U with h(a) 6= 0. Then

f ′(z)
f(z)

=
−m
z − a

+
h′(z)
h(z)

for z ∈ U , z 6= a, h(z) 6= 0.

17.1 The Argument Principle. Let f be meromorphic on a domain Ω ⊂ C
with poles p1, . . . , pm and zeros z1, . . . , zn counted according to multiplicity. If
Γ ≈ 0 in U and doesn’t pass through any zeros or poles of f , then

1
2πi

∫
Γ

f ′(z)
f(z)

dz =
n∑
i=1

n(Γ, zi)−
m∑
j=1

n(Γ, pj).

Proof. By repeated applications of the earlier arguments,

f ′(z)
f(z)

=
n∑
i=1

1
z − zi

−
m∑
j=1

1
z − pj

+
g′(z)
g(z)

(10)

where g is analytic on Ω and has no zeros or poles. Now integrate both sides of
(??) over Γ and use the fact that∫

Γ

g′(z)
g(z)

dz = 0

by Cauchy’s theorem as g′/g is analytic on U .

Remark : Can think of f ′/f as the derivative of log f if such a branch exists.
However, if log f does not exist, then∫

Γ

f ′(z)
f(z)

dz = 0

because it is a primitive of f ′/f .
A straightforward generalization.

17.2 Corollary. Let f , U , Γ be as in 17.1. Let g be another function analytic
on U . Then

1
2πi

∫
Γ

g(z)
f ′(z)
f(z)

dz =
n∑
i=1

g(zi)n(Γ, zi)−
m∑
j=1

g(pj)n(Γ, pj)

Proof.
g(z)f ′(z)
f(z)

=
n∑
i=1

g(z)
z − zi

−
m∑
j=1

g(z)
z − pj

+ g(z)
h′(z)
h(z)

.

Now we integrate both sides over Γ

1
2πi

∫
Γ

g(z)
z − zi

dz = n(Γ, zi)g(zi)

77



Spring 2007 MTH 562 - Complex Analysis

by Cauchy’s integral formula. Also∫
Γ

g(z)
h′(z)
h(z)

dz = 0

by Cauchy’s Theorem again as g(z)h′(z)/h(z) is analytic on U .

Suppose R > 0 and f is one-to-one and analytic on a open set containing
D(a,R). Let Ω = f(D(a,R)). If |z0−a| < R and ζ0 = f(z0) ∈ Ω, then f(z0)−ζ0
has one and only one zero in D(a,R). If we then choose g(z) = z on D(a,R),
then

1
2πi

∫
C(a,R)

zf ′(z)
f(z)− ζ0

dz = z0n(C(a,R), z0) = z0.

We have shown:

17.3 Theorem. Let f be analytic and one-to-one on an open set containing
the closed disk D(a,R). If Ω is the domain f(D(a,R)), then f−1(ω) is defined
for each ω ∈ Ω by the formula

f−1(ω) =
1

2πi

∫
C(a,R)

zf ′(z)
f(z)− ω

dz.

Note that we can relax the hypotheses slightly. Instead we can require just
that f is analytic and one-to-one on D(a,R) [really what we are saying is that
f and f ′ extend continuously to D(a,R)].

17.4 Rouché’s Theorem. Suppose f and g are mermorphic on an open neigh-
borhood of D(a,R) with no zeros or poles on C(a,R). If Zf , Zg and Pf , Pg de-
note the number of zeros and poles, respectively, of f and g, respectively, and
if

|f + g| < |f |+ |g| on C(a,R),

then
Zf − Pf = Zg − Pg.

Proof. From the hypothesis, ∣∣∣∣fg + 1
∣∣∣∣ < ∣∣∣∣fg

∣∣∣∣+ 1 (11)

on C(a,R). If λ(z) = f(z)/g(z) and λ > 0, then (??) would imply that

λ+ 1 < λ+ 1

which is impossible. Hence f/g maps C(a,R) into Ω := C\ [0,∞) [then f/g 6= 0
on C(a,R)]. If ` is a branch of log z on Ω, then `(f/g) is well-defined on an
open neighborhood of C(a,R) and is a primitive for

(f/g)′

(f/g)
.
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f/g

R

a

C(a,R)

[0,1)

Ω

Figure 1: Construction of required neighborhood on C(a,R) on which f/g is
analytic and avoids [0,∞) by a simple compactness argument.

Thus

0 =
1

2πi

∫
C(a,R)

(f/g)′

(f/g)
dz

=
1

2πi

∫
C(a,R)

(
f ′(z)
f(z)

− g′(z)
g(z)

)
dz

= (Zf − Pf )− (Zg − Pg).

Hence Zf − Pf = Zg − Pg.

Riemann Mapping Theorem. Let Ω be a simply-connected domain and let
z0 ∈ Ω. Then there exists a unique biholomorphic map of Ω onto D satisfying

f(z0) = 0 and f ′(z0) > 0.

f

D(0,1)

Ω
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