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Abstract
The fundamental matrix is a basic tool in the anal-

ysis of scenes taken with two uncalibrated cameras,

and the 8-point algorithm is a frequently cited method

for computing the fundamental matrix from a set of

8 or more point matches. It has the advantage of

simplicity of implementation. The prevailing view is,

however, that it is extremely susceptible to noise and

hence virtually useless for most purposes. This paper

challenges that view, by showing that by preceding the

algorithm with a very simple normalization (transla-

tion and scaling) of the coordinates of the matched

points, results are obtained comparable with the best

iterative algorithms. This improved performance is

justified by theory and verified by extensive experi-

ments on real images.

1 Introduction
The 8-point algorithm for computing the essential

matrix was introduced by Longuet-Higgins in a now
classic paper ([7]). In that paper the essential ma-
trix is used to compute the structure of a scene from
two views with calibrated cameras. The great advan-
tage of the 8-point algorithm is that it is linear, hence
fast and easily implemented. If 8 point matches are
known, then the solution of a set of linear equations
is involved. With more than 8 points, a linear least
squares minimization problem must be solved. The
term 8-point algorithm will be used in this paper to
describe this method whether only 8 points, or more
than 8 points are used.

The essential property of the essential matrix is
that it conveniently encapsulates the epipolar geome-
try of the imaging configuration. One notices imme-
diately that the same algorithm may be used to com-
pute a matrix with this property from uncalibrated
cameras. In this case of uncalibrated cameras it has
become customary to refer to the matrix so derived as

the fundamental matrix. Just as in the calibrated case,
the fundamental matrix may be used to reconstruct
the scene from two uncalibrated views, but in this case
only up to a projective transformation ([3, 5]).

Unfortunately, despite its simplicity the 8-point al-
gorithm has often been criticized for being excessively
sensitive to noise in the specification of the matched
points. Indeed this belief has become the prevailing
wisdom. Consequently, because of its importance,
many alternative algorithms have been proposed for
the computation of the fundamental matrix. See [8]
for a description and comparison of several algorithms
for finding the fundamental matrix. Without excep-
tion, these algorithms are considerably more compli-
cated than the 8-point algorithm. Other iterative al-
gorithms have been described (briefly) in [6, 1].

It is the purpose of this paper to challenge the com-
mon view that the 8-point algorithm is inadequate
and markedly inferior to the more complicated algo-
rithms. The poor performance of the 8-point algo-
rithm can probably be traced to implementations that
do not take sufficient account of numerical considera-
tions, most specifically the condition of the set of lin-
ear equations being solved. It is shown in this paper
that a simple transformation (translation and scaling)
of the points in the image before formulating the lin-
ear equations leads to an enormous improvement in
the condition of the problem and hence of the stability
of the result. The added complexity of the algorithm
necessary to do this transformation is insignificant.

It is not claimed here that this modified 8-point
algorithm will perform quite as well as the best iter-
ative algorithms. However it is shown by thousands
of experiments on many images that the difference is
not very great between the modified 8-point algorithm
and iterative techiques. Indeed the 8-point algorithm
does better than some of the iterative techniques.



2 Outline of the 8-point Algorithm
Notation Vectors are represented by bold lower
case letters, such as u, and all such vectors are thought
of as being column vectors unless explicitly transposed
(for instance u� is a row vector). Vectors are multi-
plied as if they were matrices. In particular, for vec-
tors u and v, the product u�v represents the inner
product, whereas uv� is a matrix. The norm of a vec-
tor f is equal to the square root of the sum of squares of
its entries, that is the Euclidean length of the vector.
Similarly, for matrices, we use the Frobenius norm,
which is defined to be the square root of the sum of
squares of the entries of the matrix.

Linear solution for the fundamental matrix.
The fundamental matrix is defined by the equation

u′�Fu = 0 (1)

for any pair of matching points u′ ↔ u in two im-
ages. Given sufficiently many point matches u′i ↔ ui,
(at least 8) this equation (1) can be used to com-
pute the unknown matrix F . In particular, writing
u = (u, v, 1)� and u′ = (u′, v′, 1)� each point match
gives rise to one linear equation in the unknown en-
tries of F . The coefficients of this equation are easily
written in terms of the known coordinates u and u′.
Specifically, the equation corresponding to a pair of
points (u, v, 1) and (u′, v′, 1) will be

uu′f11 + uv′f21 + uf31 + vu′f12 + vv′f22

+ vf32 + u′f13 + v′f23 + f33 = 0 .

The row of the equation matrix may be represented as
a vector (uu′, uv′, u, vu′, vv′, v, u′, v′, 1). From all the
point matches, we obtain a set of linear equations of
the form

Af = 0 (2)

where f is a 9-vector containing the entries of the ma-
trix F , and A is the equation matrix. The fundamen-
tal matrix F , and hence the solution vector f is defined
only up to an unknown scale. For this reason, and to
avoid the trivial solution f , we make the additional
constraint ||f || = 1 where ||f ||, is the norm of f1.

Under these conditions, it is possible to find a solu-
tion to the system (2) with as few as 8 point matches.

1An alternative is to set F33 = 1 and solving a linear least

squares minimization problem. The general conclusions of this

paper are equally valid for this version of the algorithm.

With more than 8 point matches, we have an over-
specified system of equations. Assuming the existence
of a non-zero solution to this system of equations, we
deduce that the matrix A must be rank-deficient. In
other words, although A has 9 columns, the rank of A
must be at most 8. In fact, except for exceptional con-
figurations ([9]) the matrix A will have rank exactly
8, and there will be a unique solution for f .

This previous discussion assumes that the data
is perfect, and without noise. In fact, because of
inaccuracies in the measurement or specification of
the matched points, the matrix A will not be rank-
deficient – it will have rank 9. In this case, we will not
be able to find a non-zero solution to the equations
Af = 0. Instead, we seek a least-squares solution
to this equation set. In particular, we seek the vec-
tor f that minimizes ||Af || subject to the constraint
||f || = f�f = 1. It is well known (and easily derived
using Lagrange multipliers) that the solution to this
problem is the unit eigenvector of A�A corresponding
to the smallest eigenvalue of A. Note that since A�A
is positive semi-definite and symmetric, all its eigen-
vectors are real and positive, or zero. For convenience,
(though somewhat inexactly), we will call this eigen-
vector the least eigenvector of A�A. An appropriate
algorithm for finding this eigenvector is the algorithm
of Jacobi ([10]) or the Singular Value Decomposition
([10]).

The singularity constraint. An important prop-
erty of the fundamental matrix is that it is singular,
in fact of rank 2. Furthermore, the left and right null-
spaces of F are generated by the vectors representing
(in homogeneous coordinates) the two epipoles in the
two images. Most applications of the fundamental ma-
trix rely on the fact that it has rank 2. The matrix
F found by solving the set of linear equations (2) will
not in general have rank 2, and we should take steps
to enforce this constraint. The most convenient way
is to correct the matrix F found by the solution of
(2). Matrix F is replaced by the matrix F ′ that min-
imizes the Frobenius norm ||F − F ′|| subject to the
condition detF ′ = 0. Thus, let F = UDV � be the
Singular Value Decomposition of F , where D is a di-
agonal matrix D = diag(r, s, t) satisfying r ≥ s ≥ t.
We let F ′ = Udiag(r, s, 0)V �. This method was sug-
gested by Tsai and Huang ([11]) and has been proven
to minimize the Frobenius norm of F−F ′, as required.

Thus, the 8-point algorithm for computation of the



fundamental matrix may be formulated as consisting
of two steps, as follows.

Linear solution. Given point matches u′i ↔ ui,
solve the equations u′i

�Fui = 0 to find F . The
solution is the least eigenvector, f of A�A, where
A is the equation matrix.

Constraint Enforcement. Replace F by F ′, the
closest singular matrix to F under Frobenius
norm.

The algorithm thus stated is extremely simple, and
rapid to implement, assuming the availability of a suit-
able linear algebra library (for instance [10]).

3 Transformation of the Input
Image coordinates are sometimes given with the ori-

gin at the top-left of the image, and sometimes with
the origin at the centre. The question immediately oc-
curs whether this makes a difference to the results of
the 8-point algorithm for computing the fundamental
matrix. More generally, to what extent is the result of
the 8-point algorithm dependent on the choice of coor-
dinates in the image. Suppose, for instance the image
coordinates were changed by some affine or even pro-
jective transformation before running the algorithm.
Will this materially change the result? That is the
question that we will now consider.

Suppose that coordinates u in one image are re-
placed by û = Tu, and coordinates u′ in the other
image are replaced by û′ = T ′u′. Substituting in
the equation u′�Fu = 0, we derive the equation
û′�T ′−�FT−1û = 0, where T ′−� is the inverse trans-
pose of T ′. This relation implies that T ′−�FT−1 is the
fundamental matrix corresponding to the point corre-
spondences û′ ↔ û. An alternative method of finding
the fundamental matrix is therefore suggested, as fol-
lows.

1. Transform the image coordinates according to
transformations ûi = Tui and û′i = T ′u′i.

2. Find the fundamental matrix F̂ corresponding to
the matches û′i ↔ ûi.

3. Set F = T ′�F̂ T .

The fundamental matrix found in this way corre-
sponds to the original untransformed point correspon-
dences u′i ↔ ui. What choice should be made for
the transformations T and T ′ will be left unspecified

for now. First, we need to determine whether carrying
out this transformation has any effect whatever on the
result.

As verified above, u′�Fu = û′�F̂ û, where F̂ is de-
fined by F̂ = T ′−�FT−1. So, if u′�Fu = ε, then
also û′�F̂ û = ε. Thus, there is a one-to-one corre-
spondence between F and F̂ giving rise to the same
error. It may appear therefore that the matrices F
and F̂ minimizing the error ε (or more exactly, the
sum of squares of errors corresponding to all points)
will be related by the formula F̂ = T ′−�FT−1, and
hence one may retrieve F as the product T ′�F̂ T . This
conclusion is false however. For, although F and F̂

so defined give rise to the same error ε, the condition
||F || = 1, imposed as a constraint on the solution, is
not equivalent to the condition ||F̂ || = 1. In particu-
lar, there is no one-to-one correspondence between F

and F̂ giving rise to the same error ε, subject to the
constraint ||F || = ||F̂ || = 1. In fact, the two solu-
tions for the fundamental matrix may be considerably
different in the presence of moderate amounts of noise.

4 Condition Number
The linear method consists in finding the least

eigenvector of the matrix A�A. This may be done
by expressing A�A as a product UDU� where U is
orthogonal and D is diagonal. We assume that the
diagonal entries of D are in non-increasing order. In
this case, the least eigenvector of A�A is the last col-
umn of U . Denote by κ the ratio d1/d8 (recalling that
A�A is a 9×9 matrix). The parameter κ is the condi-
tion number2 of the matrix A�A, well known to be an
important factor in the analysis of stability of linear
problems ([4]). If κ is large, then very small changes
to the data can cause large changes to the solution.
The sensitivity of invariant subspaces is discussed in
detail in [4], p413.

We now consider how the condition number of the
matrix A�A may be made small. We consider two
sorts of transformation, translation and scaling. These
methods will be given only an intuitive justification,
since a complete analysis of the condition number of
the matrix is too complex to undertake here.

The major reason for the poor condition of the ma-
trix A�A is the lack of homogeneity in the image co-
ordinates. In an image of dimension 200× 200, a typ-
ical image point will be of the form (100, 100, 1). If

2Strictly speaking, d1/d9 is the condition number, but d1/d8

is the parameter of importance here.



both u and u′ are of this form, then the correspond-
ing row of the equation matrix will be of the form
r� = (104, 104, 102, 104, 104, 102, 102, 102, 1). The con-
tribution to the matrix A�A is of the form rr�, which
will contain entries ranging between 108 and 1. For in-
stance, the diagonal entries of A�A will be
(108, 108, 104, 108, 108, 104, 104, 104, 1). Summing over
all point correspondences will result in a matrix A�A
for which the diagonal entries are approximately in
this proportion.

We may now use the Interlacing Property ([4], page
411) for the eigenvalues of a symmetric matrix to
get a bound on the condition number of the matrix.
Suppose that the diagonal entries of X = A�A are
equal to (108, 108, 104, 108, 108, 104, 104, 104, 1). We
denote by Xr the trailing r × r principal submatrix
(that is the last r columns and rows) of the matrix
A�A, and by λi(Xr) its i-th largest eigenvalue. Thus,
X9 = A�A and κ = λ1(X9)/λ8(X9). First we con-
sider the eigenvalues of X2. Since the sum of the
two eigenvalues is trace(X2) = 104 + 1, we see that
λ1(X2) + λ2(X2) = 104 + 1. Since the matrix is pos-
itive semi-definite, both eigenvalues are non-negative,
so we may deduce that λ1(X2) ≤ 104 + 1. From
the interlacing property, we deduce that λ8(X9) ≤
λ7(X8) ≤ . . . λ1(X2) ≤ 104 + 1. On the other hand,
also from the interlacing property, we know that the
largest eigenvalue of A�A is not less than the largest
diagonal entry. Thus, λ1(X9) ≥ 108. Therefore, the
ratio κ = λ1(X9)/λ8(X9) ≥ 108/(104 + 1). Usually, in
fact λ8(X9) will be much smaller than 104 +1 and the
condition number will be far greater.

This analysis shows that scaling the coordinate so
that the homogeneous coordinates are on the average
equal to unity will improve the condition of the matrix
A�A.

Translation Consider a case where the origin of the
image coordinates is at the top left hand corner of the
image, so that all the image coordinates are positive.
In this case, an improvement in the condition of the
matrix may be achieved by translating the points so
that the centroid of the points is at the origin. This
claim was verified by experimentation, but can also be
explained informally by arguing as follows. Suppose
that the first image coordinates (the u-coordinates)
of a set of points are {1001.5, 1002.3, 998.7, . . .}. By
translating by 1000, these numbers may be changed
to {1.5, 2.3,−1.3}. Thus, in the untranslated values,

the significant values of the coordinates are obscured
by the coordinate offset of 1000. The significant part
of the coordinate values is found only in the third or
fourth significant figure of the coordinates. This has a
bad effect on the condition of the corresponding ma-
trix A�A. A more detailed analysis of the effect of
translation is not provided here.

5 Effect of Scaling in Stage 2

So far we have discussed the effect of a normalizing
transformation on the first stage of the 8-point algo-
rithm, namely the solution of the set of linear equa-
tions to find F . The second step of the algorithm is
to enforce the singularity constraint that detF = 0.

The method described above of enforcing the singu-
larity constraint gives the singular matrix F̂ nearest to
F in Frobenius norm. The trouble with this method is
that it treats all entries of the matrix equally, regard-
less of their magnitude. Thus, entries of F small in
absolute value may be expected to undergo a pertur-
bation much greater relative to their magnitude than
the large entries.

Suppose that a set of matched points is normal-
ized so that on the average all three homogeneous co-
ordinates have the same magnitude. Thus, a typical
point will look like (1, 1, 1)�. The fundamental matrix
computed from these normalized coordinates may be
expected to have all its entries approximately of the
same magnitude.

Now, consider what happens if we scale the coor-
dinates of points ui and u′i by a factor which we will
assume is equal to 100. Thus, a typical coordinate will
be of the order of (100, 100, 1)�. The corresponding
fundamental matrix F will be obtained from original
one by multiplying the first two rows, and the first two
columns by 10−2. Entries in the the top left 2×2 block
will be multiplied by 10−4. We conclude that a typical
fundamental matrix derived from coordinates of mag-
nitude (100, 100, 1)� will have entries of the following
order of magnitude.

F =




10−4 10−4 10−2

10−4 10−4 10−2

10−2 10−2 1


 (3)

To verify this conclusion, here is the fundamental
matrix for the pair of house images in Fig 1 3.

3The notation -9.766e-08 means −9.766 × 10−8.



F =



−9.796e− 08 1.473e− 06 −6.660e− 04
−6.346e− 07 1.049e− 08 7.536e− 03
8.107e− 04 −7.739e− 03 −2.364e− 02




In comparing this with (3), one must bear in mind
that F is defined only up to nonzero scaling. The
imbalance of the matrix is even worse than predicted
by (3) because the image has dimension 512 × 512.
Now, in taking the closest singular matrix, all entries
will tend to be perturbed by approximately the same
amount. However, the relative perturbation will be
greatest for the smallest entries. The question arises
whether the small entries in the matrix F are impor-
tant. Consider a typical point u ≈ (100, 100, 1)�. In
computing the corresponding epipolar line Fu, we see
that the largest entries in the vector u are multiplied
by the smallest, and hence least relatively stable en-
tries of the matrix F . Thus, for computation of the
epipolar line, the smallest entries in F are the most
important. We have the following undesirable condi-
tion :

The most important entries in the fundamen-
tal matrix are precisely those that are sub-
ject to the largest relative perturbation when
enforcing the singularity constraint without
prior normalization.

This condition is corrected if normalization of the
image coordinates is carried out first, for then all en-
tries of the fundamental matrix will be treated ap-
proximately equally, and none is more important than
another in computing epipolar lines.

6 Normalizing transformations
The previous sections concerned with the condition

number of the matrix A�A indicate that it is desir-
able to apply a transformation to the coordinates be-
fore carrying out the 8-point algorithm for finding the
fundamental matrix.
6.1 Isotropic Scaling

As a first step, the coordinates in each image are
translated (by a different translation for each image)
so as to bring the centroid of the set of all points to
the origin. The coordinates are also scaled. The pre-
vious sections suggested that the best results will be
obtained if the coordinates are scaled, so that on the
average a point u is of the form u = (1, 1, 1)�. Such
a point will lie a distance

√
2 from the origin. Rather

than choose different scale factors for each direction,
an isotropic scaling factor is chosen so that the u and
v coordinates of a point are scaled equally. The trans-
formation is as follows :

1. The points are translated so that their centroid is
at the origin.

2. The points are then scaled isotropically so that
the average distance from the origin is equal to√

2.

Such a transformation is applied to each of the two
images independently.
6.2 Non-isotropic Scaling

As an alternative to the isotropic scaling method
just described, an affine transformation was tried, in
which the centroid of the points was placed at the
origin and the two principal moments of the set of
points were both made equal to unity. Thus, the set of
points are transformed to an approximately symmetric
circular cloud of points of radius one about the origin.
The results obtained using this type of transformation
to the data were little different from those obtained
using the isotropic scaling method.

7 Experimental Evaluation
The algorithm was coded, consisting of steps 1, 2

and 3 as given in section 3. The transformations used
in step 1 are isotropic scalings as described in section
6.1. Step 2 consists of the two sub-steps of Linear
solution and Constraint enforcement as described in
section 2. This algorithm will be called the normalized
8-point algorithm.

This algorithm was tested on a large number of
real images to evaluate its performance. In carrying
out these tests, the normalized 8-point algorithm was
compared with several other algorithms for finding the
fundamental matrix. For the most part the imple-
mentations of these other algorithms were provided
by other researchers. In this way the results were not
biased in any way by my possibly inefficient imple-
mentation of competing algorithms. In addition, the
images and matched points used as inputs have been
supplied to me. Methods of obtaining the matched
points therefore varied from image to image, as did
methods for eliminating bad matches (outliers). In
all cases, however, the matched points were found by
automatic means, and usually some sort of outlier de-
tection and removal was carried out, based on least-
median squares techniques (see [2]).



The general procedure for evaluation was as follows.

1. Matching points were computed by automatic
techniques, and outliers were detected and re-
moved.

2. The fundamental matrix was computed using a
subset of all points.

3. For each point ui, the corresponding epipolar line
Fui was computed and distance from the line Fui
from the matching point u′i was calculated. This
was done in both directions, (that is starting from
points ui in the first image and also from u′i in
the second image). The average distance of the
epipolar line from the corresponding point was
computed, and used as a measure of quality of the
computed Fundamental matrix. This evaluation
was carried out using all matched points, and not
just the ones that were used to compute F .

7.1 The algorithms
Here is a brief description of the algorithms tested.

The 8-point algorithm. In this algorithm, the
points were used as is, without pre-transformation
to compute the fundamental matrix. The singularity
constraint was enforced.

The normalized 8-point algorithm. The 8-point
algorithm was used with the translation and isotropic
scaling method described in section 6.1. The singular-
ity constraint was enforced.

Minimizing the epipolar distances. An imple-
mentation by Long Quan of an algorithm described by
Luong ([8, 2]) was used. This is an iterative algorithm
that uses a parametrization of the fundamental matrix
with 7 parameters. Thus the singularity constraint is
enforced as part of the algorithm. The cost function
being minimized is the squared sum of distances of the
points from epipolar lines. The point-line distances in
both images are taken into account.

Optimal Algorithm (Minimizing point displace-
ment). This algorithm (my own implementation) is
an iterative algorithm. It finds the fundamental ma-
trix F , and points ûi and û′i such that û′i�F ûi =
0 exactly, detF = 0 and the squared pixel error∑

i d(ûi,ui)2 + d(û′i,u
′
i)

2 is minimized. The details

of how this is done are described in [6]. Under the
assumption of gaussian noise in the placement of the
matched points (an approximation to the truth), this
algorithm gives the fundamental matrix correspond-
ing to the most likely true placement of the matched
points (the estimated points ûi ↔ û′i). For this rea-
son, I have generally considered this algorithm to be
the best available. The experiments generally bear out
this belief, but it is not the purpose of this paper to
justify this point.

7.2 The Images.
The various algorithms were tried with 5 different

pairs of images of diverse types and with different
placements of the epipoles. Figures 1 and 2 show two
of the different image sets and the placement of the
epipoles. A few of the epipolar lines are shown in the
images. The intersection of the pencil of lines is the
epipole. There was a wide variation in the accuracy
of the matched points for the different images.

Fig 1. Houses Images.

Fig 2. Calibration Jig.

7.3 Graphical Presentation of the Re-
sults.

The following graphs show the results of several
runs of the algorithms, with different numbers of
points being used. The number of points used to
compute the fundamental matrix ranged from 8 up to
three-quarters of the total number of matched points.
For each value of N , the algorithms were run 100 times
using randomly selected sets of N matching points.
The average error (point – epipolar line distance) was



computed using all available matched points. The
graphs show the average error over the 100 runs for
each value of N . The error shown is the average point-
epipolar line distance measured in pixels.

Graph 1 : Effect of Normalization on the Con-
dition Number.
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This graph shows a plot of the base-10 logarithm
of the condition number of the linear equation set in
the case of the house images, for varying numbers of
points (the x-axis). The upper curve is without nor-
malization, the lower one with normalization. The
improvement is approximately 108.

Graph 2 : Comparison of normalized and un-
normalized 8-point algorithms.
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These set of graphs show the improvement achieved
by normalization. On the left is the data for the
houses. On the right is the data for the calibration
jig. Note the differences in Y -scale for the different
plots. For the calibration jig the matched points were
known with extreme accuracy (about 0.1 pixels accu-
racy) whereas for the houses the accuracy was about
1 pixel.

Graph 3 : Comparison with minimized epipolar
distance
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This graph compares the normalized 8-point algo-
rithm, the optimal algorithm and the epipolar distance
minimization algorithm. In this case data was gath-
ered for only one run for each value of N . Never-
theless, the results seem to be consistent. The nor-
malized 8-point and optimal algorithms perform best,
and the point-epipolar distance algorithm slightly less
well. The graphs start with 9 points. Only the opti-
mal algorithm performed well with 8 points (1.2 pixels
error), and the other algorithms were off the graph.

Graph 4 : Reconstruction Error.

To test the performance of the various algorithms
for reconstruction accuracy experiments were done to
measure the degradation of accuracy as noise levels
increase. The Calibration images (Fig 2) were used
for this purpose. Since reconstruction error is most
appropriately measured in an Euclidean frame, a Eu-
clidean model was built for the calibration cube, ini-
tially by inspection and then by refinement using the
image data. This model served as ground truth. Next,
the image coordinates were corrected (by an average of
0.02 pixels) to agree exactly with the Euclidean model.
Varying amounts of zero-mean gaussian noise were
added to the image coordinates, a projective recon-
struction was carried out, and a projective transforma-
tion was computed to bring the projective reconstruc-
tion most nearly into agreement with the model. The
average 3D displacement of the reconstructed points



from the model was measured. The plotted values are
the result average over all points (128 in all) for 10
trials. The reconstruction error is measured in units
equal to the length of the side of one of the black
squares in the image.

At the left are the results of three algorithms : at
the top is unnormalized 8-point algorithm, whereas at
the bottom almost overlapped are the results of the
normalized 8-point algorithm and the optimal algo-
rithm. In the right hand graph, only the normalized
8-point and optimal algorithms are shown. The re-
sult shows that the results of the normalized 8-point
algorithm is almost indistinguishable from the opti-
mal algorithm, but that the unnormalized algorithm
performs very much worse.

8 Conclusions

With normalization of the coordinates in order to
improve the condition of the problem, the 8-point al-
gorithm performs almost as well as the best iterative
algorithms. On the other hand, it runs about 20 times
faster and is far easier to code. There seems to be
little advantage in choosing the non-isotropic scaling
scheme for the normalization transform, since the sim-
pler isotropic scaling performs just as well. Without
normalization of the inputs, however, the 8-point algo-
rithm performs quite badly, often with errors as large
as 10 pixels, which makes it virtually useless. It would
seem to follow that the reason that other researchers
have had such poor results with the 8-point algorithm
is that they have not carried out any preliminary nor-
malization step as discussed here. An exception is the
algorithm of Zisserman and Beardsley ([1]) which does
do some normalization. This algorithm was also tested
and found to perform almost as well as our normal-
ized 8-point algorithm, but space limitations forbid
presentation of more details of these tests.
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