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PREFACE

At last a book that hopefully will take the mystery and drudgery out of the g–h,
�–�, g–h–k, �–�–� and Kalman filters and makes them a joy. Many books
written in the past on this subject have been either geared to the tracking filter
specialist or difficult to read. This book covers these filters from very simple
physical and geometric approaches. Extensive, simple and useful design
equations, procedures, and curves are presented. These should permit the reader
to very quickly and simply design tracking filters and determine their
performance with even just a pocket calculator. Many examples are presented
to give the reader insight into the design and performance of these filters.
Extensive homework problems and their solutions are given. These problems
form an integral instructional part of the book through extensive numerical
design examples and through the derivation of very key results stated without
proof in the text, such as the derivation of the equations for the estimation of the
accuracies of the various filters [see Note (1) on page 388]. Covered also in
simple terms is the least-squares filtering problem and the orthonormal
transformation procedures for doing least-squares filtering.

The book is intended for those not familiar with tracking at all as well as for
those familiar with certain areas who could benefit from the physical insight
derived from learning how the various filters are related, and for those who are
specialists in one area of filtering but not familiar with other areas covered. For
example, the book covers in extremely simple physical and geometric terms the
Gram–Schmidt, Givens, and Householder orthonormal transformation proce-
dures for doing the filtering and least-square estimation problem. How these
procedures reduce sensitivity to computer round-off errors is presented. A
simple explanation of both the classical and modified Gram–Schmidt proce-
dures is given. Why the latter is less sensitive to round-off errors is explained in
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physical terms. For the first time the discrete-time orthogonal Legendre
polynomial (DOLP) procedure is related to the voltage-processing procedures.

Important real-world issues such as how to cope with clutter returns,
elimination of redundant target detections (observation-merging or clustering),
editing for inconsistent data, track-start and track-drop rules, and data
association (e.g., the nearest-neighbor approach and track before detection)
are covered in clear terms. The problem of tracking with the very commonly
used chirp waveform (a linear-frequency-modulated waveform) is explained
simply with useful design curves given. Also explained is the important
moving-target detector (MTD) technique for canceling clutter.

The Appendix gives a comparison of the Kalman filter (1960) with the
Swerling filter (1959). This Appendix is written by Peter Swerling. It is time for
him to receive due credit for his contribution to the ‘‘Kalman–Swerling’’ filter.

The book is intended for home study by the practicing engineer as well as for
use in a course on the subject. The author has successfully taught such a course
using the notes that led to this book. The book is also intended as a design
reference book on tracking and estimation due to its extensive design curves,
tables, and useful equations.

It is hoped that engineers, scientists, and mathematicians from a broad range
of disciplines will find the book very useful. In addition to covering and relating
the g–h, �–�, g–h–k, �–�–�, Kalman filters, and the voltage-processing
methods for filtering and least-squares estimation, the use of the voltage-
processing methods for sidelobe canceling and adaptive-array processing are
explained and shown to be the same mathematically as the tracking and
estimated problems. The massively parallel systolic array sidelobe canceler
processor is explained in simple terms. Those engineers, scientists, and
mathematicians who come from a mathematical background should get a good
feel for how the least-squares estimation techniques apply to practical systems
like radars. Explained to them are matched filtering, chirp waveforms, methods
for dealing with clutter, the issue of data association, and the MTD clutter
rejection technique. Those with an understanding from the radar point of view
should find the explanation of the usually very mathematical Gram–Schmidt,
Givens, and Householder voltage-processing (also called square-root) techni-
ques very easy to understand. Introduced to them are the important concepts of
ill-conditioning and computational accuracy issues. The classical Gram–
Schmidt and modified Gram–Schmidt procedures are covered also, as well as
why one gives much more accurate results. Hopefully those engineers,
scientists, and mathematicians who like to read things for their beauty will
find it in the results and relationships given here. The book is primarily intended
to be light reading and to be enjoyed. It is a book for those who need or want to
learn about filtering and estimation but prefer not to plow through difficult
esoteric material and who would rather enjoy the experience. We could have
called it ‘‘The Joy of Filtering.’’

The first part of the text develops the g–h, g–h–k, �–�, �–�–�, and
Kalman filters. Chapter 1 starts with a very easy heuristic development of g–h
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filters for a simple constant-velocity target in ‘‘lineland’’ (one-dimensional
space, in contrast to the more complicated two-dimensional ‘‘flatland’’).
Section 1.2.5 gives the g–h filter, which minimizes the transient error resulting
from a step change in the target velocity. This is the well-known Benedict–
Bordner filter. Section 1.2.6 develops the g–h filter from a completely different,
common-sense, physical point of view, that of least-squares fitting a straight
line to a set of range measurements. This leads to the critically damped (also
called discounted least-squares and fading-memory) filter. Next, several
example designs are given. The author believes that the best way to learn a
subject is through examples, and so numerous examples are given in Section
1.2.7 and in the homework problems at the end of the book.

Section 1.2.9 gives the conditions (on g and h) for a g–h filter to be stable
(these conditions are derived in problem 1.2.9-1). How to initiate tracking with
a g–h filter is covered in Section 1.2.10. A filter (the g–h–k filter) for tracking a
target having a constant acceleration is covered in Section 1.3. Coordinate
selection is covered in Section 1.5.

The Kalman filter is introduced in Chapter 2 and related to the Benedict–
Bordner filter, whose equations are derived from the Kalman filter in Problem
2.4-1. Reasons for using the Kalman filter are discussed in Section 2.2, while
Section 2.3 gives a physical feel for how the Kalman filter works in an optimum
way on the data to give us a best estimate. The Kalman filter is put in matrix
form in Section 2.4, not to impress, but because in this form the Kalman filter
applies way beyond lineland—to multidimensional space.

Section 2.6 gives a very simple derivation of the Kalman filter. It requires
differentiation of a matrix equation. But even if you have never done
differentiation of a matrix equation, you will be able to follow this derivation.
In fact, you will learn how to do matrix differentiation in the process! If
you had this derivation back in 1958 and told the world, it would be your
name filter instead of the Kalman filter. You would have gotten the IEEE
Medal of Honor and $20,000 tax-free and the $340,000 Kyoto Prize,
equivalent to the Nobel Prize but also given to engineers. You would be world
famous.

In Section 2.9 the Singer g–h–k Kalman filter is explained and derived.
Extremely useful g–h–k filter design curves are presented in Section 2.10
together with an example in the text and many more in Problems 2.10-1 through
2.10-17. The issues of the selection of the type of g–h filter is covered in
Section 2.11.

Chapter 3 covers the real-world problem of tracking in clutter. The use of the
track-before-detect retrospective detector is described (Section 3.1.1). Also
covered is the important MTD clutter suppression technique (Section 3.1.2.1).
Issues of eliminating redundant detections by observation merging or clustering
are covered (Section 3.1.2.2) as well as techniques for editing out inconsistent
data (Section 3.1.3), combining clutter suppression with track initiation
(Section 3.1.4), track-start and track-drop rules (Section 3.2), data association
(Section 3.3), and track-while-scan systems (Section 3.4).
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In Section 3.5 a tutorial is given on matched filtering and the very commonly
used chirp waveform. This is followed by a discussion of the range bias error
problem associated with using this waveform and how this bias can be used to
advantage by choosing a chirp waveform that predicts the future—a fortune-
telling radar.

The second part of the book covers least-squares filtering, its power and
voltage-processing approaches. Also, the solution of the least-squares filtering
problem via the use of the DOLP technique is covered and related to voltage-
processing approaches. Another simple derivation of the Kalman filter is
presented and additional properties of the Kalman filter given. Finally, how to
handle nonlinear measurement equations and nonlinear equations of motion are
discussed (the extended Kalman filter).

Chapter 4 starts with a simple formulation of the least-squares estimation
problem and gives its power method solution, which is derived both by simple
differentiation (Section 4.1) and by simple geometry considerations (Section
4.2). This is followed by a very simple explanation of the Gram–Schmidt
voltage-processing (square-root) method for solving the least-squares problem
(Section 4.3). The voltage-processing approach has the advantage of being
much less sensitive to computer round-off errors, with about half as many bits
being required to achieve the same accuracy. The voltage-processing approach
has the advantage of not requiring a matrix inverse, as does the power method.

In Section 4.4, it is shown that the mathematics for the solution of the
tracking least-squares problem is identical to that for the radar and
communications sidelobe canceling and adaptive nulling problems. Further-
more, it is shown how the Gram–Schmidt voltage-processing approach can be
used for the sidelobe canceling and adaptive nulling problem.

Often the accuracy of the measurements of a tracker varies from one time to
another. For this case, in fitting a trajectory to the measurements, one would like
to make the trajectory fit closer to the accurate data. The minimum-variance
least-squares estimate procedure presented in Section 4.5 does this. The more
accurate the measurement, the closer the curve fit is to the measurement.

The fixed-memory polynomial filter is covered in Chapter 5. In Section 5.3
the DOLP approach is applied to the tracking and least-squares problem for
the important cases where the target trajectory or data points (of which there
are a fixed number L þ 1) are approximated by a polynomial fit of some
degree m. This method also has the advantage of not requiring a matrix
inversion (as does the power method of Section 4.1). Also, its solution is
much less sensitive to computer round-off errors, half as many bits being
required by the computer.

The convenient and useful representation of the polynomial fit of degree m in
terms of the target equation motion derivatives (first m derivatives) is given in
Section 5.4. A useful general solution to the DOLP least-squares estimate for a
polynomial fit that is easily solved on a computer is given in Section 5.5.
Sections 5.6 through 5.10 present the variance and bias errors for the least-
squares solution and discusses how to balance these errors. The important
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method of trend removal to lower the variance and bias errors is discussed in
Section 5.11.

In Chapter 5, the least-squares solution is based on the assumption of a fixed
number L þ 1 of measurements. In this case, when a new measurement is made,
the oldest measurement is dropped in order to keep the number measurements
on which the trajectory estimate is based equal to the fixed number L þ 1. In
Chapter 6 we consider the case when a new measurement is made, we no longer
throw away the oldest data. Such a filter is called a growing-memory filter.
Specifically, an mth-degree polynomial is fitted to the data set, which now
grows with time, that is, L increases with time. This filter is shown to lead to the
easy-to-use recursive growing-memory g–h filter used for track initiation in
Section 1.2.10. The recursive g–h–k (m ¼ 2) and g–h–k–l (m ¼ 3) versions of
this filter are also presented. The issues of stability, track initiation, root-mean-
square (rms) error, and bias errors are discussed.

In Chapter 7 the least-squares polynomial fit to the data is given for the case
where the error of the fit is allowed to grow the older the data. In effect, we pay
less and less attention to the data the older it is. This type of filter is called a
fading-memory filter or discounted least-squares filter. This filter is shown to
lead to the useful recursive fading-memory g–h filter of Section 1.2.6 when the
polynomial being fitted to is degree m ¼ 1. Recursive versions of this filter that
apply to the case when the polynomial being fitted has degree m ¼ 2, 3, 4 are
also given. The issues of stability, rms error, track initiation, and equivalence to
the growing-memory filters are also covered.

In Chapter 8 the polynomial description of the target dynamics is given in
terms of a linear vector differential equation. This equation is shown to be very
useful for obtaining the transition matrix for the target dynamics by either
numerical integration or a power series in terms of the matrix coefficient of the
differential equation.

In Chapter 9 the Bayes filter is derived (Problem 9.4-1) and in turn from it
the Kalman filter is again derived (Problem 9.3-1). In Chapters 10 through 14
the voltage least-squares algorithms are revisited. The issues of sensitivity to
computer round-off error in obtaining the inverse of a matrix are elaborated in
Section 10.1. Section 10.2 explains physically why the voltage least-squares
algorithm (square-root processing) reduces the sensitivity to computer round-
off errors. Chapter 11 describes the Givens orthonormal transformation voltage
algorithm. The massively parallel systolic array implementation of the Givens
algorithm is detailed in Section 11.3. This implementation makes use of the
CORDIC algorithm used in the Hewlett-Packard hand calculators for
trigonometric computations.

The Householder orthonormal transformation voltage algorithm is described
in Chapter 12. The Gram–Schmidt orthonormal transformation voltage
algorithm is revisited in Chapter 13, with classical and modified versions
explained in simple terms. These different voltage least-squares algorithms are
compared in Section 14.1 and to QR decomposition in Section 14.2. A recursive
version is developed in Section 14.3. Section 14.4 relates these voltage-
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processing orthonormal transformation methods to the DOLP approach used in
Section 5.3 for obtaining a polynomial fit to data. The two methods are shown
to be essentially identical. The square-root Kalman filter, which is less sensitive
to round-off errors, is discussed in Section 14.5.

Up until now the deterministic part of the target model was assumed to be
time invariant. For example, if a polynomial fit of degree m was used for the
target dynamics, the coefficients of this polynomial fit are constant with time.
Chapter 15 treats the case of time-varying target dynamics.

The Kalman and Bayes filters developed up until now depend on the
observation scheme being linear. This is not always the situation. For example,
if we are measuring the target range R and azimuth angle � but keep track of the
target using the east-north x, y coordinates of the target with a Kalman filter,
then errors in the measurement of R and � are not linearly related to the
resulting error in x and y because

x ¼ R cos � ð1Þ

and

y ¼ R sin � ð2Þ

where � is the target angle measured relative to the x axis. Section 16.2 shows
how to simply handle this situation. Basically what is done is to linearize
Eqs. (1) and (2) by using the first terms of a Taylor expansion of the inverse
equations to (1) and (2) which are

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ð3Þ

� ¼ tan
y

x
ð4Þ

Similarly the equations of motion have to be linear to apply the Kalman–
Bayes filters. Section 16.3 describes how a nonlinear equation of motion can be
linearized, again by using the first term of a Taylor expansion of the nonlinear
equations of motion. The important example of linearization of the nonlinear
observation equations obtained when observing a target in spherical coordinates
(R, �, �) while tracking it in rectangular (x, y, z) coordinates is given. The
example of the linearization of the nonlinear target dynamics equations
obtained when tracking a projectile in the atmosphere is detailed. Atmospheric
drag on the projectile is factored in.

In Chapter 17 the technique for linearizing the nonlinear observation
equations and dynamics target equations in order to apply the recursive Kalman
and Bayes filters is detailed. The application of these linearizations to a
nonlinear problem in order to handle the Kalman filter is called the extended
Kalman filter. It is also the filter Swerling originally developed (without the
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target process noise). The Chapter 16 application of the tracking of a ballistic
projectile through the atmosphere is again used as an example.

The form of the Kalman filter given in Kalman’s original paper is different
from the forms given up until now. In Chapter 18 the form given until now is
related to the form given by Kalman. In addition, some of the fundamental
results given in Kalman’s original paper are summarized here.

ELI BROOKNER

Sudbury, MA
January 1998
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Bayes filter (continued)

nonlinear system, 367–374

Beamformer, 200

Benedict-Bordner filter, 23, 29–33, 43–46, 53,

65, 85–87

Bias error, 25–27, 52–57, 225–232, 238, 251

Bias reduction, 230–232

BMEWS, see Ballistic Missile Early Warning

System

Ceres, 374

CFAR, see Constant false alarm rate

Characteristic equation, 258, 276, problem 10.2-1

Chirp waveform, 132–151, 204

Circuit diagram, 46, 49

Classical Gram-Schmidt (CGS), 174–188,

322–338. See also Gram-Schmidt

orthonormal transformation

Classical weighted least-squares estimate, 204

Clustering, 120–125

Clutter, 111–115, 118

Clutter rejection, 116–127

Clutter suppression, 116–127

Coached detection, 123

Cobra Dane, 10, 11, 135

Coherent processing interval (CPI), 119, 120

Commonsense approach, 14, 17–21, 32–36

Comparison of filters, 105

Compressed pulse, 133

Computer roundoff error, 175, 264–267,

278–282, 295, 296, 334, 340–342

Conditional density estimate, 377

Condition number, 279, 280

Constant acceleration, 25, 145

Constant-coefficient linear differential vector

equation, 254–256

Constant g–h–k, 95. See also g–h–k Filter

Constant false alarm rate (CFAR), 123, 124

Constant-velocity target, 24, 162

Constraint preprocessor, 195, 196

Coordinates, 60–63, 265, 267, 358, 359

CORDIC algorithm, 307–314

complex numbers, 314

rotation, 307–313

vectoring, 307, 311, 312

Corrector equation, 73, 74

Covariance matrix, 59, 73, 74, 200–203

Covariance matrix definition, 59

CPI, see Coherent processing interval

Critically damped g–h filter, 23, 29, 32–46, 50, 53,

86, 87. See also Fading-memory polynomial

filter; g–h Filter

Critically damped g–h–k filter, 52–54, 57–58. See

also Fading-memory polynomial filter;

g–h–k Filter

Desert Storm, 7, 10

Design curves, 31, 33–34, 53–57, 95–104, 147,

149

Design tables, 31, 38–40, 220, 221, 237, 246,

248, 309

Deterministic dynamics, 6, 64

Differentitation of matrix, 82–84

Digital Airport Surveillance Radar (DASR), 4

Dimensionless Fitzgerald parameters, 95–104,

146–151

Discounted least-squares estimate, 36. See also

Critically damped g–h filter; Critically

damped g–h–k filter; Fading-memory

polynomial filter

Discounted least-squares g–h filter, see Critically

damped g–h filter; Fading-memory

polynomial filter

Discrete Kalman filter, 84–88

Discrete-time orthogonal Legendre polynomials

(DOLP), 165, 208–211, 345–353

Dispersive network, 133

Doppler, 116–126, 142

Dot product, 172–173

Downchirp LFM waveform, 146–151

Drag coefficient, 76, 363

Drag constant, 76

Driving noise, 65

Driving noise vector, 70

Dual coordinate system (DCS), 63

Dynamic error, see Bias error

Dynamic model, 6, 64, 69, 70

adaptive, 108, 382

Asquith-Frieland filter, 84–88

constant-coefficient linear differential vector

equation, 254–256

deterministic, 6, 64

discrete Kalman filter, 84–88

general model as sum of exponentials, 258,

259

Kalman filter, 64, 65, 84–94

linear constant-coefficient differential

equation, 253

linear time-invariant system, 6, 51, 64, 85,

87–91, 155, 160, 252–259

linear time-variant system, 354–356

linear time-variant vector differential equation,

355

nonlinear system, 360–366

Singer-Kalman model, 88–94

Taylor expansion for, 355, 356, 360–362

transition matrix for, 70, 90, 252–258. See also
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Transition matrix (main listing)

Dynamic model noise covariance, 73

Dynamics, adjusting to, 108. See also Dynamic

model

Dynamics noise, 65

Editing for inconsistencies, 121

Electronically scanned radar, 9–15, 45, 135

Eliminating clutter, 116–127

Equivalent circuit, 46, 49

Errors measurement, 27–29

Estimate variance, see Variance of estimate

Exact derivation of Kalman filter, 80–84

Expanding-memory polynomial filter, 23, 49–51,

57, 86, 233–238. See also Fixed memory

polynomial filter

bias error, 25–27, 52, 238

g–h filter, 47–51, 235, 236

g–h–k filter, 57, 58, 235, 236

recursive form, 48–50, 234–236

stability, 47, 236

track initiation of, 236

track initiation, use for, 49–51, 56, 57,

248–251

variance reduction factors, 237

Extended Kalman filter, 153, 367–374

Eyeball fit, 33

FAA, 119

F orthonormal transformation, 178–188,

267–275, 297, 321, 322, 326, 328, 350–353

Fading-memory g–h filter, see Critically damped

g–h filter; Fading-memory polynomial filter

Fading-memory g–h–k filter, see Critically

damped g–h–k filter; Fading-memory

polynomial filter

Fading-memory polynomial filter, 23, 32–43, 53.

See also Critically damped g–h filter;

Critically damped g–h–k filter; g–h filter;

g–h–k filter; Kalman filters

balancing errors, 251

bias error, 251

bias reduction, 230–232

comparison to fixed-memory polynomial filter,

245–248

Laguerre polynomial fit, 165, 166, 240–244

orthogonal polynomial fit, 165, 166, 240–

244

recursive form, 242–244

scaled state vector VRF, 244–245

stability, 244

track initiation, 248–251

variance of estimate, 244–245

variance reduction factor, 244–245

False-alarm probability, 111–115

Fan-beam radar, 3–8

Feedback for constant false alarm rate control,

123, 124

Feedback form of g–h filter, problems, 1.2.1-1,

1.2.6-5

Filtered error, 99–101

Filtered estimate, 20

Filtered estimate, definition, 21

Filtering equation, 20, 72

Filtering problem, 22

Final-value theorem, problem 1.2.6-4

Firefinder AN/TPQ–36, 13, 14

Firefinder AN/TPQ–37, 13, 14

Firm tracks, 130

Fitzgerald dimensionless design parameters,

95–104, 146–151

Fixed-memory polynomial filter, 205–238. See

also Expanding-memory polynomial filter

balancing errors, 229, 230

bias error, 225–229

bias reduction, 230–232

DOLP fit, 208–212

explicit solution in matrix from, 214–217

Legendre polynomial fit, 208–212

nonorthogonal polynomial fit, 164, 165

orthogonal polynomial fit, 208–212

scaled state vector, 214

trend removal, 230–232

variance of estimate, 217–225

variance of estimate, simple expressions, 224,

225

Gauss, 202, 374, 376

Gauss elimination form, 181, 182, 185, 193, 295,

328

Gaussian distribution, 201, 377

GBR, 12

Geometric derivation of LSE, 167–174

g–h Filter, 14, 64–75, 105, 235, 236

a–b, 8, 23

ARTS III filter, 84, 85

Asquith-Friedland filter, 84–88

balancing errors, 27–29

Bayes filter, 23

Benedict-Bordner, derivation, problem 2.4-1

Benedict-Bordner design curves, 32–34

Benedict-Bordner filter, 23, 29–32, 43–46,

85–87

Benedict-Bordner filter design table, 31

bias error, 25–27

bias error, derivation, problems 1.2.4.3-1,

1.2.6-4

circuit diagram, 46, 49
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g–h Filter (continued)

commonsense approach, 14, 17–21, 32–36

comparison of filters, 105

coordinates, 60–63, 266

corrector equation, 73

critically damped g–h filter, 23, 29, 32–46, 50,

53, 86, 87. See also Fading-memory

polynomial filter (main listing)

critically damped design curves, 41–43

critically damped design table, 38–40

critically damped examples, 40–46

critically damped filter poles, 37, problem

1.2.6-1

derivation of, 14, 17–21, 32–36

design curves, 32–34, 41–43

design tables, 31, 38–40

deterministic dynamic model, 6, 64

discounted least-squares estimate, 36

discounted least-squares g–h filter, 23. See also

Critically damped g–h filter

discrete Kalman filter, 84–88

drag coefficient, 76, 363

driving noise, 65

dynamic error, see Bias error

dynamic model noise covariance, 73

dynamics noise, 65

equivalent circuit, 46, 49

error measurement, 27–29

examples, 40–46

expanding memory, 23

expanding-memory polynomial filter, 23,

49–51, 86. See also Expanding-memory

polynomial filter (main listing)

eyeball fit, 33

fading-memory polynomial filter, 23, 37. See

also Fading-memory polynomial filter (main

listing)

feedback form, problems, 1.2.1-1, 1.2.6-5

filtered estimate, 20, 21

filtered estimate definition, 20

filtering equations, 20

growing-memory filter, 23, 49. See also

Expanding-memory polynomial filters

heuristic derivation, 14, 17–21

jerk, 29, 236

Kalman filter, 23, 29, 64–75

Kalman filter, steady state solution, problem

2.4-1 to 2.4-3

kill probability, 106

lag error, see Bias error

least-squares estimate, 32–36

least-squares filter (LSF), 23

lumped filter, 23

matrix form notation, 69–77

measurement error, 27–29

memory, 105

minimization of transient, 29–32

missed detections, 109

model noise, 65

multidimensional tracking, 59, 75

noise amplification factor, see Variance

reduction factor

noise ratio, see Variance reduction factor

observation error, 71

observation matrix, 71. See also Observation

matrix (main listing)

observation noise covariance, 73

optimum g–h filter, 29

plant noise, 65

polar coordinates, 59–62

poles location, 37

poles location, derivation, problem 1.2.6-1

polynomial filter, 23, 49

prediction equation, 21

prediction estimate, 21

predictor equation, 72, 74

process noise, 65

random maneuvering, 77

random-walk velocity, 64

R, y, 59–62

selection of tracking filter, 104–110

smoothed estimate definition, 21

stability conditions, 47

stability conditions, derivation, problem

1.2.9-1

steady-state, 24, 25, 50

systematic error, see Bias error

system dynamics, 64

system noise, 65

tables, 31, 38–40

Taylor expansion, 24

track initiation, 47–51

tracking error, see Variance reduction factor;

Variance

tracking-filter equations, 21

transient error, 29, problem 1.2.6-4

transition equations, 21

truncation error, see Bias error

two-point extrapolator, 105

two-state Kalman filter, 64–75

update equations, 20, 21

variance (VAR), 27–29, 50

variance reduction factor (VRF), 27–29, 41,

problem 1.2.6-2

variance reduction factor (VRF), derivation of,

problem 1.2.4.4-1

variance reduction ratio, see Variance

reduction factor
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Wiener filter, 23, 105

window, 107

Z-transform, 37, problems 1.2.6-1 to 1.2.6-4

g–h–k Filter, 38, 51–59, 235, 236

a–b–g filter, 8, 52

Benedict-Bordner design curves, 55–57

Benedict-Bordner design tables, 38–40

Benedict-Bordner filter, 53

bias error, 52–57

constant g–h–k, 95

critically damped g–h–k filter, 52–54, 57–58

design curves, 53–57, 95–104, 147, 149

dimensionless Fitzgerald parameters, 95–104,

146–151

discounted least-squares g–h–k filter, see

Fading-memory polynomial filter

expanding-memory polynomial filter, 57. See

also Expanding-memory polynomial filter

(main listing)

fading-memory filter, see Critically damped

g–h–k filter; Fading-memory polynomial

filter (main listings)

filtered error, 99–101

Fitzgerald dimensionless parameters, 95–104,

146–151

growing-memory filter, see Expanding-memory

polynomial filter

jerk, 53, 54

Kalman filter, 53

multidimensional tracking, 59

optimum g–h–k design curves, 55–57

optimum g–h–k design table, 38–40

optimum g–h–k filter, 29, 38–40, 55–57, 77

polar coordinates, 59–62

prediction equations, 51

prediction error, 98, 100, 101

Simpson filter, 53

Singer g–h–k filter, 95–104, 146–151

Singer-Kalman filter, 95–104, 146–151

smoothing, 102–104

steady-state, 95–104, 146–151

steady-state Kalman filter, 53

table, 38–40

track initiation, 57–58

track update equations, 51

transient error, 53

transition equations, 51, 69, 74. See also

Transition matrix

transition matrix, 90, 156. See also Transition

matrix (main listing)

variance reduction factor, 52. See also

Variance reduction factor (main listing)

Givens orthonormal transformation, 181,

283–317, 328–331, 339–345

basic transformation, 283–295

comparison to Householder, 315–317,

328–331, 333, 340

computation advantage, 175, 278–280

example, 295–298, 302–305

Legendre polynomial fit equivalence, 345–353

QR decomposition, 342, 343

recursive form, 343–345

sequential algorithm, 343–345

systolic array for, 298–314

GPS–22, 8

Gram-Schmidt orthonormal transformation,

174–188, 322–345

circuit diagrams, 332, 333, 337, 338

classical Gram-Schmidt (CGS), 174–188,

322–338

comparison to Givens and Householder,

328–331, 339, 340

computation advantage, 175, 278–282, 334,

340–342

for random variables, 378

geometrical introduction to, 174–188

Legendre polynomial fit equivalence, 345–353

modified Gram–Schmidt (MGS), 334–338

QR decomposition, 342, 343

recursive form, 343–345

sequential algorithm, 343–345

Ground-based intercontinental ballistic missile

(ICBM) systems, 63

Growing-memory filters, 23, 233. See also

Expanding-memory polynomial filters

Handed off, 151

HAWK, 7, 8, 13, 16

Heuristic derivation, 14, 17–21

High Performance Precision Approach Radar

(HiPAR), 8, 9

Householder orthonormal transformation,

315–321, 339–345

basic transformation, 315–321

comparison to Givens, 315–317, 328–331,

339, 340

comparison to Gram-Schmidt, 328–331, 339,

340

Legendre polynomial fit equivalence, 345–353

QR decomposition, 342, 343

recursive form, 343–345

reflection transformation, 317–319

sequential algorithm, 343–345

Hyperspace, 172–173

Hypothesis testing, 129

ICBM, see Intercontinental ballistic missile

Idempotent matrix, 171
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Identify matrix, 171

Innovation, 382

Integrated Automatic Detection and Tracking

(IADT), 60

Intercontinental ballistic missile (ICBM), 10,

67

Intermediate-range ballistic missile (IRBM),

66, 67

IRBM, see Intermediate-range ballistic missile

Jerk, 29, 53, 54, 236

Joint probabilistic data association (JPDA), 129

Kalman, xiii

Kalman filter, 8, 10, 23, 29, 53, 64–75, 105, 262,

367–387

adaptive, 108, 382

approximation to, table lookup, 84, 85

ARTS III filter, 84, 85

Asquith-Friedland filter, 84–88

atmospheric drag, 75

autocorrelated acceleration, 89

Benedict-Bordner, 65, 85–87

Benedict-Bordner design curves, 55–57

Benedict-Bordner design table, 38–40

bias error, 382. See also Bias error (main

listing)

comparison with Swerling filter, 383–387

conditional density estimate, 377

constant g–h–k, 95–104, 146–151

corrector equation, 73, 74

covariance, 72–74. See also Variance of

estimate

covarianc matrix, 74. See also Variance of

estimate

design curves, 55–57, 95–104, 147, 149

dimensionless Fitzgerald parameters, 95–104,

146–151

discrete Kalman filter, see Asquith-Friedland

filter

driving noise, 65

driving noise vector, 70

dynamic model, 64, 65, 70, 85, 88–94. See also

Dynamic model (main listing)

dynamic model noise covariance, 73, 74, 76,

77, 87, 90, 91

Dynamics noise, 65

equations

matrix form, 69–77, 262, 263, 381

original form, 380

exact derivation, 80–84

extended Kalman filter, 367–374

filtered error, 99, 100, 101

filtering equation, 72, 74, 262, 381

Fitzgerald dimensionless parameters, 95–104,

146–151

g–h filter, 64–75

Gram-Schmidt orthogonalization, 378

handover, 67

innovation, 382

Kalman filtering equation, 72, 74, 262, 380,

381

loss function, 377

maneuver, 107, 108. See also Random

maneuvering

matrix form notation, 69–77

maximum likelihood estimate, 262

minimum-variance equation, 77

missed detections, 109

model noise, 65

multidimensional tracking, 59, 75, 358, 359,

363–374

multistate, 75

nonlinear system, 367–374

observation error, 71

observation matrix, see Observation matrix

(main listing)

observation noise covariance, 73

optimum g–h–k design curves, 55–57

optimum g–h–k filter, 29, 38–40, 53, 55–57

optimum g–h–k table, 38–40

original form, 376–381

plant noise, 65

prediction error, 98, 100, 101

predictor equation, 72, 74, 262, 380, 381

process noise, 65

properties of, 68

Q matrix, 73, 74, 76, 77, 87, 90, 91, 380, 381

random maneuvering, 64, 77, 85, 88–90, 107,

108

random-walk velocity, 64

reasons for using, 66–67

residual, 107, 108, 382

selection of tracking filter, 104–110

signal-to-noise ratio (SNR), 67

simplified, 105, 106

Singer g–h–k filter, 88–104, 146–151

Singer–Kalman filter, 88–104, 146–151

smoothing, 102–104

state vector, 70, 75, 89, 155–158, 162, 232,

254, 359, 365, 368–374. See also Scaled

state vector (main listing)

steady-state, 53, 55–57, 65, 66, 146–151,

problems 2.4-1, 2.4-2, and 2.4-3

system dynamics, 64, 65, 84–94. See also

dynamic model (main listing)

system noise, 65

table lookup of approximation, 84
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target dynamics equation, 64, 92–94. See also

Dynamic model (main listing)

target dynamics model, 64, 65, 70, 85, 88–94.

See also Dynamic model (main listing)

three-state, 29, 38–40, 53, 55–57, 88–94,

95–104, 146, 151

tracking a ballistic target, 75

transition matrix, 70, 90. See also Transition

matrix (main listing)

two-state, 64–75

weighted least-squares error estimate, 79,

81–83

weight equation, 74

white-noise acceleration forcing term, 89

white-noise maneuver excitation vector, 90

Kill probability, 106

Lag error, see Bias error

Laguerre polynomial fit, 165, 166, 240–244

Launch sites, 10

Least-squares filter (LSF), 23, 32–36. See also

Least-squares estimation

Least-squares estimation (LSE), 23, 32–36,

155–374

adaptive nulling, 188–200

back-substitution method, 181, 185, 269–270

classical Gram-Schmidt, 174–188, 322–333

classical weighted least-squares estimate,

200–204

computation problems, 264–267, 278–282,

295–297, 340–342, 392–334

Gauss elimination, 181, 182, 185, 193

Givens transformation, 181, 283–314, 339–345

Gram-Schmidt method, 174–188, 322–345

Householder transformation, 315–321,

339–345

minimum variance estimate, 200–204

modified Gram–Schmidt, 333–338

nonorthogonal polynomial fit, 206–208

orthonormal transformation, 174–200,

264–354. See also Orthonormal

transformation (main listing)

polynomial fit, 164, 165, 212–214. See also

Expanding-memory polynomial filter;

Fading-memory polynomial filter; Fixed-

memory polynomial filter; Nonorthogonal

polynomial fit

power method, 193

quasi-weighted, 202

square-root metho, 165, 174–188, 264–354.

See also Orthonormal transformation (main

listing)

voltage-processing method, 165, 174–188,

264–353. See also Orthonormal

transformation (main listing)

weighted, 36, 78–82, 200–204, 262

Legendre polynomial fit, 165, 208–212

Equivalence to voltage processing methods,

345–353

Laguerre polynomial fit, 165, 166, 208–212,

240–244

LFM, see Linear frequency modulation

Limited electronically scanned, 13

Limited-scan, 14

Linear constant-coefficient differential equation,

253–256

Linear frequency modulation (LFM), 132–151

Linear time-invariant equations, 6, 51, 64, 85,

87–91, 155, 160, 252–259

Linear time-variant system, 354–356

Linear time-variant vector differential equation,

355

Linearization, 357–374

Lineland, 6

Lognormal clutter, 111–115

Loss function, 377

Low Altitude Simultaneous HAWK Engagement

(LASHE), 16

LSE, see Least-squares estimation

Least-squares estimation (LSE) nonorthogonal

polynomial fit, 206–208

Lumped filter, 23

m0-Dimensional space, 168, 184–187, 274, 326

Maneuver, 107, 108, See also Random

maneuvering

Matched filter, 137

Matched receiver, 203

Matrix, 82, 155–374

augmented, 185, 187, 292, 315, 316, 319–321,

323, 325–329, 334, 342–344

Bayes filter in matrix form, 261, 263, 357–

374

characteristic equation, 258, 276, problem

10.2-1

covariance, 59, 73, 74, 200–203

diagonal, 171, 201–203, 325–328, 333

differentiation of, 82–84

dynamics, 70, 71. See also Dynamic model

(main listing)

F, 178–188, 267–275, 297, 322, 324, 326, 328,

350–353

filtered estimate, 72, 74, 261, 262, 369, 370,

373

idempotent, 171

identity, 171

inverse, 81, 157, 159

inversion lemma, 83, 262, problem 9.3-1
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Matrix (continued)

Kalman filter in matrix form, 69–77, 262, 263,

357–382

measurement, 71, 75, 76, 155, 157, 158,

370–372

nonnegative definite, 201

observation, see Observation matrix (main

listing)

orthogonal, 322–324

orthonormal, 172. See also Transformation,

orthonormal

orthonormal transformation, 155–374. See also

Transformation, orthonormal

prediction estimate, 70, 72, 74, 75

projection, 171, 172

pseudoinverse, 169, 170

Q, see Q Matrix (main listing)

Q0, 322–338

R, see R Matrix (main listing)

R0, 325, 327, 329, 330, 325–337

semidefinite, 201

singular, 265, 266, 341, 382

smoothed estimate, 372–374

Swerling filter in matrix form, 357–374

T, 158–164, 167

T 0, 268, 296

T0, 185, 187, 292, 301, 314–316, 319–321, 323,

325–329, 334, 342–344

T 0
0, 292, 321, 328

transformation, orthonormal, 155–374. See

also Orthonormal transformation (main

listing)

Givens, 181, 283–317, 328–331, 339–345

Gram–Schmidt, 174–188, 322–345

classical, 174–188, 322–338

modified, 334–338

Householder, 315–321, 339–345

transition, see Transition matrix (main listing)

transition-observation, 158–164, 167–174,

179, 180, 183–188, 267–278, 283, 291–298,

302, 322, 329, 340, 341, 346–353

transpose of, 59

U, see U matrix (main listing)

U 0, 327, 328, 333

upper triangular, see U, U0, R, and R0 matrices

upper triangular, inversion of, 351, problem

1.4-1

Matrix differentiation, 82–84

Matrix form notation, 69–77

Maximum-likelihood estimate, 201, 262

Measurement error, see Observation error

Measurement matrix, 71, 75, 76, 155, 158,

370–372

Memory, 105

Minimization of transient error, 29–32

Minimum-variance equation, 77–84, 200–203,

262

Minimum-variance estimate, 200–204

Mismatched filter, 137

Mismatched receiver, 203

Missed detections, 109

MMIC, see Monolithic microwave integrated

circuit

Model noise, 65

Modified Gram-Schmidt (MGS), 334–338. See

also Gram–Schmidt orthonormal

transformation

Monolithic microwave integrated circuit

(MMIC), 12

Monopulse Secondary Surveillance Radar

(MSSR), 4

Moving-target detector (MTD), 60, 116–121,

125–127

clutter rejection, 116–121, 125–127

MTD, see Moving-target detector

Multidimensional space, 168

Multidimensional tracking, 59, 75, 358, 359,

363–374

National Aviation Facilities Engineering Center

(NAFEC), 119

NATO SEASPARROW, 13, 17

Nearest-neighbor approach, 127–129

Noise amplification factor, see Variance

reduction factor

Noise ratio, see Variance reduction factor

Nonchirped linear frequency modulation

waveform, 146–151

Nonlinear dynamics model, 360–366, 367–374

linearization, 360–374

Taylor expansion, 361, 362

Nonlinear observation scheme, 357–360,

367–374

linearization, 358–360, 367–374

Taylor expansion, 359

Nonlinear system, 360–374

Nonnegative definite matrix, 201

Nonorthogonal polynomial fit, 206–208

Notation, 388, 401–417

covariance matrix, 218

estimates, 20, 21

Null vector, 187

Numerical computation error, 175, 264–267,

278–282, 295, 296, 334, 340–342

Observation equation, 158. See also Observation

matrix

Observation error, 27, 71, 155–158, 160
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Observation matrix, 71, 91, 146, 151, 155, 158

chirp waveform, 146, 151

linear system, 71, 91, 155, 157, 158, 161, 206,

234, 239, 349, 354

multiple measurements, 156–158, 370–373

nonlinear system, 357–360, 368–370

Observation merging, 116–127

Observation noise covariance matrix, 59, 73, 74

Observation space, 158

Optimum g–h–k filter, 29, 38–40, 55–57, 77

Orthogonal discrete-time Legendre polynomials,

165, 208–212, 345–353

Orthogonal discrete-time Laguerre polynomials,

165, 166, 240–244

Orthonormal matrix, 172. See also Matrix,

transformation

Orthogonal polynomial fit, 208–211, 240–244.

See also Orthogonal transformation;

Orthonormal transformation

Orthogonal transformation, 322–326, 334–338.

See also Orthonormal transformation

Orthonormal coordinate system, 177

Orthonormal transformation matrix, 177, 178.

See also Orthonormal transformation

Orthonormal transformation, 165, 166, 174–200,

264–354

adaptive arrays, see Adaptive nulling

computation advantage, 195, 278–282

for random variables, 378

Givens, see Givens orthonormal

transformation

Gram–Schmidt, see Gram–Schmidt

orthonormal transformation

Householder, see Householder orthonormal

transformation

Laguerre polynomials, 165, 166, 240–244

least-square estimate, use of, 165, 166,

174–188, 263–270

Legendre polynomials, 165, 208–212, 345–353

reason for better accuracy, 278–282

sidelobe canceler, see Adaptive nulling

systolic arrays, see Systolic arrays

PATRIOT, 9, 10, 12, 45

Pave Paws, 12

Phased-array radar, 9–15, 45, 135

Planetoid, 374

Plant noise, 65

Polar coordinates, 59–62

Poles, 37

Polynomial filter, 23, 49. See also Polynomial fit

Polynomial fit, 164, 165, 212–214. See also

Expanding memory polynomial filter;

Fading-memory polynomial filter; Fixed-

memory polynomial filter; Nonorthogonal

polynomial fit

Polynomial state variable representation,

212–214

Power method, 193

Practical issues, 111–151

acceleration, 60–63, 145

adaptive nulling, see Adaptive nulling

adaptive thresholding, 124

all-neighbors data association approach, 129

AN/FPS–117, 117

ARSR–4, 117

association of data, 127–130

chirp waveform, 132–151, 204

clustering, 120–125

clutter, 111–115, 118

clutter rejection, 116–127

coached detection, 123

constant false alarm rate (CFAR), 123, 124

Doppler, 116–126, 142

editing for inconsistencies, 121

elimination of clutter, 116–127

false-alarm probability, 111–115

feedback for constant false alarm rate (CFAR)

control, 123, 124

firm tracks, 130

hypothesis testing, 129

joint probabilistic data association (JPDA), 129

Linear frequency modulation (LFM), 132–151

lognormal clutter, 111–115

moving-target detector (MTD), 60, 116–121,

125–127

clutter rejection, 116–121, 125–127

nearest-neighbor approach, 127–129

observation merging, 116–127

pulse repetition frequency (PRF), 117

probabilistic data association (PDA), 129

probabilistic hypothesis testing approach, 129

pseudoacceleration, 60–63

pulse-Doppler ambiguities, 116–126

rain clutter, 111–115

range ambiguities, 117

range-Doppler ambiguity, 141–151

redundancy-elimination, 120–125

retrospective detection, 111–117

sea clutter, 111–115

sequential probability ratio test (SPRT), 127

spiky clutter, 111–115

target signatures, 130

tentative tracks, 130

track-drop, 127

track initiation, 47–51, 57, 58, 116–127,

130–132, 236, 248–251

tracking initiation, 111–115
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Practical issues (continued)

track-start, 127

waveform, 132–151

waveform, chirp, 132–151

Weibull clutter, 112

Prediction equations, 21, 51

Prediction error, 98, 100, 101

Prediction estimate, 21

Prediction window, 128

Predictor equation, 72, 74

Probabilistic data association (PDA), 129

Probabilistic hypothesis testing approach, 129

Process noise, 65

Projection matrix, 171, 172

Pseudoacceleration, 60–63

Pseudoinverse, 169, 170

Pulse Acquisition Radar (PAR), 7, 8

Pulse coding, 137–140

Pulse compression (PC), 136, 137, 203

Pulse-Doppler ambiguities, 116–126

Pulse repetition frequency (PRF), 117

Q Matrix, 87, 91

dynamic model covariance, 73, 74, 76, 77, 87,

90, 91

orthonormal transformation, 174–188,

322–338, 343

Q0 matrix, 322–338

QR decomposition, 342, 343

Quasi-weighted least-squares estimate, 202

R, y coordinates, 59–62

R, y, f coordinates, 60, 62, 358, 359

R Matrix

observation noise covariance, 73, 74, 81

transformed T, 325–327, 342, 343

R0 matrix, 325–337

Radar, 3, 4, 105

acceleration, 145, 146, 363, 365

adaptive thresholding, 123, 124

AEGIS, 10

air route surveillance radar (ARSR), 67,

116

air traffic control, 3, 4, 7, 8, 116–125

Airport Surveillance Radar (ASR), 4, 7, 8,

119–125

AMRAAM, 16

AN/FPS-114, 113–117

AN/FPS-117, 117

AN/FPS-18, 119–125

AN/GPS-22, 9

AN/SPG-51, 13, 16

AN/SPS-49, 6, 8

AN/TPQ-36, 14

AN/TPQ-37, 13

ARSR-4, 117

ASR-7, 124

ASR-23SS, 7

ATC, 3, 4, 7, 8, 116–125

Ballistic Missile Early Warning System

(BMEWS), 10, 11

ballistic target, 10–12, 66, 67, 150, 151,

363–370

beamformer, 200

chirp linear frequency modulation waveform,

132–151, 204

clutter rejection, 116–127

clutter suppression, 121–127

coached detection, 123

Cobra Dane, 10, 11, 135

coherent processing interval (CPI), 119, 120

constant false alarm rate (CFAR), 123, 124

coordinates, 60–63, 265–267, 358, 359

Digital Airport Surveillance Radar (DASR), 4

dish tracker, 16, 17

Doppler, 116–126, 142

downchirp linear frequency modulation

waveform, 146–151

dual coordinate system (DCS), 63

electronically scanned radar, 9–15, 45, 135

eliminating clutter, 116–127

FAA, 119

fan-beam surveillance, 3–8

feedback for constant false alarm rate (CFAR)

control, 123, 124

Firefinder AN/TPQ-36, 13, 14

Firefinder AN/TPQ-37, 13

GBR, 12

GPS–22, 8

ground-based intercontinental ballistic missile

(ICBM) systems, 63

handed off, 151

HAWK, 7, 8, 13, 16

High Performance Precision Approach Radar

(HiPAR), 8, 9

Integrated Automatic Detection and Tracking

(IADT), 60

intercontinental ballistic missile (ICBM), 10,

67

intermediate-range ballistic missile (IRBM),

66, 67

limited electronically scanned, 13, 14

limited-scan, 13, 14

linear frequency modulation (LFM),

132–151

Low Altitude Simultaneous HAWK

Engagement (LASHE), 16

matched filter, 137
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matched receiver, 203

mismatched filter, 137

mismatched receiver, 203

monolithic microwave integrated circuit

(MMIC), 12

Monopulse Secondary Surveillance Radar

(MSSR), 4

moving-target detector (MTD), 60, 116–121,

125–127

clutter rejection, 116–121, 125–127

NATO SEASPARROW, 13, 17

nonchirped linear frequency modulation

waveform, 146–151

PATRIOT, 9, 10, 12, 45

Pave Paws, 12

phased-array, 9–15, 45, 135

pulse acquisition radar (PAR), 7, 8

pulse coding, 137–140

pulse compression, 137, 203

pulse-Doppler ambiguities, 116–126

pulse repetition frequency (PRF), 117

range accuracy, 203

range ambiguities, 117, 141–151

range-Doppler ambiguity, 141–151

range-Doppler coupling, 141–146

range resolution, 203

Relocatable Over-the-Horizon Radar

(ROTHR), 13, 15

retrospective detector, 113–117

satellite example, 367–374

SCUD missile, 10, 12, 66

signal-to-noise ratio (SNR), 67, 137, 203

spherical coordinates, 60, 62, 358, 359

spherical-to-rectangular coordinates, 62

submarine-launched ballistic missiles, 12

suppression of clutter, 121–127

surveillance, 3, 4

TARTAR, 13, 16

Theater High Altitude Area Defense

(THAAD), 10, 12

three-dimensional tracking, 60, 75, 358

track-drop, 127

tracker, 16, 17

track initiation, 47–51, 57, 58, 116–127,

130–132, 236, 248–251

track-start, 127

track-while-scan (TWS), 4, 6–8, 120, 130–

132

two-dimensional radar, 60

upchirp linear frequency modulation

waveform, 132–151

vessel traffic system (VTS), 5

waveform, 132–151

waveform, chirp, 132–151

Rain clutter, 111–115

Random maneuvering, 64, 77, 85, 88–90, 107,

108

Random-walk velocity, 64

Range accuracy, 203

Range ambiguities, 117, 141–151

Range-Doppler ambiguity, 141–151

Range-Doppler coupling, 141–146

Range resolution, 203

Recursive form of filter, 20, 21, 51, 52, 65,

69–74, 234–236, 242–244, 260–263,

343–345, 367–374

Redundancy-elimination, 120–125

Reentry vehicle (RV) example, 150, 151

Reflection transformation, 317–319

Relocatable Over-the-Horizon Radar (ROTHR),

13, 15

Residual, 107, 108, 382

Retrospective detection, 111–117

ROTHR, see Relocatable Over-the-Horizon

Radar

Routh-Hurwitz, problem 1.2.9-1

RV example, see Reentry vehicle example

Satellite example, 367–374

Satellites, 12

Scaled state vector, 212, 214, 215, 217, 218, 235,

243–245, 345, 346, 349, 351–353

SCUD missiles, 10, 12, 66

Sea clutter, 111–115

SEASPARROW, 13, 17

Selection of coordinates, 60–63, 265, 266

Selection of tracking filter, 104–110

Semidefinite matrix, 201

Sensor selection, 265, 266

Sequential algorithm, 343–345

Sequential probability ratio test (SPRT), 127

Sidelobe canceler (SLC), see Adaptive nulling

Signal-to-noise ratio (SNR), 67, 137, 203

Simplified Kalman filter, 84, 104–106

Simpson filter, 53

Singer g–h–k Kalman filter, 88–94, 95–104,

146–151

basics of, 88–94

design curves, 95–104, 146–151

Singular, 265, 266, 341, 382

Smoothed estimate, definition, 21

Smoothing, 102–104, 370–374

Snatch, 236

SNR, see Signal-to-noise ratio

Spherical coordinate, 60, 62, 358, 359

Spherical-to-rectangular coordinates, 62

Spiky clutter, 111–115

Square-root, interpretation of, 275–278
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Square-root Kalman filter, 353

Square-root method, 165, 174–188, 194,

264–354. See also Givens orthonormal

transformation; Gram-Schmidt orthonormal

transformation; Householder orthonormal

transformation

Stability, 47, 236, 244, 382

State vector, 70, 5, 89, 155–158, 162, 232, 254,

363, 365

differential, 359, 365, 368–374

differential equation, 254, 355, 362, 375

scaled, 212, 214, 215, 217, 218, 235, 243–245,

345, 346, 349, 351–353

Taylor expansion for, 255

Steady-state, 24, 25, 50, 95–104, 146–151

Steady-state Kalman filter, 53, 55–57, 65, 66,

84–110, 146–151

Submarine-launched ballistic missiles, 12

Subsurface search, 105

Suppression of clutter, 116–127

Surface search, 105

Surveillance radar, 3, 4

Swerling filter, 367–374, 383–387

comparison with Kalman filter, 383–387

Systematic error, see Bias error

System dynamic model, 6

System dynamics, 64. See also Dynamic

model

System noise, 65

Systolic array, 194, 298–314

T Matrix, 158–164, 167

T 0 Matrix, 158–164, 167

T0 augmented matrix, 185, 187, 292, 315, 316,

319–321, 323, 325–329, 334, 342–344

Tables, design, 31, 38–40, 220, 221, 237, 246,

248, 309

Target dynamics equation, 92–94. See also

Dynamic model

Target dynamics model, 88. See also Dynamic

model

Target interception, 151

Target signatures, 130

TARTAR, 13, 16

Taylor expansion, 24, 355, 356, 359, 361, 362

Tentative tracks, 130

Theater High Altitude Area Defense (THAAD),

10, 12

Three-dimensional tracking, 60, 75, 358

Time-invariant system, see Dynamic model

Time-varying system, see Dynamic model

Track-drop, 127

Tracking a ballistic target, 66, 67, 75, 150, 151,

363–370

Tracking-filter equations, 21, 51, 74

Tracking radar, 16, 17

Track initiation, 47–51, 57, 58, 116–127,

130–132, 236, 248–251

Track update equations, 20, 21, 51, 74

Track-start, 127. See also Track initiation

Track-while-scan (TWS), 4, 6–8, 130–132

Transformation, see Orthonormal transformation

Transformation matrix, see Matrix

Transformation to sidelobe canceler, 196

Transformations coordinate, 62

Transient error, 29, 53, problem 1.2.6-4

Transition equations, 21, 51, 69, 74. See also

Transition matrix

Transition matrix, 70, 90, 156, 157, 214, 215,

252–258, 354–356

definition, 70, 157, 214, 354

differential equation for, 257–259, 355, 362

differential state vector, 360–366

exponential form, 257

inverse of, 257, 356

methods of determining

linear system, 252–258

nonlinear system, 360–366

time-varying system, 355, 356

nonlinear system, 360–366

scaled state vector, 214, 216, 217

Taylor expansion for, 256

time-invariant system, 70, 90, 156, 157, 214,

252–258

time-varying system, 354–356

Transition-observation matrix, 158–164,

167–174, 179, 180, 183–188, 267–278, 283,

291–298, 302, 322, 329, 340, 341, 346–353

Transpose of matrix, 59

Trend removal, 230–232

Truncation error, see Bias error

Two-dimensional radar, 60

Two-point extrapolator, 105

Two-state, 64–75

TWS, see Track-while-scan

U Matrix, 179–181, 184, 187, 268–278, 295, 297,

298, 327, 333, 351–353

physical interpretation, 275–278

relation to Legendre polynomials, 351–353

relation to square-root Kalman filter, 353

square-root interpretation, 275–278

U0 Matrix, 327, 328, 333

Uncompressed pulse, 133

Uncoupled filters, 60

Upchirp linear frequency modulation waveform,

132–151

Update (filtering) equations, 20, 21, 51, 74
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Valdez, 5

Variance (VAR), 27, 50. See also Variance of

estimate

Variance of estimate

Bayes filter, 261, 262, 368, 369, 373

expanding-memory polynomial filter, 237

fading-memory polynomial filter, 244–248

fixed-memory polynomial filter, 217–225

g–h filter, 27, 32–34, 41–43, 50, 73, 74,

problems 2.4-1, 2.4-2, 2.4-3

g–h–k filter, 52–56, 73, 74, 95–104

Kalman filter, 68, 69, 72–74, 80–84, 92,

95–104, 262, 368, 369, 373, 380, problems

2.4-1, 2.4-2, 2.4-3

least-squares estimate (LSE), 201, 202,

276–278

minimum variance estimate, 77–83, 201–

203

nonlinear system, 367–370

quasi-least least-squares estimate, 202, 203

simple expressions, 224, 225

Variance reduction factor (VRF), 27, 28, 41, 52,

219–225, 229, 230, 237, 244–246. See also

Variance of estimate

derivation of, problem 1.2.4.4-1

Variance reduction ratio, see Variance reduction

factor

Vector, 172

dot product, 172

hyperspace, 172

magnitude, 172

null, 172

space, 172

unit, 172

Velocity constant, 157

Vessel traffic system (VTS), 5

Voltage processing, 153

Voltage-processing method, 165, 174–188, 194,

264–354. See also Givens orthonormal

transformation; Gram-Schmidt orthonormal

transformation; Householder orthonormal

transformation

as orthonormal transformation, 174–188,

267–275

computation advantage of, 175, 264–267,

278–282, 295, 296, 334, 340–342

equivalence to DOLP, 345–353

simple geometric introduction to, 174–188

VRF, see Variance reduction factor

Waveform, 132–151

Waveform, chirp, 132–151

Weibull clutter, 112

Weight equation, 74

Weighted least-squares estimate, see Least-

squares estimate

White noise, 89

White-noise acceleration forcing term, 89

White-noise maneuver excitation vector, 90

Wiener filter, 23, 105

Window, 5, 107, 128

x,y coordinates, 60–63, 363–365

x,y,z coordinates, 62, 358, 359

Yank, 236

Z-transform, 37, problems 1.2.6-1 to 1.2.6-4,

1.2.9-1

final value theorem, problem 1.2.6-4

sum of residue of poles, problems 1.2.6-2,

1.2.6-3

INDEX 477


