Contents

1 How to solve a first order ODE? 1
2 How to solve a first order ODE with initial condition? 1
3 How to solve and ODE and convert the result to latex string? 1
4 How to solve a PDE in sympy? 2
5 How to check if something is derivative? 2
6 How to find function name and its arguments in a proc? 2

1 How to solve a first order ODE?

Solve \( y'(x) = 1 + 2x \) for \( y(x) \)

```python
import sympy
x = sympy.symbols('x')
y = sympy.Function('y')
ode = sympy.Eq(sympy.Derivative(y(x),x),1+2*x)
sol = sympy.dsolve(node,y(x))
# Eq(y(x), C1 + x**2 + x)
sympy.checkodesol(node,sol)
# (True, 0)
```

2 How to solve a first order ODE with initial condition?

Solve \( y'(x) = 1 + 2x \) for \( y(x) \) with \( y(0) = 3 \)

```python
import sympy
x = sympy.symbols('x')
y = sympy.Function('y')
ode = sympy.Eq(sympy.Derivative(y(x),x),1+2*x)
sol = sympy.dsolve(node,y(x),ics={y(0):3})
# Eq(y(x), x**2 + x + 3)
sympy.checkodesol(node,sol)
# (True, 0)
```
3 How to solve and ODE and convert the result to latex string?

Solve $y'(x) = 1 + 2x$ for $y(x)$ with $y(0) = 3$

```python
import sympy
x = sympy.symbols('x')
y = sympy.Function('y')
ode = sympy.Eq(sympy.Derivative(y(x),x),1+2*x)
sol = sympy.dsolve(node,y(x),ics={y(0):3})
# Eq(y(x), x**2 + x + 3)
sympy.latex(sol)
```

$y(x) = x^2 + x + 3$

4 How to solve a PDE in sympy?

PDE solving is still limited in sympy. Here is how to solve first order pde

Solve $u_t(x,t) = u_x(x,t)$

```python
import sympy as sp
x,t = sp.symbols('x t')
u = sp.Function('u')
pde = sp.Eq( sp.diff(u(x,t),t) , sp.diff(u(x,t),x))
sol = sp.pdsolve(pde)
sp.latex(sol)
```

$u(x,t) = F(t + x)$

5 How to check if something is derivative?

```python
import sympy
x = sympy.symbols('x')
y = sympy.Function('y')
expr = sympy.Derivative(y(x),x)
type(expr) is sympy.Derivative
#True
if type(expr) is sympy.Derivative:
    print("yes")
    #yes

isinstance(expr,sympy.Derivative)
#True
```

This also works, which seems to be the more preferred way

6 How to find function name and its arguments in a proc?

Suppose one passes $y(x)$ to a function, and the function wants to find the name of this function and its argument. Here is an example

```python
def process(the_function):
    print("the function argument is ", the_function.args[0])
    print("the function name itself is ", the_function.name)
```
import sympy
x = sympy.symbols('x')
y = sympy.Function('y')

process(y(x))

This prints

the function argument is x
the function name itself is y