
Journal of Logic, Language and Information (2005) xxx: 1–40
DOI: 10.1007/s10849-006-0541-6 C© Springer 2005

Types as Graphs: Continuations in Type Logical
Grammar

CHRIS BARKER1 and CHUNG-CHIEH SHAN2

1Department of Linguistics, University of California, San Diego, USA
E-mail: barker@ucsd.edu
2Division of Engineering and Applied Sciences, Harvard University, Department of Computer
Science and Center for Cognitive Science, Rutgers, The State University of New Jersey
E-mail: ccshan@rutgers.edu

(Received: 7 July 2004; accepted: 29 June 2005)

Abstract. Using the programming-language concept of CONTINUATIONS, we propose a new, multi-
modal analysis of quantification in Type Logical Grammar. Our approach provides a geometric view
of in-situ quantification in terms of graphs, and motivates the limited use of empty antecedents in
derivations. Just as continuations are the tool of choice for reasoning about evaluation order and
side effects in programming languages, our system provides a principled, type-logical way to model
evaluation order and side effects in natural language. We illustrate with an improved account of
quantificational binding, weak crossover, wh-questions, superiority, and polarity licensing.

Key words: continuations, type-logical grammar, resource sensitivity, quantification, polarity licens-
ing, binding, superiority, evaluation order, staging, delimited continuations

1. Introduction

In recent research, the programming-language concept of CONTINUATIONS has pro-
vided much insight into a variety of natural-language phenomena: quantification
and coordination (Barker, 2002; de Groote, 2001), binding and interrogation (Shan,
2002; Shan and Barker, in press), focus and hypallage (Barker, 2004), and polarity
sensitivity (Shan, 2004). As we explain in detail below, continuations are a com-
positional mechanism that provides expressions with access to (a portion of) their
semantic context.

Most linguistic research on continuations (including much of our own work)
is couched in combinatory categorial grammars that, like Jacobson’s (1999, 2000)
and Steedman’s (2000), accomplish the main work by type-shift operators. To
explore the role of continuations in linguistic formalisms other than combinatory
categorial grammars, we propose in this paper a continuation-based approach to
quantification in Type Logical Grammar (TLG). We show how continuations lead
to an unusually parsimonious multimodal account of quantifier scope. In particular,
we use continuations to reduce the ternary type constructor q proposed by Moortgat

2 C. BARKER AND C.-C. SHAN

for in-situ quantification to multimodal TLG. The basic analysis involves one new
mode, related to the default mode by two structural postulates. As we explain in
Section 3, these postulates can be understood geometrically in terms of unitrivalent
graphs.

Continuations have traditionally been used to explore computational issues like
evaluation order (such as left-to-right versus right-to-left, and call-by-value versus
call-by-name) and side effects. At first blush, logical proof is independent of eval-
uation order: a TLG derivation has no obvious notion corresponding to ‘before’
versus ‘after’, or ‘value’ versus ‘name’. Yet, by the Curry-Howard isomorphism,
logical proof is the same thing as computation, so whenever evaluation order plays
a role in computation, it must play a role in logical proof. If so, we need a way to
reason about evaluation order in TLG derivations, which are independent of order.
This is precisely what continuations provide: a principled tool for reasoning about
order of evaluation in an order-independent way.

Moortgat (1997) and others emphasize that TLG provides a perspicuous frame-
work for exploring the resource-sensitivity of natural languages. Order of eval-
uation is just one more kind of structural resource. It is an empirical question
whether natural languages are sensitive to evaluation order (and other constraints
on side effects). We argue they are in Sections 8 and 9. Thus adding continuations
to TLG enables us to explore a new realm of the Curry-Howard correspondence,
and provides for the grammar-writer a new and (we argue) useful type of resource
sensitivity.

This paper consists of two main parts. The next three sections present the core
idea of implementing in-situ quantification by residuating on contexts and subex-
pressions. The remainder of the paper extends the basic analysis in a variety of ways,
most importantly adding explicit control over the order in which subexpressions
are evaluated (Section 8). This lets us provide new TLG analyses of quantifica-
tional binding, weak crossover, wh-questions, superiority, and polarity licensing
that improve on the empirical predictions of previous TLG accounts (Section 9).

2. Quantification in Type Logical Grammar

There are a variety of approaches to quantification in TLG, including Moortgat’s
type constructor q (1988, 1995, 1996) and at least three multimodal implementa-
tions of q (Morrill, 1994; Moortgat, 1995, 2000), briefly summarized by Bernardi
(2003). The multimodal analyses all reconstruct the q operator in terms of modes
and structural postulates, and our analysis below does the same. One important
difference is that our analysis deliberately exploits continuations, which, as we will
see, enables the grammar-writer to explicitly reason about order of evaluation and
other side-effects.

The q operator constructs types of the form q(A, B, C). Conceptually, an ex-
pression of this type behaves locally as if it were an expression of type A, takes

TYPES AS GRAPHS: CONTINUATIONS IN TYPE LOGICAL GRAMMAR 3

scope over an expression of type B, and yields a result expression of type C . For
instance, a quantificational NP like everyone may have type q(np, s, s): it functions
locally as if it were a normal NP but takes scope over a clause to yield a clause. (As
one might expect, this type corresponds semantically to a generalized quantifier.)
For another example, an in-situ wh-phrase may have type q(np, s, wh): it functions
locally as an NP but takes scope over a clause and turns the clause over which it
takes scope into a question, of type wh. (Moortgat (2000) gives other examples
motivating analyses for which B �= C .)

Multimodal implementations of q seek to characterize how quantification de-
pends on structural resources such as associativity or commutativity. For instance,
Moortgat (1997, page 125) argues that since quantifiers can take scope both over
material to their left and to their right, the plain Lambek calculus, whether associa-
tive or not, simply does not have the expressive power to deal with quantification
in a general way. He concludes that some degree of commutativity is essential, and
our analysis below is consistent with that claim.

Though we will not present other multimodal implementations of q in detail,
we describe their general features here.

Morrill (1994) uses three binary modes: the non-associative default mode ◦, an
associative mode ◦a , and a wrapping mode ◦w. Three postulates allow the modes to
interact in such a way that a quantificational NP of type (s/wnp)\ws has the desired
behavior.

In the first of his two analyses, Moortgat (1995) uses two binary modes and
three unary modes. There are three postulates. The type of a quantificational
NP is

(s/w(↓np\ws)). (1)

Moortgat’s second analysis (2000) has three binary modes and four single-sided
postulates. The type of a quantificational NP is

(s/+(np\−s)) ◦+ (np\−np). (2)

Note that np\−np, the right-hand argument of the fusion connective, in ef-
fect introduces an empty antecedent into the derivation. Empty antecedents also
play an important role in our analysis of quantification, as discussed below in
Section 6.

Because q was designed to capture the behavior of quantificational elements,
it naturally resembles how quantificational elements are treated in a continuation-
based grammar such as Barker’s (2002) and Shan and Barker’s (in press). Our TLG
analysis has two binary modes, the default, external mode ◦ and an additional, inter-
nal mode �. Unlike most TLG analyses of quantification, neither mode needs to be
associative for our purposes (nor do we require either mode to be non-associative).
As explained below, the two modes are governed by two postulates, and the lexical

4 C. BARKER AND C.-C. SHAN

type of a quantificational NP is s (np s). Here we write and for residuation in
the additional mode �.

3. Fusion Types as Trees

In this section, we introduce a graphical interpretation of TLG types in terms
of unitrivalent graphs. In Section 4, we apply this fairly abstract discussion
to implement q for linguistic analyses. In Section 5, we relate quantifica-
tion in TLG to continuations in logic and computation via the Curry-Howard
isomorphism.

Every TLG type built from atomic symbols using only ◦ can be uniquely drawn
as a binary tree. A binary tree is an acyclic unitrivalent graph in which every leaf
node but one (the ROOT) is labeled with an atomic symbol. A unitrivalent graph is a
graph in which every node either is a leaf or has exactly three edges. For example,
the type

A = a ◦ ((b ◦ c) ◦ d) (3)

can be drawn as follows.

(4)

In our graphs, edges are unoriented, so the following two graphs are identical:

(5)

However, we do orient nodes by designating, for each trivalent node, one of the
two cyclic orderings of its edges as clockwise. Hence each of the following graphs
are equal to two others, but not to their mirror images.

(6)

Together, these two conventions ensure that each type corresponds to only one
graph.

TYPES AS GRAPHS: CONTINUATIONS IN TYPE LOGICAL GRAMMAR 5

Suppose now that A and B are two types, both built using only ◦, such that B
appears as part of A. For instance, A might be the type a ◦ ((b ◦ c) ◦ d) as above,
and B might be the type b ◦ c. We write A = K[B], where K is the context of B
relative to A; that is, K = a ◦ ([] ◦ d). Graphically speaking, we have decomposed
A into two parts, B and K, by ripping apart the graph at the upper vertical edge,
calling the side that contains the root node K, and calling the other side B.

K
(7)

To represent such a decomposition as a graph, we insert a new, special node � in
the middle of the edge that connects the two components.

(8)

This new node � connects the two components of the decomposition to a new root
node. The old root node becomes a leaf with the special label 1. We know which
side of the � corresponds to the context, since that’s the side that contains the 1
node marking the position of the old root. Starting at the � node, we always put
the context side right after the subexpression side (where “after” means moving
clockwise).

To convert the diagram (8) back to a type, we introduce a new binary mode, the
continuation or context mode. We write fusion, left residuation, and right residuation
for the continuation mode as �, , and . The graph in (8) thus corresponds to the
formula

(b ◦ c) � (d ◦ (1 ◦ a)). (9)

This mode is internal (or unpronounceable, informally speaking).
The continuation mode � treats the decomposition A = K[B] as a structure in

its own right: B � K decomposes A into the subexpression B and the context K.1

1 We use script K to stand for the usual notion of a context as an expression containing a hole
(where ‘usual’ means as in discussions of programming languages, like Barendregt’s presentation of
the λ-calculus (1981)); and we use plain K to stand for the TLG type that we interpret as representing
a context.

6 C. BARKER AND C.-C. SHAN

In the trivial case, the graph is ripped apart at the root edge into two sides: the null
context (‘[]’), and the expression A viewed as its own (improper) subexpression.
Because the null context is represented by the type 1, we henceforth treat 1 as the
right identity for �. Thus B � 1 is logically equivalent to just B. (The presence of
a right identity affects the nature of the � mode, and plays an important role in the
discussion below; see especially Section 6.)

In the original type A = a◦((b◦c)◦d) in (3), the type d follows a and fuses with
b ◦ c, whereas in (9), the type d precedes a and fuses with 1 ◦ a. It appears that our
types represent a context by scrambling the original elements – in fact, by turning
the original expression inside-out. But this reordering only occurs in the symbolic
representation as types, as in (9). When viewed graphically, as in (8), there is no
scrambling, and no turning inside-out: we have simply inserted a continuation node
into the chosen edge, without reordering anything. Put another way, we have not
changed the structure of the formula; we have merely changed our perspective on
the formula by placing one subformula in the foreground and backgrounding the
rest. Thus the context d ◦ (1 ◦ a) is not really “inside out” – that’s just what the
context looks like from the perspective of the continuation node. The usefulness of
the graphical interpretation is precisely that it makes the mapping from contexts to
types as simple as choosing an edge.

This technique – representing a meta-level notion of context likeK = a◦([]◦d)
as a object-level formula like K = d ◦ (1 ◦ a) – embodies the crucial insight
of continuations. We shall see that allowing the logic to operate on types repre-
senting contexts in effect provides expressions with (limited) access to their own
context.

We are now ready to introduce some structural rules to relate the various equiv-
alent ways in which the same graph can be decomposed. If we find some type of
the form B ◦ C inside a context K, we can consider moving either B or C into the
context part of the decomposition. In other words, if A = K[B ◦ C], then three
decompositions of A are available: one that isolates B, one that isolates B ◦ C ,
and one that isolates C . If the type K represents the context of B ◦ C (so that it
contains 1 in place of the root of A), then Figure 1 depicts these three decomposi-
tions. Since these are three decompositions of the same graph, we want them to be
logically equivalent, that is, mutually derivable. To this end, we add two structural

Figure 1. Three ways to decompose A = K[B ◦ C] into a subexpression and a context.

TYPES AS GRAPHS: CONTINUATIONS IN TYPE LOGICAL GRAMMAR 7

postulates.2

B � (C ◦ K) �� (B ◦ C) � K (Left)
(10)

(B ◦ C) � K �� C � (K ◦ B) (Right)

Using these structural rules, any decomposition of a (connected) graph A can be
derived from the trivial decomposition A � 1, which represents A itself inside the
null context (which, we repeat, is logically equivalent to just A, given that 1 is the
right identity for �). For example, the decomposition in (8) can be derived from
the trivial decomposition in two steps.

(a ◦ ((b ◦ c) ◦ d)) � 1
Right
�� ((b ◦ c) ◦ d) � (1 ◦ a)

Left
�� (b ◦ c) � (d ◦ (1 ◦ a))

(11)

The continuation mode � and the structural postulates Left and Right expand
the machinery of residuation built-in to categorial grammar beyond describing
syntactic elements that take arguments leftward or rightward. We can now describe
syntactic elements that take arguments not leftward or rightward, but ‘inward’ or

2 Unfortunately, in the presence of these two structural postulates and the right identity 1 for the
� mode, the default mode ◦ becomes commutative.

There are at least three ways to prevent the default mode ◦ from commuting thus.

1. In Section 8 below, to enforce a notion of left-to-right evaluation, we restrict the Right rule to
apply only when the formula B is surrounded by �. With this restriction, the Right inferences
above (especially the one in the lower-right corner) no longer apply.

2. We can remove 1 from the grammar and replace every type A throughout the lexicon that is
either a top-level formula or on the numerator side of a slash with the type A (A A). This move
prevents 1 from being freely introduced by Push, as in the derivation above.

3. We can change the Left and Right rules to

B � (C � K) �� (B ◦ C) � K (Left) (B ◦ C) � K �� C � (K � B) (Right),

where � and � are two new binary modes. Informally speaking, we distinguish between ‘left
contexts’ (�) and ‘right contexts’ (�) to rule out the adjacent application of Left and Right
above. Rules like these may be familiar from Belnap’s display logic (1982) and Huet’s zipper
data-structure (1997; Abbott et al., 2003; Hinze and Jeuring, 2001).

Perhaps solutions 1 and 2 are natural if one blames the presence of multiple 1’s in the derivation
above for making the default mode commutative, whereas solutions 1 and 3 are natural if one blames
the commutativity on confusing Left with Right, or subexpression with context. Because solution 1
is deployed below, we leave the commutativity issue aside here.

8 C. BARKER AND C.-C. SHAN

‘outward’, in senses to be explained in the next section. We will argue, following
Barker (2002), that this is the very essence of in-situ quantification.

4. Scope-Taking as Residuation on Contexts and Subexpressions

Let us apply the techniques developed above to some syntactic categories and lexical
items of linguistic relevance. We assume a type of noun phrases (more precisely,
proper nouns) np and a type of clauses s. For example, Alice saw Bob is a clause.

Alice � np

saw � (np\s)/np Bob � np
/E

saw ◦ Bob � np\s
\E

Alice ◦ (saw ◦ Bob) � s

(12)

In general, any two NPs with saw in between form a clause.

Id
np � np

saw � (np\s)/np
Id

np � np
/E

saw ◦ np � np\s
\E

np ◦ (saw ◦ np) � s

(13)

We proceed by drawing a (limited) analogy between what we call contexts here,
and clauses containing a gap. The string Alice saw is a gapped clause. In other
words, it is a context whose hole can be filled in with np to yield an s. Following the
graphical approach explained in the previous section, we can represent the gapped
clause as a type expression, or equivalently, as a unitrivalent graph.

(14)

Figure 2 uses the structural rules in (10) to prove that this context is a gapped clause,
in other words, that the type in (14) entails the type np s. The latter type is the type
of something that gives s when fused on the left with an np using �; in other words,
a gapped clause has the type of a context that encloses an np to give an s. Push and
Pop reflect the fact that 1 is a right identity for �; they are roughly equivalent to
introducing (Push) an empty antecedent into the derivation, and later eliminating
(Pop) it. They are discussed in more detail in Section 6, where we implement Push
and Pop in terms of standard TLG technology based on unary modes.

This treatment of gapped clauses is insensitive to the linear location of the gap:
it works uniformly regardless of whether the gap is at the left or right edge of the
clause, unlike several type-logical treatments of extraction and quantification.

TYPES AS GRAPHS: CONTINUATIONS IN TYPE LOGICAL GRAMMAR 9

Figure 2. Alice saw .

Figure 3. Alice saw everyone.

We can now treat quantificational noun phrases such as everyone. As a syntactic
element, everyone combines with a gapped clause enclosing it to give a complete
clause. In terms of our context mode �, everyone gives s when fused on the right
with np s. Thus we assign to it the type s (np s). This type lets us prove the gram-
maticality of Alice saw everyone in Figure 3. Moreover, the standard Curry-Howard
meaning assignment mechanism in TLG automatically computes the denotation of
the sentence to be everyone(λx .saw(x)(Alice)). Informally speaking, just as the
function-type constructors / and \ for the default mode ◦ take arguments from the
right and from the left, the function-type constructors and for the continuation
mode � take arguments from outside (that is, residuate on surrounding contexts)
and from inside (that is, residuate on enclosed subexpressions), respectively. More
generally, we can reconstruct the ternary type constructor q for in-situ quantifica-
tion in TLG: encode q(A, B, C) as C (A B). The type for everyone in Figure 3
encodes q(np, s, s), as expected.

Like any account of in-situ quantification implementing q, our system derives
both linear and inverse scope for the sentence Someone saw everyone, as shown
in Figures 4 and 5. Ignoring the structural rules Push, Pop, Left, and Right, these
derivations correspond exactly to ones using q. The quantifier that takes its context
as argument earlier takes wider scope (reading the proofs bottom-up).

Without further stipulation, our system handles quantificational NPs in pos-
sessive position, as in Everyone’s mother saw someone’s father. This success is
enjoyed by every TLG treatment of quantification we are aware of, but is by no
means typical of other frameworks, such as LF approaches based on Quantifier

10 C. BARKER AND C.-C. SHAN

Figure 4. Linear scope for Someone saw everyone.

Figure 5. Inverse scope for Someone saw everyone.

Raising, or even systems fairly closely related to TLG such as Jacobson’s (1999),
2000) combinatory categorial grammar, as discussed by Barker (2005).

5. Continuations in Logic and Computation

The remainder of the paper refines the basic analysis above with a view towards
detailed empirical description. One main goal will be to control order of evalu-
ation explicitly and argue for its linguistic relevance. Since evaluation order is a

TYPES AS GRAPHS: CONTINUATIONS IN TYPE LOGICAL GRAMMAR 11

computational notion that has not been discussed in TLG before, we first introduce
continuations and evaluation order from logical and computational points of view,
then turn to their linguistic applications.

5.1. CLASSICAL LOGIC

In a proof in classical logic, as in an utterance in natural language, a subexpression
can implicitly take its context as argument. We illustrate this idea in Gentzen’s
sequent calculus for classical logic LK (1935). A sequent in LK is of the form� � �,
where � and � are each a sequence of formulas. It means that the conjunction of �

entails the disjunction of �. We treat � and � as sets rather than sequences of
formulas, by omitting in proofs the structural rules Contract and Exchange (which
apply freely in LK).

The Cut rule in LK ‘cancels an intermediate formula’ A between two subproofs.

� � A, � �′, A � �′
Cut

�, �′ � �, �′ (15)

The cut can be reduced away either by substituting the left subproof into the right
subproof or vice versa. The effect of the direction of substitution is starkest when
both subproofs immediately discard the A by weakening the same sequent � � �.

··· α

� � � ⇐=

··· α

� � �
Weaken

� � A, �

··· β

� � �
Weaken

�, A � �
Cut

� � �

=⇒
··· β

� � � (16)

(This example is due to Lafont (Girard et al., 1989, Appendix B).) The reduction
selects one of α and β and discards the other: either α takes its ‘context’ β as
argument and discards it, or β takes its ‘context’ α as argument and discards it.
Hence LK is not confluent.

When A is the type of individuals (np or e) and falsum ⊥ is the type of clauses (s
or t), this substitution roughly lets a quantificational NP α take scope over the rest
of a sentence (de Groote, 2001). In classical logic (unlike in intuitionistic logic),
because α may use its context more than once (by contraction) or not at all (by
weakening), reducing different cuts gives different proofs. This nonconfluence,
which results when multiple subproofs take their contexts as argument, roughly
corresponds to the ambiguity that results when multiple quantifiers take scope
(de Groote, 2001).

The Curry-Howard isomorphism says that to reduce a proof of a formula is to run
a program of a type (Howard, 1980). Griffin (1990) discovered that this isomorphism
applies to not just intuitionistic but also classical logic: for a subproof to take its

12 C. BARKER AND C.-C. SHAN

context as argument is for a subprogram to manipulate its CONTINUATION, which
is the future of the computation from the completion of the subprogram onward.
The order in which subproofs are reduced corresponds to the order (Meyer and
Wand, 1985, page 223; Danvy and Filinski, 1989, page 15; Papaspyrou, 1998) in
which subprograms are evaluated: the context (or future, or scope) of an earlier
subexpression contains later subexpressions.

Each DOUBLE-NEGATION translation (Gentzen, 1933; Gödel, 1933; Kolmogorov,
1925) of proofs, from classical logic to intuitionistic logic, corresponds (Murthy,
1990) to a CONTINUATION-PASSING-STYLE translation (Fischer, 1972, 1993; Plotkin,
1975) of programs, from a language with facilities for manipulating continuations
to a language without. These translations disambiguate order and restore confluence
in their output, just as the TLG derivations in Figures 4 and 5 make scope explicit
in a logic with no (built-in) facility for in-situ quantification: someone is evaluated
before everyone in Figure 4, and after in Figure 5.

5.2. COMPUTING WITH DELIMITED CONTINUATIONS

Our informal notion of context in LK only roughly corresponds to quantifier scope
in natural language, for two related reasons. First, not every quantifier takes matrix
scope, so we want to substitute into a subproof only part of its context. Compu-
tationally speaking, we want to let a subexpression in a program manipulate not
the entire future of the computation, but only a prefix of that future. Second, not
every quantifier takes scope over a clause of the same type to give a clause of
the same type (Moortgat, 1996; Bernardi and Moot, 2001; Bernardi, 2002; see
also Section 9 below), so a single clause type ⊥ is not enough. For these rea-
sons, in-situ quantification in natural language really corresponds to DELIMITED

continuations.
In this section, we approach the ideas of delimiting continuations and re-

stricting evaluation contexts from the computational side of the Curry-Howard
correspondence, that is, by extending the λ-calculus. However, Section 6 shows
how delimited continuations underlie our TLG analysis of in-situ quantification,
and Section 7 and Section 8 show how restricting evaluation contexts enhance
it.

Landin (1966, 1998), Reynolds (1998), and the Scheme programming language
(Kelsey et al., 1998) introduced the idea of letting a subprogram manipulate the
future of the computation. For example, in the program

1 + 10 × (Fk.k(3) + k(4)), (17)

the subprogram Fk.k(3) + k(4) invokes its continuation 1 + 10 × [] twice: once
on 3 and once on 4. The program executes as follows.

1 + 10 × (Fk.k(3) + k(4)) ⇒ (1 + 10 × 3) + (1 + 10 × 4) ⇒ 72 (18)

TYPES AS GRAPHS: CONTINUATIONS IN TYPE LOGICAL GRAMMAR 13

In linguistic terms, the quantificational expressionFk.k(3)+k(4) takes matrix scope
over its entire context. Felleisen (1987, 1988) extended this idea to manipulate only
a prefix of the future. The prefix is delimited by a PROMPT, written #. For example,
the program

1 + #(10 × (Fk.k(3) + k(4))) (19)

binds k to the delimited continuation 10 × [], which excludes the context beyond
the prompt #. The program executes as follows.

1 + #(10 × (Fk.k(3) + k(4)))

⇒ 1 + #(10 × 3 + 10 × 4) ⇒ 1 + 70 ⇒ 71 (20)

In linguistic terms, the quantificational expression Fk.k(3) + k(4) takes scope at
the prompt.

The result of a program that uses constructs like F and # depends on the order
in which subexpressions are evaluated. For example, the program

(Fk.1) + (Fk.2) (21)

results in either 1 or 2, depending on which side of + is evaluated first. The program

(λx .1)(Fk.2) (22)

also results in either 1 or 2, depending on whether the function λx .1 is invoked first
or the argument Fk.2 is evaluated first.

One popular evaluation order in programming languages is LEFT-TO-RIGHT and
CALL-BY-VALUE. Left-to-right evaluation forces Fk.1 in (21) to be evaluated first,
so the result is 1. Call-by-value evaluation means to always evaluate the argument
before invoking the function, so (22) gives 2. Roughly, a VALUE here is an expression
that cannot execute further, like 72 and λx .1 but not Fk.2.

To regulate evaluation, Felleisen (1987) introduced EVALUATION CONTEXTS.
An evaluation context is a context in which a subprogram can be evaluated. For
example, the context of Fk.2 in (21) is (Fk.1) + [], so the program (21) can result
in 2 only if the context (Fk.1)+ [] is an evaluation context. To enforce left-to-right
evaluation, we can prohibit such an evaluation context, where the hole [] appears
to the right of a non-value like Fk.1. To enforce call-by-value evaluation, so that
the function λx .1 in (22) cannot take the argument Fk.2 right away, we can restrict
λ-conversion (also known as β-reduction) to only operate when the argument is
a value, and prohibit an evaluation context where the hole [] appears inside a
λ-abstraction.

14 C. BARKER AND C.-C. SHAN

6. Empty Antecedents Delimit Continuations

With the concept of a delimited continuation in hand, we can turn to the role of empty
antecedents. Throughout this paper, we assume a right identity 1 for the continuation
mode �, or equivalently, two structural rules Push and Pop that operate to the right of
the � mode. From a logical perspective, a logic with 1 corresponds to a modal frame
with right identity (Restall, 2000). From a computational perspective, it corresponds
to a programming language with delimited continuations, since Pop introduces and
Push eliminates the prompts mentioned in Section 5.2. Assuming that 1 is present
is equivalent to allowing the antecedent to be empty in the conclusion of the I
rule, because we can treat each occurrence of 1 as just shorthand for the type s s
or some other type of the form A A, which can be derived using such a permissive

I rule.
However, dating back at least to Lambek’s original paper on his linguistic cal-

culus (1958), there is a tradition of prohibiting empty antecedents in TLG. There
is some linguistic justification for the prohibition. For instance, assume that very
has a category appropriate for an adjective modifier, say, (n/n)/(n/n) as in a very
tall man. Then since the identity type n/n would be a theorem if we allow empty
antecedents, we incorrectly derive the ungrammatical ∗a very man.

Yet there is no logical reason to disallow empty antecedents (Moot, 2002, page
74). Nor is this work the first to find empty antecedents linguistically useful in
certain situations. For one, Moot (2002, page 85) suggests that allowing empty
antecedents can be convenient given a certain analysis of pied piping. For another,
consider the type of Moortgat’s (2000) in-situ-quantificational NP, shown in (2)
and repeated below.

(s/+(np\−s)) ◦+ (np\−np). (2)

Moortgat informally says that the role of the identity type np\−np is to ‘stay in
place’ while the quantificational part s/+(np\−s) ‘travels upwards’. If empty an-
tecedents (or a right identity) were available for Moortgat’s ◦− mode, the lexical
type of a quantificational NP could be simply s/+(np\−s). Thus Moortgat implicitly
motivates making empty antecedents available for the ◦− mode, at least under some
circumstances.

The useful derivations in our system never fuse two 1’s together, as in 1 ◦ 1
or more complex structures like 1 ◦ ((1 ◦ 1) ◦ 1). It turns out that the presence of
the right identity 1 can thus be simulated at the cost of proliferating combination
modes, structural postulates, and lexical types. The basic idea of this simulation is
to translate types with 1 into logically equivalent types without 1. We add two new
unary modes to the grammar, which are internal like �:

�◦1 A to replace A ◦ 1, �1◦ A to replace 1 ◦ A. (23)

TYPES AS GRAPHS: CONTINUATIONS IN TYPE LOGICAL GRAMMAR 15

The computation in (24) then instructs us to add the two postulates in (25).

(24)

B ��◦1C �� B ◦ C (Left′) B ◦ C �� C ��1◦ B (Right′) (25)

Finally, if any lexical item takes a type of the form A A or A A as argument,
then another lexical type needs to be added that does not take that argument. For
example, a lexical item of type wh (s s) must be made ambiguous between that
type and the type wh. The semantic value of the argument missing from the latter
version is the identity function on s.

To summarize: the selective use of empty antecedents (or equivalently, the pres-
ence of an identity for the � mode) to delimit scope is motivated by this and other
linguistic analyses in TLG, but can be obviated by adding the two unary modes
in (23) and the two postulates in (25), and introducing lexical polysemy.3

7. Refining the Analysis of Quantification by Refining Notions of Context

This section extends the coverage of the analysis of quantification above in two
ways. First, we discuss situations in which one quantificational NP contains another,
as in every dean of a school. The challenge is to understand how every can be
evaluated before (i.e., take scope over) something it contains. Second, we discuss
scope islands: expressions that limit the scope of quantifiers they contain. For
instance, it is generally assumed that everyone in Someone thought everyone left
cannot take scope outside of the embedded tensed clause everyone left; if so, then
tensed clauses are scope islands, and the challenge is to enforce them.

In both cases, we will limit scope-taking possibilities by limiting what we allow
as a legitimate semantic context. By limiting the access of an expression to its
context, we limit what it can take scope over. This same strategy will provide the
mechanism for controlling order of evaluation in general, as explained in Section 8.

As explained in Section 3, contexts and subexpressions can be represented as
types in multimodal TLG using a new mode and two structural postulates with a
geometric interpretation. The postulates for this new mode � – be they described
pictorially as in Figure 1, or symbolically as in (10) – specify a notion of context

3 Because the postulates in (25) are EXPANDING, the grammar thus extended is no longer guaranteed
to be PSPACE-parsable by virtue of Moot’s PSPACE-completeness result for NL�R− (2002, Section
9.2). If non-expanding postulates are desired, empty antecedents can still be obviated, at the cost of
further complicating the grammar: add yet another unary mode�◦, and replace B ◦C with�◦(B ◦C)
throughout.

16 C. BARKER AND C.-C. SHAN

that allows descending recursively into either the left branch or the right branch of
a ◦-fused constituent. That is:4

A context is one of the following.

a. A ‘hole to the left’ [] ◦ C , embedded in some outer context K.
This alternative is represented by the Left postulate as C◦K , and constructs
contexts of the form ((· · · ◦ C) ◦ B) ◦ A.

b. A ‘hole to the right’ B ◦ [], embedded in some outer context K.
This alternative is represented by the Right postulate as K ◦ B, and con-
structs contexts of the form A ◦ (B ◦ (C ◦ · · ·)).

c. The null context [], the ground case for recursion. This alternative is
represented by the Push and Pop postulates as 1. (26)

In (a) and (b) above, the type K represents the outer context K.

By changing the structural postulates relating the continuation mode � to other
modes, we can express different notions of what should count as an accessible
context: adding postulates broadens the notion; removing postulates constrains the
notion. Different notions of context can be mixed in the same grammar by using
one �-like mode for each notion. This section and the next demonstrate the utility
of this flexibility with three linguistic applications. We present these applications
as separate amendments to the basic continuations analysis, but these amendments
are fully compatible with each other.

7.1. RESTRICTORS

Having analyzed simple quantificational NPs like everyone and someone in Section
4, we now turn to quantifiers that take a common noun or a more complex restrictor
constituent as argument, as in most schools or every dean of a school. We assume
that common nouns denote functions from individuals (type np) to propositions
or truth values (type s), but they cannot directly combine with NPs in the default
mode (hence *Harvard school is unacceptable). Thus we introduce a new mode ◦n
(the letter n being mnemonic for “noun”) and assign nouns such as school to the
category np\ns.5 The new mode ◦n is an internal one, so the direction of this slash
is arbitrary, but it is chosen in analogy with the direction of the default-mode slash
in the type np\s of an intransitive verb.

4 Borrowing notation for evaluation contexts in programming languages (Section 5.2), this notion
of context can be expressed more succinctly by

K[] ::= K[[] ◦ C] |K[B ◦ []] | [].

5 We cannot reuse the continuation mode � for the ◦n mode and assign school to the category
np s. If we did, then the Rightn postulate that we are about to add in (32) would predict that the
strings Alice is a dean of Harvard and ∗Harvard is an Alice dean of are equal in grammaticality and

TYPES AS GRAPHS: CONTINUATIONS IN TYPE LOGICAL GRAMMAR 17

Figure 6. Every school griped.

A quantifier like every combines with a noun to the right to form a quantifica-
tional NP. Hence we let every take the type

(s (np s))/(np\ns). (27)

Figure 6 straightforwardly derives the sentence every school griped. If we add the
lexical items

dean of � (np\ns)/np, (28)

Harvard � np, (29)

then essentially the same derivation generates Every dean of Harvard griped.
How does the ◦n mode interact with the continuation mode �? We broaden our

notion of context to allow descending recursively into either branch of a ◦n-fused
constituent. That is, we revise (26) to

Unchanged cases:

meaning:

Alice � (dean of ◦ Harvard)
======================== Push
(Alice � (dean of ◦ Harvard)) � 1
======================== Left
((Alice ◦ dean of) � Harvard) � 1
======================== Rightn
Harvard � (1 � (Alice ◦ dean of))
======================== Left
Harvard � ((1 ◦ Alice) � dean of)
======================== Right
Harvard � (Alice � (dean of ◦ 1))
======================== Left
Harvard � ((Alice ◦ dean of) � 1)
======================== Pop

Harvard � (Alice ◦ dean of)

18 C. BARKER AND C.-C. SHAN

a. A ‘hole to the left’ [] ◦ C , embedded in some outer context K.
b. A ‘hole to the right’ B ◦ [], embedded in some outer context K.
c. The null context [], the ground case for recursion.

Added cases:
d. A ‘hole to the left’ [] ◦n C , embedded in some outer context K.
e. A ‘hole to the right’ B ◦n [], embedded in some outer context K. (30)

by adding the following structural postulates alongside those in (10).

B � (C ◦n K) �� (B ◦n C) � K (Leftn) (31)

(B ◦n C) � K �� C � (K ◦n B) (Rightn) (32)

A welcome consequence of this revision is that a scope ambiguity between two
quantifiers is predicted even when one is located within the other’s restrictor. This
ambiguity is illustrated in the following sentence.

Every dean of a school griped. (33)

As Dalrymple et al. note (1999, Section 2.5.1), it can be tricky to account for
linear scope in this sentence because there is no overt clausal boundary (“syntactic
unit at the f-structure level”) under every dean where a school can take scope.
Nevertheless, the ‘imaginary clausal boundary’ in the category np\ns for nouns
suffices for a school to take scope over. Figure 7 proves that dean of a school has
the type np\ns, just like a common noun. The Rightn structural rule is crucial to this
derivation. As indicated by the E deduction there, a school takes scope entirely
within this complex noun, so inserting this proof into a derivation for (33) generates
the linear-scope reading. The inverse-scope reading is also generated, without using
the additional postulates in (31)–(32). The top of that derivation proves

(every ◦ (dean of ◦ np)) ◦ griped � s. (34)

7.2. ISLANDS

If we add a new mode of combination to a grammar without also adding any
postulate relating the new mode to the continuation mode �, then contexts would
be unable to cross the new mode. In other words, the new mode would be an island.

For example, many people believe that quantificational NPs cannot take scope
outside of a tensed clause. Tensed clauses can be made into scope islands in the stan-
dard TLG way using a pair of (external) unary modalities �i and ↓

i . For instance,
if the lexical type of thought is (↓

i (np\s))/s, then Someone thought everyone left
has only the scope reading on which someone takes wide scope over everyone. This
is because

np ◦ (thought ◦ (np ◦ left)) � s (35)

TYPES AS GRAPHS: CONTINUATIONS IN TYPE LOGICAL GRAMMAR 19

Figure 7. Letting a school take narrow scope within dean of a school.

is not derivable; only

np ◦�i (thought ◦ (np ◦ left)) � s (36)

is (using the derivability relation �i
↓
i (np\s) � np\s). Without a structural postu-

late relating �i to �, everyone in the embedded subject position cannot take its
entire surrounding context up to the matrix level as its scope argument. In other
words, thought everyone left is a scope island. Another way to implement the gen-
eralization that tensed clauses are scope islands is to let thought have the lexical
type (np\s)/�i s, so that (35) is not derivable (and nor is (36)) but

np ◦ (thought ◦�i (np ◦ left)) � s (37)

is derivable.

8. Linear Order and Evaluation Order

The linear order of quantifiers in a sentence can affect its interpretation. For ex-
ample, it is frequently observed that Mandarin quantifiers tend to take surface
scope (Huang, 1982; Aoun and Li, 1993), and quantifier scope seems to be overtly
expressed by syntactic raising in Hungarian (Szabolcsi, 1997). Linguistic phenom-
ena closely related to quantification, such as binding, interrogation, and polarity
sensitivity, also often behave asymmetrically with respect to the location of quanti-
fiers. The continuations view of in-situ quantification captures quantifier ordering
through the following refinement of the notion of context. This refinement recapitu-
lates the use of continuations to study evaluation order in programming languages,

20 C. BARKER AND C.-C. SHAN

sketched in Section 5.2 above. The same concept of evaluation order is applied
again in Section 9 below to other natural language phenomena.

Figure 5 successfully derives inverse scope because everyone in object position
can take as argument its context

(1 ◦ someone) ◦ saw, (38)

or equivalently,

someone ◦ (saw ◦ []). (39)

In general, the scope of one quantifier contains another just in case the latter appears
in the context argument of the former. Imagine for the moment that we are studying
a language that resembles English but mandates linear scope. To rule out inverse
scope, we can refine our notion of context so as to rule out any quantifier linearly
located to the left of the hole. Then (39), in which the quantifier someone occurs to
the left of the hole, would no longer be a legitimate context, whereas

Alice ◦ (saw ◦ []) (40)

and

[] ◦ (saw ◦ everyone) (41)

would still be considered contexts. (The context (40) is used in Figures 2 and 3 to
derive Alice saw everyone. The context (41) is used in (13) and Figure 4 to derive
the linear-scope reading of someone saw everyone.)

We can implement this idea using a unary modality. Following programming-
language terminology, we call an expression PURE if it contains no quantifier, or
IMPURE otherwise. To distinguish pure expressions from impure ones, we tag the
types of pure expressions with a unary modality�. Any formula can be turned pure
by embedding it under � using the T postulate.

A � �A (T) (42)

The T postulate is analogous to QUOTATION or STAGING in programming languages,
which turns executable code into static data. Two quotations can be concatenated
using the K′ postulate.

�B ◦�C � �(B ◦ C) (K′) (43)

TYPES AS GRAPHS: CONTINUATIONS IN TYPE LOGICAL GRAMMAR 21

Whereas the other rules introduced so far are double-sided, these rules are single-
sided.6

We consider a derivation complete if it culminates in the type�s, not just s. The
type �s signifies a pure clause rather than a quantifier over clauses (propositions).
By contrast, everyone and someone are impure: their type �s (np �s) is not sur-
rounded by �, though the propositions they quantify over and finally produce are
pure (hence the � in �s).

To rule out inverse-scope contexts like (39), we modify our notion of context
to require that the left branch of a ◦-fused constituent be pure before descending
recursively into the right branch. That is, we revise (26) to

Unchanged case:
a. A ‘hole to the left’ [] ◦ C , embedded in some outer context K.
Tightened case:
b. A ‘hole to the right’ �B ◦ [], embedded in some outer context K.
Unchanged case:
c. The null context [], the ground case for recursion. (44)

In terms of structural postulates, we replace the Right postulate from (10) with a
more specific instance.

B � (C ◦ K) �� (B ◦ C) � K (Left) (45)

(�B ◦ C) � K �� C � (K ◦�B) (Right) (46)

With these changes to the grammar, only the linear-scope reading for Someone
saw everyone (of type �s) remains derivable. Figure 8 shows the derivation. It is
shaped exactly like Figure 4, except the T and K′ postulates above are used after (13)
to prove �np ◦ (�saw ◦ np) � �s. The inverse-scope derivation in Figure 5 is no
longer valid because the Right postulate, restricted in (46), does not apply since
someone is impure.

What we have just seen is that a linguistic preference for linear scope reflects a
computational preference for left-to-right evaluation. Of course, in many languages
(including English), inverse scope is available. That does not mean that order-of-
evaluation effects are absent – it only means that, if they are present, they are more
subtle. In the rest of this section, we examine one way to reintroduce inverse scope
that gives rise to favorable empirical consequences in Section 9 below.

The basic idea is to treat inverse scope as MULTISTAGE PROGRAMMING (see
Taha and Nielsen, 2003, and references therein). A multistage program is a pro-
gram that generates another program (and then runs it, usually). The generating

6 These rules and their names are explained by Moot (2000, pages 39 and 156). Curiously, the
present work seems to be the first linguistic application of K′.

22 C. BARKER AND C.-C. SHAN

Figure 8. Linear scope for Someone saw everyone, under left-to-right evaluation. Bernardi
(2002, page 50) shows the�I rule used in this derivation (same as�R in the Gentzen presen-
tation (Moortgat, 1997, Definition 4.16)), as well as the other natural-deduction rules for the
unary operators� and ↓, namely�E, ↓I (same as ↓R), and ↓E.

program is said to execute in an EARLIER or OUTER stage, and the generated pro-
gram is said to execute in a LATER or INNER stage. More than two stages are
also possible. Evaluation in each stage is ordered separately: later-stage code
runs only after earlier-stage code generates it. Informally, then, we can treat
the inverse-scope reading of Someone saw everyone as the following outer-stage
program.

Run the program consisting of the word someone, the word saw, and everyone.
(47)

Italics is significant here: The sentence above only uses one quantifier (everyone).
It also mentions a word (someone) that is a quantifier, but does not use it. If the
domain of people under discussion is Alice, Bob, and Carol, then (47) conjoins the
meanings of the sentences Someone saw Alice, Someone saw Bob, and Someone
saw Carol. These three sentences are the inner-stage programs.

A typical multistage programming language provides facilities for: creating
programs (by quotation or staging); combining programs (by concatenation); and
running programs (by UNQUOTATION or evaluation). Intuitively, a quoted value is

TYPES AS GRAPHS: CONTINUATIONS IN TYPE LOGICAL GRAMMAR 23

an inactive piece of program text that does not execute until the ‘wrapping’ � is
removed. Removing the wrapping turns inactive data into active code. We call this
step “unquotation” despite the fact that “evaluation” or “eval” is the commonly used
term for the same concept in the staged programming literature, to avoid confusion
with the concept of evaluation order just discussed.

The T and K′ postulates in (42) and (43) are our facilities for quoting and
concatenating programs, respectively. To run programs, we add the Unquote
rule.7

��u A � �u A (Unquote) (48)

This rule makes sense because the type of a quoted program is enclosed in a�, and
to run a program is to remove that �. Although quotation applies freely (using T),
unquotation does not. Rather, unquotation is restricted to types of the form �u A.
Here �u is a unary modality that marks those types that are allowed as top-level
types of quoted programs; this modality can be thought of as a feature checked
by the Unquote rule. In particular, we hereafter take the clause type s to be short-
hand for �us′, so that we can derive it from the quoted clause type �s (short-
hand for ��us′) using the Unquote rule. Here s′ is an atomic formula distinct
from s.8

Figure 9 shows that the inverse-scope reading of Someone saw everyone is
once again derivable in the presence of Unquote. (Because s and �s entail each
other in the presence of Unquote, we can restore the lexical types of someone and
everyone from �s (np �s) back to s (np s).) As noted above, the Unquote rule
is necessary to derive this reading if the Right rule is restricted as in (46). More
precisely, in order for one quantifier to take inverse scope over another, the Unquote
rule must apply to the clause produced by the narrower-scope quantifier (here
someone).

The identity types (the 1’s) and the unary modes add considerable complexity
to the basic analysis of Someone saw everyone given above in Figure 4. The pay-
off, as we shall see in the next section, is that these complications allow control
over order of evaluation, which accounts for fairly subtle and complex linguistic
phenomena.

7 In view of Moot’s PSPACE-completeness result for NL�R− (2002, Section 9.2), the K′ and
Unquote postulates present computational difficulties for practical parsing applications because they
are expanding. As it turns out, we can avoid expanding rules as in footnote 3: add a unary mode�i
(where i stands for “impure”), and put�i around every subformula not surrounded by�.

8 In this paper, s is the only type that can be unquoted, that is, the only type of the form �u A.
A treatment of polarity licensing that is less simplistic than the one in Section 9.3 calls for multiple
clause types that can be unquoted (Shan, 2004).

24 C. BARKER AND C.-C. SHAN

Figure 9. Inverse scope for Someone saw everyone, under left-to-right evaluation, using
unquotation.

9. Beyond Quantification

In this section, we survey continuation-based analyses of several linguistic phenom-
ena, and sketch how those analyses can be transliterated into TLG. The phenomena
discussed are quite intricate, and we cannot hope to be comprehensive here – many
additional details are available in the papers cited. Rather, our main purpose is to
show how continuations offer explanatory insights previously unavailable in TLG,
as well as improve the empirical coverage as compared to previous TLG accounts
of the same phenomena.

9.1. BINDING AND CROSSOVER

Shan and Barker (in press) argue that order of evaluation provides a unified ex-
planation for two distinct phenomena in English, weak crossover and superiority.
Here we re-express that analysis in TLG, and compare our approach to Jäger’s (to
appear) TLG analysis of weak crossover. We offer the new explanatory insight that

TYPES AS GRAPHS: CONTINUATIONS IN TYPE LOGICAL GRAMMAR 25

weak crossover and superiority stem from the same underlying mechanism (namely,
uniform default left-to-right evaluation). We offer improved empirical coverage in
cases where pied-piping, wh-binding, and weak crossover interact.

Weak crossover is the name for the fact that a quantificational NP must usually
precede any pronoun that it binds (Postal, 1971):

a. Everyonei loves hisi mother.
b. *Hisi mother loves everyonei . (49)

We derive weak crossover from the assumption that people evaluate expressions
from left to right by default, combined with the assumption that a quantifier must
be evaluated before any pronoun that it binds.

To explain weak crossover, we must first implement binding in our grammar.
We view binding dynamically, as the creation and use of discourse referents (Groe-
nendijk and Stokhof, 1991; Heim, 1982; Kamp, 1981). Binding is an ideal arena in
which to test the utility of continuations for describing natural language, for two
reasons. First, continuations model side effects, and the storage and retrieval of val-
ues is a prototypical side effect in programming languages. Second, one of the key
advantages of continuations is that they provide a general way to model multiple
side effects and their interaction, as we model below how pronouns interact with
quantifiers and wh-questions.

Many treatments of binding exist in the categorial-grammar literature (Dowty,
1992; Morrill, 2000; Moortgat, 1996; Hepple, 1990, 1992; Jacobson, 1999, 2000;
Szabolcsi, 1989, 1992). Jäger (to appear) provides a recent survey and discussion
of approaches to anaphora in TLG. He proposes a new logical connective ‘|’ with
special inference rules. Pronouns have category np|np; more generally, X |Y means
‘I function as something of category X , and need to be bound by something of
category Y ’. Jäger’s inference rules allow any expression of category Y to bind into
the X |Y as long as the binder precedes the bound expression.

Two features of Jäger’s proposal are most relevant to us: resource duplication
and linear order.

Resource duplication. In standard TLG, every linguistic resource is used exactly
once, never duplicated. By contrast, binding uses a resource twice: once for the
antecedent and then again for the bound pronoun. To deal with this mismatch,
the inference rules for | incorporate a limited9 form of resource duplication.

9 Jäger details logical and linguistic reasons to limit resource duplication. Logically, Jäger’s system
preserves the finite-reading property alongside cut elimination, decidability, and the subformula prop-
erty. Linguistically, the sentence The claimi that someone saw everyone and itsi negation are both
true cannot possibly be true; to rule out the spurious reading where someone saw everyone scopes
differently between the antecedent and the bound pronoun it, we must only duplicate formulas like np,
not someone ◦ (saw ◦ everyone). Thus the | connective must not obey contravariance: A � B must
not entail np|B � np|A.

26 C. BARKER AND C.-C. SHAN

Linear order. Like us but unlike in most LF-based accounts of binding, Jäger
recognizes the role of linear order. His system requires that the antecedent precede
the pronoun it binds, and he gives empirical arguments that binding is sensitive
to linear order. In particular, he correctly predicts weak crossover facts like those
in (49).

In part because Jäger is primarily interested in resource duplication, he merely
stipulates linear order: it follows from nothing, and the rules could just as easily
have required that the binder follow its bound pronoun. We use continuations to
provide a deeper explanation for the role of linear order in binding. Our account rules
out weak crossover in quantificational binding by assuming that people evaluate
expressions from left to right by default.

To help compare our approach with Jäger’s (to appear), we also accomplish
binding by means of a (single) inference rule that incorporates a limited form
of resource duplication. However, since (unlike Jäger) we are working within a
multimodal TLG, rather than introducing a new logical connective |, we introduce
a new modality ◦b for expressing binding relationships (‘b’ for ‘binding’):

she � (np\b A) (np A). (50)

Conceptually, np\b A is the category of an expression that would otherwise count
as an A, but which contains a bindable pronoun. Thus the lexical entry for she
turns any enclosing expression of category A into something of category np\b A.
For instance, John thought she left would have category np\bs.

Our binding rule says that a subexpression np within a context K can bind into
the larger expression K[np].10

np � K � np ◦b (np � K) (Bind) (51)

To illustrate, Figure 10 derives Everyonei saw hisi mother, in which the subex-
pression everyone binds into [everyone] saw his mother. On our analysis, the

10 Like Dalrymple et al. (1999), we limit resource duplication to np only – footnote 9 explains
why. This form of limited resource duplication is much more primitive than Jäger’s, but suffices here
because we focus on the role of linear order in binding and in other linguistic phenomena that do not
duplicate resources. It would be nice to combine Jäger’s treatment of resource duplication with our
treatment of linear order, because the former unifies NP anaphora with VP ellipsis while the latter
unifies crossover with superiority, but we leave that to future work. One promising bridge between
the two treatments is Morrill’s account of anaphora in terms of discontinuous constituency (2000):
perhaps � is associative in nature with 1 as its left as well as right identity, and Jäger’s |L and |R rules
can be rephrased as follows.

Y � B �[A � B] � C
|L

�[(A|B) � Y] � C

An � · · · � A1 � K � B
|R

(An |C) � · · · � (A1|C) � K � B|C

TYPES AS GRAPHS: CONTINUATIONS IN TYPE LOGICAL GRAMMAR 27

Figure 10. Everyonei saw hisi mother.

pronoun itself is a scope-taking expression, taking scope over its binder’s con-
text. In Figure 10, everyone binds he, and the context of everyone is [] saw his
mother. (This context appears at the bottom of the derivation, where everyone en-
ters, as (saw ◦ (he ◦’s mother)) ◦1.) Thus he must take scope over this context – that
is, must take as its context np saw []’s mother, in which the type np plays the role
of the placeholder variable bound by the quantifier everyone. (This context appears
in the derivation, where he enters, as ’s mother ◦ ((1 ◦�np) ◦�saw).)

It is always easier to explain why a good derivation works than why some other
sentence has no derivation, but let us offer a few words on why the crossover
example *Hisi mother saw everyonei (49b) does not have a bound reading. The
crucial difference between (49a) and (49b) is that everyone is now to the right
of the pronoun it is trying to bind. In order for everyone to take scope over the
context his mother saw [], we must apply the Right postulate twice (just as in the
inverse-scope derivation above in Figure 5). But the Right postulate requires the

28 C. BARKER AND C.-C. SHAN

introduction of at least two �s. Once diamonds enter the picture, the only way to
remove them and unwrap the content of the quoted elements is by applying the
Unquote postulate. But since Unquote only applies to expressions of type s, and
there is no way to arrive at the type s without first unwrapping the pronoun, there is an
unresolvable standoff: once the non-unquotable np\bs gets quoted, the derivation is
doomed.

9.2. QUESTIONS AND SUPERIORITY

As mentioned above, our analysis provides an explanation for superiority that paral-
lels our explanation for weak crossover in relying on left-to-right evaluation order.
Superiority is the name (Chomsky, 1973) for the fact (Kuno and Robinson, 1972)
that a wh-trace must usually precede any additional, in-situ wh-phrase:

a. Who saw what?
b. Who do you think saw what?
c. *What did who see ? (52)

We suggest that in (52c), the presence of the additional wh-phrase who interferes
with the ability of the fronted wh-phrase to bind its trace. The crucial assumption
is that the wh-trace in (52c) can only get bound if it takes outermost scope over
any additional wh-phrase. Once again, our basic strategy will be to show that the
wh-trace can take scope over the in-situ wh-phrase only if the trace comes first.

Of course, before we can explain superiority, we have to first provide basic
lexical entries for wh-words, and treat their usage both in-situ and raised. Just as
we introduced a new modality ◦b above to express binding relationships, we now
add a new modality ◦? to express questions:

who, what, whose � (np\?S) (np S). (53)

Here the type variable S ranges over all types. Conceptually, np\?S is the category
of an S-question that seeks an np-answer. For example, a single-wh question has the
type np\?s, and a double-wh question has the type np\?np\?s. The lexical entries
above specify that wh-words take scope in situ, so they by themselves generate

TYPES AS GRAPHS: CONTINUATIONS IN TYPE LOGICAL GRAMMAR 29

Figure 11. Deriving Whose mother (did) Alice see? from Alice saw whose mother?.

in-situ wh-questions. To generate raised-wh questions, we add two postulates.11

A ◦? (B ◦ (C � K)) � A ◦? (B � (C ◦ K)) (Trace Left) (54)

A ◦? (C ◦ (�B � K)) � A ◦? (C � (K ◦�B)) (Trace Right) (55)

Figure 11 shows the basic usage scenario for these additions to the grammar. On one
hand, the entire derivation culminates in the pied-piped raised-wh question Whose
mother did Alice see?. On the other hand, the E rule near the top concludes already
with the in-situ wh-question Alice saw whose mother?. Of course, the result should
be Whose mother did Alice see?, not the ungrammatical *Whose mother Alice saw?;
however, we ignore subject-auxiliary inversion and verb forms purely for the sake
of keeping the derivations simpler.

Let us now examine the derivation of a double-wh question that abides by
superiority, so that we can see what goes wrong in an attempt to violate supe-
riority. Figure 12 derives the question Who saw what?, in which who is raised
and what remains in situ. (We say that who is raised, even though it does not af-
fect the string, because the derivation uses Trace Left near the end. We use Who
saw what? as our example for simplicity.) In Figure 12, Trace Left applies to the

11 These two postulates are really the composition of the Left and Right postulates with a single
new postulate

A ◦? (B ◦ (� K)) � A ◦? (B � K) (Trace),

where is the empty string, in other words the identity for the default mode ◦. But as Section 6
explained, the default mode should not have an identity if we want very to have the type (n/n)/(n/n).
If multimodal TLG were to allow empty antecedents everywhere and use unary modalities to enforce
non-emptiness when necessary, then we would be able to replace Trace Left and Trace Right with
this Trace rule – an appealing prospect.

30 C. BARKER AND C.-C. SHAN

Figure 12. Who saw what?.

raised wh-phrase who in the context [] saw what. In other words, the raised wh-
phrase takes scope over the rest of the sentence. Similarly, to derive the supe-
riority violation *What did who see ? (or *what who saw, to ignore subject-
auxiliary inversion), what must take scope over the context who saw []. Just as
in the previous section, taking scope over such a context requires using Right pos-
tulate twice, which introduces two �s and necessitates Unquote. But questions
cannot be unquoted: their types are of the form A\?S, not �u S. Superiority is thus
enforced.

For Jäger, wh-phrases have category q/(np ↑ s), where q is the category of
questions and “np ↑ s” is an s with an np-gap. Because connecting gaps with their
fillers uses a mechanism separate from binding, whatever might explain superiority
in Jäger’s system will be independent of the explanation for weak crossover. On
our account, connecting a wh-trace with its filler uses the same continuation-based
mechanism as binding, and the explanation for why an intervening in-situ wh-
word prevents a fronted wh-phrase from binding its trace follows from the same
evaluation order mechanism as weak crossover.

TYPES AS GRAPHS: CONTINUATIONS IN TYPE LOGICAL GRAMMAR 31

Whether or not weak crossover and superiority ought to have a unified expla-
nation is debatable, and further investigation may reveal empirical arguments that
these two phenomena are in fact distinct. We will not attempt to settle that ques-
tion here; our main point is that we cannot even have the debate in TLG unless
continuations are made available.

As for empirical coverage, there is an interesting interaction between wh-binding
and weak crossover that we call PIED BINDING, which provides an argument in favor
of our unified treatment.

a. Whoi saw hisi mother?
b. ∗Whoi did hisi mother see ? (56)

To a first approximation, a wh-phrase can bind a pronoun only if the trace of the
wh-phrase precedes the pronoun. One explanation that has been popular at least
since Reinhart (1983) is that the trace itself does the binding. On Jäger’s system, the
trace can indeed accomplish the binding in examples such as (56a) (see especially
pages 124–125). The unacceptability of (56b) is also explained, since when the
trace follows the pronoun, the prohibition against cataphora predicts the relative
unacceptability of (56b).

But there are more complex examples which cast doubt on the assumption that
it is the trace that is doing the binding:

a. Whosei father did John say saw hisi mother?
b. ∗Whosei father did John say hisi mother saw ? (57)

In each case, the trace is bound by the entire pied-piped wh-phrase whose father.
That is, in each case, it is a father who is seeing or being seen. Yet the pronoun can
be bound by the wh-word alone, as indicated by the indexation in (57a), suggesting
that the wh-word must be able to bind the pronoun directly after all.

Interestingly, (57b) shows that binding still requires linear precedence of a
sort: the pronoun can be bound by the wh-word whose only if the wh-trace pre-
cedes the pronoun. In our system, whose can bind a pronoun just as a quantifi-
cational NP does. But just as superiority is violated when an in-situ wh-phrase
interferes between a raised wh-phrase and its trace, weak crossover is perpetrated
when a bindable pronoun interferes between a raised wh-phrase and its trace.
Put differently, (57b) constitutes a weak crossover violation because the corre-
sponding in-situ wh-question John said hisi mother saw whosei father? does.
This complex pattern of interactions between pied-piping, binding of wh-traces,
and binding of pronouns falls out from our unified account without additional
stipulation.

This brief discussion hardly counts as a thorough comparison between our
analysis and Jäger’s; that would take far too much space here. Our only inten-
tion is to suggest that a continuation-based analysis of a complex phenomenon

32 C. BARKER AND C.-C. SHAN

can hold its own against a robust previous TLG account, and to point out
that our account provides a different pattern of explanation. In particular, we
connect the linear order asymmetry of weak crossover with the computational
concept of evaluation order; and we also provide an analysis on which weak
crossover and superiority have distinct but closely parallel explanations. Thus con-
tinuations constitute a new and potentially valuable explanatory tool for TLG
analyses.

9.3. POLARITY LICENSING

Polarity sensitivity (see, e.g., Ladusaw, 1979) has been a popular linguistic phe-
nomenon to analyze in the type-logical (Bernardi, 2002; Bernardi and Moot, 2001),
categorial (Dowty, 1994), and lexical-functional (Fry, 1997, 1999) approaches to
grammar. The multitude of these analyses is in part due to the more explicit emphasis
that these traditions place on the syntax-semantics interface – be it in the form of
the Curry-Howard isomorphism, Montague-style semantic rules, or linear logic as
glue – and the fact that polarity sensitivity is a phenomenon that spans syntax and
semantics.

On one hand, which polarity items are licensed or prohibited in a given lin-
guistic environment depends, by and large, on semantic properties of that environ-
ment (Ladusaw, 1979; Krifka, 1995, inter alia). For example, to a first approxima-
tion, a negative polarity item (NPI) can occur only in a DOWNWARD-ENTAILING

context, such as under the scope of a MONOTONICALLY DECREASING quantifier.
A quantifier q, of type (np → s) → s, is monotonically decreasing just in
case

∀s1 · ∀s2(∀x · s2(x) ⇒ s1(x)) ⇒ q(s1) ⇒ q(s2). (58)

Thus (59a) is acceptable because the scope of no one is downward-entailing, while
(59b) and (59c) are unacceptable.

a. No one saw anyone.
b. *Everyone saw anyone.
c. *Alice saw anyone. (59)

To account for these contrasts, Fry (1997, 1999), Bernardi (2002), and Bernardi
and Moot (2001) all split the clause type s into several types, related by subtyping.
Fry (1997, 1999) distinguishes between s and � � (s ⊗ �) in linear logic, where
� stands for polarity licensing as a grammatical resource. Analogously, Bernardi
(2002) and Bernardi and Moot (2001) distinguish between different unary modali-
ties applied to s.

A simplistic version of Bernardi’s analysis is to distinguish between the clause
types s (‘neutral clause’) and ↓

p�ps (‘negative clause’). Here �p is a new unary

TYPES AS GRAPHS: CONTINUATIONS IN TYPE LOGICAL GRAMMAR 33

mode (the letter p stands for “polarity”), and we abbreviate ↓
p�ps to s−. We choose

the type ↓
p�ps so that s � s− is a theorem in multimodal TLG.

Id�ps � �ps
↓
pI

s � ↓
p�ps

(60)

Splitting the clause type like this helps us account for polarity sensitivity, because
we can now assign different types to different quantifiers in the lexicon:

everyone � s (np s), no one � s (np s−), anyone � s− (np s−). (61)

The type of everyone is unchanged: it takes scope over a neutral clause to form a
neutral clause. The types of no one and anyone involve the newly introduced s−:
they both take scope over a negative clause, but no one forms a neutral clause
whereas anyone forms a negative clause. As (60) shows, a neutral clause can be
converted to a negative clause. Thus, as Figure 13 shows, anyone can take scope
in np ◦ (saw ◦ anyone) to form a negative clause s−, even though the verb saw
produces a neutral clause s initially. As before, we consider a derivation complete
if it culminates in the type s, not s−. The fact that np ◦ (saw ◦ anyone) only has the
type s− (as derived above) and not s predicts that a clause like *Alice saw anyone
(59c) is not a grammatical sentence by itself. Moreover, because there is no way
to convert a negative clause to a neutral clause, everyone cannot take scope over
a negative clause, so *Everyone saw anyone (59b) is ruled out as well. However,
no one (unlike Alice or everyone) can take scope over anyone to form a complete
(neutral) clause. Thus even our simplistic rendering of Bernardi’s account predicts

Figure 13. The negative clause (incomplete sentence) np saw anyone.

34 C. BARKER AND C.-C. SHAN

correctly that No one saw anyone (59a) has a linear-scope reading (but no inverse-
scope reading). We also predict correctly that the sentence

No one introduced everyone to anyone. (62)

has no linear-scope reading, and that it does have an interpretation on which no
one scopes over anyone, then everyone. (Kroch (1974), Linebarger (1980), and
Szabolcsi (2004) discuss such INTERVENTION cases.)

On the other hand, a restriction on surface syntactic form, such as that imposed
by polarity sensitivity, is by definition a matter of syntax. Besides, there are syntactic
restrictions on the configuration relating the licensor to the licensee. For example,
(59a) above is acceptable – no one manages to license anyone – but (63) below is
not. As the contrasts in (64)–(66) further illustrate, the licensor usually needs to
precede the licensee: (65) exonerates c-command; (66) exonerates subject-object
asymmetry.

*Anyone saw no one. (63)
a. Alice didn’t visit anyone. (64)
b. *Anyone didn’t visit Alice.
a. Nobody’s mother saw anybody’s father. (65)
b. *Anybody’s mother saw nobody’s father.
a. I gave nothing to anybody. (66)
b. *I gave anything to nobody.
c. I gave nobody anything.
d. *I gave anybody nothing.

These and other examples show that the syntactic relations allowed between licensor
and licensee for polarity purposes are similar to those allowed between antecedent
and pronoun for binding purposes. Because Fry, Bernardi, and Bernardi and Moot
focus on quantification and scope, they easily characterize how no must scope over
any in order to license it, but they leave it a mystery why no must precede any
in order to license it. In particular, they wrongly accept all of (63)–(66). Ladusaw
(1979) noted this mystery in his Inherent Scope Condition (ISC): “If the NPI is
clausemate with the trigger, the trigger must precede” (Section 4.4). He went on to
speculate that this left-right requirement is related to quantifier scope and sentence
processing, as we claim:

I do not at this point see how to make this part of the ISC follow from any
other semantic principle. This may be because the left-right restriction, like the
left-right rule for unmarked scope relations, should be made to follow from the
syntactic and semantic processing of sentences (Section 9.2)

Likewise, Fry (1999, Section 8.2) faults current accounts of polarity sensitivity for
ignoring linear order.

Continuations provide precisely the missing link between linear order and quan-

TYPES AS GRAPHS: CONTINUATIONS IN TYPE LOGICAL GRAMMAR 35

tifier scope. Recall from Section 8 that inverse scope can be generated, even under a
regime of left-to-right evaluation, using the Unquote rule in (48). The crucial step,
as illustrated in Figure 9, is to unquote the clause produced by the narrower-scope
quantifier. In that example, everyone can take inverse scope over someone, because
someone produces a neutral clause s. A neutral clause can be unquoted because
its type s is shorthand for �us′, which is enclosed in �u . By contrast, a negative
clause cannot be unquoted because its type s− is shorthand for ↓

p�p�us′, which is
not enclosed in �u . Given that anyone produces s−, then, inverse scope over any-
one is impossible. This prediction correctly rules out the unacceptable examples in
(63)–(66) while leaving (62) available.

This explanation for linear-order effects in polarity licensing is further developed
elsewhere (Shan, 2004). We are not aware of any other account of polarity sensitivity
that unifies its syntactic properties with weak crossover as we do using left-to-right
evaluation.

9.4. REVERSING EVALUATION ORDER

One way to see that our implementation of evaluation order unifies linear order ef-
fects in weak crossover, superiority, and polarity is to impose right-to-left evaluation
and see what happens. Because our Left and Right postulates embody left-to-right
evaluation order, we can reverse default evaluation order while leaving all other
aspects of the system unchanged.

More specifically, suppose that we replace the Left and Right postulates in
(45)–(46) with

B � (�C ◦ K) �� (B ◦�C) � K (Left), (67)

(B ◦ C) � K �� C � (K ◦ B) (Right), (68)

and the Trace Left and Trace Right postulates in (54)–(55) with12

A ◦? (B ◦ (�C � K)) � A ◦? (B � (�C ◦ K)) (Trace Left), (69)

A ◦? (C ◦ (B � K)) � A ◦? (C � (K ◦ B)) (Trace Right). (70)

We can still derive linear and inverse scope for quantifiers, but the predictions
concerning the weak crossover judgments in (49), the superiority judgments in
(52), and the polarity judgments in (63)–(66) reverse: binders must follow any
pronouns they bind, wh-traces must follow any additional wh-phrases, and polarity
triggers must follow the polarity items they license.

12 As one would expect from footnote 11.

36 C. BARKER AND C.-C. SHAN

10. Conclusions

Let’s take stock. Our core proposal implements the full power of the quantifica-
tional type constructor q using only a single new mode (�) along with two structural
postulates, Left and Right. (If empty antecedents are forbidden, we also need to
simulate Push and Pop.) We provided a geometric interpretation of types to explain
how this parsimonious reduction of q constitutes an implementation of continua-
tions: under the geometric interpretation, the continuation mode decomposes types
into a subexpression in the foreground and a remainder in the background, where
the remainder is interpreted as a context.

We then (Section 8) imposed left-to-right evaluation order by stipulating that a
quantificational element could only take scope over an expression to its left if that
expression had no side effects, as indicated by the presence of the unary modality�.
In order to restore inverse scope, we added an Unquote rule to remove the �,
though only for expressions in category s. Under the analogy with computation,
the evaluation of an expression is delayed for as long as it is under the quotation
modality �. By quoting a leftmost quantifier and then unquoting it later, we can
delay the evaluation of the quantifier and let it take narrow (hence inverse) scope
with respect to some following quantifier.

We proposed analyses on which pronominal binding (Section 9.1), the binding
of a wh-trace (Section 9.2), and licensing of a negative polarity item (Section 9.3)
were all accomplished via side-effects. Because bindable pronouns have their own
side-effects, their presence disrupted the unquotation strategy, so that the analysis
automatically predicts that a quantifier can take scope over a pronoun to its left but
cannot bind it. That is, the analysis correctly allows inverse scope but not weak
crossover violations. Similarly, the analysis predicts that a wh-phrase can bind
its trace only when no other wh-phrase intervenes. That is, the analysis correctly
allows multiple wh-questions but not superiority violations. Finally, the analysis
automatically correctly requires a negative polarity licensor to precede its licensee.

The theoretical parsimony and empirical robustness of these analyses show how
continuations offer new and valuable tools for multimodal TLG writers. In partic-
ular, continuation-based analyses offer new insights into quantification, binding,
multiple wh-questions, and negative polarity.

Acknowledgements

We would not have undertaken this project without the encouragement of Bob
Carpenter and David Dowty. Nor would we have gotten anywhere without many
patient explanations from Philippe de Groote, the topological insights of Dylan
Thurston, and Richard Moot’s theorem prover for multimodal TLG analysis, made
accessible through Dick Oehrle’s web interface. We also gratefully acknowledge
comments and suggestions from David Dowty, Gerhard Jäger, and Richard Moot.
The second author was supported by the United States National Science Foundation
Grant BCS-0236592.

TYPES AS GRAPHS: CONTINUATIONS IN TYPE LOGICAL GRAMMAR 37

References

Abbott, M., Altenkirch, T., Ghani, G.N., and McBride, C., 2003, “Derivatives of containers,” in
TLCA 2003: Proceedings of the 6th International Conference on Typed Lambda Calculi and
Applications, Martin Hofmann, ed., pp. 16–30. Lecture Notes in Computer Science. Vol. 2701,
Berlin: Springer-Verlag.

Aoun, J. and Li, Y.-h. A., 1993, Syntax of Scope. Cambridge: MIT Press.
Barendregt, H.P., 1981, The Lambda Calculus: Its Syntax and Semantics. Amsterdam: Elsevier

Science.
Barker, C., 2002, “Continuations and the nature of quantification,” Natural Language Semantics 10(3),

211–242.
Barker, C., 2004, “Continuations in natural language,” in CW’04: Proceedings of the 4th ACM SIG-

PLAN Continuations Workshop, Hayo Thielecke, ed., pp. 1–11. Tech. Rep. CSR-04-1, School of
Computer Science, University of Birmingham.

Barker, C., in press, “Remark on Jacobson 1999: Crossover as a local constraint,” Linguistics and
Philosophy.

Belnap, N.D., Jr. 1982, “Display logic,” Journal of Philosophical Logic 11(4), 375–417.
Bernardi, R., 2002, Reasoning with polarity in categorial type logic. Ph.D. thesis, Utrecht Institute of

Linguistics (OTS), Utrecht University.
Bernardi, R., 2003, CTL: In situ binding. http://www.let.uu.nl/∼Raffaella.Bernardi/persona

l/q solutions.pdf.
Bernardi, R., and Moot, R. 2001, “Generalized quantifiers in declarative and interrogative sentences,”

Journal of Language and Computation 1(3), 1–19.
Chomsky, N., 1973, Conditions on transformations. in A Festschrift for Morris Halle, Stephen An-

derson and Paul Kiparsky, ed., pp. 232–286. New York: Holt, Rinehart and Winston.
Dalrymple, M., ed. 1999, Semantics and Syntax in Lexical Functional Grammar: The Resource Logic

Approach. Cambridge: MIT Press.
Dalrymple, M., Lamping, J., Pereira, F., and Saraswat, V.A., 1999, “Quantification, anaphora, and

intensionality,” in Dalrymple (1999), Chap. 2, pp. 39–89.
Danvy, O. and Filinski, A., 1989, “A functional abstraction of typed contexts,” Tech. Rep. Vol. 89/12,

DIKU, University of Copenhagen, Den-mark. http://www.daimi.au.dk/ danvy/Papers/fatc.ps.gz.
Dowty, D., 1992, ‘Variable-free’ syntax, variable-binding syntax, the natural deduction Lambek

calculus, and the crossover constraint,” in Proceedings of the 11th West Coast Conference on
Formal Linguistics, Jonathan Mead, ed., Stanford, CA: Center for the Study of Language and
Information.

Dowty, D.R., 1994, “The role of negative polarity and concord marking in natural language reasoning,”
in Proceedings from Semantics and Linguistic Theory IV, Mandy Harvey and Lynn Santelmann,
ed., Ithaca: Cornell University Press.

Felleisen, M., 1987, The calculi of λv-CS conversion: A syntactic theory of control and state in
imperative higher-order programming languages. Ph.D. thesis, Computer Science Department,
Indiana University. Also as Tech. Rep. 226.

Felleisen, M., 1988, “The theory and practice of first-class prompts,” in POPL ’88: Conference
Record of the Annual ACM Symposium on Principles of Programming Languages, pp. 180–190.
New York: ACM Press.

Fischer, M.J., 1972, “Lambda-calculus schemata,” in Proceedings of ACM Conference on Proving
Assertions About Programs, vol. 7(1) of ACM SIG-PLAN Notices, pp. 104–109. New York: ACM
Press. Also ACM SIG-ACT News 14.

Fischer, M.J., 1993, “Lambda-calculus schemata,” Lisp and Symbolic Computation 6(3–4), 259–288.
Fry, J., 1997, “Negative polarity licensing at the syntax-semantics interface,” in Proceedings of the

35th Annual Meeting of the Association for Computational Linguistics and 8th Conference of

38 C. BARKER AND C.-C. SHAN

the European Chapter of the Association for Computational Linguistics, Philip R. Cohen and
Wolfgang Wahlster, ed., pp. 144–150. San Francisco: Morgan Kaufmann.

Fry, J., 1999, “Proof nets and negative polarity licensing,” in Dalrymple (1999), Chap. 3, pp. 91–116.
Gentzen, G., 1933, Über das Verhältnis zwischen intuitionistischer und klassischer Arithmetik. Galley

proof, Mathematische Annalen. English translation (Gentzen, 1969c).
Gentzen, G., 1935, Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 176–

210, 405–431. English translation Gentzen (1969b).
Gentzen, G., 1969a, The Collected Papers of Gerhard Gentzen, M.E. Szabo, ed., Amsterdam: North-

Holland.
Gentzen, G., 1969b, “Investigations into logical deduction,” in Gentzen (1969a), Chap. 3, pp. 68–131.
Gentzen, G., 1969c, “On the relation between intuitionist and classical arithmetic,” in Gentzen (1969a),

Chap. 2, pp. 53–67.
Girard, J.-Y., Taylor, P., and Lafont, Y., 1989, Proofs and Types. Cambridge: Cambridge University

Press.
Gödel, K., 1933, “Zur intuitionistischen Arithmetik und Zahlentheorie,” Ergebnisse eines mathema-

tischen Kolloquiums 4: 34–38. English translation (Gödel, 1965).
Gödel, K., 1965, “On intuitionistic arithmetic and number theory,” in The Undecidable: Basic Papers

on Undecidable Propositions, Unsolvable Problems and Computable Functions, Martin Davis,
ed., pp. 75–81. Hewlett, NY: Raven Press.

Griffin, T.G., 1990, “A formulae-as-types notion of control,” in POPL ’90: Conference Record of the
Annual ACM Symposium on Principles of Programming Languages, pp. 47–58. New York: ACM
Press.

Groenendijk, J. and Stokhof, M., 1991, “Dynamic predicate logic,” Linguistics and Philosophy 14(1),
39–100.

de Groote, P., 2001, “Type raising, continuations, and classical logic,” in Proceedings of the 13th
Amsterdam Colloquium, Robert van Rooy and Martin Stokhof, ed., pp. 97–101. Institute for
Logic, Language and Computation, Universiteit van Amsterdam.

Heim, I., 1982, “The semantics of definite and indefinite noun phrases,” Ph.D. thesis, Department of
Linguistics, University of Massachusetts.

Hepple, M., 1990, “The grammar and processing of order and dependency: A categorial approach,”
Ph.D. thesis, Centre for Cognitive Science, University of Edinburgh.

Hepple, M., 1992, “Command and domain constraints in a categorial theory of binding,” in Pro-
ceedings of the 8th Amsterdam Colloquium, Paul Dekker and Martin Stokhof, ed., pp. 253–270.
Institute for Logic, Language and Computation, Universiteit van Amsterdam.

Hinze, R. and Jeuring, J., 2001, “Weaving a web,” Journal of Functional Programming 11(6), 681–
689.

Howard, W.A., 1980, “The formulae-as-types notion of construction,” in To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, Jonathan P. Seldin and J. Roger Hindley,
ed., pp. 479–490. San Diego, CA: Academic Press.

Huang, C.-T.J., 1982, “Logical relations in Chinese and the theory of grammar,” Ph.D. thesis, De-
partment of Linguistics and Philosophy, Massachusetts Institute of Technology.

Huet, G., 1997, “The zipper,” Journal of Functional Programming 7(5), 549–554.
Jacobson, P., 1999, “Towards a variable-free semantics,” Linguistics and Philosophy 22(2), 117–

184.
Jacobson, P., 2000, “Paycheck pronouns, Bach-Peters sentences, and variable-free semantics,” Natural

Language Semantics 8(2), 77–155.
Jäger, G., to appear, Anaphora and Type Logical Grammar, Berlin: Springer-Verlag.
Kamp, H., 1981, “A theory of truth and semantic representation,” in Formal Methods in the Study of

Language: Proceedings of the 3rd Amsterdam Colloquium, Jeroen A.G. Groenendijk, Theo M.V.
Janssen, and Martin B.J. Stokhof, ed., pp. 277–322. Amsterdam: Mathematisch Centrum.

TYPES AS GRAPHS: CONTINUATIONS IN TYPE LOGICAL GRAMMAR 39

Kelsey, R., Clinger, W.D., Rees, J., Abelson, H., Dybvig, R.K., Haynes, C.T., Rozas, G.J., Adams,
N.I. IV, Friedman, DP., Kohlbecker, E., Steele, G.L., Bartley, D.H., Halstead, R., Oxley, D.,
Sussman, G.J., Brooks, G., Hanson, C., Pitman, K.M., and Wand, M., 1998, “Revised5 report on
the algorithmic language Scheme,” Higher-Order and Symbolic Computation 11(1), 7–105. Also
as ACM SIGPLAN Notices 33(9):26–76.

Kolmogorov, A., 1925, “O principe tertium non datur,” Mathematicheskij sbornik 32, 646–667. En-
glish translation (Kolmogorov, 1967).

Kolmogorov, A., 1967, “On the principle of excluded middle,” in From Frege to Gödel: A source Book
in Mathematical Logic, 1879–1931, Jean van Heijenoort, ed., pp. 414–437. Cambridge: Harvard
University Press.

Krifka, M., 1995, “The semantics and pragmatics of polarity items,” Linguistic Analysis 25, 209–257.
Kroch, A.S., 1974, “The semantics of scope in English,” Ph.D. thesis, Massachusetts Institute of

Technology. Reprinted by New York: Garland, 1979.
Kuno, S. and Robinson, J.J. 1972, “Multiple wh questions,” Linguistic Inquiry 3, 463–487.
Ladusaw, W.A., 1979, “Polarity sensitivity as inherent scope relations,” Ph.D. thesis, Department of

Linguistics, University of Massachusetts. Reprinted by New York: Garland, 1980.
Lambek, J., 1958, “The mathematics of sentence structure,” American Mathematical Monthly 65(3),

154–170.
Landin, P.J., 1966, “The next 700 programming languages,” Communications of the ACM 9(3), 157–

166.
Landin, P.J., 1998, “A generalization of jumps and labels,” Higher-Order and Symbolic Computation

11(2), 125–143.
Linebarger, M.C., 1980, “The grammar of negative polarity,” Ph.D. thesis, Massachusetts Institute of

Technology.
Meyer, A.R. and Wand, M., 1985, “Continuation semantics in typed lambda-calculi (summary),” in

Logics of Programs, Rohit Parikh, ed., pp. 219–224. Lecture Notes in Computer Science Vol. 193,
Berlin: Springer-Verlag.

Moortgat, M., 1988, Categorial Investigations: Logical and Linguistic Aspects of the Lambek Calcu-
lus. Dordrecht: Foris.

Moortgat, M., 1995, “In situ binding: A modal analysis,” in Proceedings of the 10th Amsterdam
Colloquium, Paul Dekker and Martin Stokhof, ed., pp. 539–549. Institute for Logic, Language
and Computation, Universiteit van Amsterdam.

Moortgat, M., 1996, “Generalized quantification and discontinuous type constructors,” in Discontin-
uous Constituency, Harry C. Bunt and Arthur van Horck, ed., pp. 181–207. Berlin: Mouton de
Gruyter.

Moortgat, M., 1997, “Categorial type logics,” in Handbook of Logic and Language, Johan F.A.K. van
Benthem and Alice G.B. ter Meulen, ed., Chap. 2. Amsterdam: Elsevier Science.

Moortgat, M., 2000, Computational Semantics: Lab Sessions. http://www.let.uu.nl/∼Michael.
Moortgat/personal/Courses/cslab2000s.pdf.

Moot, R., 2002, “Proof nets for linguistic analysis,” Ph.D. thesis, Utrecht Institute of Linguistics
(OTS), Utrecht University.

Morrill, G.V., 1994, Type Logical Grammar: Categorial Logic of Signs. Dordrecht: Kluwer.
Morrill, G.V., 2000, “Type-logical anaphora,” Report de Recerca Vol. LSI-00-77-R, Departament de

Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya.
Murthy, C.R., 1990, “Extracting constructive content from classical proofs,” Ph.D. thesis, Department

of Computer Science, Cornell University. Also as Tech. Rep. TR90-1151.
Papaspyrou, N.S., 1998, “Denotational semantics of evaluation order in expressions with side effects,”

in Recent Advances in Information Science and Technology: 2nd Part of the Proceedings of the
2nd IMACS International Conference on Circuits, Systems and Computers, Nikos E. Mastorakis,
ed., pp. 87–94. Singapore: World Scientific.

40 C. BARKER AND C.-C. SHAN

Plotkin, G,D., 1975, “Call-by-name, call-by-value and the λ-calculus,” Theoretical Computer Science
1(2), 125–159.

Postal, P.M., 1971, Cross-Over Phenomena. New York: Holt, Rinehart and Winston.
Reinhart, T., 1983, Anaphora and Semantic Interpretation. London: Croom Helm.
Restall, G., 2000, An Introduction to Substructural Logics. London: Routledge.
Reynolds, J.C., 1998, “Definitional interpreters for higher-order programming languages”, Higher-

Order and Symbolic Computation 11(4), 363–397.
Shan, C.-c., 2002, “A continuation semantics of interrogatives that accounts for Baker’s ambiguity,”

in Proceedings from Semantics and Linguistic Theory XII, Brendan Jackson, ed., pp. 246–265.
Ithaca: Cornell University Press.

Shan, C.-c., 2004, “Polarity sensitivity and evaluation order in type-logical grammar,” in Proceedings
of the 2004 Human Language Technology Conference of the North American Chapter of the
Association for Computational Linguistics, Susan Dumais, Daniel Marcu, and Salim Roukos, ed.,
Vol. 2, pp. 129–132. Somerset, NJ: Association for Computational Linguistics.

Shan, C.-c. and Barker, C., in press, “Explaining crossover and superiority as left-to-right evaluation,”
Linguistics and Philosophy.

Steedman, M.J., 2000, The Syntactic Process. Cambridge: MIT Press.
Szabolcsi, A., 1989, “Bound variables in syntax (are there any?),” in Semantics and Contextual

Expression, Renate Bartsch, Johan F.A.K. van Benthem, and Peter van Emde Boas, ed., pp. 295–
318. Dordrecht: Foris.

Szabolcsi, A., 1992, “Combinatory grammar and projection from the lexicon,” in Lexical Matters,
Ivan A. Sag and Anna Szabolcsi, ed., pp. 241–269. CSLI Lecture Notes Vol. 24, Stanford, CA:
Center for the Study of Language and Information.

Szabolcsi, A., 1997, “Strategies for scope taking,” in Ways of Scope Taking, Anna Szabolcsi, ed.,
Chap. 4, pp. 109–154. Dordrecht: Kluwer.

Szabolcsi, A., 2004, “Positive polarity–negative polarity,” Natural Language and Linguistic Theory
22(2), 409–452.

Taha, W. and Nielsen, M.F., 2003, “Environment classifiers,” in POPL ’03: Conference Record of the
Annual ACM Symposium on Principles of Programming Languages, pp. 26–37. New York: ACM
Press.

