Digital Image Processing: PIKS Inside, Third Edition. William K. Pratt Copyright © 2001 John Wiley & Sons, Inc. ISBNs: 0-471-37407-5 (Hardback); 0-471-22132-5 (Electronic)

DIGITAL IMAGE PROCESSING

DIGITAL IMAGE PROCESSING

PIKS Inside

Third Edition

WILLIAM K. PRATT PixelSoft, Inc. Los Altos, California

A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York • Chichester • Weinheim • Brisbane • Singapore • Toronto Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration.

Copyright $\ensuremath{\mathbb{C}}$ 2001 by John Wiley and Sons, Inc., New York. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought.

ISBN 0-471-22132-5

This title is also available in print as ISBN 0-471-37407-5.

For more information about Wiley products, visit our web site at www.Wiley.com.

To my wife, Shelly whose image needs no enhancement

CONTENTS

Pre	face	xiii
Ack	anowledgments	xvii
PAF	RT 1 CONTINUOUS IMAGE CHARACTERIZATION	1
1	Continuous Image Mathematical Characterization	3
	1.1 Image Representation, 31.2 Two-Dimensional Systems, 51.3 Two-Dimensional Fourier Transform, 101.4 Image Stochastic Characterization, 15	
2	Psychophysical Vision Properties	23
	 2.1 Light Perception, 23 2.2 Eye Physiology, 26 2.3 Visual Phenomena, 29 2.4 Monochrome Vision Model, 33 2.5 Color Vision Model, 39 	
3	Photometry and Colorimetry	45
	3.1 Photometry, 453.2 Color Matching, 49	

viii CONTENTS

	3.3 Colorimetry Concepts, 543.4 Tristimulus Value Transformation, 613.5 Color Spaces, 63	
PAR	Γ 2 DIGITAL IMAGE CHARACTERIZATION	89
4	Image Sampling and Reconstruction	91
	4.1 Image Sampling and Reconstruction Concepts, 914.2 Image Sampling Systems, 994.3 Image Reconstruction Systems, 110	
5	Discrete Image Mathematical Representation	121
	 5.1 Vector-Space Image Representation, 121 5.2 Generalized Two-Dimensional Linear Operator, 123 5.3 Image Statistical Characterization, 127 5.4 Image Probability Density Models, 132 5.5 Linear Operator Statistical Representation, 136 	
6	Image Quantization	141
	6.1 Scalar Quantization, 1416.2 Processing Quantized Variables, 1476.3 Monochrome and Color Image Quantization, 150	
PAR	T 3 DISCRETE TWO-DIMENSIONAL LINEAR PROCESSING	159
7	Superposition and Convolution	161
	 7.1 Finite-Area Superposition and Convolution, 161 7.2 Sampled Image Superposition and Convolution, 170 7.3 Circulant Superposition and Convolution, 177 7.4 Superposition and Convolution Operator Relationships, 180 	
8	Unitary Transforms	185
	 8.1 General Unitary Transforms, 185 8.2 Fourier Transform, 189 8.3 Cosine, Sine, and Hartley Transforms, 195 8.4 Hadamard, Haar, and Daubechies Transforms, 200 8.5 Karhunen–Loeve Transform, 207 	
9	Linear Processing Techniques	213
	9.1 Transform Domain Processing, 2139.2 Transform Domain Superposition, 216	

	CONTEN	TS ix
	9.3 Fast Fourier Transform Convolution, 2219.4 Fourier Transform Filtering, 2299.5 Small Generating Kernel Convolution, 236	
PAI	RT 4 IMAGE IMPROVEMENT	241
10	Image Enhancement	243
	 10.1 Contrast Manipulation, 243 10.2 Histogram Modification, 253 10.3 Noise Cleaning, 261 10.4 Edge Crispening, 278 10.5 Color Image Enhancement, 284 10.6 Multispectral Image Enhancement, 289 	
11	Image Restoration Models	297
	11.1 General Image Restoration Models, 29711.2 Optical Systems Models, 30011.3 Photographic Process Models, 30411.4 Discrete Image Restoration Models, 312	
12	Point and Spatial Image Restoration Techniques	319
	 12.1 Sensor and Display Point Nonlinearity Correction, 319 12.2 Continuous Image Spatial Filtering Restoration, 325 12.3 Pseudoinverse Spatial Image Restoration, 335 12.4 SVD Pseudoinverse Spatial Image Restoration, 349 12.5 Statistical Estimation Spatial Image Restoration, 355 12.6 Constrained Image Restoration, 358 12.7 Blind Image Restoration, 363 	
13	Geometrical Image Modification	371
	13.1 Translation, Minification, Magnification, and Rotation, 37113.2 Spatial Warping, 38213.3 Perspective Transformation, 38613.4 Camera Imaging Model, 38913.5 Geometrical Image Resampling, 393	
PAI	RT 5 IMAGE ANALYSIS	399
14	Morphological Image Processing	401
	14.1 Binary Image Connectivity, 40114.2 Binary Image Hit or Miss Transformations, 40414.3 Binary Image Shrinking, Thinning, Skeletonizing, and Thickening	ng, 411

x CONTENTS

	14.4 Binary Image Generalized Dilation and Erosion, 42214.5 Binary Image Close and Open Operations, 43314.6 Gray Scale Image Morphological Operations, 435	
15	Edge Detection	443
	 15.1 Edge, Line, and Spot Models, 443 15.2 First-Order Derivative Edge Detection, 448 15.3 Second-Order Derivative Edge Detection, 469 15.4 Edge-Fitting Edge Detector, 482 15.5 Luminance Edge Detector Performance, 485 15.6 Color Edge Detection, 499 15.7 Line and Spot Detection, 499 	
16	Image Feature Extraction	509
	 16.1 Image Feature Evaluation, 509 16.2 Amplitude Features, 511 16.3 Transform Coefficient Features, 516 16.4 Texture Definition, 519 16.5 Visual Texture Discrimination, 521 16.6 Texture Features, 529 	
17	Image Segmentation	551
17	Image Segmentation17.1 Amplitude Segmentation Methods, 55217.2 Clustering Segmentation Methods, 56017.3 Region Segmentation Methods, 56217.4 Boundary Detection, 56617.5 Texture Segmentation, 58017.6 Segment Labeling, 581	551
17	17.1 Amplitude Segmentation Methods, 55217.2 Clustering Segmentation Methods, 56017.3 Region Segmentation Methods, 56217.4 Boundary Detection, 56617.5 Texture Segmentation, 580	551 589
	 17.1 Amplitude Segmentation Methods, 552 17.2 Clustering Segmentation Methods, 560 17.3 Region Segmentation Methods, 562 17.4 Boundary Detection, 566 17.5 Texture Segmentation, 580 17.6 Segment Labeling, 581 	
	 17.1 Amplitude Segmentation Methods, 552 17.2 Clustering Segmentation Methods, 560 17.3 Region Segmentation Methods, 562 17.4 Boundary Detection, 566 17.5 Texture Segmentation, 580 17.6 Segment Labeling, 581 Shape Analysis 18.1 Topological Attributes, 589 18.2 Distance, Perimeter, and Area Measurements, 591 18.3 Spatial Moments, 597 18.4 Shape Orientation Descriptors, 607	

	CONTENTS	xi
PART 6 IMAGE PROCESSING SOFTWARE		641
20 PIKS Image Processing Software		643
20.1 PIKS Functional Overview, 64320.2 PIKS Core Overview, 663		
21 PIKS Image Processing Programming Exercises		673
 21.1 Program Generation Exercises, 674 21.2 Image Manipulation Exercises, 675 21.3 Colour Space Exercises, 676 21.4 Region-of-Interest Exercises, 678 21.5 Image Measurement Exercises, 679 21.6 Quantization Exercises, 680 21.7 Convolution Exercises, 681 21.8 Unitary Transform Exercises, 682 21.9 Linear Processing Exercises, 682 21.10 Image Enhancement Exercises, 683 21.11 Image Restoration Models Exercises, 685 21.12 Image Restoration Exercises, 686 21.13 Geometrical Image Modification Exercises, 687 21.15 Edge Detection Exercises, 689 21.16 Image Feature Extration Exercises, 690 21.17 Image Segmentation Exercises, 691 21.18 Shape Analysis Exercises, 691 21.19 Image Detection and Registration Exercises, 692 		
Appendix 1 Vector-Space Algebra Concepts		693
Appendix 2 Color Coordinate Conversion		709
Appendix 3 Image Error Measures		715
Bibliography		717
Index		723

PREFACE

In January 1978, I began the preface to the first edition of *Digital Image Processing* with the following statement:

The field of image processing has grown considerably during the past decade with the increased utilization of imagery in myriad applications coupled with improvements in the size, speed, and cost effectiveness of digital computers and related signal processing technologies. Image processing has found a significant role in scientific, industrial, space, and government applications.

In January 1991, in the preface to the second edition, I stated:

Thirteen years later as I write this preface to the second edition, I find the quoted statement still to be valid. The 1980s have been a decade of significant growth and maturity in this field. At the beginning of that decade, many image processing techniques were of academic interest only; their execution was too slow and too costly. Today, thanks to algorithmic and implementation advances, image processing has become a vital cost-effective technology in a host of applications.

Now, in this beginning of the twenty-first century, image processing has become a mature engineering discipline. But advances in the theoretical basis of image processing continue. Some of the reasons for this third edition of the book are to correct defects in the second edition, delete content of marginal interest, and add discussion of new, important topics. Another motivating factor is the inclusion of interactive, computer display imaging examples to illustrate image processing concepts. Finally, this third edition includes computer programming exercises to bolster its theoretical content. These exercises can be implemented using the Programmer's Imaging Kernel System (PIKS) application program interface (API). PIKS is an International

xiv PREFACE

Standards Organization (ISO) standard library of image processing operators and associated utilities. The PIKS Core version is included on a CD affixed to the back cover of this book.

The book is intended to be an "industrial strength" introduction to digital image processing to be used as a text for an electrical engineering or computer science course in the subject. Also, it can be used as a reference manual for scientists who are engaged in image processing research, developers of image processing hardware and software systems, and practicing engineers and scientists who use image processing as a tool in their applications. Mathematical derivations are provided for most algorithms. The reader is assumed to have a basic background in linear system theory, vector space algebra, and random processes. Proficiency in C language programming is necessary for execution of the image processing programming exercises using PIKS.

The book is divided into six parts. The first three parts cover the basic technologies that are needed to support image processing applications. Part 1 contains three chapters concerned with the characterization of continuous images. Topics include the mathematical representation of continuous images, the psychophysical properties of human vision, and photometry and colorimetry. In Part 2, image sampling and quantization techniques are explored along with the mathematical representation of discrete images. Part 3 discusses two-dimensional signal processing techniques, including general linear operators and unitary transforms such as the Fourier, Hadamard, and Karhunen–Loeve transforms. The final chapter in Part 3 analyzes and compares linear processing techniques implemented by direct convolution and Fourier domain filtering.

The next two parts of the book cover the two principal application areas of image processing. Part 4 presents a discussion of image enhancement and restoration techniques, including restoration models, point and spatial restoration, and geometrical image modification. Part 5, entitled "Image Analysis," concentrates on the extraction of information from an image. Specific topics include morphological image processing, edge detection, image feature extraction, image segmentation, object shape analysis, and object detection.

Part 6 discusses the software implementation of image processing applications. This part describes the PIKS API and explains its use as a means of implementing image processing algorithms. Image processing programming exercises are included in Part 6.

This third edition represents a major revision of the second edition. In addition to Part 6, new topics include an expanded description of color spaces, the Hartley and Daubechies transforms, wavelet filtering, watershed and snake image segmentation, and Mellin transform matched filtering. Many of the photographic examples in the book are supplemented by executable programs for which readers can adjust algorithm parameters and even substitute their own source images.

Although readers should find this book reasonably comprehensive, many important topics allied to the field of digital image processing have been omitted to limit the size and cost of the book. Among the most prominent omissions are the topics of pattern recognition, image reconstruction from projections, image understanding,

PREFACE xv

image coding, scientific visualization, and computer graphics. References to some of these topics are provided in the bibliography.

WILLIAM K. PRATT

Los Altos, California August 2000

ACKNOWLEDGMENTS

The first edition of this book was written while I was a professor of electrical engineering at the University of Southern California (USC). Image processing research at USC began in 1962 on a very modest scale, but the program increased in size and scope with the attendant international interest in the field. In 1971, Dr. Zohrab Kaprielian, then dean of engineering and vice president of academic research and administration, announced the establishment of the USC Image Processing Institute. This environment contributed significantly to the preparation of the first edition. I am deeply grateful to Professor Kaprielian for his role in providing university support of image processing and for his personal interest in my career.

Also, I wish to thank the following past and present members of the Institute's scientific staff who rendered invaluable assistance in the preparation of the firstedition manuscript: Jean-François Abramatic, Harry C. Andrews, Lee D. Davisson, Olivier Faugeras, Werner Frei, Ali Habibi, Anil K. Jain, Richard P. Kruger, Nasser E. Nahi, Ramakant Nevatia, Keith Price, Guner S. Robinson, Alexander A. Sawchuk, and Lloyd R. Welsh.

In addition, I sincerely acknowledge the technical help of my graduate students at USC during preparation of the first edition: Ikram Abdou, Behnam Ashjari, Wen-Hsiung Chen, Faramarz Davarian, Michael N. Huhns, Kenneth I. Laws, Sang Uk Lee, Clanton Mancill, Nelson Mascarenhas, Clifford Reader, John Roese, and Robert H. Wallis.

The first edition was the outgrowth of notes developed for the USC course "Image Processing." I wish to thank the many students who suffered through the

xviii ACKNOWLEDGMENTS

early versions of the notes for their valuable comments. Also, I appreciate the reviews of the notes provided by Harry C. Andrews, Werner Frei, Ali Habibi, and Ernest L. Hall, who taught the course.

With regard to the first edition, I wish to offer words of appreciation to the Information Processing Techniques Office of the Advanced Research Projects Agency, directed by Larry G. Roberts, which provided partial financial support of my research at USC.

During the academic year 1977–1978, I performed sabbatical research at the Institut de Recherche d'Informatique et Automatique in LeChesney, France and at the Université de Paris. My research was partially supported by these institutions, USC, and a Guggenheim Foundation fellowship. For this support, I am indebted.

I left USC in 1979 with the intention of forming a company that would put some of my research ideas into practice. Toward that end, I joined a startup company, Compression Labs, Inc., of San Jose, California. There I worked on the development of facsimile and video coding products with Dr., Wen-Hsiung Chen and Dr. Robert H. Wallis. Concurrently, I directed a design team that developed a digital image processor called VICOM. The early contributors to its hardware and software design were William Bryant, Howard Halverson, Stephen K. Howell, Jeffrey Shaw, and William Zech. In 1981, I formed Vicom Systems, Inc., of San Jose, California, to manufacture and market the VICOM image processor. Many of the photographic examples in this book were processed on a VICOM.

Work on the second edition began in 1986. In 1988, I joined Sun Microsystems, of Mountain View, California. At Sun, I collaborated with Stephen A. Howell and Ihtisham Kabir on the development of image processing software. During my time at Sun, I participated in the specification of the Programmers Imaging Kernel application program interface which was made an International Standards Organization standard in 1994. Much of the PIKS content is present in this book. Some of the principal contributors to PIKS include Timothy Butler, Adrian Clark, Patrick Krolak, and Gerard A. Paquette.

In 1993, I formed PixelSoft, Inc., of Los Altos, California, to commercialize the PIKS standard. The PIKS Core version of the PixelSoft implementation is affixed to the back cover of this edition. Contributors to its development include Timothy Butler, Larry R. Hubble, and Gerard A. Paquette.

In 1996, I joined Photon Dynamics, Inc., of San Jose, California, a manufacturer of machine vision equipment for the inspection of electronics displays and printed circuit boards. There, I collaborated with Larry R. Hubble, Sunil S. Sawkar, and Gerard A. Paquette on the development of several hardware and software products based on PIKS.

I wish to thank all those previously cited, and many others too numerous to mention, for their assistance in this industrial phase of my career. Having participated in the design of hardware and software products has been an arduous but intellectually rewarding task. This industrial experience, I believe, has significantly enriched this third edition.

I offer my appreciation to Ray Schmidt, who was responsible for many photographic reproductions in the book, and to Kris Pendelton, who created much of the line art. Also, thanks are given to readers of the first two editions who reported errors both typographical and mental.

Most of all, I wish to thank my wife, Shelly, for her support in the writing of the third edition.

W. K. P.