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Preface

This book is about convex optimization, a special class of mathematical optimiza-
tion problems, which includes least-squares and linear programming problems. It
is well known that least-squares and linear programming problems have a fairly
complete theory, arise in a variety of applications, and can be solved numerically
very efficiently. The basic point of this book is that the same can be said for the
larger class of convex optimization problems.

While the mathematics of convex optimization has been studied for about a
century, several related recent developments have stimulated new interest in the
topic. The first is the recognition that interior-point methods, developed in the
1980s to solve linear programming problems, can be used to solve convex optimiza-
tion problems as well. These new methods allow us to solve certain new classes
of convex optimization problems, such as semidefinite programs and second-order
cone programs, almost as easily as linear programs.

The second development is the discovery that convex optimization problems
(beyond least-squares and linear programs) are more prevalent in practice than
was previously thought. Since 1990 many applications have been discovered in
areas such as automatic control systems, estimation and signal processing, com-
munications and networks, electronic circuit design, data analysis and modeling,
statistics, and finance. Convex optimization has also found wide application in com-
binatorial optimization and global optimization, where it is used to find bounds on
the optimal value, as well as approximate solutions. We believe that many other
applications of convex optimization are still waiting to be discovered.

There are great advantages to recognizing or formulating a problem as a convex
optimization problem. The most basic advantage is that the problem can then be
solved, very reliably and efficiently, using interior-point methods or other special
methods for convex optimization. These solution methods are reliable enough to be
embedded in a computer-aided design or analysis tool, or even a real-time reactive
or automatic control system. There are also theoretical or conceptual advantages
of formulating a problem as a convex optimization problem. The associated dual
problem, for example, often has an interesting interpretation in terms of the original
problem, and sometimes leads to an efficient or distributed method for solving it.

We think that convex optimization is an important enough topic that everyone
who uses computational mathematics should know at least a little bit about it.
In our opinion, convex optimization is a natural next topic after advanced linear
algebra (topics like least-squares, singular values), and linear programming.
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Goal of this book

For many general purpose optimization methods, the typical approach is to just
try out the method on the problem to be solved. The full benefits of convex
optimization, in contrast, only come when the problem is known ahead of time to
be convex. Of course, many optimization problems are not convex, and it can be
difficult to recognize the ones that are, or to reformulate a problem so that it is
convex.

Our main goal is to help the reader develop a working knowledge of
convex optimization, i.e., to develop the skills and background needed
to recognize, formulate, and solve convex optimization problems.

Developing a working knowledge of convex optimization can be mathematically
demanding, especially for the reader interested primarily in applications. In our
experience (mostly with graduate students in electrical engineering and computer
science), the investment often pays off well, and sometimes very well.

There are several books on linear programming, and general nonlinear pro-
gramming, that focus on problem formulation, modeling, and applications. Several
other books cover the theory of convex optimization, or interior-point methods and
their complexity analysis. This book is meant to be something in between, a book
on general convex optimization that focuses on problem formulation and modeling.

We should also mention what this book is not. It is not a text primarily about
convex analysis, or the mathematics of convex optimization; several existing texts
cover these topics well. Nor is the book a survey of algorithms for convex optimiza-
tion. Instead we have chosen just a few good algorithms, and describe only simple,
stylized versions of them (which, however, do work well in practice). We make no
attempt to cover the most recent state of the art in interior-point (or other) meth-
ods for solving convex problems. Our coverage of numerical implementation issues
is also highly simplified, but we feel that it is adequate for the potential user to
develop working implementations, and we do cover, in some detail, techniques for
exploiting structure to improve the efficiency of the methods. We also do not cover,
in more than a simplified way, the complexity theory of the algorithms we describe.
We do, however, give an introduction to the important ideas of self-concordance
and complexity analysis for interior-point methods.

Audience

This book is meant for the researcher, scientist, or engineer who uses mathemat-
ical optimization, or more generally, computational mathematics. This includes,
naturally, those working directly in optimization and operations research, and also
many others who use optimization, in fields like computer science, economics, fi-
nance, statistics, data mining, and many fields of science and engineering. Our
primary focus is on the latter group, the potential users of convex optimization,
and not the (less numerous) experts in the field of convex optimization.

The only background required of the reader is a good knowledge of advanced
calculus and linear algebra. If the reader has seen basic mathematical analysis (e.g.,
norms, convergence, elementary topology), and basic probability theory, he or she
should be able to follow every argument and discussion in the book. We hope that
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readers who have not seen analysis and probability, however, can still get all of the
essential ideas and important points. Prior exposure to numerical computing or
optimization is not needed, since we develop all of the needed material from these
areas in the text or appendices.

Using this book in courses

We hope that this book will be useful as the primary or alternate textbook for
several types of courses. Since 1995 we have been using drafts of this book for
graduate courses on linear, nonlinear, and convex optimization (with engineering
applications) at Stanford and UCLA. We are able to cover most of the material,
though not in detail, in a one quarter graduate course. A one semester course allows
for a more leisurely pace, more applications, more detailed treatment of theory,
and perhaps a short student project. A two quarter sequence allows an expanded
treatment of the more basic topics such as linear and quadratic programming (which
are very useful for the applications oriented student), or a more substantial student
project.

This book can also be used as a reference or alternate text for a more traditional
course on linear and nonlinear optimization, or a course on control systems (or
other applications area), that includes some coverage of convex optimization. As
the secondary text in a more theoretically oriented course on convex optimization,
it can be used as a source of simple practical examples.
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