1 Structure of the Earth

What are the three layers of the Earth called? Draw a line from the label to the correct layer on the diagram.

core					
mantle					
	the structure of the earth is a bit like the inside of a boiled erence and one similarity between the inside of the Earth				
difference =					
similarity =					
Draw lines on the cha	rt to match the layer to its description.				
name of layer	description				
core	made of many plates of solid rock				
crust	made of hot semi-solid rocks that can move very slowly				
mantle	made of very hot liquid iron and nickel that is magnetic				
-	st dense?st dense?st dense?st dense?st dense?st dense				

Which layer floats on the outside?

EARTH AND SPACE

Teacher Note

Worksheet 8.3 uses a program from PhET http://phet.colorado.edu/en/simulation/plate-tectonics

On the crust section, there is a zoom facility which allows you to look at the relative sizes of the layers. It might be useful to introduce the program here.

The program will be used in 8.3 to investigate what happens

- when convection currents move the plates and
- when one plate hits another and goes beneath (subduction)

2 Moving plates

Some students investigate how the Earth's plates move. They use a model to help them. They use these pieces of equipment:

- a metal baking tray
- some syrup
- some flat bits of polystyrene
- a tripod to balance the tray on
- a Bunsen burner

Match the equipment to what they represent in the model.

equipment

what it represents

Bunsen burner

the crust floating on the mantle

bits of polystyrene

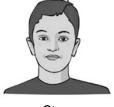
the semi-solid mantle that moves slowly

syrup

the very hot core that gives out heat

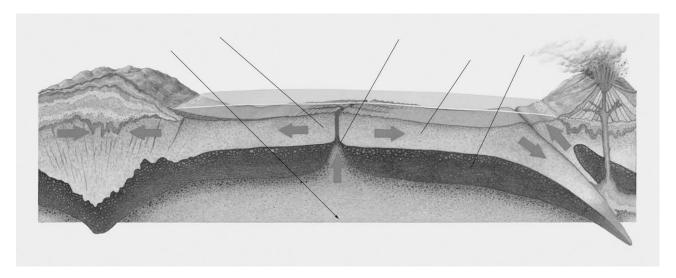
Describe what the students should do in this investigation.

Describe what the students would see during this experiment.


The students talk about the experiment.

I think the polystyrene moves because it gets hot.

Robin

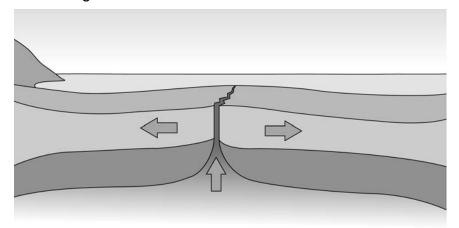

I think the polystyrene moves because of convection currents in the syrup.

Steve

Who is right?

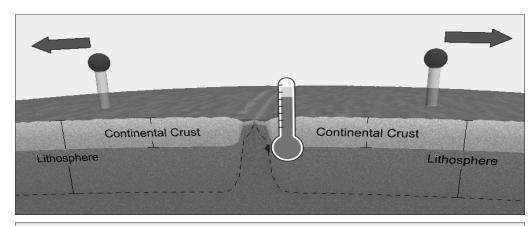
Explain what causes the plates of the Earth's crust to move. Label this diagram to help you.

Choose words from this box to complete the labels:

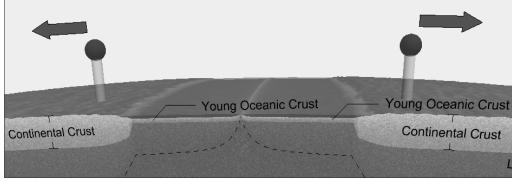

Crust hot magma rises mantle plate in crust moves apart very hot core

Sort these sentences into the correct order.

1	The core heats the rocks in the mantle to make magma
	This is upwards movement of hot magma is called a convection current.
	The plates move sideways.
	The plates in the crust thin and crack.
	The hot magma goes sideways when it hits the underneath of the crust.
	The magma rises up because it is hot.
7	This causes volcanoes and earthquakes.


3 What happens at plate boundaries?

Some students use a computer program to investigate what happens at plate boundaries. This diagram shows the start.



They use the program to find out what happens after 1 million years and 10 million years.

1 million years

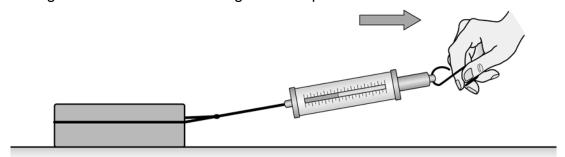
10 million years

Describe what you can see has happened.

After 1 million years				
After 10 million years				
·				

Use the program to find out what happens when the 2 plates move sideways (blue arrows) and what happens when the plates move together (green arrows).

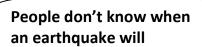
EARTH AND SPACE


http://phet.colorado.edu/en/simulation/plate-tectonics

Use straight lines to join each plate movement to its effect.

Movement direction	Effect of plate movement (what happens)
plates move together	new crust is made
plates move sideways	mountains form
plates move apart	earth quakes happen

4 Investigating earthquakes


This diagram shows how to investigate earthquakes.

Label the diagram with words from this box.

	direction of pull	Newton meter	rough surface
	str	ring wooden	block
l	Describe what happens dur	ring this investigation.	

Some students talk about the experiment.

Some countries have lots of earthquakes.

I wonder what you can use to measure the strength of an earthquake.

EARTH AND SPACE

Watch the video about earthquakes.
Then use the internet or a text book to help you answer the following questions.
Why are earthquakes hard to predict in advance?
What instrument is used to measure the strength of an earthquake?
What is the Richter scale?
Why do some countries have lots of earthquakes and others do not?
How do we work out where the centre of an earthquake is? Use a diagram to help you.
What is a tsunami?
Why are earthquakes dangerous?
What happens during an earthquake?

EARTH AND SPACE

Note to teacher:

Possible videos include:

http://www.bbc.co.uk/science/earth/natural disasters/earthquake

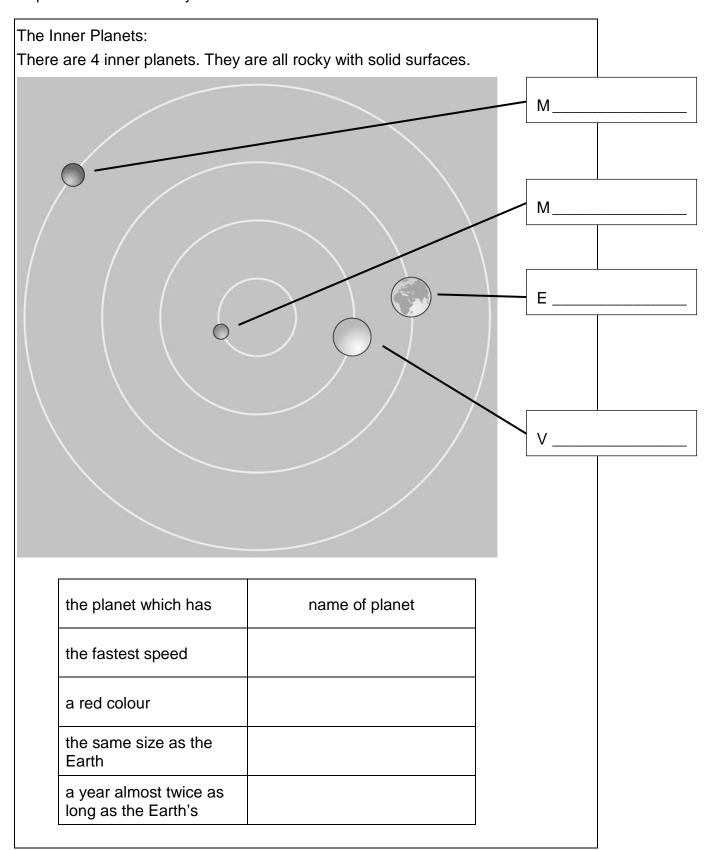
http://video.nationalgeographic.com/video/environment/environment-natural-disasters/earthquakes/earthquake-montage/

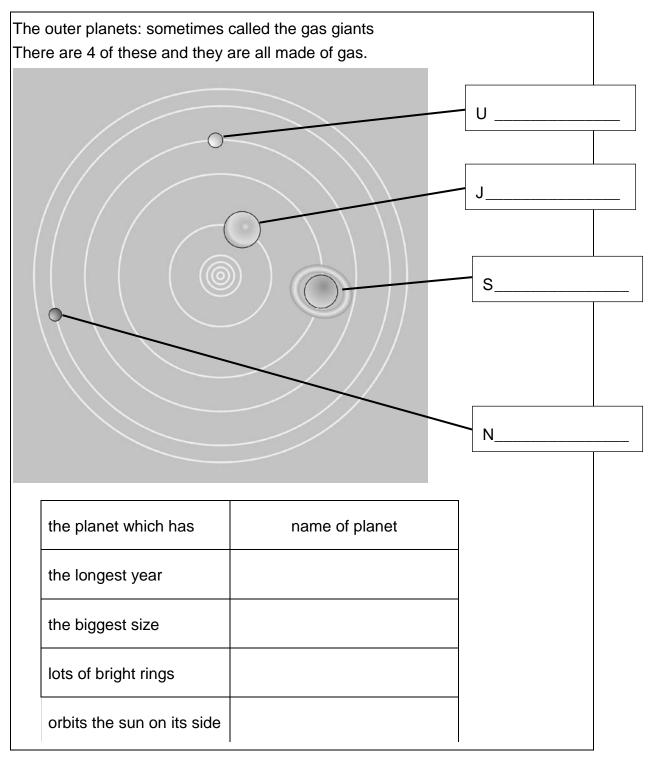
http://video.nationalgeographic.com/video/environment/environment-natural-disasters/earthquakes/inside-earthquake/

http://video.nationalgeographic.com/video/environment/environment-natural-disasters/earthquakes/earthquake-101/

There are some good methods which *may* be suitable for L3 students on these sites:

http://www.geology.ar.gov/pdf/Locating_an_epicenter_activity.pdf


http://www.sciencecourseware.com/virtualearthquake/vquakeexecute.html


http://scearthquakes.cofc.edu/educators/toolkits/LocateEpicenter.pdf

Also you may wish to look at the Friction program from Focus Educational http://www.focuseducational.com/ which simulates the experiment on this worksheet. (Essential Science 9-14 (larger picture) or Sc Investigation 1)

5 Our Solar System - planets

Use text books or the internet to help you fill in the blanks in these fact cards about the planets of our solar system.

Write the names of the planets underneath this rhyme to help you remember the order.

Mary's	Violet	Eyes	Make	John	Sit	Up	Nights

Most planets have moons, solid bodies which orbit around planets, in a similar way to how the planets orbit the Sun. The Earth has only one moon, called the Moon, Mars has two, named Phobos and Deimos. Jupiter, the largest planet in the Solar System, has at least 66!

EARTH AND SPACE

Note to teacher:

You may find these sites useful

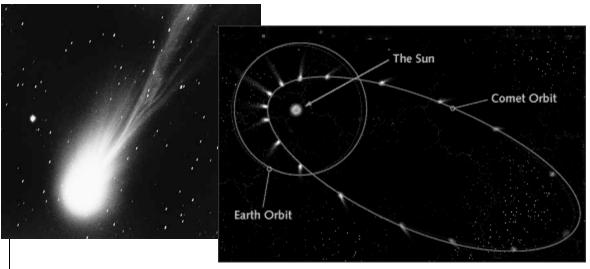
http://planetfacts.org/

http://www.childrensuniversity.manchester.ac.uk/interactives/science/earthandbeyond/planets/

http://en.wikipedia.org/wiki/Solar_system#Inner_planets

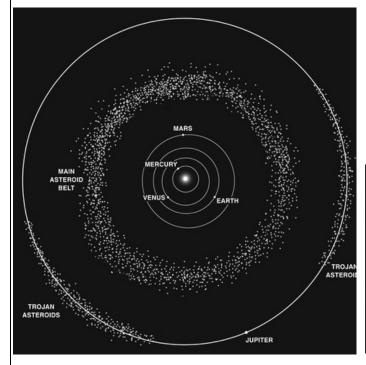
http://solarsystem.nasa.gov/planets/index.cfm

http://www.scienceu.com/observatory/facts/


http://nineplanets.org/

6 Our Solar System - other objects

There are lots of other objects in our solar system. The main ones are comets, meteors and asteroids.


Use text books or the internet to help you fill in the blanks in these fact cards about these objects in our solar system.

Comets:

They are made up of	and are	very	
They move around the Sun in an		shaped	d orbit.
Some comets orbit quickly but others	take		to orbit.
When comets get near the sun, they h	neat up and d	evelop a long	
made of gas	and		_
The tail of the comet always points			
When comets cross the Earth's orbit,	they can be s	een with the	
Words to choose from: away from the sun	cold	dust	ice
many years nak	ed eye	oval	tail

Asteroids:

Asteroids are lumps of _____

They have many different ______, some are as big as our


Most of them orbit the sun in a belt between Jupiter and _____

A few are found in the same orbit as _____

Words to choose from:

Jupiter Mars Moon rock size

Meteors:

Meteors are lumps of				
that float in				
When the Earth passes close to t	hem,			
some meteors hit the				
Then they as	they move			
and form a 'shooting star' across				
the				
Words to choose from:				
Atmosphere burr	up r	ock	sky	space

EARTH AND SPACE

Notes to teacher:

Many sites are difficult for students at this level.

However, these might be useful:

http://cse.ssl.berkeley.edu/SegwayEd/lessons/cometstale/com3_a.html

http://solarsystem.nasa.gov/planets/index.cfm

http://science.nationalgeographic.com/science/space/solar-system/

http://www.space.com/53-comets-formation-discovery-and-exploration.html

http://www.space.com/51-asteroids-formation-discovery-and-exploration.html

this takes some practice: http://eyes.nasa.gov/exit.html

this is a downloadable booklet more suitable for a teacher than a student

http://solarsystem.nasa.gov/multimedia/downloads/21_Solar_System_FC1.pdf

this gives an extensive ppt which can be downloaded for use

http://solarsystem.nasa.gov/multimedia/download-detail.cfm?DL_ID=682

and its notes are

http://solarsystem.nasa.gov/multimedia/downloads/ExploreSolSysScript.pdf

7 Our place in the Universe

Put these objects in order of size.

1. smallest =		2		3	
			6. bigges		
			acher has marked sach sentence.	ome words	s wrong. Write
Our planet	is called th	he Moon.			
There are	seven plane	ts in our s	olar system.		
In the mid the Earth.	dle of our s	olar syster	m is a star called		
The Moon	is closer to	the Sun tl	han to Earth.		
Our solar s	ystem is bi	gger than	a galaxy.		
The univer	se contains	only ten g	galaxies.		
Our solar s	ystem is co	alled the M	ilky Way		
Scientists hav		-	ng our solar system a	and the sta	ars.
telescope	s are used fo	or			
space pro					

EARTH AND SPACE

Notes to teacher:

Specific devices to steer the students towards are:

Hubble telescope (one of the 4 great observatories):

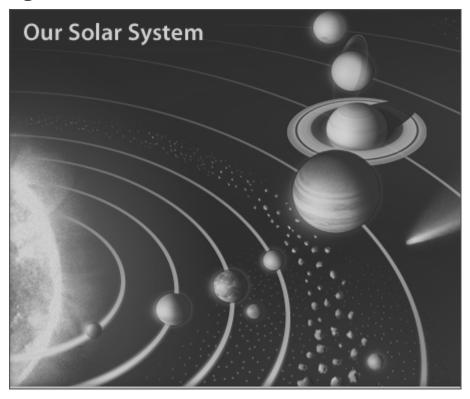
http://en.wikipedia.org/wiki/Great_Observatories_program

Cassini space probe:

http://solarsystem.nasa.gov/missions/profile.cfm?InFlight=1&MCode=Cassini

Curiosity lander:

http://solarsystem.nasa.gov/missions/profile.cfm?Sort=Alpha&Letter=C&Alias=Curiosity

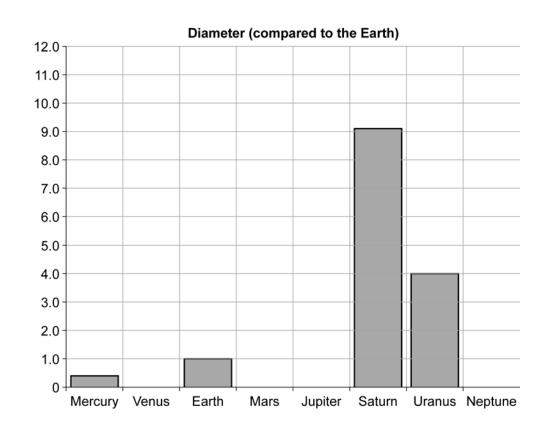

for space benefits this site is useful

http://en.wikipedia.org/wiki/NASA_spin-off

and this is a nice site to put on the data projector:

http://www.nasa.gov/externalflash/nasacity/index2.htm

8 Using data


	Diameter	Distance from the Sun	Year length	Day length	Average surface		
	(compared to the Earth)	(compare	temperature				
Mercury	0.4	0.4	0.2	58.7	400 to -170		
Venus	1.0	0.7	0.6	243	500		
Earth	1.0	1.0	1.0	1	15		
Mars	0.5	1.5	1.9	1	-60		
Jupiter	11.0	5.2	11.9	0.4	-140		
Saturn	9.1	9.5	29.5	0.43	-175		
Uranus	4.0	19.2	84.0	0.75	-214		
Neptune	3.9	30.1	164.8	0.8	-214		

Use the data in this chart to answer the questions on the other side.

Which planet takes nearly 30 years to go round the sun?
Which planet is half the size of the Earth?
Which planet is the hottest?
Which planet can have liquid water on its surface?
Which planets have a longer day than ours? &
Which planet is thirty times further from the sun than the earth?
Write a pattern sentence about distance from the sun and the length of the year.
Complete the har chart below

Complete the bar chart below.

Include the correct labels on the axes.

9 Living in space

We all need many things to live; food and water are just two of these things.

An astronaut (which means a space-sailor!) has to take everything with him, and sometimes this is a very long list.

1. Write down a list of things a spaceman needs for a two week stay in a space craft.

1. food	2. water
3.	4.
5.	6.
7.	8.
9.	10.

Space men have to wear special suits when they leave their spaceship. Answer these questions to explain why they need spacesuits.

	air almost nothing breathe cold exercise hot		
	to their		
	they have tiny on their suits but are always attached by a		
6.	How do spacemen move about in space?		
	from the		
	in space there is atmosphere to protect the spaceman from ionising		
5.	What else does the spacesuit protect the spacemen from?		
	in the light it can get very but usually it is very, very		
4.	What is the temperature in space?		
	so it is very important that they		
3.	How much do people weigh in space?		
	because there is no in space and people have to		
2.	Why does every space suit need to take air?		

rockets

spaceship

sun

no

radiation

line

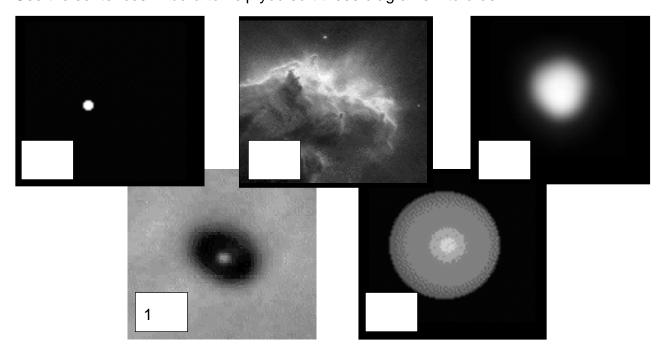
EARTH AND SPACE

Note to teacher:

The link from the spec is useful, but most of the fact sheets of downloadable (pdfs) information given is very 'dry' and at too high a reading level. The 4 main links are generally OK (Space Food, Space Wear, Space Work, Space Fun) but you will probably have to alter the zoom, to make it clear enough for a data projector.

You may find this link from Wikipedia useful for yourself, but it is rather too detailed for students.

http://en.wikipedia.org/wiki/Effect_of_spaceflight_on_the_human_body

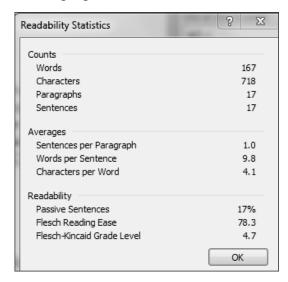

10 The life cycle of a star

Watch the video and make notes if you can.

Read the passage very carefully and use it to answer the questions that follow.

- 1. A star is born from a nebula which is a giant cloud of hydrogen gas and dust in space.
- 2. After a long time, gravity pulls the hydrogen gas together.
- 3. It begins to spin into a ball.
- 4. It heats up and becomes a protostar.
- 5. When the temperature reaches 15,000,000°C, nuclear fusion begins.
- 6. It is now a main sequence star.
- 7. Main sequence stars fuse hydrogen into helium and give out lots of energy.
- 8. It stays a main sequence star for billions of years.
- 9. When the hydrogen is used up, the outer part of the star starts to expand.
- 10. As it expands, it cools and glows red.
- 11. The star is now a red giant.
- 12. In the core of the red giant, helium fuses into carbon.
- 13. When all the helium is used up, the core collapses again.
- 14. When the core collapses, the outer layers of the star are thrown off.
- 15. These layers form a planetary nebula.
- 16. The star is then a white dwarf.
- 17. Eventually it cools and becomes a black dwarf.

Use the sentences in **bold** to help you sort these diagrams into order.



EARTH AND SPACE

What is a nebula?			
What is a protosta	ır?		
What causes the	nebula to collapse into a	ball?	
What temperature	does the star start to fu	se hydrogen?	
What does a mair	ı sequence star 'burn' as	fuel?	
What does the ma	ain sequence star give ou	ut?	
How long does a	star stay as a main sequ	ence star?	
What happens to	the star when it has used	d up all its hydrogen?	
What is a white du	varf?		
	use the internet to find ou ar (more massive). Thes		ar which is a lot
supernova	red supergiant	neutron star	black hole

Teacher Notes

The passage has been carefully edited so that it gives a full account, yet has a reading age of 10-11.

Nursery school			
Playgroup	1-2		
Playgroup	2-3		
Preschool	3-4		
Pre-kindergarten	4-5		
Kindergarten	5-6		
Elementary school			
1st Grade	6-7		
2nd Grade	7-8		
3rd Grade	8-9		
4th Grade	9-10		
5th Grade	10-11		
Middle school	Middle school		
6th Grade	11-12		
7th Grade	12-13		
8th Grade	13-14		
High school			
9th Grade (Freshman)	14-15		
10th Grade (Sophomore)	15-16		
11th Grade (Junior)	16-17		
12th Grade (Senior)	17-18		

http://www.bbc.co.uk/science/space/universe/sights/stars#p006szyk just the star formation

http://www.youtube.com/watch?v=PM9CQDIQI0A 5 mins nice life cycle for Institute of Physics...about the right level

http://www.youtube.com/watch?v=tnzRUYSiCnc A students version.....nice to show?

pdf from nasa

http://imagine.gsfc.nasa.gov/Images/teachers/posters/lifecycles/starchild.pdf

For your own background knowledge http://www.universetoday.com/24629/life-cycle-of-stars/ is about at the right level. Or this set of notes:

http://ircamera.as.arizona.edu/NatSci102/NatSci102/syllabus/syllabus.htm