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ABSTRACT 
In multi-environment trials it is common to measure several response variables or attributes 
to determine the genotypes with the best characteristics. Thus it is important to have 
techniques to analyse multivariate multi-environment trial data. The main objective is to 
complement the literature on two multivariate techniques, the mixture maximum likelihood 
method of clustering and three-mode principal component analysis, used to analyse 
genotypes, environments and attributes simultaneously. In this way, both global and detailed 
statements about the performance of the genotypes can be made, highlighting the benefit of 
using three-way data in a direct way and providing an alternative analysis for researchers. 
We illustrate using sunflower data with twenty genotypes, eight environments and three 
attributes. The procedures provide an analytical procedure which is relatively easy to apply 
and interpret in order to describe the patterns of performance and associations in multivariate 
multi-environment trials. 

Key Words: three-way data; genotype-by-environment interaction; clustering via mixtures; principal 
components. 

 
 

INTRODUCTION 

According to Basford et al. (1991), when the genotype-by-environment interaction (G×E) 
is significant, selection and testing strategies for plant breeders are complicated. A portion of 
the G×E represents differences in adaptation (broad or specific), and in order to make 
objective selection decisions it is necessary to understand the nature of these interactions. 
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Generally the breeders are interested in more than one attribute, so it is important to use 
multivariate analyses of such data. In G×E trials with only one attribute, various 
methodologies work well, such as the additive main effects with multiplicative interaction 
models – AMMI. For multivariate multi-environment trials, there are several alternatives. 
Basford (1982), Basford and McLachlan (1985), Kroonenberg and Basford (1989), Basford et 
al. (1990, 1991) and van Eeuwijk and Kroonenberg (1995, 1998) present some cluster and 
ordination techniques to analyse three-way data. Denis and Moro (1995) and Moro and 
Denis (1995) proposed three-way models for the multivariate analysis of genotype-by-
environment interaction in an attempt to generalise factorial regression, biclustering 
(genotypes and environments simultaneously) and biadditive models. 

Interpreting the underlying complex interactions in a three-way array is difficult. If the 
evaluation of the genotypes is made using only one attribute such as yield, then even though 
this may be considered to be the most important attribute, much of the available data is 
being ignored. On the other hand, if separate analyses for each attribute are made, it is 
difficult to successfully combine the results, even accepting that the correlations among the 
attributes are ignored (Basford et al. 1990). 

In this paper, two multivariate techniques, the mixture maximum likelihood method of 
clustering - MIXCLUS (Basford and McLachlan 1985) and three mode principal component 
analysis - TMPCA, Tuckals3 model (Kroonenberg and De Leeuw 1980), are used to analyse 
genotypes, environments and attributes simultaneously. Three-way sunflower data with 
twenty genotypes, eight environments and three attributes are used for illustration. 

The main objective is to complement previously published papers in this area by 
demonstrating that it is possible to deal with several attributes in a unique analysis, make 
both global and detail conclusions about genotype performance, highlight the benefit of 
using three-way data directly, and provide an alternative analysis for researchers. While 
these techniques are used to analyse multi-attribute G×E data, they can be used to analyse 
any similar three-way three-mode data set.  

MATERIALS AND METHODS 

EXPERIMENTAL DETAILS 

We used the results of one year of experimentation from the Embrapa evaluation report 
on Sunflower 2012/2013. We assessed 20 genotypes, consisting of 18 lines obtained from 
crossbreeding (hybrids) and 2 cultivars, in eight environments. A randomized complete 
block design was used with four repetitions. The trials in each of the eight environments 
were laid out in four-row plots of 6m in length within each block. We considered three 
attributes, grain yield per hectare (t/ha), oil content (%) and plant height (cm). 

MIXTURE MAXIMUM LIKELIHOOD METHOD OF CLUSTERING - MIXCLUS 

If the genotypes can be clustered or grouped such that those within a group have similar 
response patterns for each of the attributes across environments, then the breeder can 
examine a smaller data set and hence more easily understand and integrate the information 
inherent in the trials. The mixture maximum likelihood method of clustering can be applied 
to produce a grouping of genotypes based on the simultaneous use of attributes and 
environments (Basford et al. 1990). 

In using the mixture method of clustering, it is assumed in the first instance that there is 
a specific number, NG, of underlying groups. An initial grouping of genotypes can be 
obtained using the results of other clustering techniques, like k-means or hierarchical 
clustering applied to the genotype by environment data for a single attribute, a priori 
information about the data or simply initial random values. A likelihood is formed under the 
assumption that the elements are a sample from a mixture in various proportions of these 

groups ( ngπ , ng=1,...,NG). The details of the mixture method of clustering three-way three-
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mode data are given in Basford and McLachlan (1985). The most common assumption and 
the one used here is that the underlying distribution of the attributes in each group is 
multivariate normal, that is, the distribution of the vector of attributes (xij) for genotype i 

(i=1,...,I) in environment j (j=1,...,J) is given by ∑
=

=
NG

ng

ijngngij ff
1

)()( xx π , where 

),(~)( ngVµx
ngjijng Nf . This model assumes that each population has its own mean vector 

and the response can be different from one environment to another; that is, a group can have 
good performance in one environment but poor performance in another. The correlation 
structure between attributes can be different for the different groups. This is to allow for the 
general situation in which interaction between genotypes and environments results in 
different correlations among the attributes within the groups.  

Following Basford et al. (1990), one of the objectives of the analysis is to estimate these 
unknown parameters in the model (mean vectors, correlation matrices and mixture 
proportions). This is achieved by maximizing the log likelihood. The probability that each 
element belongs to each group is calculated by replacing the unknown parameters in the 
appropriate probability expression with their maximum likelihood estimates, and this 
procedure is called the mixture maximum likelihood method. Each element is allocated to 
the group to which it has the largest estimated probability of belonging. 

The method handles data in its original form, i.e. without centring or scaling, as that is 
effectively taken care of by the multivariate normal distribution (Basford and McLachlan 
1985). 

THREE-MODE PRINCIPAL COMPONENT ANALYSIS - 3MPCA (TUCKALS3 MODEL) 

A model to analyse three-way data was proposed by Tucker (1966). Then, for data 
classified in three modes (genotypes, attributes and environments) 

∑∑∑
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with i=1,2,...,I, j=1,2,...,J, k=1,2,...,K 

where I, J and K represent the number of levels of the first, second and third modes, 

respectively. QJPI ×× BA ,  and RK×C are marker matrices associated with each mode, with 

elements jqip ba ,  and krc , and P, Q and R represent the number of components retained in 

each mode. G is a core array of the three-way data with elements indicating the relationship 

among the components of each mode (Varela et al. 2009). The element pqrg shows the 

strength of the relationship among the pth component of the first mode, the qth component of 
the second mode and rth component of the third mode and its squared value indicates the 
explained variation for that combination of components. The array G can be considered to be 
a generalisation of the diagonal matrix of the eigenvalues associated with the singular value 
decomposition of a two-way matrix (Varela et al. 2008, Araújo et al. 2011). 

Tucker (1966) gave a solution for matrices A, B and C of the model, but the solutions 
found were non-least squares estimators. For full rank (taking P, Q and R components 

retained in the first, second and third mode, respectively) it is possible to reproduce the ijkZ  

value, but with less than the full model the fit may be far away from the true value of ijkZ , 

for example, when just the first component of each mode is retained (Varela and Torres, 
2005). 

In order to resolve this situation, Kroonenberg and De Leeuw (1980) proposed an 
alternating least squares algorithm (Tuckals3), taking as initial values the Tucker solution 
that is based on the estimators for A, B and C that minimises the sum of squares of the 
residual, as in Equation (1):  
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The basic objective of the model underlying the method is to represent each of the ways 
or modes as well as possible in a low-dimensional space by forming linear combinations 
(components) of the levels of the modes. Theoretical details and applications can be found in 
Kroonenberg (1983, 2008). 

SELECTING THE NUMBER OF COMPONENTS TO BE RETAINED IN EACH MODE 

In the Tuckals3 algorithm, it is necessary to specify a priori the number of components to 
be retained, so a selection criterion in needed. Timmerman and Kiers (2000) proposed a 
procedure that indicates the P, Q and R values for the Tuckals3 algorithm to be a global 
optimal solution, rather than a local one. 

The method consists of calculating the adjusted values for all possible solutions obtained 
from Tuckals3 algorithm. In each solution a model is fitted with the objective of 
approximating the Z values. Then, for each solution the error and explained amount of 
variation are calculated. The fit coincides with the part of Z explained by each solution 
(Varela and Torres 2005). 

All possible solutions must satisfy the following conditions, QRP ≤ , PRQ ≤  and 

PQR ≤ , because a model where, for example, PQR >  gives the same fit as the model with 

PQR = . In the same way, models with ),max( JKIP > , ),max( IKJQ >  or ),max( IJKR >  

can be omitted because these models do not fit better than those with P, Q and R equal to 

),max( JKI , ),max( IKJ  and ),max( IJK , respectively. For instance, if the 3×1×2 solution 

coincides with the fit of the 2×1×2 solution, the former can be eliminated because it has 
more axes (Timmerman and Kiers 2000, Kiers and der Kinderen 2003). 

After finding the fit values for the possible solutions and for each value of RQPs ++= , 

the one with best fit is selected. After solutions are selected (one for each value of s), the 
differences in fit (DifFit) between one solution and the immediately previous one (

1−−= sss SQSQdif ) are calculated. This indicates how much is gained by fitting an increasing 

total number of components (s); sdif  is calculated for s=4,...,S, where S is the sum of the 

highest numbers of components used in our analyses, while for s=3, sdif  is equal to the 

model fit with P=1, Q=1, R=1, which implies that 3dif  is compared with the zero 

components model (Timmerman and Kiers 2000). 
The next step is to eliminate all those solutions for which there exists a solution with 

more components and a greater associated difference in fit. In this step, the aim is to obtain 
similarity with the classic PCA in which increasing the number of components produces 
smaller gains in fit.  

For the selected set of solutions, the quotient 
*1+

=
s

s
s

dif

dif
b  is calculated, where *1+sdif  is 

the next largest value after sdif . The optimal solution is the one with maximum quotient and 

associated DifFit greater than the critical value 
)3( min

2

−S

Z
, where 

),min(),min(),min(min IJKIKJJKIS ++= . Models with values below this limit will not be 

taken into account. 
This method permits the researcher to find an optimum balance between the number of 

components retained in each mode and the variability explained by the model. Timmerman 
and Kiers (2000) declare that if the number of axes or components has been adequately 
selected, the Tuckals3 algorithm will rarely lead to a local optimum. 
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BIPLOT REPRESENTATION 

In order to represent the solution graphically, three matrices of principal components or 
markers are used in a generalisation of the classic biplot proposed by Gabriel (1971), see 
Gabriel (2002). A biplot is a simultaneous representation of the rows and columns of a 
matrix, in which the columns (attributes here) are represented by vectors and the rows 
(genotypes here) are represented by points. The value of an attribute for a particular 
genotype can be estimated from the projection of the point onto the vector that represents the 
attribute in question (Varela et al. 2006). 

A biplot is designed to work with one matrix (2 modes), so when a third mode is 
introduced, it is necessary to project on the principal components of one of the modes and 
draw the same number of biplots as components of that mode. This is called a joint plot 
(Kroonenberg 1983). For instance, if projecting onto the components of the third mode, it is 

necessary to consider R biplots, i.e. for R=1 a biplot of the matrix BAG1 , for R=2 a biplot of 

the matrix BAG2  and so on for all the components retained in the third mode. rG  is the part 

of the three-way array G associated with R=r, i.e. with the rth component of the third mode 
(Varela and Torres 2005). 

Because of the different units of measurement for the different attributes measured in 
this genotype × environment trial, it is necessary to adjust the scales so that they can be 
analysed simultaneously. Hence the data are centred by subtracting the attribute effect and 

the environmental effect, jkijkijk xx βµ −−=~ . Then the data are scaled by dividing by the 

standard deviation for each attribute, calculated over all environments, ∑∑
= =

=
I

i

J

j

ijkk xs
1 1

2~ . 

Least-squares estimators are used to estimate kµ  and jβ . The centred and scaled data 

become the ijkZ  for the application of three-mode principal component analysis. 

COMPUTER PROGRAMS 

The mixture method of clustering has been programmed by, and is available from, the 
third author, Professor K.E. Basford. The three-mode principal component analysis is in the 
3WayPack suite which has been written by, and may be obtained from, Professor P.M. 
Kroonenberg (Leiden University, The Netherlands), see the website of the Three-Mode 
Company (http://three-mode.leidenuniv.nl). 

RESULTS  

MIXTURE MAXIMUM LIKELIHOOD METHOD OF CLUSTERING - MIXCLUS 

In order to select the number of groups, different initial values for each NG value were 
used. The initial grouping of genotypes was obtained after cluster analysis for each attribute 
with the k-means method and model-based clustering. NG=2 and 3 were evaluated, but for 
NG=3 it was found that the eigenvalues of the individual group covariance matrices were 
very small or negative which causes problems with the inversion of these matrices. This 
indicates that it may be necessary to reduce the number of groups, so it was decided to work 
with NG=2. 

Table 1 presents the estimated mean vector for each group with their corresponding 
correlation matrix and group composition. The groups contain 7 and 13 genotypes 
respectively. In general group 2 had higher means for two of the three attributes than group 
1. The correlation between sunflower grain yield and oil content was positive in both groups 
(0.31 and 0.26). On the other hand, the correlation between sunflower grain yield and plant 
height was positive in the first group and negative in the second (0.27 and -0.10), the same 
occurred for the correlation between oil content and plant height (0.24 and -0.06). 

 



Communicat ions  in  Biometry and Crop Sc ience ,  11 (2)  

 

132

Table 1.  Estimated means with their corresponding correlation matrix and group 
composition from the mixture clustering method. 

Attribute Group 1  Group 2 

Grain yield (t/ha) 1.746  1.987 

Oil content (%) 42.824  39.971 

Plant height (cm) 150.698  163.225 

Correlation matrix      
 

1 1 

0.31 1 0.26 1 

 
0.27 0.24 1 

 
-0.10 -0.06 1 

Composition G3-BRSG35#  G1-BRSG30 

G6-BRSG38  G2-BRSG34 

G9-BRSG42  G4-BRSG36 

G10-Embrapa122#  G5-BRSG37 

 

G12-EXP26  G7-BRSG39 

G13-HELIO358  G8-BRSG40 

G15-MG341  G11-EXP24 

 
   G14-M734 

     G16-SRM767 

     G17-SRM779CL 

     G18-SRMCiro 

     G19-SYN3950HO 

     G20-V100964 
     # Cultivars 

 
Figure 1 displays the estimated environment means for each group for each attribute, 

using the notation of E1 to represent the first environment, etc. Group 2 had better 
performance for sunflower grain yield and plant height than group 1, while the opposite was 
true for oil content. For group 1, the environment with highest sunflower grain yield was 
environment 3 (E3) and that with the lowest was environment 2 (E2). For group 2, the 
highest was E3 but the lowest was E1, so the genotypes in group 2 could be a good option to 
increase sunflower grain yield in environments similar to environment 3. In contrast, E3 had 
moderate value for oil content for both groups. On the other hand, E1 determined the 
expression of high and moderate oil concentrations in hybrids of groups 1 and 2, respectively 
and low sunflower grain yield for both groups. In the case of plant height, again the two 
groups presented similar behaviour, with E3 having the highest yield and E1 the lowest. Not 
surprisingly, the pattern for plant height more closely followed that for sunflower grain 
yield, but with spikes and dips caused by oil content. 

In E4 and E5, genotypes in both groups were characterised by moderate values for grain 
yield and plant height and the highest values for oil content. From Figure 1 it can be 
concluded that there is not much G×E interaction. Thus, except for grain yield and plant 
height in some environments, the response patterns across environments were largely 
similar.  
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Figure 1. Expected environmental means for the two groups formed by mixture maximum 
likelihood method for sunflower grain yield, oil content and plant height. 

THREE-MODE PRINCIPAL COMPONENT ANALYSIS - 3MPCA (TUCKALS3 MODEL) 

Initially, the number of principal components for each mode should be determined by 
the fit of various Tuckals3 models. As I=20 (number of genotypes), J=8 (number of 
environments) and K=3 (number of attributes), there exist IJK=480 possible combinations of 

components. However, we only select those that satisfy the conditions QRP ≤ , PRQ ≤  and 

PQR ≤ , because the others are redundant. For the selected combination of components, the 

percentage of variation explained by fitting the Tuckals3 model was calculated. Several 
solutions are obtained for each value of s=P+Q+R, but in Table 2 only the best solution 
(accounting for most variation) for each value of s is presented. Also, the difference in fit 
value associated with each solution, the quotient between the differences and the explained 
percentage of variance, is presented. 

The optimal solution was 2×1×2, because it has the highest associated quotient among 

solutions with difference in fit higher than the critical value, [ ]( )035.028131 min ==−S . The 

retention of just one component for environments reflects the relatively small amount of 
genotype by environment interaction and this is consistent with the results found in the 
MIXCLUS analysis. 
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Tables 3, 4 and 5 show the components for genotypes, environments and attributes for 
the best fit. The two components retained for genotypes and attributes account for 24% and 
20% of the variation, respectively. The first and second components for genotypes and the 
first component for attributes are contrasts, while the second component for attributes and 
the one for environments are rough averages. 

Table 2.  Best fit solutions for each value of s=P+Q+R. 

s=P+Q+R Model (Solution PxQxR) Difference in fit DifFit Quotient % Fit 

3 1×1×1 0.246 1.272 24.64 

5 2×1×2 0.194 2.220 44.01 

6 2×2×2 0.073 51.29 

7 3×1×3 0.027 53.95 

8 3×2×3 0.087 1.853 62.68 

9 3×3×3 0.047 1.051 67.39 

10 4×3×3 0.045 1.157 71.87 

11 4×4×3 0.039 1.387 75.74 

12 5×4×3 0.023 78.05 

13 5×5×3 0.028 80.84 

 
Table 3.  Components for genotypes. 

Genotype 1 2 

G1 -0.352 0.241 

G2 -0.226 -0.049 

G3 0.230 -0.133 

G4 -0.310 -0.010 

G5 0.025 0.259 

G6 0.159 -0.093 

G7 -0.156 -0.232 

G8 0.001 0.040 

G9 0.112 -0.350 

G10 0.215 -0.574 

G11 -0.171 -0.139 

G12 0.133 -0.041 

G13 0.494 0.219 

G14 -0.203 -0.175 

G15 0.253 0.188 

G16 0.129 0.161 

G17 -0.348 -0.032 

G18 -0.141 0.279 

G19 0.080 0.201 

G20 0.077 0.241 

Variation % 24.0 20.0 
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Table 4.  Components for environments. 

Environment 1 

E1 0.238 

E2 0.229 

E3 0.535 

E4 0.377 

E5 0.409 

E6 0.456 

E7 0.241 

E8 0.169 

Variation % 44.0 

 
Table 5. Components for attributes. 

Attribute 1 2 

Sunflower grain yield -0.178 0.714 

Oil content 0.806 0.500 

Plant height -0.564 0.490 

Variation % 24.0 20.0 

 
The relationships among the different modes of data provided by the three-mode 

principal component analysis are presented in Figure 2, and the strength of these 
relationships can be measured by the inner products between genotypes and attributes 
(Table 6). High inner product indicates good performance with the attribute. 

The groups found with the mixture maximum likelihood method of clustering are 
clearly separated in the joint plot in Figure 2. The separation is based mainly on plant height 
with the genotypes in group 2 having higher values than those in group 1. On the other 
hand, genotypes G1 and G18 had the highest grain yield and plant height (inner products 
0.186, 0.175 and 0.260, 0.174), while G10 and G9 had the lowest (inner products -0.350, -0.210 
and -0.321, -0.187). For oil content, G13 and G15 from group 1 had the best performance 
(inner products 0.423 and 0.246).  

Because the selected 2×1×2 model only reflects the average performance across 
environments, it is useful to look in more detail at differences among the environments. This 
can be achieved by considering the results corresponding to the 2×2×2 model, even though 
it was not the optimal solution. The two components for genotypes and attributes were very 
similar in behaviour to those found with the 2×1×2 model, as was the first environment 
component. The second environment component accounted for 7.9% of the variation  
(Table 7) and it was a contrast between environments E1 and E7 and environments E3 and 
E6. Note that E3 and E7 had high productivity potential while the other two environments 
had low productivity potential (Figure 1).  
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Figure 2. Joint plot for genotypes and attributes for the first environment component for the 
2×1×2 solution. 

 
Table 6. Inner products between genotypes and attributes. 

Group Genotype Grain yield Oil content Plant height 

1 G3 -0.108 0.106 -0.161 

 
G6 -0.075 0.073 -0.112 

 
G9 -0.210 -0.059 -0.187 

 
G10 -0.350 -0.075 -0.321 

 
G12 -0.043 0.075 -0.080 

 
G13 0.046 0.423 -0.154 

 
G15 0.066 0.246 -0.050 

2 G1  0.186 -0.148 0.260 

 
G2 0.007 -0.174 0.090 

 
G4 0.041 -0.216 0.145 

 
G5 0.139 0.117 0.086 

 
G7 -0.105 -0.197 -0.013 

 
G8 0.022 0.016 0.015 

 
G11 -0.051 -0.171 0.029 

 
G14 -0.066 -0.207 0.031 

 
G16 0.070 0.151 0.000 

 
G17 0.035 -0.250 0.155 

 
G18 0.175 0.011 0.174 

 
G19 0.099 0.132 0.038 

 
G20 0.121 0.146 0.055 
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Table 7. Components for environments in the 2×2×2 model. 

Environment 1 2 

E1 0.244 0.54 
E2 0.234 0.088 
E3 0.534 -0.377 
E4 0.385 -0.087 
E5 0.397 0.14 
E6 0.446 -0.373 
E7 0.257 0.556 
E8 0.174 0.289 

Variation % 43.4 7.9 

 
Figure 3 shows the joint plots for genotypes and attributes for the first and second 

environment component. Figure 3(a) is very similar to Figure 2 (as would be expected), while 
Figure 3(b) shows how the relationships between attributes and genotypes are different for 
environments E1 and E7 in comparison with environments E3 and E6. Compared with their 
overall performance in all environments, G9 and G10 had lower yields and heights in E3 and 
E6 than in E1 and E7, while G1 and G18 had relative higher yields and heights in E3 and E6 
than in E1 and E7 (Table 8). Furthermore, G13 and G15 had higher oil contents in E1 and E7 
than in E3 and E6, with the reverse pattern for G17, G4 and G1 (Table 8). 
 
Table 8. Inner products between genotypes* and attributes (second joint plot). 

Group Genotype Grain yield Oil content Plant height 

1 G9 0.095 0.003 0.089 

 
G10 0.152 0.022 0.138 

 
G13 0.061 0.184 0.005 

 
G15 0.006 0.112 -0.026 

2 G1 -0.119 -0.101 -0.084 

 
G2 -0.038 -0.079 -0.014 

 
G4 -0.059 -0.102 -0.027 

 
G7 0.006 -0.085 0.030 

 
G17 -0.059 -0.104 -0.026 

 
G18 -0.074 -0.018 -0.065 

* Only genotypes with at least one value ≥ |0.07| 

 

 
(a) First environment component        (b) Second environment component 

Figure 3. Joint plot for genotypes and attributes for the first and second environment 
component for the 2x2x2 solution. 
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DISCUSSION 

The information obtained from joint analysis of sunflower data can be summarised in 
the following way. 

The methods successfully integrate the attributes measured in the multi-environment 
trial. The analysis helps the breeder make decisions in favour of moderate to high yields and 
oil content with low to moderate heights in general or in selected environments. In this 
particular case, selecting the “best” genotypes from group 2 according to high yield, 
acceptable height and adequate oil content, and the best from group 1 on the basis of good 
oil content and reasonable yield and height would be G5, G18 (Group 2) and G13 (Group 1). 
In terms of specific environmental responses, G10 yields higher in environments like E1 and 
E7 (in comparison with those like E3 and E6), while the reverse is true for G1 and G18. On 
the other hand, G13 has higher oil content in environments like E1 and E7 (in comparison 
with those like E3 and E6). Both methods facilitated a simple interpretation about the 
relationship between and within the groups and this is of practical assistance to breeders.  

While the groups are easier to look at than the individual genotypes, it should be 
remembered that the selection has to be made on individuals. The major advantage of these 
three-way methods is that they allow the breeders to simultaneously analyse the three-way 
data in a direct way and obtain a global vision of the genotype response across the different 
environments. Additionally, the information provided by both the clustering and ordination 
methods can be easily presented in figures which facilitate a relatively simple interpretation. 
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