
Chapter 1

Getting Started with Matlab

The computational examples and exercises in this book have been computed using Matlab. Mat-
lab is an interactive system designed specifically for scientific computation, and is used widely in
universities and industry. At its core, Matlab contains an efficient, high level programming lan-
guage and powerful graphical visualization tools which can be easily accessed through a development
environment (i.e., a graphical user interface containing various workspaces and menu items). Mat-
lab has many advantages over computer languages such as C, C++, Fortran 77 and 90 and Java.
For example, when using the Matlab programming language, essentially no declaration statements
are needed for variables. In addition, Matlab has a built-in extensive mathematical function library
that contains such items as simple trigonometric functions, as well as much more sophisticated tools
that can be used, for example, to compute difficult integrals. Many of these sophisticated functions
will be described as we progress through the book. Matlab also provides additional toolboxes that
are designed to solve specific classes of problems, such as for image processing. It should be noted
that there is no free lunch; because Matlab is an “interpretive” language, codes written in Fortran
77 and C are usually more efficient for very large problems. Therefore, large production codes are
usually written in one of these languages, in which case supplementary packages, such as the NAG
library are recommended for scientific computing. However, because it is excellent for developing
algorithms and problem solving environments, and can be quite efficient when used properly, all
computing in this book will be done using Matlab.

In this chapter we provide a very brief introduction to Matlab. Though our discussion assumes
the use of Matlab 7.0 or higher, in most cases version 6.0 or 6.5 will be sufficient. There are many
good sources for more complete treatments on using Matlab, both on-line, and as books. One
excellent book is MATLAB Guide, 2nd ed., published by SIAM Press, 2005. Another source that
we highly recommend is Matlab’s built-in help, which can be accessed once Matlab is started.
We explain how to do this in section 1.1. The rest of the chapter then provides several examples
that introduce various basic capabilities of Matlab, such as plotting and writing functions.

1.1 Starting, Quitting, and Getting Help

.
The process by which you start Matlab depends on your computer system; you may need to

request specific instructions from your instructor or system administrator. Generally, the process is
as follows:

• On a PC with a Windows operating system, double-click the ”MATLAB 7.0” shortcut icon on
your Windows desktop. If there is no ”MATLAB 7.0” icon on the desktop, you may bring up
DOS (on Windows XP by going to the Command Prompt in Accessories) and entering matlab
at the operating system prompt. Alternatively, you may search for the ”MATLAB 7.0” icon in
a subdirectory and click on it. Where it is to be found depends on how Matlab was installed;
in the simplest case with a default installation it will be found in the C:\MATLAB7 directory.

1

2 CHAPTER 1. GETTING STARTED WITH MATLAB

• On a Macintosh running OS X 10.1 or higher, there may be a ”MATLAB” icon on the dock.
If so, then clicking this icon should start Matlab. If the ”MATLAB” icon is not on the dock,
then you need to find where it is located. Usually it is found in /Applications/$MATLAB/,
or /Applications/$MATLAB/bin/, where $MATLAB is the name of the folder containing the
Matlab installation. Once you find the ”MATLAB” icon, double clicking it should start
Matlab.

• On Unix or Linux platforms, you typically enter matlab at the operating system prompt.

If you are successful in getting Matlab to start, then the development tool Graphical User Interface
(GUI) should appear on the screen. Although there are slight differences (such as key stroke short
cuts) between platforms, in general the GUI should have the same look and feel independent of the
platform.

The command window, where you will do much of your work, contains a prompt that looks like:

>>

We can enter data and execute commands at this prompt. One very useful command is doc, which
will display the ”help browser”. For example, entering the command

>> doc matlab

will open the help browser to a good location for first time Matlab users to begin reading. Alter-
natively, you can pull down the Help menu, and let go on MATLAB Help. We recommend that you
read some of the information on these help pages now, but we also recommend returning periodically
to read more as you become more experienced with using Matlab.

Throughout this book we provide many examples using Matlab. In all cases, we encourage
readers to ”play along” with the provided examples. While doing so, it may be helpful at times to
use the doc command to find detailed information about various Matlab commands and functions.
For example,

>> doc plot

will open the help browser, and turn to a page containing detailed information on using the built-in
plot function.

To exit Matlab, you can pull down the File menu, and let go on Exit MATLAB. Alternatively,
in the command window, you can use the exit command:

>> exit

1.2 Basics of Matlab

Matlab derives its name from Matrix labratory because the primary object involved in any
Matlab computation is a matrix. A matrix is a 2-dimensional array of numbers, with a certain
number of rows and columns. For example, the array A given by

A =

0 −6 8 1

−2 5 5 −3
7 8 0 3

is a matrix with 3 rows and 4 columns, and so is typically referred to as a 3× 4 matrix.
A matrix with only one row (i.e., a 1 × n matrix) is often called a row vector, while a matrix

with only one column (i.e., an n× 1 matrix) is called a column vector. For example if

x =

−2
8
4
0
5

and y =

[
−3 6 3 −4

]
,

1.2. BASICS OF MATLAB 3

then we can say that x is a 5× 1 matrix, or that it is a column vector of length 5. Similarly, we can
say that y is a 1× 4 matrix, or that it is a row vector of length 4. If the shape is obvious from the
context, then we may omit the words row or column, and just refer to the object as a vector.

Matlab is very useful when solving problems whose computations involve matrices and vectors.
We explore some of these basic linear algebra manipulations, as well as some basic features of
Matlab, through a series of examples.

Initializing Vectors. We can easily create row and/or column vectors in Matlab. For example,
the following two statements create the same row vector:

>> x = [1 2 3 4]
>> x = [1, 2, 3, 4]

Similarly, the following two statements create the same column vector:

>> x = [1
2
3
4]
>> x = [1; 2; 3; 4]

Actually, rather than thinking of these as row or column vectors, we should think of them as either
1×4 or 4×1 matrices. Observe from this example that elements in a row can be separated by using
either a blank space or by using a comma. Similarly, to indicate a row has ended, we can use either
a carriage return, or a semicolon.

Initializing Matrices. In general, we can create matrices with more than one row and column.
The following two statements generate the same matrix:

>> A = [1 2 3 4
5 6 7 8
9 10 11 12]
>> A = [1 2 3 4; 5 6 7 8; 9 10 11 12]

Matrix Arithmetic. Matrices can be combined (provided certain requirements on their dimensions
are satisfied) using the operations +, -, * to form new matrices. Addition and subtraction of
matrices is intuitive; to add or subtract two matrices, we simply add or subtract corresponding
entries. The only requirement is that the two matrices have the same dimension. For example, if

A =

−3 −1

3 2
3 0

 , B =

7 3

−2 2
3 −1

 , and C =
[
−3 −2 −2

5 8 −2

]

then the Matlab commands

>> D = A + B
>> E = B - A

produce the matrices

D =

4 2
1 4
6 −1

 and E =

10 4
−5 0

0 −1

 ,

but the command

4 CHAPTER 1. GETTING STARTED WITH MATLAB

>> F = C + A

produces an error because the matrices C and A do not have the same dimensions.
Matrix multiplication, which is less intuitive than addition and subtraction, can be defined using

linear combinations of vectors. We begin with something that is intuitive, namely the product of a
scalar (i.e., a number) and a vector. In general, if c is a scalar and a is a vector with entries ai, then
ca is a vector with entries cai. For example,

if c = 9 and a =

3
4

−2

 then ca = 9

3
4

−2

 =

27
36

−18

 .

Once scalar multiplication is defined, it is straight forward to form linear combinations of vectors.
For example, if

c1 = 9, c2 = 3, c3 = 1, and a1 =

3
4

−2

 , a2 =

3
8
0

 , a3 =

4
0
4

 ,

then

c1a1 + c2a2 + c3a3 = 9

3
4

−2

 + 3

3
8
0

 + 1

4
0
4

 =

40
60

−14

 .

Now suppose we define a matrix A and column vector x as

A =

3 3 4
4 8 0

−2 0 4

 , x =

9
3
1

 ,

then the matrix-vector product Ax is simply a compact way to represent a linear combination of the
columns of the matrix A, where the scalars in the linear combination are the entries in the vector
x. That is,

Ax = 9

3
4

−2

 + 3

3
8
0

 + 1

4
0
4

 =

40
60

−14

 .

Thus, we see that in general, to multiply a matrix A times a column vector x, the number of columns
in A must be the same as the number of entries in x.

Finally we come to matrix-matrix multiplication. If A is an m × n matrix, and B is an n × p
matrix (i.e., the number of columns in A is the same as the number of rows in B) , then the product
C = AB is an m × p matrix whose columns are formed by multiplying A times corresponding
columns in B. For example, if

A =

3 3 4
4 8 0

−2 0 4

 , and B =

9 −1 −2 0
3 0 1 −3
1 2 −1 5

then

C = AB =

40 5 −7 11
60 −4 0 −24

−14 10 0 20

 .

The ∗ operator can be used in Matlab to multiply scalars, vectors, and matrices, provided the
dimension requirements are satisfied. For example, if we define

>> A = [1 2; 3 4]
>> B = [5 6; 7 8]
>> c = [1; -1]
>> r = [2 0]

1.2. BASICS OF MATLAB 5

and we enter the commands

>> C = A*B
>> y = A*c
>> z = A*r
>> w = r*A

we find that
C =

[
18 22
43 50

]
, y =

[
−1
−1

]
, w =

[
2 4

]
,

but an error occurs when trying to calculate z = A*r because it is not a legal linear algebra operation;
the number of columns in A is not the same as the number of rows in r (that is, the inner matrix
dimensions do not agree).

Suppressing Output. Note that each time we execute a statement in the Matlab command
window, the result is redisplayed in the same window. This action can be suppressed by placing a
semicolon at the end of the statement. For example, if we enter

>> x = 10;
>> y = 3;
>> z = x*y

then only the result of the last statement, z = 30, is displayed in the command window.

Special Characters. In the above examples we observe that the semicolon can be used for two
different purposes. When used inside brackets [] it indicates the end of a row, but when used at
the end of a statement, it suppresses display of the result in the command window.

The comma can also be used for two different purposes. When used inside brackets [] it
separates entries in a row, but it can also be used to separate statements in a single line of code.
For example, the previous example could have been written in one line as follows:

>> x = 10;, y = 3;, z = x*y

The semicolon, comma and brackets are examples of certain special characters in Matlab that are
defined for specific purposes. For a full list of special characters, and their usage, see

>> doc ’special characters’

Transposing Matrices. The transpose operation is used in linear algebra to transform an m × n
matrix into an n×m matrix by transforming rows to columns, and columns to rows. For example,
if we have the matrices and vectors:

A =
[

1 2
3 4

]
, c =

[
1

−1

]
, r =

[
2 0

]
,

then
AT =

[
1 3
2 4

]
, cT =

[
1 −1

]
, rT =

[
2
0

]
.

In Matlab the single quote ’ is used to perform the transpose operation. For example, suppose
we consider the following matrices:

>> A = [1 2; 3 4];
>> B = [5 6; 7 8];
>> c = [1; -1];
>> r = [2 0];

6 CHAPTER 1. GETTING STARTED WITH MATLAB

When we enter the commands

>> D = A’
>> s = c’*c
>> H = c*c’

we obtain
D =

[
1 3
2 4

]
, s = 2 , H =

[
1 −1

−1 1

]
.

Other Array Operations. Matlab supports certain array operations (not normally found stan-
dard linear algebra books) that can be very useful in scientific computing applications. Some of
these operations are:

.* ./ .̂

The dot indicates that the operation is to act on the matrices in an element by element (componen-
twise) way. For example,

1
2
3
4

 .∗

5
6
7
8

 =

5
12
21
32

1
2
3
4

 .̂ 3 =

1
8
27
64

The rules for the validity of these operations are different than for linear algebra, as the first example
shows. A full list of arithmetic operations, and the rules for their use in Matlab, can be found by
referring to

doc ’arithmetic operators’

Remark on the Problems. The problems in this chapter are designed to help you become more
familiar with Matlab and some of its capabilities. Some problems may include issues not explicitly
discussed in the text, but a little exploration in Matlab (i.e., executing the statements and reading
appropriate doc pages) should provide the necessary information to solve all of the problems.

Problem 1.2.1. If z = [0 -1 2 4 -2 1 5 3], and J = [5 2 1 6 3 8 4 7], determine what is
produced by the following sets of Matlab statements:

>> x = z’, A = x*x’, s = x’*x, w = x.*J,
>> length(x), length(z)
>> size(A), size(x), size(z), size(s)

Note that to save space, we put several statements on each line. You may prefer to execute each of
the statements (separated by commas) one at a time. You should use the doc command followed by
length or size or search the Matlab Help index.

1.3. MATLAB AS A SCIENTIFIC COMPUTING ENVIRONMENT 7

1.3 Matlab as a Scientific Computing Environment

So far we have only used Matlab as a sophisticated calculator. It is much more powerful than
that, containing many programming constructs, such as flow control (if, for, while, etc.), as well as
capabilities for writing functions, and creating structures, classes, objects, etc. Since this is not a
Matlab programming book, we do not discuss all of these capabilities in great detail. In fact, many
Matlab programming issues will be discussed, when they are needed, as we progress through the
book. However, it will be helpful to introduce a few concepts before beginning our study of scientific
computing.

1.3.1 Initializing Vectors with Many Entries

Suppose we want to create a vector, x, containing the values 1, 2, . . . , 100. We could do this using a
for loop:

n = 100;
for i = 1:n
x(i) = i;

end

In this example, the notation 1:n is used to create integers 1, 2, 3, . . . , n. When Matlab begins to
execute this code, it does not know that x will be a vector of length 100, but it has a very smart
memory manager that creates space as needed. Forcing the memory manager to work a lot can
make codes very inefficient. Fortunately, if we know how many entries x will have, then we can help
out the memory manager by first allocating space using the zeros function. For example:

n = 100;
x = zeros(1,n);
for i = 1:n
x(i) = i;

end

In general, the function zeros(m,n) creates an m× n array containing all zeros. Thus, in our case,
zeros(1,n) creates a 1× n array, that is a row vector with n entries.

Actually, there is a much easier, and better way, to initialize a simple vector like this using one
of Matlab’s vector operations, as follows:

n = 100;
x = 1:n;

The colon operator is very useful! Let’s see another example where it can be used to create a vector.
Suppose we want to create a vector, x, containing n entries equally spaced between a = 0 and b = 1.

The distance between each of the equally spaced points is given by h =
b− a

n− 1
=

1
n− 1

, and the
vector, x, should therefore contain the entries:

0, 0 + h, 0 + 2 ∗ h, · · · , (i− 1) ∗ h, · · · , 1

We can create a vector with these entries, using the colon operator, as follows:

n = 101;
h = 1 / (n-1);
x = 0:h:1;

We often want to create vectors like this in mathematical computations. Therefore, Matlab provides
a function for it, called linspace. In general, linspace(a, b, n) generates a vector of n equally
spaced points between a and b. So, in our example with a = 0 and b = 1, we can use:

8 CHAPTER 1. GETTING STARTED WITH MATLAB

n = 101;
x = linspace(0, 1, n);

Note that, for the interval [0, 1], choosing n = 101 produces a nice rational spacing between points,
namely h = 0.01. That is,

x =
[

0 0.01 0.02 · · · 0.98 0.99 1
]
.

There is actually a lesson to be learned from the examples in this subsection. Specifically, if
we need to perform what might be considered a fairly standard mathematical calculation, then we
might want to use the search facility in the help browser to determine if Matlab already provides
an optimized function for it.

Problem 1.3.1. Determine what is produced by the Matlab statements:

>> i = 1:10
>> j = 1:2:11
>> x = 5:-2:-3

For more information on the use of ":", see doc colon.

Problem 1.3.2. If z = [0 -1 2 4 -2 1 5 3], and J = [5 2 1 6 3 8 4 7], determine what is
produced by the following Matlab statements:

>> z(2:5)
>> z(J)

Problem 1.3.3. Determine what is produced by the following Matlab statements:

>> A = zeros(2,5)
>> B = ones(3)
>> R = rand(3,2)
>> N = randn(3,2)

What is the difference between the functions rand and randn? What happens if you repeat the
statement R = rand(3,2) several times? Now repeat the following pair of commands several times:

>> rand(’state’, 0)
>> R = rand(3,2)

What do you observe? Note: The ”up arrow” key can be used to recall previous statements entered
in the command window.

Problem 1.3.4. Determine what is produced by the following Matlab statements:

>> x = linspace(1, 1000, 4)
>> y = logspace(0, 3, 4)

In each case, what is the spacing between points?

Problem 1.3.5. Given integers a and b, and a rational number h (e.g., 1
10), determine a formula

for n so that

linspace(a, b, n) = [a, a+h, a+2h, ..., b]

1.3. MATLAB AS A SCIENTIFIC COMPUTING ENVIRONMENT 9

1.3.2 Creating Plots

Suppose we want to plot the function y = x2 −
√

x + 3 + cos 5x on the interval −3 ≤ x ≤ 5. The
basic idea is to first plot several points, (xi, yi), and then connect them together using lines. We can
do this in Matlab by creating a vector of x-coordinates, a vector of y-coordinates, and then use
the Matlab command plot(x,y) to draw the graph in a figure window. For example, we might
consider using the following Matlab code:

n = 81;
x = linspace(-3, 5, n);
y = zeros(1, n);
for i = 1:n
y(i) = x(i)^2 - sqrt(x(i) + 3) + cos(5*x(i));

end
plot(x, y)

Note that in this code we have used the linspace command to efficiently create the vector x, and
we helped the memory manager by using the zeros command to allocate space for the vector y.
The for loop is used to generate the entries of y one at at time, and the plot command is used to
draw the graph.

Matlab allows certain operations on arrays that can be used to shorten this code. For example,
if x is a vector containing entries xi, then:

• x + 3 is a vector containing entries xi + 3, and sqrt(x + 3) is a vector containing entries√
xi + 3.

• Similarly, 5*x is a vector containing entries 5xi, and cos(5*x) is a vector containing entries
cos(5xi).

• Finally, from the previous section we use the dot operation x.^2 to compute a vector containing
entries x2

i .

Using these properties, the for loop in the previous code can be replaced with a single vector
operation:

n = 81;
x = linspace(-3, 5, n);
y = x.^2 - sqrt(x + 3) + cos(5*x);
plot(x,y)

Note, the zeros command is no longer needed as the vector y automatically is given the same length
as the vector x. If you can use array operations instead of loops, then you should. In general, array
operations are more efficient than using loops.

Matlab has many more, very sophisticated, plotting capabilities. Three very useful commands
are axis, subplot, and hold:

• axis is mainly used to scale the x and y-axes on the current plot as follows:

axis([xmin xmax ymin ymax])

• subplot is mainly used to put several plots in a single figure window. Specifically,

subplot(m, n, p)

breaks the figure window into an “m× n matrix” of small axes, and selects the pth set of axes
for the current plot. The axes are counted along the top row of the figure window, then the
second row, etc.

• hold allows you to overlay several plots on the same set of axis.

10 CHAPTER 1. GETTING STARTED WITH MATLAB

The following example illustrates how to use these commands.

Example 1.3.1. Chebyshev polynomials are used in a variety of engineering applications. The jth

Chebyshev polynomial Tj(x) is defined by

Tj(x) = cos(j arccos(x)) , −1 ≤ x ≤ 1 .

(a) First we plot, in the same figure, the Chebyshev polynomials for j = 1, 3, 5, 7. This can be
done by executing the following statements in the command window:

x = linspace(-1, 1, 201);
T1 = cos(acos(x));
T3 = cos(3*acos(x));
T5 = cos(5*acos(x));
T7 = cos(7*acos(x));
subplot(2,2,1), plot(x, T1)
subplot(2,2,2), plot(x, T3)
subplot(2,2,3), plot(x, T5)
subplot(2,2,4), plot(x, T7)

The resulting plot is shown in Fig. 1.1.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 1.1: Resulting figure when using subplot in Example 1.3.1(a).

(b) When you use the plot command, Matlab chooses default values for the axes chosen usually
appropriately. These can be changed using the axis command, for example:

subplot(2,2,1), axis([-1, 1, -2, 2])
subplot(2,2,2), axis([-2, 2, -1, 1])
subplot(2,2,3), axis([-2, 1, -1, 2])
subplot(2,2,4), axis([-2, 2, -2, 2])

The resulting plot is shown in Fig. 1.2.

(c) Finally, we can plot all of the polynomials on the same set of axes. This can be achieved as
follows (here we use different colors, blue, red green and cyan, for each):

1.3. MATLAB AS A SCIENTIFIC COMPUTING ENVIRONMENT 11

−1 −0.5 0 0.5 1
−2

−1

0

1

2

−2 −1 0 1 2
−1

−0.5

0

0.5

1

−2 −1 0 1
−1

−0.5

0

0.5

1

1.5

2

−2 −1 0 1 2
−2

−1

0

1

2

Figure 1.2: Resulting figure when using axis in Example 1.3.1(b).

subplot(1,1,1)
plot(x, T1, ’b’)
hold on
plot(x, T3, ’r’)
plot(x, T5, ’g’)
plot(x, T7, ’c’)

The resulting plot is shown in Fig. 1.3. (You will see the result in color on your screen.)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1.3: Resulting figure when using hold in Example 1.3.1(c).

Remarks on Matlab Figures. We have explained that hold can be used to overlay plots on the
same axis, and subplot can be used to generate several different plots in the same figure. In some
cases, it is preferable to generate several different plots in different figures. This can be done using

12 CHAPTER 1. GETTING STARTED WITH MATLAB

the figure command. It may also be necessary to clear a figure, so that a new set of plots can be
drawn in it. The clf command can be used for this purpose.

Problem 1.3.6. Write Matlab code that will evaluate and plot the following functions:

(a) y = 5 cos(3πx) for 101 equally spaced points on the interval 0 ≤ x ≤ 1.

(b) y =
1

1 + x2
for 101 equally spaced points on the interval −5 ≤ x ≤ 5.

(c) y =
sin 7x− sin 5x

cos 7x + cos 5x
using 200 equally spaced points on the interval −1.57 ≤ x ≤ 1.57. Use the

axis command to scale the plot so that −2 ≤ x ≤ 2 and −10 ≤ y ≤ 10.

In each case, your code should not contain any loops.

Problem 1.3.7. A ”fixed point” of a function g(x) is a point x that satisfies x = g(x). An educated
guess of a fixed point can be obtained by plotting y = g(x) and y = x on the same axis, and estimating
the location of the intersection point. Use this technique to estimate a fixed point for g(x) = cos x.

Problem 1.3.8. Use Matlab to create the plot shown in Fig. 1.4. Hints: You will need to use
the commands hold, xlabel, ylabel, and legend. The ± symbol in the legend can be created using
\pm.

0 5 10 15 20 25 30 35 40
−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

y = 0.25*x*sin(x)
y = ± 0.25*x

Figure 1.4: Example of a plot that uses Matlab commands hold, xlabel, ylabel, and legend.

Problem 1.3.9. Explain what happens when the following Matlab code is executed.

for k = 1:6
x = linspace(0, 4*pi, 2^(k+1)+1);
subplot(2,3,k), plot(x, sin(x))
axis([0, 4*pi, -1.5, 1.5])

end

What happens if subplot(2, 3, k) is changed to subplot(3, 2, k)? What happens if the axis
statement is omitted?

1.3. MATLAB AS A SCIENTIFIC COMPUTING ENVIRONMENT 13

1.3.3 Script and Function M-Files

Next, we introduce script and function m-files that can be used to write Matlab programs.

• A script is a file containing a collection of Matlab commands that are executed when the
name of the file is entered in the Matlab command window. Scripts are very convenient
for conducting computational experiments that require entering many commands. However,
care must be taken because variables in a script are global to the Matlab session, and it is
therefore easy to unintentionally change their values.

• A function is a file containing a collection of Matlab commands that are executed when the
function is called. The first line of a function must have the form:

function [out1, out2,...] = FunctionName(input1, input2, ...)

By default, any data or variables created within the function are private. You can specify any
number of inputs to the function, and if you want to pass back results, then you can specify
any number of outputs. Functions can call other functions, and in this way you can write
sophisticated programs as in any conventional programming language.

In each case, the program should be saved in a file with a .m extension. Any editor may be used
to create an m-file, but we recommend using Matlab’s built-in editor, which can be opened in one
of several ways. In addition to clicking on certain menu items, the editor can be opened using the
edit command. For example, if we enter

edit ChebyPlots.m

in the command window, then the editor opens, and we can begin entering and modifying Matlab
commands.

It is important to consider carefully how the script and function m-files will be named. As
mentioned above, they should all have names of the form:

FunctionName.m or ScriptName.m

The names should be descriptive, but it is also important to avoid using a name already taken be one
of Matlab’s many built-in functions. If we happen to use the same name as one of these built-in
functions, then Matlab has a way of choosing which function to use, but such a situation can be
very confusing. The command exist can be used to determine if a function (or variable) is already
defined by a specific name.

To illustrate how to write functions and scripts, we provide two examples.

Example 1.3.2. In this example we write a simple function, which we call PlotCircle.m, that
generates a plot of a circle with radius r:

14 CHAPTER 1. GETTING STARTED WITH MATLAB

function PlotCircle(r)
%
% PlotCircle(r)
%
% This function plots a circle of radius r.
% If no input value for r is specified, the default value is chosen
% as r = 1. We check for too many inputs and for negative input
% and report errors in both cases.
%
if nargin < 2

if nargin == 0
r = 1;

end
if r <= 0
error(’The input value should be >= 0.’)

end
theta = linspace(0, 2*pi, 200);
x = r*cos(theta);
y = r*sin(theta);
plot(x, y)
axis([-2*r,2*r,-2*r,2*r])
axis square

else
error(’Too many input values.’)

end

Once this function is created, we can use it to generate plots of circles. For example, if we enter

>> PlotCircle(2)

in the command window, then a circle of radius 2 will be plotted, as shown in Fig. 1.5.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 1.5: Figure created when entering PlotCirle(2).

1.3. MATLAB AS A SCIENTIFIC COMPUTING ENVIRONMENT 15

The code for this example introduces some new Matlab commands that require a little expla-
nation:

• The percent symbol, %, is used to denote a comment in the program. Anything after a
% symbol on any line is treated as comment. All programs (functions and scripts) should
contain sufficient comments to explain their purpose, and if there are any input and/or output
variables.

• nargin is a built-in Matlab command that can be used to count the number of input ar-
guments to a function. If we run this code using PlotCircle(2), PlotCircle(7), etc., then
on entry to this function, the value of nargin is 1. However, if we run this code using the
command PlotCircle (with no specified input argument), then on entry to this function, the
value of nargin is 0. We also use the command nargin to check for too many input values.

• The conditional command if is used to execute a statement if the expression is true. First we
check that there are not too many inputs. Then, we check if nargin is 0 (that is, the input
value has not been specified). In the latter case, the code sets r to the default value of 1. Note
that there is a big difference between the statements x = 0 and x == 0; the former sets the
value of x to 0, while the latter checks to see if x and 0 are the same. You will observe that
the if statements are “nested”. The end statements are also nested. Each end encountered
corresponds to the most recent if. The indenting used should help you follow the command
structure of the program. We also use an if statement to make sure the input value for the
radius is not negative. Conditional statements are often used in numerical computing; the doc
command can be used to find more detailed information on if and related statements such as
else and elseif.

• error is a built-in Matlab command. When this command is executed, the computation
terminates, and the message between the single quotes is printed in the command window.

Example 1.3.3. Here, we illustrate how scripts can be used in combination with functions. Suppose
that the concentration of spores of pollen per square centimeter are measured over a 15 day period,
resulting in the following data:

day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
pollen count 12 35 80 120 280 290 360 290 315 280 270 190 90 85 66

(a) First, we write a function that will have as input a vector of data, and return as output the
mean and standard deviation of this data.
Matlab has several built-in functions for statistical analysis. In particular, we can use mean
and std to compute the mean and standard deviation. Therefore, the function we write, which
is named GetStats.m, is very simple:

16 CHAPTER 1. GETTING STARTED WITH MATLAB

function [m, s] = GetStats(x);
%
% Compute the mean and standard deviation of entries
% in a vector x.
%
% Input: x - vector (either row or column)
%
% Output: m - mean value of the elements in x.
% s - standard deviation of the elements in x.
%
m = mean(x);
s = std(x);

(b) We now write a script, that we name PollenStats.m, to generate and display a statistical
analysis of the pollen data:

%
% Script: PollenStats
%
% This script shows a statistical analysis of measured pollen
% counts on 15 consecutive days.
%

%
% p is a vector containing the pollen count for each day.
% d is a vector indicating the day (1 -- 15).
%
p = [12 35 80 120 280 290 360 290 315 280 270 190 90 85 66];
d = 1:length(p);

%
% Get statistical data, and produce a plot of the results.
%
[m, s] = GetStats(p);

bar(d, p, ’b’)
xlabel(’Day of Measurement’)
ylabel(’Pollen Count’)

hold on

plot([0, 16], [m, m], ’r’)
plot([0, 16], [m-s, m-s], ’r--’)
plot([0, 16], [m+s, m+s], ’r--’)
text(16, m, ’<-- m’)
text(16, m-s, ’<-- m - s’)
text(16, m+s, ’<-- m + s’)

hold off

Once the programs are written, we can run the script by simply entering its name in the

1.3. MATLAB AS A SCIENTIFIC COMPUTING ENVIRONMENT 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

50

100

150

200

250

300

350

400

Day of Measurement

Po
lle

n
Co

un
t

<−− m

<−− m − s

<−− m + s

Figure 1.6: Bar graph summarizing the statistical analysis of pollen counts from Example 1.3.3

command window:

>> PollenStats

The resulting plot is shown in Fig. 1.6.
The script PollenStats.m uses several commands that have not yet been discussed. For
detailed information on the specific uses of these commands, use doc (e.g., doc bar). See if
you can work out what is going on in the plot and text lines of PollenStats.m.

Problem 1.3.10. Write a function m-file, PlotCircles.m, that can accept as input a vector, r,
having positive entries, and plots circles of radius r(i) on the same axis. If no input value for r
is specified, the default is to plot a single circle with radius r = 1. Test your function by using r =
1:5. Hints: Matlab commands that might be useful for this problem include max, min and any.

1.3.4 Defining Mathematical Functions

In many computational science problems it is necessary to evaluate a function. For example, in
order to numerically find the maximum of, say, f(x) = 1/(1 + x2), it is necessary to evaluate f(x)
a many different points. One approach is to write a function m-file, such as:

18 CHAPTER 1. GETTING STARTED WITH MATLAB

function f = Runge(x)
%
% f = Runge(x);
%
% This function evaluates Runge’s function, f(x) = 1/(1 + x^2).
%
% Input: x - vector of x values
%
% Output: f - vector of f(x) values.
%
f = 1 ./ (1 + x.*x);

To evaluate this function at, say, x = 1.7, we can use the Matlab statement:

>> y = Runge(1.7)

Or, if we want to plot this function on the interval −5 ≤ x ≤ 5, we might use the Matlab statements

>> x = linspace(-5, 5, 101);
>> y = Runge(x);
>> plot(x, y)

Although this approach works well, it is rather tedious to write a function m-file whose definition is
just one line of code.

Two alternative approaches, that are very useful (and efficient), include:

• We can use the inline construct to “define” the function:

>> Runge = inline(’1 ./ (1 + x.*x)’);

where the single quotes are needed. Here since there is only one variable, Matlab assumes
Runge is a function of x.

• Or, we can define Runge as an anonymous function:

>> Runge = @(x) 1 ./ (1 + x.*x);

Here the notation @(x) explicitly states that Runge is a function of x.

In either case, once Runge has been defined as an inline function, we can evaluate it at, say, x = 1.7,
using the Matlab statement:

>> y = Runge(1.7);

Or, to plot the function on the interval −5 ≤ x ≤ 5, we might use the Matlab statements

>> x = linspace(-5, 5, 101);
>> y = Runge(x);
>> plot(x, y)

Note that it is always best to use array operators (such as ./ and .*) when possible, so that
functions can be evaluated at arrays of x-values. For example, if we did not use array operations in
the above code, that is, if we had used the statement Runge = @(x) 1 / (1 + x*x), (or the same
definition for f in the function Runge) then we could compute the single value Runge(1.7), but y
= Runge(x) would produce an error if x was a vector, such as x = linspace(-5, 5, 101).

We remark that anonymous functions are new to Matlab 7. They provide a powerful and easy
to use construct for defining mathematical functions. Generally, if it is necessary to evaluate f(x)

1.3. MATLAB AS A SCIENTIFIC COMPUTING ENVIRONMENT 19

many times, then Matlab codes will be more efficient if f(x) is defined as a either a function m-file
or an anonymous function, while the same code is (often substantially) less efficient if f(x) is defined
as an inline function. In general, if f(x) can be defined with a single line of code, we will use an
anonymous function to define it, otherwise we will use function m-files.

Problem 1.3.11. The Matlab functions tic and toc can be used to find the (wall clock) time it
takes to run a piece of code. For example, consider the following Matlab statements:

f = @(x) 1 ./ (1 + x.*x);
tic
for i = 1:n
x = rand(n,1);
y = f(x);

end
toc

When tic is executed, the timer is started, and when toc is executed, the timer is stopped, and
the time required to run the piece of code between the two statements is displayed in the Matlab
command window. Write a script m-file containing these statements. Include similar statements
defining f(x) as an inline function, and as a function m-file. Run the code for various values of n,
say n = 100, 200, 300, 400, 500. What do you observe?

Problem 1.3.12. Repeat the experiment in Problem 1.3.11, but this time use f(x) =
ex + sinπx

x2 + 7x + 4
.

1.3.5 Creating Reports

Many problems in scientific computing (and in this book) require a combination of mathematical
analysis, computational experiments, and a written summary of the results; that is, a report. Plots
created in Matlab can be easily printed for inclusion in the report. Probably the easiest approach
is to pull down the File menu on the desired Matlab figure window, and let go on Print.

Another option is to save the plot to a file on your computer using the Save as option under the
File menu on the figure window. Matlab supports many types of file formats, including encapsu-
lated PostScript (EPS) and portable document format (PDF), as well as many image compression
formats such as TIFF, JPEG and PNG. These files can also be created in the command window, or
in any m-file, using the print command. For detailed information on creating such files, open the
help browser to the associated reference page using the command doc print.

In addition to plots, it may be desirable to create tables of data for a report. Three useful
commands that can be use for this purpose are disp, sprintf and diary. When used in combination,
disp and sprintf can be used to write formatted output in the command window. The diary
command can then be used to save the results in a file. For example, the following Matlab code
computes a compound interest table, with annual compounding:

a = 35000;, n = 5;
r = .01:.01:.1;
t = a*(1 + r).^n;
diary InterestInfo.dat
disp(’ If a = 35,000 dollars is borrowed, to be paid in n = 5 years, then:’)
disp(’ ’)
disp(’ Interest rate, r Total paid after 5 years’)
disp(’ ==’)
for i = 1:length(r)

disp(sprintf(’ %4.2f %8.2f ’, r(i), t(i)))
end
diary off

20 CHAPTER 1. GETTING STARTED WITH MATLAB

If the above code is put into a script or function m-file, then when the code is executed, it prints
the following table of data in the command window:

If a = 35,000 dollars is borrowed, to be paid in n = 5 years, then:

Interest rate, r Total paid after 5 years
==

0.01 36785.35
0.02 38642.83
0.03 40574.59
0.04 42582.85
0.05 44669.85
0.06 46837.90
0.07 49089.31
0.08 51426.48
0.09 53851.84
0.10 56367.85

Here, the diary command is used to open a file named InterestInfo.dat, and any subsequent
results displayed in the command window are automatically written in this file until it is closed with
the diary off command. Thus, after execution, the above table is left in the file InterestInfo.dat.

A word or warning about the diary command: If we create a script m-file containing the above
code, and we run that script several times, the file InterestInfo.dat will collect the results from
each run. In many cases the first set of runs may be used to debug the code, or to get the formatted
output to look good, and it is only the final set that we want saved. In this case, it is recommended
to comment out the lines of code containing the diary commands (i.e., put the symbol % in front
of the commands) until we are ready to make the final run.

