4.2 - Trigonometric Functions: The Unit Circle

Accelerated Pre-Calculus

Mr. Niedert

4.2 - Trigonometric Functions: The Unit Circle

(1) The Unit Circle

4.2 - Trigonometric Functions: The Unit Circle

(1) The Unit Circle
(2) Trigonometric Functions

4.2 - Trigonometric Functions: The Unit Circle

(1) The Unit Circle
(2) Trigonometric Functions
(3) Domain and Period of Sine and Cosine

4.2 - Trigonometric Functions: The Unit Circle

(1) The Unit Circle
(2) Trigonometric Functions
(3) Domain and Period of Sine and Cosine
4. Evaluating Trigonometric Functions with a Calculator

$45^{\circ}-45^{\circ}-90^{\circ}$ Triangles

Practice
The hypotenuse of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle is 1 unit. Find the missing two sides.

$30^{\circ}-60^{\circ}-90^{\circ}$ Triangles

Practice

The hypotenuse of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle is 1 unit. Find the missing two sides.

The Unit Circle

- Using what we found with the $45^{\circ}-45^{\circ}-90^{\circ}$ triangles and the $30^{\circ}-60^{\circ}-90^{\circ}$ triangles, we can complete what is referred to as the unit circle.

The Unit Circle

- Using what we found with the $45^{\circ}-45^{\circ}-90^{\circ}$ triangles and the $30^{\circ}-60^{\circ}-90^{\circ}$ triangles, we can complete what is referred to as the unit circle.
- You will need to know the unit circle like the back of your hand through the remainder of this year and into Calculus that's why I want to show you where it comes from instead of expecting you to just memorize it.

The Unit Circle

4.2 - Trigonometric Functions: The Unit Circle Quiz

 Tomorrow- You will be given a blank unit circle and be expected to complete the unit circle tomorrow.

The Six Trigonometric Functions

The Six Trigonometric Functions

The six trigonometric functions can be defined in terms of their (x, y) coordinates. Let t be real number and let (x, y) be the point on the unit circle corresponding to t.

$$
\begin{array}{lll}
\sin t=y & \cos t=x & \tan t=\frac{y}{x}, x \neq 0 \\
\csc t=\frac{1}{y}, y \neq 0 & \sec t=\frac{1}{x}, x \neq 0 & \cot t=\frac{x}{y}, y \neq 0
\end{array}
$$

Evaluating Trigonometric Functions

Example

Evaluate the six trigonometric functions at each real number.
a $t=\frac{2 \pi}{3}$
b $t=\frac{4 \pi}{3}$

Evaluating Trigonometric Functions

Practice

Evaluate the six trigonometric functions at each real number.
a $t=2 \pi$
b $t=\frac{\pi}{2}$
c $t=-\frac{2 \pi}{3}$
4.2 - Trigonometric Functions: The Unit Circle (Part 1 of 2) Assignment

Part 1: pg. 299 \#6-28 even

Today's Learning Target(s)

(1) I can evaluate trigonometric functions with and without a calculator.

Domain and Range of Sine and Cosine

Demonstration \#1
What is the domain of $y=\sin x$?

Domain and Range of Sine and Cosine

Demonstration \#1
What is the domain of $y=\sin x$? What is the range?

Domain and Range of Sine and Cosine

Demonstration \#1

What is the domain of $y=\sin x$? What is the range?

Demonstration \#2
 What is the domain of $y=\cos x$?

Domain and Range of Sine and Cosine

Demonstration \#1

What is the domain of $y=\sin x$? What is the range?

Demonstration \#2
 What is the domain of $y=\cos x$? What is the range?

Periodic Functions

- As we saw on the previous slide, we have a domain of all real numbers, but the y-values repeat over and over again.

Periodic Functions

- As we saw on the previous slide, we have a domain of all real numbers, but the y-values repeat over and over again.
- Functions that behave in such a repetitive (or cyclic) manner are called periodic.

Periodic Functions

- As we saw on the previous slide, we have a domain of all real numbers, but the y-values repeat over and over again.
- Functions that behave in such a repetitive (or cyclic) manner are called periodic.
- The period of the function refers to how "long" it takes for the y-values to complete a full cycle.

Even and Odd Trigonometric Functions

- Back at the beginning of the year, we discuss that a function is even if $f(-x)=f(x)$.

Even and Odd Trigonometric Functions

- Back at the beginning of the year, we discuss that a function is even if $f(-x)=f(x)$.
- Similarly, a function is odd if $f(-x)=-f(x)$.

Even and Odd Trigonometric Functions

- Back at the beginning of the year, we discuss that a function is even if $f(-x)=f(x)$.
- Similarly, a function is odd if $f(-x)=-f(x)$.

Even and Odd Trigonometric Functions

The cosine and secant functions are even.

$$
\cos (-t)=\cos t \quad \sec (-t)=\sec t
$$

The sine, cosecant, tangent, and cotangent functions are odd.

$$
\begin{array}{ll}
\sin (-t)=-\sin t & \csc (-t)=-\csc t \\
\tan (-t)=-\tan t & \cot (-t)=-\cot t
\end{array}
$$

Using the Period to Evaluate the Sine and Cosine

Practice

Find the following.
a $\sin \frac{13 \pi}{6}$
b $\cos \left(\frac{-11 \pi}{6}\right)$
c If $\tan (t)=\frac{2}{3}$, find $\tan (-t)$.

Using a Calculator to Evaluate Trigonometric Functions

Walk-Through

Evaluate each of the following using a calculator.
a $\cos \frac{2 \pi}{3}$
b $\sin \frac{5 \pi}{7}$
C $\csc 2$
4.2 - Trigonometric Functions: The Unit Circle (Part 2 of 2) Assignment

Part 1: pg. 299 \#6-28 even
Part 2: pg. 299-300 \#30-52 even
4.2 - Trigonometric Functions: The Unit Circle Assignment pg. 299-300 \#6-52 even

