Uses of the Dot Product

1. Find the angle between the vectors $\mathbf{A}=\mathbf{i}+8 \mathbf{j}$ and $\mathbf{B}=\mathbf{i}+2 \mathbf{j}$.

Answer: As usual, call the angle in question θ. Since $\mathbf{A} \cdot \mathbf{B}=|\mathbf{A} \| \mathbf{B}| \cos \theta$ we have

$$
\cos \theta=\frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}||\mathbf{B}|}=\frac{\langle 1,8\rangle \cdot\langle 1,2\rangle}{\sqrt{65} \sqrt{5}}=\frac{17}{5 \sqrt{13}}
$$

Thus, $\theta=\cos ^{-1}\left(\frac{17}{5 \sqrt{13}}\right)$.
2. Take points $P=(a, 1,-1), Q=(0,1,1), R=(a,-1,3)$. For what value(s) of a is $P Q R$ a right angle?
Answer: We need $\overrightarrow{\mathbf{Q P}} \cdot \overrightarrow{\mathbf{Q R}}=0 \Rightarrow\langle a, 0,-2\rangle \cdot\langle a,-2,2\rangle=a^{2}-4=0 \Rightarrow a= \pm 2$.
3. Show that the diagonals of a parallelogram are perpendicular if and only if it is a rhombus, i.e., its four sides have equal lengths.
Answer: Let two adjacent sides of the parallelogram be the vectors \mathbf{A} and \mathbf{B} (as shown in the figure). Then we have the two diagonals are $\mathbf{A}+\mathbf{B}$ and $\mathbf{A}-\mathbf{B}$. We have

$$
(\mathbf{A}+\mathbf{B}) \cdot(\mathbf{A}-\mathbf{B})=\mathbf{A} \cdot \mathbf{A}-\mathbf{B} \cdot \mathbf{B} .
$$

Therefore,

$$
(\mathbf{A}+\mathbf{B}) \cdot(\mathbf{A}-\mathbf{B})=0 \Leftrightarrow \mathbf{A} \cdot \mathbf{A}=\mathbf{B} \cdot \mathbf{B} .
$$

I.e., the diagonals are perpendicular if and only if two adjacent edges have equal lengths. In other words, if the parallelogram is a rhombus.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

