
Analysis Option
Perception

English

User Manual

I2
69

0-
9.

2
en

H

BM
: p

ub
lic

Document version 9.2 - August 2017

For Perception 7.14 or higher

For HBM's Terms and Conditions visit www.hbm.com/terms

HBM GmbH
Im Tiefen See 45
64293 Darmstadt

Germany
Tel: +49 6151 80 30

Fax: +49 6151 8039100
Email: info@hbm.com

www.hbm.com/highspeed

Copyright © 2017

All rights reserved. No part of the contents of this document may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Perception Analysis

2 I2690-9.2 en HBM: public

http://www.hbm.com/terms

LICENSE AGREEMENT AND WARRANTY
For information about LICENSE AGREEMENT AND WARRANTY refer to
www.hbm.com/terms.

Perception Analysis

I2690-9.2 en HBM: public 3

http://www.hbm.com/terms

4 I2690-9.2 en HBM: public

Table of Contents Page
1 Analysis Option 11
1.1 Introduction 11
1.1.1 How to install the Analysis option 11
1.2 Formula database sheet 13
1.3 Definitions 16
1.3.1 Constants 16
1.3.2 Variables 16
1.3.3 Functions 17
1.4 Modifying the layout 18
1.4.1 Add, delete and clear rows 18
1.4.2 Moving around 19
1.5 Creating formulas 20
1.5.1 Function creator 20
1.5.2 Entering comment 25
1.5.3 Entering formulas 26
1.5.4 Problems in formulas 27
1.6 Formula menu 30
1.6.1 Load Formulas 30
1.6.2 Save Formulas 31
1.6.3 Print Formulas 31
1.6.4 Move Sheet 31
2 Formula Database Functions 33
2.1 General 33
2.2 Overview 34
2.2.1 Function Overview 34
2.2.2 Funtion Overview - HIC section 40
2.2.3 Function Overview - Cycle Math section 41
3 Arithmetic Operations 43
3.1 + (Addition) 43
3.2 - (Subtraction) 45
3.3 * (Multiplication) 47
3.4 / (Division) 49
3.5 – (Unary minus) 51
3.6 @Modulo 52

Perception Analysis

I2690-9.2 en HBM: public 5

4 Reference Guide 53
4.1 @Abs 53
4.2 @ACosine 54
4.3 @And 55
4.4 @Area 56
4.5 @ASine 58
4.6 @ATan 59
4.7 @ATan2 60
4.8 @BlockFFT 63
4.9 @Clip 65
4.10 @Comparator 67
4.11 @Cos 69
4.12 @CurveFitting 70
4.13 @Cut 72
4.14 @Cycles 74
4.15 @Diff 76
4.16 @DQ0Transformation 78
4.17 @Energy 82
4.18 @EqualTo 84
4.19 @Exp 85
4.20 @ExpWave 86
4.21 @FallTime 87
4.22 @FilterButterworthLP 89
4.23 @FilterButterworthHP 91
4.24 @FilterButterworthBP 93
4.25 @FilterButterworthBS 95
4.26 @FilterBesselLP 97
4.27 @FilterBesselHP 99
4.28 @FilterBesselBP 101
4.29 @FilterBesselBS 103
4.30 @FilterChebyshevLP 105
4.31 @FilterChebyshevHP 108
4.32 @FilterChebyshevBP 110
4.33 @FilterChebyshevBS 112
4.34 @Frequency 115
4.35 @FormatDate 117
4.36 @FormatTime 119

Perception Analysis

6 I2690-9.2 en HBM: public

4.37 @GreaterEqualThan 121
4.38 @GreaterThan 122
4.39 @Histogram 123
4.40 @IIF 125
4.41 @Integrate 127
4.42 @IntLookUp 128
4.43 @IntLookUp12 131
4.44 @IsNaN 133
4.45 @Join 134
4.46 @Length 136
4.47 @LessEqualThan 137
4.48 @LessThan 138
4.49 @Ln 139
4.50 @Log 141
4.51 @Max 142
4.52 @MaxNum 144
4.53 @MaxPos 145
4.54 @Mean 147
4.55 @MedianFilter 149
4.56 @Min 152
4.57 @MinNum 154
4.58 @MinPos 155
4.59 @NextHillPos 157
4.60 @NextLvlCross 159
4.61 @NextValleyPos 161
4.62 @Noise 163
4.63 @Not 164
4.64 @Or 165
4.65 @Period 166
4.66 @Pow 168
4.67 @PrevHillPos 169
4.68 @PrevLvlCross 171
4.69 @PrevValleyPos 173
4.70 @Pulse 175
4.71 @PulseWidth 177
4.72 @Ramp 179
4.73 @ReadAsciiFile 181

Perception Analysis

I2690-9.2 en HBM: public 7

4.74 @ReadLogFile 183
4.75 @Reduce 187
4.76 @RefCheck 188
4.77 @RelativeTime2Local 190
4.78 @RelativeTime2UTC 192
4.79 @RemoveGlitch 194
4.80 @Res2 195
4.81 @RiseTime 196
4.82 @RMS 198
4.83 @SAEJ211Filter 199
4.84 @Sin 200
4.85 @SineWave 201
4.86 @Smooth 202
4.87 @SpaceVectorInverseTransformation 204
4.88 @SpaceVectorTransformation 208
4.89 @Sqrt 211
4.90 @SquareWave 212
4.91 @StdDev 213
4.92 @STLX_SignalStart 215
4.93 @STLX_SignalEnd 217
4.94 @Sweep 218
4.95 @SweptSineWave 219
4.96 @Tan 221
4.97 @TimeMaxAbove 222
4.98 @TimeMaxAboveBegin 224
4.99 @TimeMaxBelow 226
4.100 @TimeMaxBelowBegin 228
4.101 @TimeMinAbove 230
4.102 @TimeMinAboveBegin 232
4.103 @TimeMinBelow 234
4.104 @TimeMinBelowBegin 236
4.105 @TimeTotalAbove 238
4.106 @TimeTotalAboveBegin 240
4.107 @TimeTotalBelow 242
4.108 @TimeTotalBelowBegin 244
4.109 @TriggerTime 246
4.110 @TriggerTimeToText 248

Perception Analysis

8 I2690-9.2 en HBM: public

4.111 @TrueFrequency 250
4.112 @TrueRMS 252
4.113 @TrueRMSRef 253
4.114 @Value 255
4.115 @XDelta 256
4.116 @XDeltaHigh 257
4.117 @XDeltaLow 258
4.118 @XFirst 259
4.119 @XLast 260
4.120 @XShift 261
4.121 @XYArray 262
4.122 @YArray 264
5 Reference Guide - HIC 265
5.1 Introduction - HIC 265
5.2 @Con3ms 266
5.3 @Con3ms_T 268
5.4 @Cum3ms 269
5.5 @Cum3ms_T 271
5.6 @HIC 272
5.7 @HICStartTime 274
5.8 @HICEndTime 275
5.9 @HIC15 276
5.10 @HIC15StartTime 277
5.11 @HIC15EndTime 278
5.12 @HIC36 279
5.13 @HIC36StartTime 280
5.14 @HIC36EndTime 281
6 Reference Guide - Cycle Math 282
6.1 Introduction - Cycle Math 282
6.2 @CycleArea 286
6.3 @CycleCount 288
6.4 @CycleCrestFactor 289
6.5 @CycleDetect 291
6.6 @CycleEnergy 293
6.7 @CycleFrequency 295
6.8 @CycleFundamental 297
6.9 @CycleFundamentalPhase 299

Perception Analysis

I2690-9.2 en HBM: public 9

6.10 @CycleFundamentalRMS 301
6.11 @CycleInterval 303
6.12 @CycleLevel 305
6.13 @CycleMax 307
6.14 @CycleMean 308
6.15 @CycleMin 310
6.16 @CyclePeriod 311
6.17 @CyclePhase 312
6.18 @CycleRPM 314
6.19 @CycleRMS 315
6.20 @CycleStdDev 317
6.21 @CycleTHD 319
7 Pulse Measurement and Analysis 321
7.1 General 321
8 IIR Filters 325
8.1 Introduction 325
8.1.1 Bessel 326
8.1.1.1 Advantages 326
8.1.1.2 Disadvantages 327
8.1.2 Butterworth 327
8.1.2.1 Advantages 327
8.1.2.2 Diavantages 327
8.1.3 Chebyshev (Type I) 327
8.1.3.1 Advantages: 327
8.1.3.2 Diavantages: 327
8.1.4 Magnitude Spectrum 328
8.1.5 Impulse Response 331
8.1.6 Step Response 332
8.1.7 Phaseless Filtering 333
8.1.8 Importance of sampling rate and cutoff frequency 334

Perception Analysis

10 I2690-9.2 en HBM: public

1 Analysis Option
1.1 Introduction

The Perception Analysis option allows you to perform calculations on measured
data. A variety of built-in functions get you on the right track for analysis, ranging
from basic statistics to advanced mathematics.

The analysis option comprises two main parts:

l A variety of functions
l The visible formula database

Using the formula database you can create your own set of additional functions
without programming or sequencing. Just type in the required calculation and
the result will be displayed. The results of new data is updated automatically,
not only in the formula database but also directly on the displays and within the
reports. Once defined the formulas can be saved for later use.

The formula database allows for an unlimited number of formulas, each with a
name and units. A formula can be created using arithmetic operations on
waveforms and scalars and combined with one of the built-in functions, cursor
information, or the result of another formula. Auto-complete and in-line help
guide you through the various options.

For ease of use we refer to the analysis option including the functions and the
formula database as “the formula database”.

1.1.1 How to install the Analysis option
The Perception software requires a HASP key. HASP (Hardware Against
Software Piracy) is a hardware-based (hardware key) software copy protection
system that prevents unauthorized use of software applications.
Each HASP key contains a unique ID number used for personalization of the
application according to the features and options purchased. The key is also
used for storing licensing parameters, applications and customer-specific data.
If you have purchased the Analysis option as a separate item, you will receive
a personalized "key file". Use this file to unlock the additional features.

You can find the serial number of your key in Help About Perception

To update the key information:

1 Choose Help Update Key...

Perception Analysis

I2690-9.2 en HBM: public 11

2 In the Open dialog locate the Key File (*.pKey) and click Open.
3 If everything is OK you will see the following message:

Figure 1.1: Software copy protection dialog

4 Click OK.
After the installation you can go to Help About Perception More... to see
all installed options.

You will need to restart the program before the changes take effect. The
Analysis option is now available.

Perception Analysis

12 I2690-9.2 en HBM: public

1.2 Formula database sheet
The Formula database sheet is used to create and edit formulas.

Figure 1.2: Formula database sheet

A Wizard

B Tools

C Operators

D Default help

E Formula database row numbers with row pointer (function creator icon)

F Formula name column

G Formula column

H Formula units

I Additional help

Perception Analysis

I2690-9.2 en HBM: public 13

A Wizard The function creator allows the user to enter and verify a function
in a “guided” way. The function creator operates on the currently selected
row. The currently selected row is denoted by the function creator icon in
the row number column.

Figure 1.3: Function creator icon

1 Calls on the function creator (see
Figure 1.7 "Function Creator dialog" on page 21)

B Tools Tools are provided to add, delete and clear lines with formulas. The
tools operate on the currently selected row. The currently selected row is
denoted by the function creator icon in the row number column.

Figure 1.4: Formula sheet tools

1 Insert row above current row

2 Insert row below current row

3 Delete row

4 Clear row

C Operators Use the operator buttons to insert basic operators.

Perception Analysis

14 I2690-9.2 en HBM: public

Figure 1.5: Formula sheet operators

1 Add

2 Subtract

3 Multiply

4 Divide

5 Opening parenthesis

6 Closing parenthesis

D Default help This area displays basic help information on the selected
function.

E Row numbers For easy reference each row has a row number. The
currently active row has a function creator icon in front of the number.

F-H Formulas Each formula has a name, body and units. This area is also
called the “formula editor”.

I Additional help For more detailed help information the additional help
area is optionally available.

You may want to show or hide the additional help.

To show or hide the additional help:

l Click on the grip that is located on top of the formulas area.

Perception Analysis

I2690-9.2 en HBM: public 15

1.3 Definitions
The formula database uses operators and functions. Operators require
variables, functions require parameters.

1.3.1 Constants
Constants are numerical or string values which are entered straight into the
formula. Numbers can be entered using floating point or integer notation.
Internally all numerical values are floating point numbers. Strings are entered
with quotation marks, like “text”.

1.3.2 Variables
Variables can be any variable (waveform, numeric or string) from the data
source list. A variable can be selected using the data sources. Previously
defined formulas are also a available as variables.

Figure 1.6: Data Sources navigator with formula results

A Formula results

In the formula body a variable is referenced by the complete path of the variable
in the data sources. For example in the diagram above the formula result T2 is
referenced as Formula.T2

Perception Analysis

16 I2690-9.2 en HBM: public

1.3.3 Functions
A function takes a number of parameters (which can be variables and / or
constants) and uses them to produce a result. The type of the parameters and
the type of the results depends on the function.

To enter a function:

1 Click once in the formula body of an empty row to select it or click twice in
the formula body of an empty row to enter the edit mode.

2 Type the @ sign.
l A list of available functions comes up.

3 To select a function from the list do the following:
l Use the scroll bar to scroll through the list of available functions.
l Click with the mouse on the function.
l Use the arrow keys to select a function and press Enter.

The complete description of the selected function comes up in the Help area.

Note that as long as the formula has no name it is considered to be a comment
line.

Perception Analysis

I2690-9.2 en HBM: public 17

1.4 Modifying the layout
You can modify the layout of the rows by adding, deleting and clearing rows.
You can use the tools directly or a right mouse click to call up a context menu
with the same commands.

1.4.1 Add, delete and clear rows
You can add, delete and clear rows. You can do this on one row or on multiple
rows.

To select multiple rows:

l To select consecutive rows:
l Click the first row and drag to the last row.
l Click the first row, press and hold down SHIFT, and then click the last

row.
l To select nonconsecutive rows, press and hold down CTRL, and then click

each row.

To add one or more rows:

1 Select one or more rows.
l The row pointer will move to the last selected row

2 Click on the appropriate tool:
l Insert row(s) above to insert row(s) above the currently selected

row.
l Insert row(s) below to insert row(s) below the currently selected

row.
l Empty row(s) will be inserted.

To remove one or more rows:

Select one or more rows and do the following:

l To remove a row and the contents click the Delete selected row(s) tool.
l To remove the contents of the row but keep the row click the Clear selected

row(s) tool.
l In the confirmation dialog that comes up click OK.

To clear a field:

You can clear a single field as follows:

Perception Analysis

18 I2690-9.2 en HBM: public

l Select the field you want to clear and press Del
l Select the field you want to clear and press Enter: the field is open for

editing and the complete text is selected. Press Del.

1.4.2 Moving around
You can move through the fields by using the Tab and the Arrow keys.

Perception Analysis

I2690-9.2 en HBM: public 19

1.5 Creating formulas
Creating formulas and comment is easy. Using the function creator or various
auto-completion techniques you are guided through the definition of formulas
without too much typing. This system also reduces the possibility of errors.

The formula editor has a database alike layout with rows that represent records.
Each row has three editable fields to enter comment and formulas.

1.5.1 Function creator
The function creator is a one-dialog feature that allows the user to enter and
verify a function in a “guided” way.

To call on the function creator:

1 Select the row where you want to create or edit a function.
There are two ways to open the function creator:

2A Click on the function creator icon in the number column of the row.

2B Click on the function creator icon in the Wizard panel (see
Figure 1.2 "Formula database sheet" on page 13).

Perception Analysis

20 I2690-9.2 en HBM: public

Figure 1.7: Function Creator dialog

A Default help

B Function name

C Function selection/search control

D Function units

E Function parameters

F Function result

G Show/hide preview

H OK button

I Cancel button

A Default help This area displays basic help information on the selected
function.

B Function name The name of the function as it is shown in the data sources
navigator.

Perception Analysis

I2690-9.2 en HBM: public 21

C Function selection/search control Type in a part of the function’s name
you are looking for. The functions containing the search query are listed.

Figure 1.8: Function selection - Automatically completed list

The needed function can be selected with the mouse or the up- and
down-arrow keys and confirmed with enter.
If the drop-down arrow of the search control is pressed, the available
functions are shown per group.

1 Drop-down arrow
D Function units The units of the function.

If the function has created its own unit (for example by performing an “Abs”
on a waveform with the unit “Hz”), this is shown in the entry field as a
default.

Figure 1.9: Default function unit

Perception Analysis

22 I2690-9.2 en HBM: public

E Function parameters If a function is selected, the parameters for this
method are added here.

Figure 1.10: Function parameters area

 1 Required function parameter

A parameter for the function which is required. This is indicated by the
red color and the text “required”.

 2 Function parameter value
Set the needed value for this parameter. Valid data sources containing
the entered text will also be shown in the drop down list.

 3 Data source button

Opens the data source selection dialog, in which the valid data sources
are shown. Calls on the default data source selector, which only shows
the data sources which are allowed.

 4 Invalid parameter indication
 If the value of the parameter is invalid, this is shown by a warning icon

behind the parameter.
 5 Optional function parameter

A parameter for the function which is optional. This is indicated by the
blue color and the text “optional”.
Some functions allow you to add optional parameters. If you enter a
value in the last optional parameter, a new optional parameter is
added, and the previous parameter becomes required (see
Figure 1.11).

Perception Analysis

I2690-9.2 en HBM: public 23

Figure 1.11: Function parameters area with new optional parameter

F Function result Shows the result of the function created by the function

creator.
G Show/hide preview Expands or collapses the dialog to show or hide the

preview.
There are three kinds of previews:

 1 “Invalid” preview:

 2 “Waveform” preview:

Perception Analysis

24 I2690-9.2 en HBM: public

 3 “Value” preview:

H Click the OK button to apply the current function and to close the dialog.

Note The OK button is only enabled when the function is set up correctly. All required
parameters and the function name must be filled in.

I Click the Cancel button to discard the changes and to close the dialog.

1.5.2 Entering comment
You can enter comment in the formula editor to clarify the formulas you make.
Comment is displayed in a green color. A comment row has no name.

To enter comment:

1 Click once in the formula body of an empty row to select it or click twice in
the formula body of an empty row to enter the edit mode.

2 Start typing your text. Note that after typing the first character a list comes
up:

3 Ignore this list. It will disappear when you entered your first word. Continue
typing until done.

4 Press Enter when done or click anywhere else in the formula editor.

Perception Analysis

I2690-9.2 en HBM: public 25

Do not type text in the name column of the comment row.

1.5.3 Entering formulas
Formulas are rules how to create new waveforms, numeric values or strings
from existing data sources, variables and constants. A formula is a
mathematical expression which can contain data sources, constants and
functions. You can use brackets to change the precedence of the operators.

Formulas have a name, a body and optionally units. Formulas are displayed in
blue (known keywords) and black.

To enter a formula:

Do the following:

1 Enter a name for the formula:
a Click once in the name field of an empty row to select it or click twice

in the name field of an empty row to enter the edit mode.
b Enter a descriptive name.

2 Navigate to the body field of the formula as follows:
l Press the TAB.
l Press the right-arrow key.

3 Enter the body of the formula by using one or more of the following
techniques:
l Type the @ sign to get a list of available functions and pick your

function.
l Type any character: a drop down list comes up with a list of possible

data sources roots. Select a root and type a dot: a new list drops down
with branches from the selected root. Select a branch and type a dot,
etc. until you have selected the variable or data source you want.

l Type in the full path of the variable / data source directly.
l Use operators and brackets to create more complex formulas.
l When available, help text is displayed in the Help area(s).

4 When done navigate to the Unit field and enter the units if applicable.

HINT/TIP

You can also drag data sources directly into a formula in the formula database.
This allows you to quickly insert constants and variables into a function without
the need to know the complete path of that variable. E.g simply drag a cursor
X-position into your formula without typing the complete path like:
Display.Display1.Cursor1.XPosition.

Perception Analysis

26 I2690-9.2 en HBM: public

1.5.4 Problems in formulas
A lot of detailed input needs to be corrected when creating formulas in order for
the formulas to work well. Typing errors or using incompatible types of input
can cause problems in formulas. As the system of formulas grows, it becomes
more difficult to pin-point the cause of problems. To help find these problems
in the formulas, the formula database automatically finds and marks most of
the problems.

Problems found in the formulas are divided into in two categories:
 Errors: These are problems that need to be solved actively.

 Warnings: These are problems in the fomulas that could possibly be
fixed at a later time automatically. For example, if input signals from a
recording were missing, the problem would be solved simply by
loading the recording into the system later.

Errors found in the functions are divided into two categories. The difference
between the two types of errors is the timepoint when the error can be detected.

l Syntax errors: These errors can be detected when new formulas are
added to the formula database. A common example of a syntax error is
when incorrect separators are used between the parameters of a formula.

Note Typing errors can be avoided by using the function wizard.

l Runtime errors: These errors are detected when the result of a formula is
used. This happens when the result of the formula is used on a display, on
a meter, in a report, or by another formula in use. Runtime errors are
typically more difficult to detect than syntax errors are, since more
knowledge of the measurement, data-sources and formulas used is
required. It can be difficult to determine if a formula or system of formulas
contain an error, especially in a complex measurement environment.

Consider the following examples:
● Syntax error: Incorrect separator

Figure 1.12: Syntax error (Incorrect separator)

A Error message

Perception Analysis

I2690-9.2 en HBM: public 27

 SineWave normally uses three (3) arguments that are separated by a
semi-colon. To illustrate this issue, the second semi-colon is mistyped as
“??” in this example. The formula is now marked with an error icon.
Additional information about the error can be retrieved by clicking on the
icon. This will show the following detailed information for this example:

Figure 1.13: Formular Editor - Error message
● Runtime error: Incompatible sample rates
 Runtime errors are only detected when a formula is used. Therefore, two

erroneous formulas could be added, but only one of the erroneous formulas
might be marked with an error. In the following example, two functions are
created to add two waveforms. The error here is that the two waveforms
are sampled at different speeds. Thus, the samples are not aligned and
cannot be added. “Add1” (A) is used because it is shown on screen,
whereas “Add2” (B) is defined but it has not used anywhere in Perception
yet.

Figure 1.14: Runtime error message
 Even though both formulas are exactly the same, only the formula in use

is marked with an error.
 This problem is detected when the formula is used for the first time. It is

very likely that the formula sheet is not visible at that time.If there is an
error, no output is generated by the formula. This could be confusing.
Therefore, Perception displays a notification in this case to provide as
much feedback as possible.

Perception Analysis

28 I2690-9.2 en HBM: public

 This should enable you to find most common problems in the formulas.

Note Not all problems in the formulas can be detected automatically. Perception can
and will not show if a wrong signal was used as input for a formula when the
incorrect signal is of the right type.

Perception Analysis

I2690-9.2 en HBM: public 29

1.6 Formula menu
The Formula menu lists commands related to Formula file handling. For layout
and content management use the tools that are provided in the task pane on
the left hand side of the formula editor.

The Formula menu is a dynamic menu and only available when the Formula
sheet is on top, that is visible.

In the menu there are possibilities to save the formulas in a separate file. In
general the formula database settings:

l comprises all formulas/functions as specified in the formulas sheet,
l can be stored in a separate file with the file extension .pFormulas,
l are stored automatically when a workbench is saved and as part of a

recording,
l are loaded automatically as part of a complete workbench,
l can be extracted / loaded out of a workbench or recording as separate

settings,
l can be saved into a workbench or recording as separate settings.

Figure 1.15: Formula menu

1.6.1 Load Formulas
You can load formulas from a variety of sources.

To load formulas:

To load formulas from an external source proceed as follows:

1 Do one of the following:
l In the Formula menu click Load Formulas....
l When available in the toolbar click e Load Formulas... button .

Perception Analysis

30 I2690-9.2 en HBM: public

2 In the Load Formulas dialog that comes up select your file type if required:
l Formula File (*.pFormulas)
l Formulas out of a Virtual Workbench (*.pVWB)
l Formulas out of an Experiment (*.PNRF)

3 Select the file you want to use.
4 Click Open.

1.6.2 Save Formulas
Much in the same way as you can load formulas you can also save formulas.
You can also save into an existing virtual workbench or experiment. By doing
so you will replace the formulas within that file. No other data will be altered.

To save formulas:

To save formulas into an external file proceed as follows:

1 Do one of the following:
l In the Formulas menu click Save Formulas As....
l When available in the toolbar click the Save Formulas As... buttons

2 In the Save Formulas As dialog that comes up select your file type if
required:
l Formula File (*.pFormulas)
l Formulas out of a Virtual Workbench (*.pVWB)
l Formulas out of an Experiment (*.PNRF)

3 Select the file you want to save into/replace or type a name for a new file.
4 Click Save.

1.6.3 Print Formulas
You can make a copy on the printer of the formulas.

To print a copy of the formulas:

1 Do one of the following:
l In the Formulas menu click Print Formulas....
l When available in the toolbar click the Print Formulas... button.

2 In the Print dialog that comes up enter your preferences.
3 Click Print.

1.6.4 Move Sheet
When the multiple workbook option is installed you can move the Formula sheet
to another workbook.

Perception Analysis

I2690-9.2 en HBM: public 31

To move the formula sheet to another workbook:

1 In the Formulas menu point to Move Sheet ‘Formula’ to ►
2 In the sub menu that comes up select a workbook.

Perception Analysis

32 I2690-9.2 en HBM: public

2 Formula Database Functions
2.1 General

This document describes in full detail all functions available in the Perception
formula database.

For a description of the formula database itself refer to the appropriate section
in the User Manual.

Details on pulse characteristics, measurement and analysis can be found in
chapter: “Pulse Measurement and Analysis “ on page 321.

Formulas in the formula database are defined as:

output = formula

The output is available in the Data Sources navigator as a variable. You can
find it as an item in the Formula branch.

The output can be used as parameter in another function, regardless of the
physical order in the database.

You can enter formulas just as you would record on paper. Standard
mathematical rules are applicable.

Exception
No expressions are allowed as parameter(s) of an “@”-function.

Example:

 Angle = 33
Correct AngleRad = System.Constants.Pi *

Formula.Angle / 180
 CosAngle = @Cos(Formula.AngleRad)

Incorrect CosAngle = @Cos(System.Constants.Pi *

Formula.Angle / 180)

Note All the functions work on static, single-time base, single-sweep data. The
functions also work on multi-time base and/or multi-sweep data. However, the
results may be unpredictable due to the nature of the function used. Some
functions also work on dynamic (real-time) data. When applicable this is noted
in the description of the function.

Perception Analysis

I2690-9.2 en HBM: public 33

2.2 Overview
This section gives an alphabetical overview of all functions, including their
name, a short description of the function and the page number.

2.2.1 Function Overview

Name Description
+ (Add) Add two expressions: "+ (Addition)" on

page 43
- (Subtract) Subtract two expressions: "- (Subtraction)" on

page 45
* (Multiply) Multiply two expressions: "* (Multiplication)" on

page 47
/ (Divide) Divide two expressions: "/ (Division)" on

page 49
– (Invert) Invert an expression: "– (Unary minus)" on

page 51
@Modulo Calculate the modulo: "@Modulo" on page 52
@Abs Absolute value of a numerical value or a

waveform: "@Abs" on page 53
@ACosine Calculate the arccosine: "@ACosine" on

page 54
@And Logical AND: "@And" on page 55
@Area Area under curve of a waveform: "@Area" on

page 56
@ASine Calculate the arcsine: "@ASine" on page 58
@ATan Calculate the arctangent: "@ATan" on

page 59
@ATan2 Calculate the arctangent of two parameters:

"@ATan2" on page 60
@BlockFFT Calculate the main frequency within a block of

data: "@BlockFFT" on page 63
@Clip Clip the amplitude of a waveform: "@Clip" on

page 65
@Comparator Compare values of two waveforms or one

waveform and a numerical value:
"@Comparator" on page 67

@Cos Calculate the cosine: "@Cos" on page 69
@CurveFitting Fit a linear or parabolic waveform to a given

waveform: "@CurveFitting" on page 70
@Cut Cut out a specific segment of a waveform:

"@Cut" on page 72

Perception Analysis

34 I2690-9.2 en HBM: public

Name Description
@Cycles Count the number of cycles in a waveform:

"@Cycles" on page 74
@Diff Differentiate a waveform: "@Diff" on page 76
@DQ0Transformation Apply a DQ0Transformation on the input

waveforms: "@DQ0Transformation" on
page 78

@Energy Calculate the energy under curve of a waveform:
"@Energy" on page 82

@EqualTo Equal-to evaluation: "@EqualTo" on page 84
@Exp Exponential: calculate the power (base e) of the

input: "@Exp" on page 85
@ExpWave Generate an exponential waveform:

"@ExpWave" on page 86
@FallTime Determine the falltime of a pulse in a waveform:

"@FallTime" on page 87
@FilterButterworthLP Filters the input signal: "@FilterButterworthLP"

on page 89
@FilterButterworthHP Filters the input signal: "@FilterButterworthHP"

on page 91
@FilterButterworthBP Filters the input signal: "@FilterButterworthBP"

on page 93
@FilterButterworthBS Filters the input signal: "@FilterButterworthBS"

on page 95
@FilterBesselLP Filters the input signal: "@FilterBesselLP" on

page 97
@FilterBesselHP Filters the input signal: "@FilterBesselHP" on

page 99
@FilterBesselBP Filters the input signal: "@FilterBesselBP" on

page 101
@FilterBesselBS Filters the input signal: "@FilterBesselBS" on

page 103
@FilterChebyshevLP Filters the input signal: "@FilterChebyshevLP" on

page 105
@FilterChebyshevHP Filters the input signal: "@FilterChebyshevHP"

on page 108
@FilterChebyshevBP Filters the input signal: "@FilterChebyshevBP"

on page 110
@FilterChebyshevBS Filters the input signal: "@FilterChebyshevBS"

on page 112
@FormatDate Formats a date data source into a string:

"@FormatDate" on page 117

Perception Analysis

I2690-9.2 en HBM: public 35

Name Description
@FormatTime Formats a time data source into a string:

"@FormatTime" on page 119
@Frequency Determine the frequency of a waveform:

"@Frequency" on page 115
@GreaterEqualThan Greater-than-or-equal-to evaluation:

"@GreaterEqualThan" on page 121
@GreaterThan Greater-than evaluation: "@GreaterThan" on

page 122
@Histogram Calculate amplitude histogram: "@Histogram" on

page 123
@IIF Conditional result: "@IIF" on page 125
@Integrate Integrate a waveform: "@Integrate" on

page 127
@IntLookUp Modify a waveform by using the waveform data

as an index to an external conversion table:
"@IntLookUp" on page 128

@IntLookUp12 Modify a waveform by using the waveform data
as an index to a conversion table. Optimized for
12-bit data: "@IntLookUp12" on page 131

@IsNaN Determine if the input parameter is not a number:
"@IsNaN" on page 133

@Join Concatenate two or more waveforms: "@Join" on
page 134

@Length Return the length (in samples) of a waveform:
"@Length" on page 136

@LessEqualThan Less-than-or-equal-to evaluation:
"@LessEqualThan" on page 137

@LessThan Less-than evaluation: "@LessThan" on
page 138

@Ln Calculate the natural logarithm: "@Ln" on
page 139

@Log Calculate the logarithm base 10: "@Log" on
page 141

@Max Determine the maximum value (amplitude) of a
waveform: "@Max" on page 142

@MaxNum Determine the maximum value of a range of
numerical values: "@MaxNum" on page 144

@MaxPos Return the position of the waveform maximum:
"@MaxPos" on page 145

@Mean Calculate the mean value of a waveform:
"@Mean" on page 147

Perception Analysis

36 I2690-9.2 en HBM: public

Name Description
@MedianFilter Filter a waveform using a median filter:

"@MedianFilter" on page 149
@Min Determine the minimum value (amplitude) of a

waveform: "@Min" on page 152
@MinNum Return the position of the waveform minimum:

"@MinNum" on page 154
@MinPos Return the position – in time – of the absolute

minimum: "@MinPos" on page 155
@NextHillPos Determine the position of the next local maximum

in a waveform: "@NextHillPos" on page 157
@NextLvlCross Determine the position of the next crossing of a

waveform with a specified signal level:
"@NextLvlCross" on page 159

@NextValleyPos Determine the position of the next local minimum
in a waveform: "@NextValleyPos" on page 161

@Noise Generate a waveform containing noise:
"@Noise" on page 163

@Not Logical NOT: "@Not" on page 164
@Or Logical OR: "@Or" on page 165
@Period Determine the period of a waveform: "@Period"

on page 166
@Pow Exponentiation, base raised to the power

exponent: "@Pow" on page 168
@PrevHillPos Determine the position of the previous local

maximum in a waveform: "@PrevHillPos" on
page 169

@PrevLvlCross Determine the position of the previous crossing
of a waveform with a specified signal level:
"@PrevLvlCross" on page 171

@PrevValleyPos Determine the position of the previous local
minimum in a waveform: "@PrevValleyPos" on
page 173

@PulseWidth Determine the width of a pulse in a waveform:
"@PulseWidth" on page 177

@Ramp Generate a linear ramp waveform: "@Ramp" on
page 179

@ReadAsciiFile Read waveform data from an ASCII (text) file:
"@ReadAsciiFile" on page 181

@ReadLogFile Read a sequence of numerical values from a
Perception log file and creates a waveform:
"@ReadLogFile" on page 183

Perception Analysis

I2690-9.2 en HBM: public 37

Name Description
@Reduce Reduce the number of samples in a waveform by

resampling: "@Reduce" on page 187
@RefCheck Verify a waveform against one or two waveform

envelopes: "@RefCheck" on page 188
@RelativeTime2Local Returns a string representing the absolute local

time corresponding to the elapsed time:
"@RelativeTime2Local" on page 190

@RelativeTime2UTC Returns a string representing the absolute UTC
time corresponding to the elapsed time:
"@RelativeTime2UTC" on page 192

@RemoveGlitch Remove undesirable samples in a waveform:
"@RemoveGlitch" on page 194

@Res2 Sample a waveform so that its length becomes a
power of two: "@Res2" on page 195

@RiseTime Determine the risetime of a pulse in a waveform:
"@RiseTime" on page 196

@RMS Calculate the Root Mean Square value of a
waveform: "@RMS" on page 198

@SAEJ211Filter Filter waveform based on SAE J211
recommendations: "@SAEJ211Filter" on
page 199

@Sin Calculate the sine: "@Sin" on page 200
@SineWave Generate a sine wave: "@SineWave" on

page 201
@Smooth Smooth a waveform over a selected number of

samples: "@Smooth" on page 202
@SpaceVectorInverse
Transformation

Calculate a Space Vector Inverse waveform:
"@SpaceVectorInverseTransformation" on
page 204

@SpaceVector
Transformation

Calculate a Space Vector waveform:
"@SpaceVectorTransformation" on page 208

@Sqrt Calculate the square root: "@Sqrt" on
page 211

@SquareWave Generate a square wave: "@SquareWave" on
page 212

@StdDev Calculate the standard deviation of a waveform:
"@StdDev" on page 213

@Sweep Select a sweep in a multi-sweep recording:
"@Sweep" on page 218

Perception Analysis

38 I2690-9.2 en HBM: public

Name Description
@SweptSineWave Generates a waveform described by the sine

function sweeping from a start frequency to an
end frequency: "@SweptSineWave" on
page 219

@Tan Calculate the tangent: "@Tan" on page 221
@TimeMaxAbove Return a number representing the time interval of

the longest period that the signal is above a
specified level: "@TimeMaxAbove" on
page 222

@TimeMaxAboveBegin Return a number representing the start time of
the longest period that the signal is above a
specified level: "@TimeMaxAboveBegin" on
page 224

@TimeMaxBelow Return a number representing the time interval of
the longest period that the signal is below a
specified level: "@TimeMaxBelow" on
page 226

@TimeMaxBelowBegin Return a number representing the start time of
the longest period that the signal is Below a
specified level: "@TimeMaxBelowBegin" on
page 228

@TimeMinAbove Return a number representing the time interval of
the shortest period that the signal is above a
specified level: "@TimeMinAbove" on page 230

@TimeMinAboveBegin Return a number representing the start time of
the shortest period that the signal is above a
specified level: "@TimeMinAboveBegin" on
page 232

@TimeMinBelow Return a number representing the time interval of
the shortest period that the signal is below a
specified level: "@TimeMinBelow" on page 234

@TimeMinBelowBegin Return a number representing the start time of
the shortest period that the signal is above a
specified level: "@TimeMinBelowBegin" on
page 236

@TimeTotalAbove Return a number representing the total amount of
time that the signal is above a specified level:
"@TimeTotalAbove" on page 238

@TimeTotalAboveBegin Return a number representing the start of the first
period where the signal is above the specified
level: "@TimeTotalAboveBegin" on page 240

@TimeTotalBelow Return a number representing the total amount of
time that the signal is below a specified level:
"@TimeTotalBelow" on page 242

Perception Analysis

I2690-9.2 en HBM: public 39

Name Description
@TimeTotalBelowBegin Return a number representing the start of the first

period where the signal is below the specified
level: "@TimeTotalBelowBegin" on page 244

@TriggerTime Return the trigger position: "@TriggerTime" on
page 246

@TriggerTimetoText Return the trigger position in a time-date
formatted string: "@TriggerTimeToText" on
page 248

@TrueRMS Calculate RMS value: "@TrueRMS" on
page 252

@TrueRMSRef Returns a waveform that represents the true RMS
per number of cycles: "@TrueRMSRef" on
page 253

@Value Return the amplitude value of a waveform at a
specified x-position: "@Value" on page 255

@XDelta Return the sampling interval of a waveform:
"@XDelta" on page 256

@XDeltaHigh Return the maximum sampling interval in a multi-
timebase recording: "@XDeltaHigh" on
page 257

@XDeltaLow Return the minimum sampling interval in a multi-
timebase recording: "@XDeltaLow" on
page 258

@XFirst Return the x-coordinate (with respect to the
trigger point) of the first sample in a waveform:
"@XFirst" on page 259

@XLast Return the x-coordinate (with respect to the
trigger point) of the last sample in a waveform:
"@XLast" on page 260

@XShift Shift a waveform in time: "@XShift" on
page 261

@XYArray Create a waveform from a list of X/Y-value pairs:
"@XYArray" on page 262

@YArray Create a waveform from a list of Y-values:
"@YArray" on page 264

2.2.2 Funtion Overview - HIC section

Name Description
@Con3ms Return the highest acceleration level:

"@Con3ms" on page 266
@Con3ms_T Return the start time of the highest acceleration

level: "@Con3ms_T" on page 268

Perception Analysis

40 I2690-9.2 en HBM: public

Name Description
@Cum3ms Return the highest acceleration level:

"@Cum3ms" on page 269
@Cum3ms_T Return the start time of the highest acceleration

level: "@Cum3ms_T" on page 271
@HIC Calculate the HIC of a waveform: "@HIC" on

page 272
@HICStartTime Return the start of the interval: "@HICStartTime"

on page 274
@HICEndTime Return the end of the interval:

"@HIC15EndTime" on page 278
@HIC15 Return the maximum HIC value with a fixed 15

millisecond interval: "@HIC15" on page 276
@HIC15StartTime Return the start of the interval during the HIC15

calculations: "@HIC15StartTime" on page 277
@HIC15EndTime Return the end of the interval during the HIC15

calculations: "@HIC15EndTime" on page 278
@HIC36 Return the maximum HIC value with a fixed 36

millisecond interval: "@HIC36" on page 279
@HIC36StartTime Return the start of the interval during the HIC36

calculations: "@HIC36StartTime" on page 280
@HIC36EndTime Return the end of the interval during the HIC36

calculations: "@HIC36EndTime" on page 281

2.2.3 Function Overview - Cycle Math section

Name Description
@CycleArea Calculate the area of every cycle detected on a

reference signal: "@CycleArea" on page 286
@CycleCount Count the number of cycles detected on a

reference signal: "@CycleCount" on page 288
@CycleCrestFactor Calculates the “Crest Factor” of every cycle

detected on a reference signal:
"@CycleCrestFactor" on page 289

@CycleDetect Perform level crossing detection on the input
waveform: "@CycleDetect" on page 291

@CycleEnergy Calculate the energy of cycles detected on a
reference signal: "@CycleEnergy" on page 293

@CycleFrequency Calculate the frequency of cycles detected on the
reference signal: "@CycleFrequency" on
page 295

Perception Analysis

I2690-9.2 en HBM: public 41

Name Description
@CycleFundamental Generate the Waveform of the Cycle

Fundamental: "@CycleFundamental" on
page 297

@CycleFundamental
Phase

Calculate the phase difference between the
Cycle Fundamentals:
"@CycleFundamentalPhase" on page 299

@CycleInterval Generate a square waveform with a specified
interval between the high and low states:
"@CycleInterval" on page 303

@CycleLevel Return a waveform that uses the value of the
input signal at the start of a cycle of the reference
signal and repeat that value during half, one or
multiple cycles of that reference signal:
"@CycleLevel" on page 305

@CycleMax Calculate the maximum value in cycles detected
on a reference signal: "@CycleMax" on
page 307

@CycleMean Calculate the mean value in cycles detected on a
reference signal: "@CycleMean" on page 308

@CycleMin Calculate the minimum value in cycles detected
on a reference signal: "@CycleMin" on
page 310

@CyclePeriod Calculate the period of cycles detected on a
reference signal: "@CyclePeriod" on page 311

@CyclePhase Calculates the phase difference θ between two
waveforms: "@CyclePhase" on page 312

@CycleRPM Calculates the revolutions per minute:
"@CycleRPM" on page 314

@CycleTHD Calculates the Total Harmonic Distortion:
"@CycleTHD" on page 319

@CycleRMS Calculate the root mean square value of cycles
detected on a reference signal: "@CycleRMS" on
page 315

@CycleStdDev Calculate the standard deviation of every cycle
detected on a reference signal: "@CycleStdDev"
on page 317

Perception Analysis

42 I2690-9.2 en HBM: public

3 Arithmetic Operations
3.1 + (Addition)

Function
Adds left and right expression.

Syntax
Expression1 + Expression2

Parameters

Expression1 Left expression
Expression2 Right expression

Output
The result is the sum of the left and right expression.

Description
An expression can be:

l Waveform variable
l Function call
l Numerical variable
l Constant value

Normal operator precedence (first multiplication and division, then addition and
subtraction) applies. Parentheses can be used to change the operator
precedence in more complicated expressions.

Example
Some examples of valid expressions using addition are:

l 2 + 3
l var1 + 4
l 5 + var2
l 1000 + @Noise(1E6; 1000)
l (Var1 + Var2) * (Var3 - Var4)

When adding numerical values, the output is a numerical value.

Perception Analysis

I2690-9.2 en HBM: public 43

When adding a waveform and a numerical value, the output is a waveform. The
number of points (length) of the output waveform is equal to the length of the
input waveform.

When adding two waveforms, the output is a waveform formed by a point-by-
point addition of the two input waveforms. The x-scaling of the output waveform
is equal to the x-scaling of the left waveform. The length of the output waveform
is equal to the shortest of the lengths of the two input waveforms. For a
meaningful result, the x-scaling of both waveforms should be equal.

See Also
"* (Multiplication)" on page 47, "- (Subtraction)" on page 45, "/ (Division)"
on page 49

Perception Analysis

44 I2690-9.2 en HBM: public

3.2 - (Subtraction)

Function
Subtracts left and right expression.

Syntax
Expression1 – Expression2

Parameters

Expression1 Left expression
Expression2 Right expression

Output
The result is the difference of the left and right expression.

Description

An expression can be:
l Waveform variable
l Function call
l Numerical variable
l Constant value

Normal operator precedence (first multiplication and division, then addition and
subtraction) applies. Parentheses can be used to change the operator
precedence in more complicated expressions.

Example

Some examples of valid expressions using substraction are:
l 3 - 2
l var1 - 4
l 5 - var2
l @SineWave(1E6; 1000; 1k) - 1
l (Var1 + Var2) * (Var3 - Var4)

When subtracting numerical values, the output is a numerical value.

When subtracting a waveform and a numerical value, the output is a waveform.
The number of points (length) of the output waveform is equal to the length of
the input waveform.

Perception Analysis

I2690-9.2 en HBM: public 45

When subtracting two waveforms, the output is a waveform formed by a point-
by-point subtraction of the two input waveforms. The x-scaling of the output
waveform is equal to the x-scaling of the left waveform. The length of the output
waveform is equal to the shortest of the lengths of the two input waveforms. For
a meaningful result, the x-scaling of both waveforms should be equal.

See Also
"* (Multiplication)" on page 47, "+ (Addition)" on page 43, "/ (Division)" on
page 49

Perception Analysis

46 I2690-9.2 en HBM: public

3.3 * (Multiplication)

Function
Multiplies left and right expression.

Syntax
Expression1 * Expression2

Parameters

Expression1 Left expression
Expression2 Right expression

Output
The result is the product of the left and right expression.

Description

An expression can be:
l Waveform variable
l Function call
l Numerical variable
l Constant value

Normal operator precedence (first multiplication and division, then addition and
subtraction) applies. Parentheses can be used to change the operator
precedence in more complicated expressions.

Example

Some examples of valid expressions using multiplication are:
l 2 * 3
l var1 * 4
l 5 * var2
l 10 * @SineWave(1E6; 1000; 1k)
l (Var1 - AvgVar1) * (Var2 - AvgVar2)

When multiplying numerical values, the output is a numerical value.

When multiplying a waveform and a numerical value, the output is the scaled
waveform. The number of points (length) of the output waveform is equal to the
length of the input waveform.

Perception Analysis

I2690-9.2 en HBM: public 47

When multiplying two waveforms, the output is a waveform formed by a point-
by-point multiplication of the two input waveforms. The x-scaling of the output
waveform is equal to the x-scaling of the left waveform. The length of the output
waveform is equal to the shortest of the lengths of the two input waveforms. For
a meaningful result, the x-scaling of both waveforms should be equal.

See Also
"+ (Addition)" on page 43, "- (Subtraction)" on page 45, "/ (Division)" on
page 49

Perception Analysis

48 I2690-9.2 en HBM: public

3.4 / (Division)

Function
Divides left and right expression.

Syntax
Expression1 / Expression2

Parameters

Expression1 Left expression (dividend)
Expression2 Right expression (divisor)

Output
The result is the quotient of the left and right expression.

Description
An expression can be:

l Waveform variable
l Function call
l Numerical variable
l Constant value

Normal operator precedence (first multiplication and division, then addition and
subtraction) applies. Parenthesescan be used to change the operator
precedence in more complicated expressions.

Example
Some examples of valid expressions using division are:

l 3 / 2
l var1 / 4
l 5 / var2
l @SineWave(1E6; 1000; 1k) / 10
l (Var1 + Var2) / (Var3 - Var4)

When dividing numerical values, the output is a numerical value.

When dividing a waveform and a numerical value, the output is a waveform.
The number of points (length) of the output waveform is equal to the length of
the input waveform.

Perception Analysis

I2690-9.2 en HBM: public 49

When dividing two waveforms, the output is a waveform formed by a point-by-
point division of the two input waveforms. The x-scaling of the output waveform
is equal to the x-scaling of the left waveform. The length of the output waveform
is equal to the shortest of the lengths of the two input waveforms. For a
meaningful result, the x-scaling of both waveforms should be equal.

Returns an undefined (unknown) value when the divisor is a numerical value
equal to zero or when the denominator is a waveform containing a sample with
the value zero.

See Also
"* (Multiplication)" on page 47, "+ (Addition)" on page 43, "- (Subtraction)" on
page 45

Perception Analysis

50 I2690-9.2 en HBM: public

3.5 – (Unary minus)

Function
Inverts the sign of an expression.

Syntax
– Expression

Parameters

Expression Expression to be inverted

Output
The result is the expression multiplied by -1 (minus one).

Description

The expression can be any expression containing:
l Waveform variables
l Function calls
l Numerical variables
l Constant values

Normal operator precedence (first multiplication and division, then addition and
subtraction) applies. Parentheses can be used to change the operator
precedence in more complicated expressions.

Example

Some examples of valid expressions using the unary minus are:
l - 2
l - var1
l - @SineWave(1E6; 1000; 1k) - 1
l - ((Var1 + Var2) * (Var3 - Var4))

When inverting a numerical value, the output is a numerical value.
When inverting a waveform, the output is the negated waveform. The number
of points (length) of the output waveform is equal to the length of the input
waveform.

See Also
"* (Multiplication)" on page 47, "+ (Addition)" on page 43, "- (Subtraction)" on
page 45, "/ (Division)" on page 49

Perception Analysis

I2690-9.2 en HBM: public 51

3.6 @Modulo

Function
Returns a waveform or numerical value with the modulo result.

Syntax
@Modulo(Par1, Par2)

Parameters

Par1 Input waveform or numerical value
Par2 Numerical value

Output
Waveform or numerical value containing the modulo operation of the input.

Description
The modulo operation divides the input with the supplied argument Par2. The
remainder of that division is returned.

Example
The below would divide the input signal Formula.MyAngle by 360 and return
the remainder. In this case it is ensured the angle signal never exceeds the 360
value.

 Angle = @Modulo(Formula.MyAngle; 360)

Perception Analysis

52 I2690-9.2 en HBM: public

4 Reference Guide
4.1 @Abs

Function
Calculates the absolute value of the parameter.

Syntax

@Abs(Par)

Parameters

Par Input waveform or numerical value.

Output
Absolute value of the waveform or numerical value.

Description
Calculates the absolute value of the input waveform or numerical value.
Positive values remain unchanged, negative values change their sign. This
function can be used to rectify signals or to force positive values for results.

Example
The following example creates a sine wave and rectifies this signal:

 Signal = @SineWave(1E6; 1000; 1k)
 Rectif = @Abs(Formula.Signal)

Perception Analysis

I2690-9.2 en HBM: public 53

4.2 @ACosine

Function
Returns a waveform or numerical value representing the arccosine of a
waveform or a number. The result is in radians.

Syntax

@ACosine(Input)

Parameters

Input Input waveform or numerical value.

Output
Waveform or numerical value containing the arccosine of the input.

Description
The arccosine function returns the angle for which the cosine equals the
argument. The angle returned is in radians. The arccosine is the inverse
trigonometric function of the cosine function. That is the function:

y = arccosine(x)
is defined so that:

sine(y) = x

The input domain of arccosine is:

-1 ≤ x ≤ 1
for real result values in the range:

0 ≤ y ≤ π

Example
The function below would calculate the angle in radians for which the cosine
would amount to 0.

 CosValue = @ACos(1)

See Also
"@Cos" on page 69

Perception Analysis

54 I2690-9.2 en HBM: public

4.3 @And

Function
Performs a logical AND evaluation on the input parameters.

Syntax

@And(Param1; …; ParamN)

Parameters

Param1 Number: first parameter used for the AND evaluation.
ParamN Last parameter used for the AND evaluation. With N >= 2.

Output
The output is 1 or a 0.

Description
The @And function performs a logical AND evaluation on the input parameters.
Depending on the evaluation the result will be 1 or 0. A numerical value not
equal to 0 corresponds to a logical “True” and a numerical 0 corresponds to a
logical “False”.

The truth table of the AND function is:

Param1 Param2 Result
True True True
True False False
False True False
False False False

Example
The following is a list of examples and their return value.

 AndExampl1 = @And(1; 1; 1) => 1 (=true)
 AndExampl2 = @And(1; 4; 10) => 1 (=true)
 AndExampl3 = @And(1; 4; 0) => 0 (=false)
 AndExampl3 = @And(0; 0; 0) => 0 (=false)

See Also
"@Not" on page 164 and "@Or" on page 165

Perception Analysis

I2690-9.2 en HBM: public 55

4.4 @Area

Function
Calculates the area under curve of a waveform.

Syntax

@Area(Waveform)
@Area(Waveform; Begin)
@Area(Waveform; Begin; End)

Parameters

Waveform Input waveform for which the area under curve is to be
calculated.

Begin Number: segment begin.
End Number: segment end.

Output
The output is a numerical value.

Description
The area under curve is calculated using the following formula:

Area §=

n2

n=n1

y(n)
y(n1) +{

y(n2)
2 X

●

 n1 = first sample with x ≥ Begin

 n2 = last sample with x ≤ End

 ∆x = x - difference between two samples

The segment limits (Begin and End) are used to select a range of samples. If
no segment limits are specified, the complete waveform is used. When only
Begin is specified, the waveform segment from Begin to the end of the
waveform is used.

Note The Begin and End parameters have to be specified in the units of the
horizontal axis (for example time) and not as samples.

The numerical integration of the curve is performed assuming linear
interpolation of the curve between the samples.

Perception Analysis

56 I2690-9.2 en HBM: public

Example
The following example creates a sine wave of 50 Hz and calculates the area
under curve of the first half period of the signal:

 Signal = @SineWave(50k; 1000; 50)
 Area = @Area(Formula.Signal; 0; 10m)

See Also
"@Energy" on page 82 and "@Mean" on page 147

Perception Analysis

I2690-9.2 en HBM: public 57

4.5 @ASine

Function
Returns a waveform or numerical value representing the arcsine of a waveform
or a number. The result is in radians.

Syntax

@ASine(Input)

Parameters

Input Input waveform or numerical value.

Output
Waveform or numerical value containing the arcsine of the input.

Description
The arcsine function returns the angle for which the sine equals the argument.
The angle returned is in radians. The arcsine is the inverse trigonometric
function of the sine function. That is the function:

y = arcsine(x)
is defined so that:

sine(y) = x

The input domain of arcsine is:

-1 ≤ x ≤ 1
for real result values in the range:

-π/2 ≤ y ≤ π/2

Example
The function below would calculate the angle in radians for which the sine would
amount to 1.

 CosValue = @ASine(1)

See Also
"@Sin" on page 200

Perception Analysis

58 I2690-9.2 en HBM: public

4.6 @ATan

Function
Calculates the arctangent of the input parameter.

Syntax

@ATan(Par)

Parameters

Par Input waveform or numerical value.

Output
Waveform or numerical value containing the arctangent of the input.

Description
The arctangent function returns the angle for which the tangent equals the
argument. The angle is returned in radians. The arctangent is the inverse
trigonometric function of the tangent.

Example
The following example calculates Pi by multiplying ATan(1) by four:

 Pi = 4 * @ATan(1)

See Also
"@Cos" on page 69, "@Sin" on page 200 and "@Tan" on page 221

Perception Analysis

I2690-9.2 en HBM: public 59

4.7 @ATan2

Function
Calculates the arctangent of the two input parameters.

Syntax

@ATan2(Waveform1; Par2)

Parameters

Waveform1 First input waveform.
Par2 Second input waveform or numerical value.

Output
A waveform containing the arctangent of the two input parameters (either two
input waveforms or an input waveform and a numerical value).
The values of the output waveform are in radians.

Description
The Atan2 function is the arctangent function with two arguments. The purpose
of using two arguments instead of one (Atan function) is to gather information
on the signs of the inputs in order to return the appropriate quadrant of the
computed angle, which is not possible for the single-argument arctangent
function.

For any arguments x and y not both equal to zero, atan2(y, x) is the angle in
radians between the positive x-axis of a plane and the point given by the
coordinates (x, y) on it. The angle is positive for counter-clockwise angles
(upper half-plane, y > 0), and negative for clockwise angles (lower half-plane,
y < 0).

Perception Analysis

60 I2690-9.2 en HBM: public

atan2(√3,1) = π/3

Source: http://en.wikipedia.org/wiki/Atan2

atan2(1,0) = π/2

(0,1)

(1,√3)

1(

(=60°)

(0,-1)

2 2
,√3

)
π/2

π/3

π/3

π

The limit of atan2

from this side is -π
atan2(0,1) = 0

0 (1,0)

-π/2

Figure 4.1: Atan2 round a circle

Example
The following example calculates the angle of a point (y,x) traveling a circle.
The ‘y’ value of the point follows a sinus function (starting at 0). The ‘x’ value of
the point follows a cosinus (starting at 1).

 sig_sin = @SineWave(1k;1k+1;5)
 sig_cos = @SineWave(1k;1k+1;5;90)
 atan2 = @Atan2(Formula.sig_sin; Formula.sig_cos)

Perception Analysis

I2690-9.2 en HBM: public 61

Result:

Figure 4.2: Result of ATan2 Example

See Also
"@ATan" on page 59

Perception Analysis

62 I2690-9.2 en HBM: public

4.8 @BlockFFT

Function
Returns a waveform representing the maximum frequency detected per
block of the input waveform.

Syntax

@BlockFFT(Waveform; Size; Space)
@BlockFFT(Waveform; Size; Space; Begin)
@BlockFFT(Waveform; Size; Space; Begin; End)

Parameters

Waveform Input waveform
Size Number: block size in milliseconds.
Space Number: spacing between start of two successive blocks in

milliseconds.
Begin Number: start position of BlockFFT function
End Number: end position of BlockFFT function.

Output
Waveform containing frequency versus time.

Description
This function calculates the maximum frequency per block using an FFT
algorithm. The parameter Size determines the size (length) of the block in
milliseconds. The Space parameter determines the spacing between the start
of two successive blocks in milliseconds.

Refer to the following diagram as an example for the relation between Space
and Block.

Perception Analysis

I2690-9.2 en HBM: public 63

Space = 2 ms

mV Block 1
Block 2

Block 3

Time ms
Interval Size = 4 ms

Figure 4.3: Example - Relation between spacing and block size

The output of the function is a waveform containing a single maximum
frequency per block as function of time. The sample spacing of this output
waveform is equal to the Space parameter.

The segment limits (Begin and End) are used to select a range of the waveform
in which BlockFFT's are calculated. If no segment limits are specified, the
complete waveform is used. When only Begin is specified, the waveform
segment from Begin to the end of the waveform is used.

Examples
The following example calculates the BlockFFT of a composed waveform:

 Sine1 = 2 * @SineWave(1000k; 30k; 10k)
 Sine2 = @SineWave(1000k; 30k; 15k)
 Sine3 = 1.5 * @SineWave(1000k; 30k; 5k)
 Signal = @Join(Formula.Sine1; Formula.Sine2;

Formula.Sine3)
 Result = @BlockFFT(Formula.Signal; 4; 2)

Perception Analysis

64 I2690-9.2 en HBM: public

4.9 @Clip

Function
Clips a waveform between the lower and upper bound specified.

Syntax

@Clip(Waveform; LowerBound; UpperBound)

Parameters

Waveform Waveform whose amplitude range is to be clipped.
LowerBound Number: lower bound value used for clipping.
UpperBound Number: upper bound value used for clipping.

Output
Waveform with all sample values clipped between the lower and upper bound.

Description
For each sample in the waveform a comparison is made against the lower and
upper bound of the clipping range.
If the sample value is between these two values, it is not modified.
If the sample value is larger than the upper bound, it is set to the upper bound.
If the sample value is lower than the lower bound, it is set to the lower bound.

Example
The example clips the 1.2 V sine wave to the limits -1 and 1 to simulate input
overflow.

 Signal = 1.2 * @SineWave(20k; 1000; 50)
 InpSignal = @Clip(Formula.Signal; -1; 1)

The following example determines the cumulative time an acceleration signal
is above 150 g. The technique used is to first clip the signal between 150 g and
0.001 g more than 150 g. From the clipped signal 150 is subtracted and the
clipped signal is scaled up by a factor of 1000. This technique results in 0 when
the acceleration is below 150 g and in 1 when it is above 150 g. The area under
this curve is the cumulative time above 150 g.

 Accel = 150 + @SineWave(20k; 100; 50)
 Temp = 1000 * (@Clip(Formula.Accel; 150; 150.001) -

150)

Perception Analysis

I2690-9.2 en HBM: public 65

 CumTime = @Area(Formula.Temp)

See Also
"@Cut" on page 72

Perception Analysis

66 I2690-9.2 en HBM: public

4.10 @Comparator

Function
Compares the sample values of two waveforms or of one waveform and a
numerical value.

Syntax

@Comparator(Waveform1; Par2)

Parameters

Waveform1 First input waveform.
Par Second input waveform or numerical value.

Output
A waveform that is the result of the comparison between the sample values of
the first waveform and the second waveform or the numerical value.
When INP1 < INP2 then the output value is -1.
When INP1 is equal to INP2 then the output value is 0.
When INP1 > INP2 then the output value is 1.

Description
The Comparator function compares the two input waveforms with each other
and returns -1, 0 or 1 dependent on the relationship between the input values.

The second parameter can also be a numerical value. In that case this value is
used for the comparison.

Example
The following example calculates a waveform that indicates the relationship
between the two input signals.

 sig_sin = @SineWave(1k;1k+1;5)
 sig_cos = @SineWave(1k;1k+1;5;90)
 comp = @Comparator(Formula.sig_sin; Formula.sig_cos)

Perception Analysis

I2690-9.2 en HBM: public 67

Result:

Figure 4.4: Result of Comparator example

Perception Analysis

68 I2690-9.2 en HBM: public

4.11 @Cos

Function
Calculates the cosine of the input parameter.

Syntax

@Cos(Par)

Parameters

Par Input waveform or numerical value.

Output
Waveform or numerical value containing the cosine of the input.

Description
The trigonometric function cosine is calculated assuming the input parameter
is the angle in radians. When a waveform parameter is used, the cosine is
calculated for each individual sample.

Example
The following example calculates the cosine of the variable "Angle" specified
in degrees:

 Angle = 33
 AngleRad = System.Constants.Pi * Formula.Angle / 180
 CosAngle = @Cos(Formula.AngleRad)

See Also
"@ATan" on page 59, "@Sin" on page 200 and "@Tan" on page 221

Perception Analysis

I2690-9.2 en HBM: public 69

4.12 @CurveFitting

Function
Returns a waveform that has the best fit to a series of data points from the input
signal, using linear interpolation or a parabolic regression.

Syntax

@CurveFitting(Waveform)
@CurveFitting(Waveform; Order)
@CurveFitting(Waveform; Order; BeginIntv)
@CurveFitting(Waveform; Order; BeginIntv; EndIntv)
@CurveFitting(Waveform; Order; BeginIntv; EndIntv; Begin)
@CurveFitting(Waveform; Order; BeginIntv; EndIntv; Begin; End)

Parameters

Waveform Input waveform
Order Number: regression order. 1 = linear, 2 = parabolic.

Default is linear regression.
BeginIntv Number: begin of the interval used for interpolation

Default the start of the input waveform is used.
EndIntv Number: end of the interval used for interpolation.

Default the end of input waveform is used.
Begin Number: begin time from where the output curve starts.

Default the start time of the input waveform is used.
End Number: end time to where the output curve ends.

Default the end time of the input waveform is used.

Output
A waveform being the linear or parabolic regressing of the input waveform or a
part of it.

Description
This function seeks a curve that has the best fit to a series of data points from
the input signal. Depending on the parameters all data points or just a limited
interval of data points from the input signal are used.

If the Order parameter is set to 1 a linear regression will be done: the output
signal will be a straight line.

If the Order parameter is set to 2 a parabolic regression will be done: the output
signal will be a parabola.

Perception Analysis

70 I2690-9.2 en HBM: public

The least squares algorithm is used to do the calculations.

Example
The following examples create a linear and a parabolic fit:

 Signal = @SineWave(8000; 8001; 5)
 LineFit = @CurveFitting(Formula.Signal; 1; 90m;

110m)
 ParabolicFit = @CurveFitting(Formula.Signal; 2; 125m;

175m)

Perception Analysis

I2690-9.2 en HBM: public 71

4.13 @Cut

Function
Cuts out a specific part of a waveform.

Syntax
@Cut(Waveform; Begin; End)

Parameters

Waveform Input waveform from which a segment is to be selected.
Begin Number: segment begin.
End Number: segment end.

Output
Waveform segment.

Description
A specific part of a waveform can be selected for further processing. The
function calculates the number of samples for the output based on the Begin
and End values. The first sample is the sample with an x-coordinate nearest to
Begin. The last sample is the sample with an x-coordinate nearest to End.

Note The Begin and End parameters have to be specified in the units of the horizontal
axis (for example time) and not as samples. If the segment limits are located
outside the x-range of the waveform, these values are limited to that range.

Example
The following example cuts out the segment of a signal between 100 ms and
200 ms:

 Signal = @SineWave(10000; 10000; 100)
 Segment = @Cut(Formula.Signal; 100m; 200m)

If a specific range of samples is required, the information functions can be used
to calculate the proper range to select.

The following example selects the first 1024 points of the previous signal, and
uses -1E20 as a very small value:

 XEnd = @XBegin(Formula.Signal)
 + 1023 * @XDelta(Formula.Signal)

Perception Analysis

72 I2690-9.2 en HBM: public

 First1024 = @Cut(Formula.Signal; -1E20; Formula.XEnd)

See Also
"@Join" on page 134, "@Length" on page 136, "@XFirst" on page 259,
"@XDelta" on page 256 and "@XLast" on page 260

Perception Analysis

I2690-9.2 en HBM: public 73

4.14 @Cycles

Function
Calculates the number of cycles in a waveform or waveform segment.

Syntax

@Cycles(Waveform)
@Cycles(Waveform; Begin; End)
@Cycles(Waveform; Begin)

Parameters

Waveform Input waveform from which the cycles are calculated.
Begin Number: segment begin
End Number: segment end

Output
The number of cycles.

Description
The @Cycles function calculates the number of times a periodically repeated
sequence of samples (=Cycle) occurs in the waveform. The 50% level between
the maximum and minimum amplitude values is used to count the level
crossings to get the number of cycles.

The segment limits (Begin and End) are used to select a range of samples in
which cycles are calculated. If no segment limits are specified, the complete
waveform is used. When only Begin is specified, the waveform segment from
Begin to the end of the waveform is used.

Note The Begin and End parameters have to be specified in the units of the horizontal
axis (for example: time) and not in samples.

Example
The following example calculates the number of cycles of a complete signal,
and between the two cursors within a display named "display".

 Signal = @SineWave(10k; 10001; 50)
 Cycles = @Cycles(Formula.Signal)

 Start = Display.Display.Cursor1.XPosition

Perception Analysis

74 I2690-9.2 en HBM: public

 End = Display.Display.Cursor2.XPosition
 Cycles_BC = @Cycles(Formula.Signal;

 Formula.Start; Formula.End)

See Also
"@Frequency" on page 115 and "@Period" on page 166

Perception Analysis

I2690-9.2 en HBM: public 75

4.15 @Diff

Function
Differentiates a waveform.

Syntax
@Diff(Waveform)

Parameters

Waveform Waveform to be differentiated.

Output
Differentiated waveform.

Description
The derivative is a measurement of how a function changes when the values
of its inputs change. Loosely speaking, a derivative can be thought of as how
much a quantity is changing at some given point. The process of finding a
derivative is called differentiation. Otherwise stated differentiation is used to
determine the slope of a signal instead of the value. The slope is calculated by
calculating the difference between adjacent samples and dividing this
difference by the sampling interval:

=
y(n) y(n 1)

x
fo

{ {
r n = 2,...,NDiff(n)

Diff(1) = 0

 ∆x = x - difference between two samples
 N = number of samples

Differentiation enhances the high frequency components like high frequency
noise and the digitization errors caused by rounding effects. To get a better
estimate for the slope, smoothing of the waveform (either before or after
differentiation) is recommended.

Example
The following example creates a noisy sine wave and differentiates this signal.
The resulting waveform is smoothed to get a more accurate estimate of the
slope of the sine wave.

Perception Analysis

76 I2690-9.2 en HBM: public

 Signal = @SineWave(10k; 1000; 50)
 Differ = @Diff(Formula.Signal)
 Slope = @Smooth(Formula.Differ; 7)

See Also
"@Integrate" on page 127 and "@Smooth" on page 202

Perception Analysis

I2690-9.2 en HBM: public 77

4.16 @DQ0Transformation

Function
Applies the DQ0 Transformation on the input signals.

Syntax

@DQ0Transformation(Signal1; Signal2; Signal3; ReferenceAngle;
Component; Transformation; OrientationRule)

Parameters

Signal1 Input waveform of phase1 signal.
Signal2 Input waveform of phase2 signal.
Signal3 Input waveform of phase3 signal.
Reference Angle Waveform or Value of Reference Angle [rad]
Component Required output Component (0=”direct”,

1=”quadrature”, 2=”zero”)
Transformation Optional Invariant Transformation Rule (0=”amplitude”,

1=”power”) default is “amplitude”
Orientation Rule Optional Orientation Rule (0=”wiki”,1=”matlab”) default is

“wiki”

Output
The waveform which results for the required component, transformation and
required orientation rule transformations.

Description
The direct-quadrature-zero (DQ0) transformation (also known as Park’s
transformation) is a mathematical transformation that is used to simplify the
analysis of three-phase power systems.

The DQ0 Transformation is defined by the following matrix and can be applied
for any three-phase quantities (e.g. voltage, currents, etc.)

Perception Analysis

78 I2690-9.2 en HBM: public

For the “wiki” orientation rule, the following fomula is applied for the
amplitude-invariant transformation:

0

=
2

cos cos −
2.

3
) cos(+

2.

3)
−

−

−

−

−

−sin() −sin(

(
−

2.) − sin(+
2.)

And for the power-invariant transformation, the following formula is applied:

0

=
2

3

cos() cos −
2.

3
cos +

2.

3

−−

−

−

−

−sin() −sin −
2.

3
− sin +

2.

3

) ()(

) ()(

For the “Matlab” orientation rule, the following formula is applied for the
amplitude-invariant transformation:

0

=
2

cos cos

−
2.

3
)

cos

(+
2.

3)
−

−

−

−

−() (

(
−

2.) (+
2.)

sin sin sin

And for the power-invariant transformation, the following formula is applied:

0

sin() sin −
2.

3
sin +

2.

3

cos() cos −
2.

3
cos +

2.

3
 =

2

3
−

−)(
)(

)(

)(−

−

−

Perception Analysis

I2690-9.2 en HBM: public 79

Where:
Iu Value of the phase1 signal

Iv Value of the phase2 signal

Iw Value of the phase3 signal

θ Value of the reference angle
IAd Value of the amplitude-invariant direct component

IAq Value of the amplitude-invariant quadrature component

IA0 Value of the amplitude-invariant zero component

IPd Value of the power-invariant direct component

IPq Value of the power-invariant quadrature component

IP0 Value of the power-invariant zero component

Notes:
l The Transformation parameter is optional and has the default value

0=”amplitude”.
l The Orientation Rule parameter is optional and has the default value

0=”wiki”.
l The input waveforms (phase1, phase2 & phase3) all required the same

sampling frequency. The same applies to the Reference Angle when it is
a Waveform.

l This function is only available in the Formula database sheet (see "Formula
database sheet" on page 13) if the eDrive option (1-PERC-OP-EDR) is part
of your license.

Example
Given that the three-phase input signals are available as Formula.Phase1,
Formula.Phase2, Formula.Phase3 and the Reference Waveform
Formula.RefVal, the following DQ0 amplitude-invariant transformation
waveforms can be defined:

 Name Formula
 DQ0ATd = @DQ0Transformation(Formula.phase1;Formula.

phase2;Formula.phase3;Formula.refAng;0)
 DQ0ATq = @DQ0Transformation(Formula.phase1;Formula.

phase2;Formula.phase3;Formula.refAng;1)
 DQ0ATz = @DQ0Transformation(Formula.phase1;Formula.

phase2;Formula.phase3;Formula.refAng;2)

Perception Analysis

80 I2690-9.2 en HBM: public

The Reference Waveform may also be specified as a constant value :

 Name Formula
 DQ0ATd_2 = @DQ0Transformation(Formula.phase1;Formula.

phase2;Formula.phase3; System.Constants.Pi;
0)

Or the Reference Waveform has a value of 0 (zero):

 Name Formula
 DQ0ATd_3 = @DQ0Transformation(Formula.phase1;Formula.

phase2;Formula.phase3;0;0)

Likewise the power-invariant variations are:

 Name Formula
 DQ0PTd = @DQ0Transformation(Formula.phase1;Formula.

phase2;Formula.phase3;Formula.refAng;0;1)
 DQ0PTq = @DQ0Transformation(Formula.phase1;Formula.

phase2;Formula.phase3;Formula.refAng;1;1)
 DQ0PTz = @DQ0Transformation(Formula.phase1;Formula.

phase2;Formula.phase3;Formula.refAng;2;1)

 Name Formula
 DQ0PTd_2 = @DQ0Transformation(Formula.phase1;Formula.

phase2;Formula.phase3;System.Constants.Pi;
0;1)

 Name Formula
 DQ0PTd_3 = @DQ0Transformation(Formula.phase1;Formula.

phase2;Formula.phase3;0;0;1)

All of the above transformations use the default “wiki” Orientation Rule. For
example, to use the “matlab” Orientation Rule for the power-invariant
transformation, the following would be used:

 Name Formula
 DQ0PTdm = @DQ0Transformation(Formula.phase1;Formula.

phase2;Formula.phase3; Formula.refAng;0;1;1)

See Also
"@SpaceVectorTransformation" on page 208

Perception Analysis

I2690-9.2 en HBM: public 81

4.17 @Energy

Function
Calculates the energy under curve of a waveform.

Syntax

@Energy(Waveform)
@Energy(Waveform; Begin)
@Energy(Waveform; Begin; End)

Parameters

Waveform Input waveform for which the energy under curve is to be
calculated.

Begin Number: segment begin.
End Number: segment end.

Output
The output is a numerical value.

Description
The energy under curve is calculated using the following formula:

Energy =

n2

n=n1

y2(n)
y2(n1) + y

2(n2)
2 x§ { ●

 n1 = first sample with x ≥ Begin

 n2 = last sample with x ≤ End

 ∆x = x - difference between two samples

The segment limits (Begin and End) are used to select a range of samples. If
no segment limits are specified, the complete waveform is used. When only
Begin is specified, the waveform segment from Begin to the end of the
waveform is used. The numerical integration is performed assuming linear
interpolation of the squared curve between the samples.

Example
The following example creates a sine wave of 50 Hz and calculates the energy
in one period of the signal:

Perception Analysis

82 I2690-9.2 en HBM: public

 Signal = @SineWave(20k; 1000; 50)
 E1 = @Energy(Formula.Signal; 0; 20m)

See Also
"@Area" on page 56 and "@RMS" on page 198

Perception Analysis

I2690-9.2 en HBM: public 83

4.18 @EqualTo

Function
This function performs an equal-to (=) evaluation on the two numerical input
parameters.

Syntax
@EqualTo(Param1; Param2)

Parameters

Param1 Number: first parameter used for evaluation
Param2 Number: second parameter used for evaluation

Output
The output is 1 or 0

Description
The EqualTo function performs an 'equal-to' evaluation on the input
parameters. If Param 1 = Param 2 then the return value will be 1 (true) else the
return value will be 0 (false).

The EqualTo function is typically used in combination with the IIF function.

Example
The following example compares input parameters and provides a result that
depends on the outcome:

 EqualToExampl1 = @EqualTo(5; 5) => 1 (true)
 EqualToExampl2 = @EqualTo(12;

10)
=> 0 (false)

 IIFExample = @IIF(Formula.EqualToExampl2; "TRUE";
"FALSE")

See Also
"@IIF" on page 125, "@GreaterEqualThan" on page 121, "@GreaterThan" on
page 122, "@LessEqualThan" on page 137 and "@LessThan" on page 138

Perception Analysis

84 I2690-9.2 en HBM: public

4.19 @Exp

Function
Exponential function, the mathematical operation, written en, involving two
parameters: the base “e” (2.7...) and the exponent “n”.

Syntax
@Exp(Par)

Parameters

Par Input waveform or numerical value.

Output
Waveform or numerical value containing the exponentiation (base e) of the
input.

Description
The exponential function calculates the power (base e) of the input. When a
waveform parameter is used, the exponential function is calculated for each
individual sample. This function is the inverse function of @ln.

Example
The exponential function can also be achieved with the function @Pow. The
following formulas are equivalent, assuming a formula database variable
named Input:

 Result = @Exp(Formula.Input)
 Result = @Pow(System.Constants.e; Formula.Input)

The following example shows an alternative for the system variable
System.Constants.e:

 Euler = @Exp(1)

See Also
"@ExpWave" on page 86, "@Ln" on page 139 and "@Pow" on page 168

Perception Analysis

I2690-9.2 en HBM: public 85

4.20 @ExpWave

Function
Generates a waveform containing an Exponential function.

Syntax

@ExpWave(Rate; Count; Alpha; Beta)
@ExpWave(Rate; Count; Alpha; Beta; X0)

Parameters

Rate Number: sampling frequency
Count Number of samples
Alpha Number: amplitude multiplier
Beta Number: exponent multiplier
X0 Number: exponent multiplier modifier

Output
The output is a waveform containing an exponentially growing signal.

Description

This function generates a waveform using the formula:
 f (x e

((x x0)){¯)

The sampling frequency, number of samples, rate of growth and multiplication
factor can be specified. The length of a generated waveform is limited to 1
GigaSamples (1 000 000 000).
The natural logarithm ln(x) is the inverse function of the exponential function.
The possibility to generate an exponential wave function can be used to
synthesize a variety of waveforms. The simulated data can be used as input for
other analysis functions.

Example
The following example creates an exponential waveform.

 Signal = @ExpWave(1; 100; 2; 100m)

See Also
"@Ln" on page 139, "@Pulse" on page 175, "@SineWave" on page 201 and
"@SquareWave" on page 212

Perception Analysis

86 I2690-9.2 en HBM: public

4.21 @FallTime

Function
Determines the fall time of a pulse in a waveform.

Syntax

@FallTime(Waveform)
@FallTime(Waveform; Begin)
@FallTime(Waveform; Begin; End)

Parameters

Waveform Input waveform containing the trailing edge of a pulse.
Begin Number: segment begin.
End Number: segment end.

Output
The output is a numerical value. This function works “while recording” when the
Begin and End parameters are set. The result will be calculated when the data
between Begin and End is available.

Description
The fall time is computed by taking the time difference between the distal point
(90% magnitude transition) and the proximal point (10% magnitude transition)
on the first trailing edge of a pulse in the waveform (or waveform segment).

The segment limits (Begin and End) are used to select a range of samples. If
no segment limits are specified, the complete waveform is used. When only
Begin is specified, the waveform segment from Begin to the end of the
waveform is used.

Example
The following example creates a pulse and calculates the 90%-10% fall time of
the trailing edge. The result is 40 ms:

 Sig1 = @Ramp(1k; 100; 0; 0)
 Sig2 = @Ramp(1k; 51; 0; 10)
 Sig3 = @Ramp(1k; 100; 10; 10)
 Sig4 = @Ramp(1k; 51; 10; 0)
 Signal = @Join(Formula.Sig1; Formula.Sig2;

Formula.Sig3; Formula.Sig4; Formula.Sig1)

Perception Analysis

I2690-9.2 en HBM: public 87

 Falltime = @FallTime(Formula.Signal)

See Also
"@PulseWidth" on page 177 and "@RiseTime" on page 196

Perception Analysis

88 I2690-9.2 en HBM: public

4.22 @FilterButterworthLP

Function
Filters the input signal with a direct form IIR lowpass Butterworth filter.

Syntax

@FilterButterworthLP(Signal; Order; Fc)
@FilterButterworthLP(Signal; Order; Fc; Phaseless)

Parameters

Signal Input waveform
Order Number: Filter order
Fc Number: The cut off Frequency in Hz
Phaseless Number: Filter method
 0 Filter does not work phase less (default)
 1 Filter works phase less

Output
The output is the filtered waveform.

Description
This function performs a direct form IIR lowpass Butterworth filtering.

The cut off frequency is the frequency at which the magnitude of the response
is -3 dB.

More detailed information can be found in the IIR Filters chapter on
page 325.

Example

 Signal = @FilterButterworthLP(Formula.Signal; 2; 200)

Perception Analysis

I2690-9.2 en HBM: public 89

If the Formula.Signal is sampled at 20 kHz than the frequency and phase
response looks like:

10.00

-10.00

-20.00

-30.00

-40.00

-50.00

-60.00

-70.00

-80.00

-90.00

-100.0
1.000 1.000 k10.00 10.00 k100.0

0.000

Frequency [Hz]

Magnitude Spectrum

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.5: Magnitude Spectrum - FilterButterworthLP

0.000

-40.00

-60.00

-80.00

-100.0

-120.0

-140.0

-160.0

-180.0
1.000 1.000 k10.00 10.00 k100.0

-20.00

Frequency [Hz]

Phase Response

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.6: Phase Response - FilterButterworthLP

See Also
"@FilterButterworthBS" on page 95, "@FilterButterworthBP" on page 93
and "@FilterButterworthHP" on page 91

Perception Analysis

90 I2690-9.2 en HBM: public

4.23 @FilterButterworthHP

Function
Filters the input signal with a direct form IIR highpass Butterworth filter.

Syntax

@FilterButterworthHP(Signal; Order; Fc)
@FilterButterworthHP(Signal; Order; Fc; Phaseless)

Parameters

Signal Input waveform
Order Number: Filter order
Fc Number: The cut off Frequency in Hz
Phaseless Number: Filter method
 0 Filter does not work phase less (default)
 1 Filter works phase less

Output
The output is the filtered waveform.

Description
This function performs a direct form IIR highpass Butterworth filtering.

The cut off frequency is the frequency at which the magnitude of the response
is -3 dB.

More detailed information can be found in the IIR Filters chapter on
page 325.

Example

 Signal = @FilterButterworthHP(Formula.Signal; 2; 200)

Perception Analysis

I2690-9.2 en HBM: public 91

If the Formula.Signal is sampled at 20 kHz than the frequency and phase
response looks like:

10.00

-10.00

-20.00

-30.00

-40.00

-50.00

-60.00

-70.00

-80.00

-90.00

-100.0
1.000 1.000 k10.00 10.00 k100.0

0.000

Frequency [Hz]

Magnitude Spectrum

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.7: Magnitude Spectrum - FilterButterworthHP

180.0

140.0

120.0

100.0

80.00

60.00

40.00

20.00

0.000
1.000 1.000 k10.00 10.00 k100.0

160.0

Frequency [Hz]

Phase Response

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.8: Phase Response - FilterButterworthHP

See Also
"@FilterButterworthBS" on page 95, "@FilterButterworthBP" on page 93
and "@FilterButterworthLP" on page 89

Perception Analysis

92 I2690-9.2 en HBM: public

4.24 @FilterButterworthBP

Function
Filters the input signal with a direct form IIR bandpass Butterworth filter.

Syntax

@FilterButterworthBP(Signal; Order; LowFc; UpFc)
@FilterButterworthBP(Signal; Order; LowFc; UpFc; Phaseless)

Parameters

Signal Input waveform
Order Number: Filter order
LowFc Number: The lower cut off Frequency in Hz
UpFc Number: The upper cut off Frequency in Hz
Phaseless Number: Filter method
 0 Filter does not work phase less (default)
 1 Filter works phase less

Output
The output is the filtered waveform.

Description
This function performs a direct form IIR bandpass Butterworth filtering.

The cut off frequencies are the frequencies at which the magnitude of the
response is -3 dB.

More detailed information can be found in the IIR Filters chapter on
page 325.

Example

 Signal = @FilterButterworthBP(Formula.Signal; 2; 200;
1000)

Perception Analysis

I2690-9.2 en HBM: public 93

If the Formula.Signal is sampled at 20 kHz than the frequency and phase
response looks like:

10.00

-10.00

-20.00

-30.00

-40.00

-50.00

-60.00

-70.00

-80.00

-90.00

-100.0
1.000 1.000 k10.00 10.00 k100.0

0.000

Frequency [Hz]

Magnitude Spectrum

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.9: Magnitude Spectrum - FilterButterworthBP

180.0

100.0

60.00

20.00

-20.00

-60.00

-100.0

-140.0

-180.0
1.000 1.000 k10.00 10.00 k100.0

140.0

Frequency [Hz]

Phase Response

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.10: Phase Response - FilterButterworthBP

See Also
"@FilterButterworthBS" on page 95, "@FilterButterworthHP" on page 91 and
"@FilterButterworthLP" on page 89

Perception Analysis

94 I2690-9.2 en HBM: public

4.25 @FilterButterworthBS

Function
Filters the input signal with a direct form IIR bandstop Butterworth filter.

Syntax

@FilterButterworthBS(Signal; Order; LowFc; UpFc)
@FilterButterworthBS(Signal; Order; LowFc; UpFc; Phaseless)

Parameters

Signal Input waveform
Order Number: Filter order
LowFc Number: The lower cut off Frequency in Hz
UpF Number: The upper cut off Frequency in Hz
Phaseless Number: Filter method
 0 Filter does not work phase less (default)
 1 Filter works phase less

Output
The output is the filtered waveform.

Description
This function performs a direct form IIR bandstop Butterworth filtering.

The cut off frequencies are the frequencies at which the magnitude of the
response is -3 dB.

More detailed information can be found in the IIR Filters chapter on
page 325.

Example

 Signal = @FilterButterworthBS(Formula.Signal; 2; 200;
1000)

Perception Analysis

I2690-9.2 en HBM: public 95

If the Formula.Signal is sampled at 20 kHz than the frequency and phase
response looks like:

10.00

-10.00

-20.00

-30.00

-40.00

-50.00

-60.00

-70.00

-80.00

-90.00

-100.0
1.000 1.000 k10.00 10.00 k100.0

0.000

Frequency [Hz]

Magnitude Spectrum

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.11: Magnitude Spectrum - FilterButterworthBS

180.0

100.0

60.00

20.00

-20.00

-60.00

-100.0

-140.0

-180.0
1.000 1.000 k10.00 10.00 k100.0

140.0

Frequency [Hz]

Phase Response

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.12: Phase Response - FilterButterworthBS

See Also
"@FilterButterworthBP" on page 93, "@FilterButterworthHP" on page 91 and
"@FilterButterworthLP" on page 89

Perception Analysis

96 I2690-9.2 en HBM: public

4.26 @FilterBesselLP

Function
Filters the input signal with a direct form IIR lowpass Bessel filter.

Syntax

@FilterBesselLP(Signal; Order; Fc)
@FilterBesselLP(Signal; Order; Fc; Phaseless)

Parameters

Signal Input waveform
Order Number: Filter order
Fc Number: The cut off Frequency in Hz
Phaseless Number: Filter method
 0 Filter does not work phase less (default)
 1 Filter works phase less

Output
The output is the filtered waveform.

Description
This function performs a direct form IIR lowpass Bessel filtering.

The cut off frequency is the frequency at which the magnitude of the response
is -3 dB.

More detailed information can be found in the IIR Filters chapter on
page 325.

Example

 Signal = @FilterBesselLP(Formula.Signal; 2; 200)

Perception Analysis

I2690-9.2 en HBM: public 97

If the Formula.Signal is sampled at 20 kHz than the frequency and phase
response looks like:

10.00

-10.00

-20.00

-30.00

-40.00

-50.00

-60.00

-70.00

-80.00

-90.00

-100.0
1.000 1.000 k10.00 10.00 k100.0

0.000

Frequency [Hz]

Magnitude Spectrum

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.13: Magnitude Spectrum - FilterBesselLP

0.000

-40.00

-60.00

-80.00

-100.0

-120.0

-140.0

-160.0

-180.0
1.000 1.000 k10.00 10.00 k100.0

-20.00

Frequency [Hz]

Phase Response

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.14: Phase Response - FilterBesselLP

See Also
"@FilterBesselBP" on page 101, "@FilterBesselBS" on page 103 and
"@FilterBesselHP" on page 99

Perception Analysis

98 I2690-9.2 en HBM: public

4.27 @FilterBesselHP

Function
Filters the input signal with a direct form IIR highpass Bessel filter.

Syntax

@FilterBesselHP(Signal; Order; Fc)
@FilterBesselHP(Signal; Order; Fc; Phaseless)

Parameters

Signal Input waveform
Order Number: Filter order
Fc Number: The cut off Frequency in Hz
Phaseless Number: Filter method
 0 Filter does not work phase less (default)
 1 Filter works phase less

Output
The output is the filtered waveform.

Description
This function performs a direct form IIR highpass Bessel filtering.

The cut off frequency is the frequency at which the magnitude of the response
is -3 dB.

More detailed information can be found in the IIR Filters chapter on
page 325.

Example

 Signal = @FilterBesselHP(Formula.Signal; 2; 200)

Perception Analysis

I2690-9.2 en HBM: public 99

If the Formula.Signal is sampled at 20 kHz than the frequency and phase
response looks like:

10.00

-10.00

-20.00

-30.00

-40.00

-50.00

-60.00

-70.00

-80.00

-90.00

-100.0
1.000 1.000 k10.00 10.00 k100.0

0.000

Frequency [Hz]

Magnitude Spectrum

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.15: Magnitude Spectrum - FilterBesselHP

180.0

140.0

120.0

100.0

80.00

60.00

40.00

20.00

0.000
1.000 1.000 k10.00 10.00 k100.0

160.0

Frequency [Hz]

Phase Response

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.16: Phase Response - FilterBesselHP

See Also
"@FilterBesselBP" on page 101, "@FilterBesselBS" on page 103 and
"@FilterBesselLP" on page 97

Perception Analysis

100 I2690-9.2 en HBM: public

4.28 @FilterBesselBP

Function
Filters the input signal with a direct form IIR bandpass Bessel filter.

Syntax

@FilterBesselBP(Signal; Order; LowFc; UpFc)
@FilterBesselBP(Signal; Order; LowFc; UpFc; Phaseless)

Parameters

Signal Input waveform
Order Number: Filter order
LowFc Number: The lower cut off Frequency in Hz
UpFc Number: The upper cut off Frequency in Hz
Phaseless Number: Filter method
 0 Filter does not work phase less (default)
 1 Filter works phase less

Output
The output is the filtered waveform.

Description
This function performs a direct form IIR bandpass Bessel filtering.

The cut off frequencies are the frequencies at which the magnitude of the
response is -3 dB.

More detailed information can be found in the IIR Filters chapter on
page 325.

Example

 Signal = @FilterBesselBP(Formula.Signal; 2; 200; 1000)

Perception Analysis

I2690-9.2 en HBM: public 101

If the Formula.Signal is sampled at 20 kHz than the frequency and phase
response looks like:

10.00

-10.00

-20.00

-30.00

-40.00

-50.00

-60.00

-70.00

-80.00

-90.00

-100.0
1.000 1.000 k10.00 10.00 k100.0

0.000

Frequency [Hz]

Magnitude Spectrum

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.17: Magnitude Spectrum - FilterBesselBP

180.0

100.0

60.00

20.00

-20.00

-60.00

-100.0

-140.0

-180.0
1.000 1.000 k10.00 10.00 k100.0

140.0

Frequency [Hz]

Phase Response

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.18: Phase Response - FilterBesselBP

See Also
"@FilterBesselBS" on page 103, "@FilterBesselHP" on page 99 and
"@FilterBesselLP" on page 97

Perception Analysis

102 I2690-9.2 en HBM: public

4.29 @FilterBesselBS

Function
Filters the input signal with a direct form IIR bandstop Bessel filter.

Syntax

@FilterBesselBS(Signal; Order; LowFc; UpFc)
@FilterBesselBS(Signal; Order; LowFc; UpFc; Phaseless)

Parameters

Signal Input waveform
Order Number: Filter order
LowFc Number: The lower cut off Frequency in Hz
UpFc Number: The upper cut off Frequency in Hz
Phaseless Number: Filter method
 0 Filter does not work phase less (default)
 1 Filter works phase less

Output
The output is the filtered waveform.

Description
This function performs a direct form IIR bandstop Bessel filtering.

The cut off frequencies are the frequencies at which the magnitude of the
response is -3 dB.

More detailed information can be found in the IIR Filters chapter on
page 325.

Example

 Signal = @FilterBesselBS(Formula.Signal; 2; 200; 1000)

Perception Analysis

I2690-9.2 en HBM: public 103

If the Formula.Signal is sampled at 20 kHz than the frequency and phase
response looks like:

10.00

-10.00

-20.00

-30.00

-40.00

-50.00

-60.00

-70.00

-80.00

-90.00

-100.0
1.000 1.000 k10.00 10.00 k100.0

0.000

Frequency [Hz]

Magnitude Spectrum

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.19: Magnitude Spectrum - FilterBesselBS

180.0

100.0

60.00

20.00

-20.00

-60.00

-100.0

-140.0

-180.0
1.000 1.000 k10.00 10.00 k100.0

140.0

Frequency [Hz]

Phase Response

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.20: Phase Response - FilterBesselBS

See Also
"@FilterBesselBP" on page 101, "@FilterBesselHP" on page 99 and
"@FilterBesselLP" on page 97

Perception Analysis

104 I2690-9.2 en HBM: public

4.30 @FilterChebyshevLP

Function
Filters the input signal with a direct form IIR lowpass Chebyshev filter.

Syntax

@FilterChebyshevLP(Signal; Order; Fc)
@FilterChebyshevLP(Signal; Order; Fc; Ripple)
@FilterChebyshevLP(Signal; Order; Fc; Ripple; Phaseless)

Parameters

Signal Input waveform
Order Number: Filter order
Fc Number: The cut off Frequency in Hz
Ripple Number: The amplitude of the stop band ripple in decibels, the

default value is 1 dB.
Phaseless Number: Filter method
 0 Filter does not work phase less (default)
 1 Filter works phase less

Output
The output is the filtered waveform.

Description
This function performs a direct form IIR lowpass Chebyshev filtering.

The cut off frequency is not the -3 dB point as defined at the Butterworth and
Bessel filters but it is the highest frequency at which the magnitude of the
response is equal to the specified ripple below the maximum magnitude. If for
example the ripple is defined as 2 dB and Fc is 200 Hz than the magnitude at
200 Hz will be -2 dB, see Figure 4.21.

Perception Analysis

I2690-9.2 en HBM: public 105

4.000

Ripple = 2 dB

FC = 200 Hz
0.000

-4.000

-8.000

-12.00

-16.00
10.00 1.000 k100.0

Frequency [Hz]

Magnitude Spectrum

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.21: Magnitude Spectrum - FilterChebyshevLP (Ripple)

More detailed information can be found in the IIR Filters chapter on
page 325.

Example

 Signal = @FilterChebyshevLP
(Formula.Signal; 2; 200; 2)

Perception Analysis

106 I2690-9.2 en HBM: public

If the Formula.Signal is sampled at 20 kHz than the frequency and phase
response looks like:

10.00

-10.00

-20.00

-30.00

-40.00

-50.00

-60.00

-70.00

-80.00

-90.00

-100.0
1.000 1.000 k10.00 10.00 k100.0

0.000

Frequency [Hz]

Magnitude Spectrum

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.22: Magnitude Spectrum - FilterChebyshevLP

0.000

-40.00

-60.00

-80.00

-100.0

-120.0

-140.0

-160.0

-180.0
1.000 1.000 k10.00 10.00 k100.0

-20.00

Frequency [Hz]

Phase Response

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.23: Phase Response - FilterChebyshevLP

See Also
"@FilterChebyshevBP" on page 110, "@FilterChebyshevBS" on page 112
and "@FilterChebyshevHP" on page 108

Perception Analysis

I2690-9.2 en HBM: public 107

4.31 @FilterChebyshevHP

Function
Filters the input signal with a direct form IIR highpass Chebyshev filter.

Syntax

@FilterChebyshevHP(Signal; Order; Fc)
@FilterChebyshevHP(Signal; Order; Fc; Ripple)
@FilterChebyshevHP(Signal; Order; Fc; Ripple; Phaseless)

Parameters

Signal Input waveform
Order Number: Filter order
Fc Number: The cut off Frequency in Hz
Ripple Number: The amplitude of the stop band ripple in decibels, the

default value is 1 dB.
Phaseless Number: Filter method
 0 Filter does not work phase less (default)
 1 Filter works phase less

Output
The output is the filtered waveform.

Description
This function performs a direct form IIR highpass Chebyshev filtering.

The cut off frequency is not the -3 dB point as defined at the Butterworth and
Bessel filters but it is the lowest frequency at which the magnitude of the
response is equal to the specified ripple below the maximum magnitude. If for
example the ripple is defined as 2 dB and Fc is 200 Hz than the magnitude at
200 Hz will be - 2dB. More detailed information can be found in the
IIR Filters chapter on page 325.

Example

 Signal = @FilterChebyshevHP(Formula.Signal; 2; 200)

Perception Analysis

108 I2690-9.2 en HBM: public

If the Formula.Signal is sampled at 20 kHz than the frequency and phase
response looks like:

10.00

-10.00

-20.00

-30.00

-40.00

-50.00

-60.00

-70.00

-80.00

-90.00

-100.0
1.000 1.000 k10.00 10.00 k100.0

0.000

Frequency [Hz]

Magnitude Spectrum

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.24: Magnitude Spectrum - FilterChebyshev

0.000

-40.00

-60.00

-80.00

-100.0

-120.0

-140.0

-160.0

-180.0
1.000 1.000 k10.00 10.00 k100.0

-20.00

Frequency [Hz]

Phase Response

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.25: Magnitude Spectrum - FilterChebyshev

See Also
"@FilterChebyshevBP" on page 110, "@FilterChebyshevBS" on page 112
and "@FilterChebyshevLP" on page 105

Perception Analysis

I2690-9.2 en HBM: public 109

4.32 @FilterChebyshevBP

Function
Filters the input signal with a direct form IIR bandpass Chebyshev filter.

Syntax

@FilterChebyshevBP(Signal; Order; LowFc; UpFc)
@FilterChebyshevBP(Signal; Order; LowFc; UpFc; Ripple)
@FilterChebyshevBP(Signal; Order; LowFc; UpFc; Ripple; Phaseless)

Parameters

Signal Input waveform
Order Number: Filter order
LowFc Number: The lower cut off Frequency in Hz
UpFc Number: The upper cut off Frequency in Hz
Ripple Number: The amplitude of the stop band ripple in decibels, the

default value is 1 dB.
Phaseless Number: Filter method
 0 Filter does not work phase less (default)
 1 Filter works phase less

Output
The output is the filtered waveform.

Description
This function performs a direct form IIR bandpass Chebyshev filtering.
The cut off frequencies are not the -3d B points as defined at the Butterworth
and Bessel filters but they are the lowest or highest frequencies at which the
magnitude of the response is equal to the specified ripple below the maximum
magnitude. If for example the ripple is defined as 2 dB and LowFc is 200 Hz
than the magnitude at 200 Hz will be -2 dB.

More detailed information can be found in the IIR Filters chapter on
page 325.

Example

 Signal = @FilterChebyshevBP(Formula.Signal; 2; 200;
1000; 2)

Perception Analysis

110 I2690-9.2 en HBM: public

If the Formula.Signal is sampled at 20 kHz than the frequency and phase
response looks like:

10.00

-10.00

-20.00

-30.00

-40.00

-50.00

-60.00

-70.00

-80.00

-90.00

-100.0
1.000 1.000 k10.00 10.00 k100.0

0.000

Frequency [Hz]

Magnitude Spectrum

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.26: Magnitude Spectrum - FilterCheybyshevBP

180.0

100.0

60.00

20.00

-20.00

-60.00

-100.0

-140.0

-180.0
1.000 1.000 k10.00 10.00 k100.0

140.0

Frequency [Hz]

Phase Response

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.27: Phase Response - FilterCheybyshevBP

See Also
"@FilterChebyshevBS" on page 112, "@FilterChebyshevHP" on page 108 and
"@FilterChebyshevLP" on page 105

Perception Analysis

I2690-9.2 en HBM: public 111

4.33 @FilterChebyshevBS

Function
Filters the input signal with a direct form IIR bandstop Chebyshev filter.

Syntax

@FilterChebyshevBS(Signal; Order; LowFc; UpFc)
@FilterChebyshevBS(Signal; Order; LowFc; UpFc; Ripple)
@FilterChebyshevBS(Signal; Order; LowFc; UpFc; Ripple; Phaseless)

Parameters

Signal Input waveform
Order Number: Filter order
LowFc Number: The lower cut off Frequency in Hz
UpFc Number: The upper cut off Frequency in Hz
Ripple Number: The amplitude of the stop band ripple in decibels, the

default value is 1 dB.
Phaseless Number: Filter method
 0 Filter does not work phase less (default)
 1 Filter works phase less

Output
The output is the filtered waveform.

Description
This function performs a direct form IIR bandstop Chebyshev filtering.
The cut off frequencies are not the -3 dB points as defined at the Butterworth
and Bessel filters but they are the lowest or highest frequencies at which the
magnitude of the response is equal to the specified ripple below the maximum
magnitude. If for example the ripple is defined as 2 dB and LowFc is 200 Hz
than the magnitude at 200 Hz will be -2 dB.

If for example the ripple is defined as 2 dB and Fc is 200 Hz than the magnitude
at 200 Hz will be -2 dB.

More detailed information can be found in the IIR Filters chapter on
page 325.

Perception Analysis

112 I2690-9.2 en HBM: public

Example

 Signal = @FilterChebyshevBS(Formula.Signal; 2; 200;
1000)

If the Formula.Signal is sampled at 20 kHz than the frequency and phase
response looks like:

10.00

-10.00

-20.00

-30.00

-40.00

-50.00

-60.00

-70.00

-80.00

-90.00

-100.0
1.000 1.000 k10.00 10.00 k100.0

0.000

Frequency [Hz]

Magnitude Spectrum

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.28: Magnitude Spectrum - FilterChebyshevBS

180.0

100.0

60.00

20.00

-20.00

-60.00

-100.0

-140.0

-180.0
1.000 1.000 k10.00 10.00 k100.0

140.0

Frequency [Hz]

Phase Response

M
a

g
n

it
u

d
e

 [
d

B
]

Figure 4.29: Phase Response - FilterChebyshevBS

Perception Analysis

I2690-9.2 en HBM: public 113

See Also
"@FilterChebyshevBP" on page 110, "@FilterChebyshevHP" on page 108 and
"@FilterChebyshevLP" on page 105

Perception Analysis

114 I2690-9.2 en HBM: public

4.34 @Frequency

Function
Determines the frequency of a waveform.

Syntax

@Frequency(Waveform)
@Frequency(Waveform; Begin)
@Frequency(Waveform; Begin; End)

Parameters

Waveform Input waveform for which the frequency is to be determined.
Begin Number: segment begin.
End Number: segment end.

Output
The output is a numerical value. This function works also “while recording” when
both the Begin and End parameters are set. The result will be calculated
continuously from the data that is readily available.

Description
The frequency of the waveform or waveform segment is determined. The
segment limits (Begin and End) are used to select a range of samples. If no
segment limits are specified, the complete waveform is used. When only Begin
is specified, the waveform segment from Begin to the end of the waveform is
used.

Note The Begin and End parameters have to be specified in the units of the horizontal
axis (for example time) and not in samples.

The frequency is determined as follows:
l First the minimum and maximum values of the waveform are determined.

The mean of these is considered to be the zero level and the number of
zero crossings in the range Begin to End is calculated. The crossings
should be in the same direction as the first one. The crossings are
determined using a +/-5% hysteresis around the zero level in order to
suppress the effects of noise.

l From the time difference between the first and last zero crossing in the
same direction and the number of zero crossings in between, the period of
the waveform is determined. Frequency is the reciprocal of the period.

Perception Analysis

I2690-9.2 en HBM: public 115

Example

The following example determines the frequency of a 50 Hz signal:
 Signal = @SineWave(20k; 1000; 50)
 Freq = @Frequency(Formula.Signal)

See Also
"@Period" on page 166

Perception Analysis

116 I2690-9.2 en HBM: public

4.35 @FormatDate

Function
Returns a date data source as a string, this date string can be formatted.

Syntax

@FormatDate(Date; Format)

Parameters

Date Input date data source.
Format Date format string.

Output
A string representing the input date in a user specified format.

Description
This function is used to format a date data source. The input data source can
be the UTCDate of the RecordingInformation of an opened recording.
The format string can use the following formatting codes:

Format Description
M display month as a numerical (1 .. 12)
MM display month as a numerical (01 .. 12)
MMM display three-letter month (Apr)
MMMM display complete name of month (April)
d display day of the MONTH (1 .. 31)
dd display day of the MONTH (01 .. 31)
ddd display three-letter day of the WEEK (Tue)
dddd display complete name of day of the WEEK (Tuesday)
yy display two-digit year (15)
yyyy display four-digit year (2015)

An example of some formulas:

 Name Formula
 FormattedDate_1 = @FormatDate(Active.Recording

Information.UTCDate;”ddd ddMMM-yyyy”
 FormattedDate_2 = @FormatDate(Active.Recording

Information.UTCDate;”dd-MM-yy”

Perception Analysis

I2690-9.2 en HBM: public 117

 Name Formula
 FormattedDate_3 = @FormatDate(Active.Recording

Information.UTCDate;”MMMM-d-yyyy”

The formulas above give the following results:

 Data source Output Format
 FormattedDate_1 = Tue 20JAN-2015 ”ddd ddMMMyyyy”
 FormattedDate_2 = 200115 ”dd-MM-yy”
 FormattedDate_3 = January-20–2015 ”MMMM-d-yyyy”

See Also
"@FormatTime" on page 119

Perception Analysis

118 I2690-9.2 en HBM: public

4.36 @FormatTime

Function
Returns a time data source as a string, this time string can be formatted.

Syntax

@FormatTime(Time; Format)

Parameters

Time IInput time data source.
Format Time format string.

Output
A string representing the input time in a user specified format.

Description
This function is used to format a time data source. The input data source can
be the UTCTime of the RecordingInformation of an opened recording.
The format string can use the following formatting codes:

Format Description
HH:mm 13:47
HH:mm:ss 13:47:08
hh:mm:ss 01:47:08
h:mm:ss 1:47:08
t 1:47 PM
T 1:47:08 PM

An example of some formulas:
 Name Formula
 FormattedTime_1 = @FormatTime(Active.Recording

Information.UTCTime;”HH:mm:ss”
 FormattedTime_2 = @FormatTime(Active.Recording

Information.UTCTime;”T”

The formula above give the following result:
 Data source Output Format
 FormattedDate_1 = 10:08:37 ”HH:mm:ss”
 FormattedDate_2 = 10:08:37 AM ”T”

Perception Analysis

I2690-9.2 en HBM: public 119

See Also
"@FormatDate" on page 117

Perception Analysis

120 I2690-9.2 en HBM: public

4.37 @GreaterEqualThan

Function
This function performs a greater-than-or-equal-to (≥) evaluation on the two
numerical input parameters.

Syntax
@GreaterEqualThan(Param1; Param2)

Parameters

Param 1 Number: first parameter used for evaluation.
Param 2 Number: second parameter used for evaluation.

Output
The output is 1 or 0.

Description
The GreaterEqualThan function performs a “greater-than-or-equal-to”
evaluation on the input parameters.

If Param 1≥Param 2 then the return value will be 1 (= true) else the return value
will be 0 (=false).

The GreaterEqualThan function is typically used in combination with the IIF
function.

Example
The following example compares input parameters and provides a result that
depends on the outcome:

 GETExam1 = @GreaterEqualThan(5; 5) => 0 (false)
 GETExam2 = @GreaterEqualThan(12; 10) => 1 (true)
 IIFExample = @IIF(Formula.GETExam2; "TRUE"; "FALSE")

See Also
"@EqualTo" on page 84, "@GreaterThan" on page 122, "@IIF" on page 125,
"@LessEqualThan" on page 137 and "@LessThan" on page 138

Perception Analysis

I2690-9.2 en HBM: public 121

4.38 @GreaterThan

Function
This function performs a greater-than (>) evaluation on the two numerical input
parameters.

Syntax
@GreaterThan(Param1; Param2)

Parameters

Param1 Number: first parameter used for evaluation.
Param2 Number: second parameter used for evaluation.

Output
The output is 1 or 0.

Description
The GreaterThan function performs a 'greater-than' evaluation on the input
parameters.

If Param 1 > Param 2 then the return value will be 1 (true) else the return value
will be 0 (false).

The GreaterThan function is typically used in combination with the IIF function.

Example
The following example compares input parameters and provides a result that
depends on the outcome:

 GTExam1 = @GreaterThan(5;
100)

=> 0 (false)

 GTExam2 = @GreaterThan(12;
10)

=> 1 (true)

 IIFExample = @IIF(Formula.GTExam2; "TRUE"; "FALSE")

See Also
"@EqualTo" on page 84, "@GreaterEqualThan" on page 121, "@IIF" on
page 125, "@LessEqualThan" on page 137 and "@LessThan" on page 138

Perception Analysis

122 I2690-9.2 en HBM: public

4.39 @Histogram

Function
Calculates amplitude histogram.

Syntax
@Histogram(Waveform; YLow; YHigh; Number)

Parameters

Waveform Input waveform from which the histogram is to be calculated.
YLow Number: lowest amplitude to include in the histogram.
YHigh Number: highest amplitude to include in the histogram.
Number Number of divisions.

Output
Waveform containing the amplitude histogram.

Description
The histogram function determines the number of occurrences of amplitude
values (values of a waveform) in each amplitude division. The amplitude
divisions are specified by dividing the range between YLow and YHigh into
Number divisions. The width of each division is (YHigh- YLow)/Number. Each
value of the waveform is sorted to one of these divisions. The histogram shows
how many values were sorted in each division. The maximum allowed number
of divisions is 4096. Typically values between 100 and 1000 are used.

The parameter YLow and YHigh determine the range of amplitudes included in
the histogram. Any value outside this range is discarded. To ensure that out-
of-range values are included in a division of the histogram, use the @Clip
function to limit the amplitude values before calculating the histogram.

Example
The following example calculates an amplitude histogram between -5.5 V and
+5.5 V using 11 divisions. This means each division has a width of 1 V.

 Signal = 5 * @SineWave(5000; 1000; 10)
 Histo = @Histogram(Formula.Signal; -5.5; 5.5; 11)

The following example calculates a histogram of 100 divisions between the
minimum and maximum of the waveform, assuming a formula database
variable Signal:

Perception Analysis

I2690-9.2 en HBM: public 123

 MinSignal = @Min(Formula.Signal)
 MaxSignal = @Max(Formula.Signal)
 Histo = @Histogram(Formula.Signal;

Formula.MinSignal;
Formula.MaxSignal; 100)

See Also
"@Clip" on page 65, "@Max" on page 142 and "@Min" on page 152

Perception Analysis

124 I2690-9.2 en HBM: public

4.40 @IIF

Function
This function performs an Immediate If (IIF) and returns one value if a condition
evaluates to TRUE and another value if it evaluates to FALSE.

Syntax
@IIF(Param; IfTrue; IfFalse)

Parameters

Param Waveform/Number/String to be evaluated.
IfTrue Waveform/Number/String output if the evaluation of Param

returns true.
IfFalse Waveform/Number/String output if the evaluation of Param

returns false.

Output
The output can be a waveform, number or string.

Description
The IIF function performs an evaluation on the first input parameter; the sort of
evaluation depends on the type of this parameter and is described in the table
below. The evaluation will be done and the result is either true or false. If the
result is true then the second parameter will be returned as output of the IIF
function else the third parameter will be returned.

The following table describes the evaluation of the first parameter:

Parameter type True False
Numeric Not 0 Equal to 0
String Not empty Empty
Waveform Not Null Null

Example
The following example uses a generated sine wave. If this signal is shown in
the display with name Display than the IIF function will return a string “Above
0.5” if the waveform value at the active cursor position is above 0.5 else the
string “Below 0.5” will be returned.
The GreaterThan function is used to compare the waveform value at the active
cursor position against the 0.5 value. The result is 1 (true) if the value is greater
than 0.5 else the result is 0 (false). This result is the first parameter of the IIF
function.

Perception Analysis

I2690-9.2 en HBM: public 125

 Signal = @SineWave(8000; 8001; 5)
 GreaterHalf = @GreaterThan

(Display.Display.ActiveCursor.YValue;
0.5)

 IIFExample = @IIF(Formula.GreaterHalf; "Above 0.5";
"Below 0.5")

See Also
"@EqualTo" on page 84, "@GreaterEqualThan" on page 121, "@GreaterThan"
on page 122, "@LessEqualThan" on page 137 and "@LessThan" on
page 138

Perception Analysis

126 I2690-9.2 en HBM: public

4.41 @Integrate

Function
Integrates a waveform.

Syntax
@Integrate(Waveform)

Parameters

Waveform Waveform to be integrated.

Output
Integrated waveform.

Description
Integration calculates the running sum of all sample values:

 i(1) = y(1)

 i(n) = i(n{1) + y(n) x for n = 2,...,N

The integral calculates the area under curve of the waveform from the starting
point up to the end point.

Example
The following example integrates the instantaneous power to obtain energy as
a function of time:

 Signal = @SineWave(10k; 1000; 50)
 Power = (Formula.Signal * Formula.Signal) / 600
 Energy = @Integrate(Formula.Power)

See Also
"@Diff" on page 76 and "@Energy" on page 82

Perception Analysis

I2690-9.2 en HBM: public 127

4.42 @IntLookUp

Function
Uses the data from a waveform as an index (pointer) into a Conversion Look
Up Table (CLUT). The CLUT is stored in a separate file.

Syntax

@IntLookUp(Waveform; CLUT)
@IntLookUp(Waveform; CLUT; IndexOffset)

Parameters

Waveform Input waveform
CLUT String: the full path giving the name and the unique location of

the CLUT-file.
IndexOffset Number: offset to the index pointer.

Output
Converted waveform.

Description
This function uses the data from a waveform as an index to a Conversion Look
Up Table. The data can be 16-bit integer.

The Conversion Look Up Table (CLUT) is stored in an ASCII (text) file.

Each line in this file contains a floating-point number. The line number is used
as the index for the CLUT.

The first line is associated by default with index 0. If the function however uses
the optional ‘IndexOffset’ parameter then the first line is associated with –
IndexOffset. This allows for working with negative values.

When using 16-bit integer data, the CLUT needs to contain 216 = 65536 points.
When the data is signed (positive and negative) use an offset of 32768. Now
the first point in the CLUT is associated with –32768.

Example
Assume the following look-up table:

Perception Analysis

128 I2690-9.2 en HBM: public

 Line Number Value
 1 11.3
 2 21.4
 3 31.5
 4 41.4
 5 51.2
 6 61.3
 7 71.5
 8 81.6
 9 91.2
 10 101.4
 11 111.2

Assume the original waveform to be:

6, 2, 7, 8

The first value 6 is associated with line 7 (index is zero-based). The
corresponding value from the CLUT table is 71.5

The converted output waveform looks like:

71.5, 31.5, 81.6, 91.2

If the optional “IndexOffset” parameter is used and set to 2:

The first value 6 is associated with line 5 (index 6 – 2, zero-based). The
corresponding value from CLUT table is 51.2

The converted output waveform looks like:

51.2, 11.3, 61.3, 71.5

If the input waveform contains an index greater than the maximum index stored
in the CLUT then the last value of the CLUT is used. If the input waveform
contains an index smaller than the minimum index stored in the CLUT then the
first value of the CLUT is used.

To use the external lookup table "Lookup.asc" located in the directory
"C:\CalibData":

Perception Analysis

I2690-9.2 en HBM: public 129

 Signal = @Ramp(1000; 2001; 0; 4096; 11)
 Calib = @IntLookUp

 (Formula.Signal; "C:\CalibData\Lookup.asc")

See Also
"@IntLookUp12" on page 131

Perception Analysis

130 I2690-9.2 en HBM: public

4.43 @IntLookUp12

Function
Uses the data from a waveform as an index (pointer) into a Conversion Look
Up Table (CLUT).

Syntax
@IntLookUp12(Waveform; Clut)

Parameter

Waveform Waveform to be converted.
Clut Conversion Look Up Table

Output
Converted waveform.

Description
This function uses the data from a waveform as an index (pointer) to a
Conversion Look Up Table.

Note This function is optimized for 12-bit integer data.

The Conversion Look Up Table has 4096 values.

Each value of the original waveform is used as a pointer into the CLUT. The
corresponding value in the CLUT is used to produce the output.

The CLUT can be created:

l using a high level programming language and the Perception CSI option
l with a (combination of) formula database function(s)

The following diagram shows an example of the use of this function.

Perception Analysis

I2690-9.2 en HBM: public 131

Chan3

CLUT

Calib

0 s 4m 6m 2 ms/div 14m 20 ms

Figure 4.30: Diagram - @IntLookUp12 Function

l The top trace shows the original recording.
l The middle trace shows the contents of the CLUT.
l The bottom trace shows the converted data.

To create this diagram the following formulas are used:

 CLUT = @SineWave(200k; 4096; 48.8)
 Org = @Ramp(2M; 40960; 4095; 10)
 Calib = @IntLookUp12(Formula.Org; Formula.CLUT)

First a sine wave is generated of 4096 points with a frequency of 48.8 Hz. With
a sample rate of 200 kHz one cycle fits in the waveform.

The result named “Calib” is produced by taking the generated waveform
Formula.Org and using this waveform as an index for the CLUT.

Note The original data should be integer data (2 bytes) in range -32767 to + 32768
with 12-bit resolution. Before the data is used, the integer value is divided by
16 to obtain the correct index. Therefore also 14- or 16-bit data can be used,
but this will result in a loss of the least significant bits and may produce
unpredictable or unexpected results.

See Also
"@IntLookUp" on page 128

Perception Analysis

132 I2690-9.2 en HBM: public

4.44 @IsNaN

Function
This function determines if the input parameter is Not a Number (NaN).

Syntax
@IsNAN(Param)

Parameters

Param Number: parameter to be validated.

Output
The Output is 1 or 0.

Description
When the input parameter is Not a Number (NaN) then the return value will be
1 (true) else the return value will be 0 (false).

Example
The following example will return the value 1 (true):

 isValid = @IsNaN(10.0/0.0)

See Also
"@GreaterThan" on page 122, "@LessThan" on page 138, "@EqualTo" on
page 84, "@GreaterEqualThan" on page 121 and "@LessEqualThan" on
page 137

Perception Analysis

I2690-9.2 en HBM: public 133

4.45 @Join

Function
Joins two or more waveforms by concatenation.

Syntax
@Join(Waveform1; ...; WaveformN)

Parameters

Waveform1 First waveform.
WaveformN Last waveform, with N >= 2

Output
Concatenated waveform.

Description
This function concatenates two or more waveforms to form a new waveform.
The waveforms are joined by concatenation of the end of a waveform with the
begin of the next waveform. The horizontal axis is determined by the first
waveform. The x-coordinate of the first sample of the output waveform is equal
to the x-coordinate of the first sample of the first waveform. The samples from
the other waveform(s) are simply concatenated to the samples of the first
waveform. The length of the output waveform is the sum of the lengths of the
waveforms specified as parameters.

When the input waveforms have different time bases, the output waveform will
also contain multiple time bases.

Example
This function is especially useful for generating simulated signals as shown in
the following example:

 Seg1 = @Ramp(1k; 100; 0; 0)
 Seg2 = @Ramp(1k; 50; 0; 1)
 Seg3 = @Ramp(1k; 100; 1; 1)
 Signal = @Join(Formula.Seg1; Formula.Seg2;

Formula.Seg3)

The Join function takes the first valid data point of a waveform and concatenates
that to the previous waveform. This means that the original end and start time
of the two concatenated waveforms may differ. However, in the output
waveform they will be one (1) sample interval apart.

Perception Analysis

134 I2690-9.2 en HBM: public

The following example illustrates this:

 Seg1 = @Ramp(1k; 100; 0; 0)
 Seg2 = @Ramp(1k; 100; 0; 0)

Shift second segment by 100 horizontal units using @XShift:

 Seg3 = @XShift(Formula.Seg2; 100)
 Signal = @Join(Formula.Seg1; Formula.Seg3)

See Also
"@Cut" on page 72

Perception Analysis

I2690-9.2 en HBM: public 135

4.46 @Length

Function
Returns the number of samples in a waveform.

Syntax
@Length(Waveform)

Parameters

Waveform Input waveform

Output
The output is a numerical value.

Description
This function returns the number of samples that is available within the specified
input waveform. This value can be used as input parameter for other functions.

Example
The following example creates a sine wave consisting of 1000 samples. The
variable NSamples receives the length of this signal (1000).

 Signal = 25 * @SineWave(20k; 1000; 50)
 NSamples = @Length(Formula.Signal)

See Also
"@XDelta" on page 256, "@XFirst" on page 259 and "@XLast" on
page 260

Perception Analysis

136 I2690-9.2 en HBM: public

4.47 @LessEqualThan

Function
This function performs a less-than-or-equal-to (≤) evaluation on the two
numerical input parameters.

Syntax
@LessEqualThan (Param1; Param2)

Parameters

Param1 Number: first parameter used for evaluation.
Param2 Number: second parameter used for evaluation.

Output
The output is 1 or 0.

Description
The LessEqualThan function performs a 'less-than-or-equal-to' evaluation on
the input parameters.

If Param 1 ≤ Param 2 then the return value will be 1 (true) else the return value
will be 0 (false).

The LessEqualThan function is typically used in combination with the IIF
function.

Example
The following example compares input parameters and provides a result that
depends on the outcome:

 LETExam1 = @LessEqualThan(5; 5) => 1 (true)
 LETExam2 = @LessEqualThan(12; 10) => 0 (false)
 IIFExample = @IIF(Formula.LETExam2; "true"; "false")

See Also
"@EqualTo" on page 84, "@GreaterEqualThan" on page 121, "@GreaterThan"
on page 122, "@IIF" on page 125 and "@LessThan" on page 138

Perception Analysis

I2690-9.2 en HBM: public 137

4.48 @LessThan

Function
This function performs a less-than (<) evaluation on the two numerical input
parameters.

Syntax
@LessThan(Param1; Param2)

Parameters

Param1 Number: first parameter used for evaluation.
Param2 Number: second parameter used for evaluation.

Output
The output is 1 or 0.

Description
The LessThan function performs a 'less-than' evaluation on the input
parameters. If Param 1 < Param 2 then the return value will be 1 (true) else the
return value will be 0 (false).

The LessThan function is typically used in combination with the IIF function.

Example
The following example compares input parameters and provides a result that
depends on the outcome:

 LessThanExampl1 = @LessThan(5;
100)

=> 1 (true)

 LessThanExampl2 = @LessThan(12;
10)

=> 0 (false)

 IIFExample = @IIF(Formula.LessThanExampl2;
"TRUE"; "FALSE")

See Also
"@EqualTo" on page 84, "@GreaterEqualThan" on page 121, "@IIF" on
page 125 and "@LessEqualThan" on page 137

Perception Analysis

138 I2690-9.2 en HBM: public

4.49 @Ln

Function
Natural logarithm of a given number, (or logarithm to base “e”), written as ln(x)
or loge(x): the power to which you need to raise the base (e) in order to get the
number.

Syntax
@Ln(Par)

Parameters

Par Input waveform or numerical value.

Output
Waveform or numerical value containing the natural logarithm of the input.

Description
The logarithm base e is calculated (e = 2.718...). This logarithm is called the
natural logarithm. When a waveform parameter is used, the log function is
calculated for each individual sample.

If a number is smaller than 1E-30, the value is set to ln(1E-30) = -69.08.

Formally, ln(a) may be defined as the area under the graph (integral) of 1/x from
1 to a, that is:

In(a) =

a

1

dx.

1

x

This function is the inverse function of @Exp.

Example
The following example shows that the natural logarithm of the system variable
System.Constants.e equals 1:

 One = @Ln(System.Constants.e)

The following example shows how the natural logarithm can be used on a
waveform:

Perception Analysis

I2690-9.2 en HBM: public 139

 Wave = @Ramp(10k; 1k; 1E-5; 10)
 WaveLn = @Ln(Formula.Wave)

See Also
"@Exp" on page 85 and "@Log" on page 141

Perception Analysis

140 I2690-9.2 en HBM: public

4.50 @Log

Function
Logarithm of a given number to base 10, written as log10(x): the power to which
you need to raise the base (10) in order to get the number.

Syntax
@Log(Par)

Parameters

Par Input waveform or numerical value.

Output
Waveform or numerical value containing the logarithm of the input.

Description
The logarithm base 10 is calculated. When a waveform parameter is used, the
log function is calculated for each individual sample.

If a number is smaller than 1E-30, the value is set to log(1E-30) = -30.

Example
If 10x = 100 then x = log10(100)

 x = @Log(100)

The result will be x = 2

See Also
"@Ln" on page 139 and "@Pow" on page 168

Perception Analysis

I2690-9.2 en HBM: public 141

4.51 @Max

Function
Determines the maximum value of a waveform.

Syntax

@Max(Waveform)
@Max(Waveform; Begin)
@Max(Waveform; Begin; End)

Parameters

Waveform Input waveform for which the maximum is to be determined.
Begin Number: segment begin.
End Number: segment end.

Output
The output is a numerical value. This function works also “while recording” when
both the Begin and End parameters are set. The result will be calculated
continuously from the data that is readily available.

Description
The maximum of the waveform or waveform segment is determined. The
segment limits (Begin and End) are used to select a range of samples. If no
segment limits are specified, the complete waveform is used. When only Begin
is specified, the waveform segment from Begin to the end of the waveform is
used.

Note The Begin and End parameters have to be specified in the units of the horizontal
axis (for example time) and not as samples.

Example
The following example creates a 50 Hz sine wave. The maximum value of the
first 20 ms (one period of 50 Hz) of the signal is calculated to determine the
(peak) amplitude:

 Signal = 25 * @SineWave(20k; 1000; 50)
 Ampl = @Max(Formula.Signal; 0; 20m)

If the position of the maximum is to be determined, use the @MaxPos function
instead. The maximum value at the position found can then be obtained using
the @Value function:

Perception Analysis

142 I2690-9.2 en HBM: public

 TMax = @MaxPos(Formula.Signal; 0; 20m)
 Ampl = @Value(Formula.Signal; Formula.TMax)

See Also
"@MaxPos" on page 145, "@Min" on page 152 and "@MinPos" on
page 155
"@Value" on page 255

Perception Analysis

I2690-9.2 en HBM: public 143

4.52 @MaxNum

Function
Determines the maximum value of two or more numerical values.

Syntax
@MaxNum(Par1; ...; ParN)

Parameters

Par1 First numerical value.
ParN Last numerical value, N >= 2.

Output
Maximum of all numerical values.

Description
This function returns the largest numerical value of all parameters specified.
Each parameter must be a numerical value containing a valid value. If one of
the parameters has the incorrect type or contains no value, the function returns
no value.

Example
The following example calculates the minimum of a waveform but clips the
value if it is below zero. The waveform is assumed to be a real-world signal:

 Signal = Active.Group1.Recorder_A.Ch_A1
 MinValue = @Min(Formula.Signal)
 ClippedMin = @MaxNum(Formula.MinValue; 0)

The following example returns 10:

 Ten = @MaxNum(-10; 3; 2.4; 10.0; -9.9)

See Also
"@MinNum" on page 154

Perception Analysis

144 I2690-9.2 en HBM: public

4.53 @MaxPos

Function
Determines the position of the maximum of a waveform.

Syntax

@MaxPos(Waveform)
@MaxPos(Waveform; Begin)
@MaxPos(Waveform; Begin; End)

Parameters

Waveform Input waveform for which the position of the maximum is to be
determined.

Begin Number: segment begin.
End Number: segment end.

Output
The output is the x-position of the maximum. This function works also “while
recording” when both the Begin and End parameters are set. The result will be
calculated continuously from the data that is readily available.

Description
The x-position of the maximum of the waveform or waveform segment is
determined. The segment limits (Begin and End) are used to select a range of
samples. If no segment limits are specified, the complete waveform is used.
When only Begin is specified, the waveform segment from Begin to the end of
the waveform is used.

Note The Begin and End parameters have to be specified in the units of the
horizontal axis (for example time) and not in samples.

Note The returned value is the position on the x-axis of the waveform in terms of x-
position, not in terms of sample number. The units of this numerical value are
the x-units of the waveform.

Example
The following example determines the time at which the pressure reaches its
maximum value. The actual maximum pressure is determined using the
@Value function for this time.

The pressure is assumed to be a real-world signal.

Perception Analysis

I2690-9.2 en HBM: public 145

 Pressure = Active.Group1.Recorder_A.Ch_A1
 TimeOfMax = @MaxPos(Formula.Pressure)
 MaxPress = @Value(Formula.Pressure;

Formula.TimeOfMax)

See Also
"@Max" on page 142, "@Min" on page 152 and "@MinPos" on page 155

Perception Analysis

146 I2690-9.2 en HBM: public

4.54 @Mean

Function
Calculates the arithmetic mean value of a waveform.

Syntax

@Mean(Waveform)
@Mean(Waveform; Begin)
@Mean(Waveform; Begin; End)

Parameters

Waveform Input waveform for which the mean value is to be calculated.
Begin Number: segment begin.
End Number: segment end.

Output
The output is a numerical value. This function works also “while recording” when
both the Begin and End parameters are set. The result will be calculated
continuously from the data that is readily available.

Description
The mean value is calculated using the following formula:

Mean = 1

N

n2

n=n1

y(n)with N = (n2 n1 + 1)§ {

The segment limits Begin (n1) and End (n2) are used to select a range of
samples. If no segment limits are specified, the complete waveform is used.
When only Begin is specified, the waveform segment from Begin to the end of
the waveform is used.

Note The Begin and End parameters have to be specified in the units of the horizontal
axis (for example time) and not in samples.

Example
The following example creates a signal (constant value 100) with hum and noise
added. The mean value of the first 20 ms (one period of 50 Hz) of the signal is
calculated:

Perception Analysis

I2690-9.2 en HBM: public 147

 Signal = 100 + 0.5 * @SineWave(20k; 1000; 50) +
@Noise(20k; 1000)

 Avg = @Mean(Formula.Signal; 0; 20m)

The value of Avg is a much more accurate reading of the signal than each
individual sample in the waveform because of the averaging performed.

See Also
"@RMS" on page 198 and "@StdDev" on page 213

Perception Analysis

148 I2690-9.2 en HBM: public

4.55 @MedianFilter

Function
Filters a waveform using a median filter.

Syntax
@MedianFilter(Waveform)
@MedianFilter(Waveform; N)

Parameters

Waveform Waveform to be filtered.
N The window size of the median filter. The default is 3. Range:

3 … 1001.

Output
Median filtered waveform.

Description
The median filter iterates through the input waveform sample by sample and
takes the median of the sample and its neighboring samples. A sample together
with its neighbors is called the “window”. The number of samples included in
the window is the window size (N).
The median is the middle value after the samples in the window have been
sorted numerically.

The median filter can be expressed with the following formula:

Output(n) = Median(Sort(Input(n-M) .. Input(n+M)))

 With:
 N = Window size
 M = (N-1)/2
 n = Sample number in range 1 to 'end-of-waveform'

The window size N controls the number of samples used before sorting and
taking the median. If N is not an odd integer, it will be rounded to the nearest
odd integer first. If the value is smaller than 3, it is set to 3. If the value is larger
than 1001, it is set to 1001.

Perception Analysis

I2690-9.2 en HBM: public 149

Median filtering is a smoothing technique, similar to a moving average filter (See
"@Smooth" on page 202). Smoothing techniques are effective at removing
noise in smooth regions of an input waveform, but adversely affect edges. To
reduce the edge effects, additional samples ('M') are added before the first resp.
after the last input sample.

The median filter filters out high frequency components i.e. noise. The best
filtering is achieved if the window size is equal to some integer multiple of the
period of the disturbances. Due to the sorting, in combination with taking the
median, the characteristic waveform features of the waveform are preserved.
At locations where the input signal goes from a rising signal to a falling signal
and vice versa, some filtering effects might be visible however.

The length of the output waveform is the same as the length of the input
waveform.

Example

Figure 4.31: Median filtering on a noisy sinusoidal waveform

Perception Analysis

150 I2690-9.2 en HBM: public

Where:
 sin @SineWave(10k;10k+1;10)
 sinwithnoise Formula.sin + @SineWave(10k;10k+1;1000)
 median @MedianFilter(Formula.sinwithnoise;51)

See Also
"@Smooth" on page 202

Perception Analysis

I2690-9.2 en HBM: public 151

4.56 @Min

Function
Determines the minimum value of a waveform.

Syntax

@Min(Waveform)
@Min(Waveform; Begin)
@Min(Waveform; Begin; End)

Parameters

Waveform Input waveform for which the minimum is to be determined.
Begin Number: segment begin.
End Number: segment end.

Output
The output is a numerical value. This function works also “while recording” when
both the Begin and End parameters are set. The result will be calculated
continuously from the data that is readily available.

Description
The minimum of the waveform or waveform segment is determined. The
segment limits (Begin and End) are used to select a range of samples. If no
segment limits are specified, the complete waveform is used. When only Begin
is specified, the waveform segment from Begin to the end of the waveform is
used.

Note The Begin and End parameters need to be specified in the units of the horizontal
axis (for example time) and not as samples.

Example

The following example creates a 50 Hz sine wave on top of a DC value. The
maximum and minimum value of the first 20 ms (one period of 50 Hz) of the
signal is calculated to determine the (peak-to-peak) amplitude of the 50 Hz
component:
 Signal = 100 + 25 * @SineWave(20k; 1000; 50)
 MinAmpl = @Min(Formula.Signal; 0; 20m)
 MaxAmpl = @Max(Formula.Signal; 0; 20m)
 Vpp = Formula.MaxAmpl - Formula.MinAmpl

Perception Analysis

152 I2690-9.2 en HBM: public

If the position of the minimum is to be determined, use the @MinPos function
instead. The minimum value at the position found can then be obtained using
the @Value function:
 TMin = @MinPos(Signal; 0; 20m)
 Minim = @Value(Formula.Signal; Formula.TMin)

See Also
"@Max" on page 142, "@MaxPos" on page 145 and
"@MinPos" on page 155

Perception Analysis

I2690-9.2 en HBM: public 153

4.57 @MinNum

Function
Calculates the minimum value of two or more numerical values.

Syntax
@MinNum(Par1; ...; ParN)

Parameters

Par1 First numerical value.
ParN Last numerical value. N >= 2.

Output
Minimum of all numerical values.

Description
This function returns the smallest numerical value of all parameters specified.
Each parameter must be a numerical value containing a valid value. If one of
the parameters has the incorrect type or contains no value, the function returns
no value.

Example
The following example calculates the maximum of a waveform but clips the
value if it is larger than 100. The waveform is assumed to be a real-world signal:

 Signal = Active.Group1.Recorder_A.Ch_A1
 MaxValue = @Max(Formula.Signal)
 ClippedMax = @MinNum(Formula.MaxValue; 100)

The following example returns -10:

 MinusTen = @MinNum(45.0; 10; -3.3; 20; -10.0; 5)

See Also
"@MaxNum" on page 144

Perception Analysis

154 I2690-9.2 en HBM: public

4.58 @MinPos

Function
Determines the position of the minimum of a waveform.

Syntax

@MinPos(Waveform)
@MinPos(Waveform; Begin)
@MinPos(Waveform; Begin; End)

Parameters

Waveform Input waveform for which the position of the minimum is to be
determined.

Begin Number: segment begin.
End Number: segment end.

Output
The output is the x-position of the minimum.

Description
The x-position of the minimum of the waveform or waveform segment is
determined. The segment limits (Begin and End) are used to select a range of
samples. If no segment limits are specified, the complete waveform is used.
When only Begin is specified, the waveform segment from Begin to the end of
the waveform is used.

Note The Begin and End parameters have to be specified in the units of the
horizontal axis (for example time) and not in samples.

Note The returned value is the position on the x-axis of the waveform in terms of x-
position, not a sample number. The units of this numerical value are the x-units
of the waveform.

Example
The following example determines the time at which the pressure reaches its
minimum value. The actual minimum pressure is determined using the @Value
function for this time. The variable Pressure is assumed to be a real-world
signal.

 Pressure = Active.Group1.Recorder_A.Ch_A1

Perception Analysis

I2690-9.2 en HBM: public 155

 TimeOfMin = @MinPos(Formula.Pressure)
 MinPress = @Value(Formula.Pressure; Formula.TimeOfMin)

See Also
"@Max" on page 142, "@MaxPos" on page 145 and "@Min" on page 152

Perception Analysis

156 I2690-9.2 en HBM: public

4.59 @NextHillPos

Function
This function searches for the position of the next local maximum in a
waveform.

Syntax
@NextHillPos(Waveform; StartPos; Hysteresis)

Parameters

Waveform Input waveform for which the position of the next local
maximum is to be determined.

StartPos Number: start position in x-units where searching should start
(forwards).

Hysteresis Number: noise suppression hysteresis value.

Output
The output is the x-position of the next local maximum.

Description
The x-position of the next local maximum in the waveform is determined.

Searching starts from the x-position specified by StartPos to the right. If
StartPos is before the beginning of the waveform, the start of the waveform is
used as start position for the search.

The hysteresis value is used to suppress the effects of noise on the signal. If
for instance 100 mV peak-to-peak noise is present on a signal, specifying
200 mV as hysteresis value will prevent the algorithm from determining small
noise peaks as local maximum.

Note The returned value is the position on the x-axis of the waveform in terms of x-
position, not a sample number. The units of this numerical value are the x-units
of the waveform.

Example
The following example determines the position of a local maximum on a 1 V
sine wave with 10 mV noise, starting from 500 ms searching forwards, using a
hysteresis of 40 mV:

Perception Analysis

I2690-9.2 en HBM: public 157

 Signal = @SineWave(10k; 10000; 50) + 0.01 * @Noise(10k;
10000)

 NHPos = @NextHillPos(Formula.Signal; 500m; 40m)

See Also
"@NextValleyPos" on page 161, "@PrevHillPos" on page 169 and
"@PrevValleyPos" on page 173

Perception Analysis

158 I2690-9.2 en HBM: public

4.60 @NextLvlCross

Function
Determines the position of the next crossing of a waveform with a specified
signal level.

Syntax

@NextLvlCross(Waveform; StartPos; Level)
@NextLvlCross(Waveform; StartPos; Level; Slope)

Parameters

Waveform Input waveform for which the position of the next level crossing
is to be determined.

StartPos Number: start position in x-units where searching should start.
Level Number: amplitude level to search for.
Slope Number: direction of the slope (-1, 0, 1)

Output
The output is the x-position of the next level crossing.

Description
The x-position of the next level crossing of the waveform with the specified level
in the specified direction is determined.
Searching starts at the x-position specified by StartPos and goes to the right in
the positive time direction. If StartPos is before the beginning of the waveform,
the start of the waveform is used as start position for the search.

The Slope parameter controls the type of level crossing that is searched for:

l Slope = 1: Positive level crossing (from below level to above level)
l Slope = -1: Negative level crossing (from above level to below level)
l Slope = 0: Any crossing (either positive or negative)

Note The returned value is the position on the x-axis of the waveform in terms of x-
position, not a sample number. The units of this numerical value are the x-units
of the waveform.

Example
The following example determines the start and end time of the first TTL pulse
present in the TTLSignal that is assumed to be available as real-world signal
in “Active.Group1.Recorder_A.Ch_A1”.

Perception Analysis

I2690-9.2 en HBM: public 159

 TTSignal = Active.Group1.Recorder_A.Ch_A1
 TimeStart = @NextLvlCross(Formula.TTSignal; -1E20; 2.5;

1)
 TimeEnd = @NextLvlCross(Formula.TTSignal;

Formula.TimeStart; 2.5; -1)

See Also
"@PrevLvlCross" on page 171

Perception Analysis

160 I2690-9.2 en HBM: public

4.61 @NextValleyPos

Function
This function searches for the position of the next local minimum in a
waveform.

Syntax
@NextValleyPos(Waveform; StartPos; Hysteresis)

Parameters

Waveform Input waveform for which the position of the next local minimum
is to be determined.

StartPos Number: start position in x-units where searching should start
(forwards).

Hysteresis Number: noise suppression hysteresis value.

Output
The output is the x-position of the next local minimum.

Description
The x-position of the next local minimum in the waveform is determined.

Searching starts from the x-position specified by StartPos to the right. If
StartPos is before the beginning of the waveform, the start of the waveform is
used as start position for the search.

The hysteresis value is used to suppress the effects of noise on the signal. If
for instance 100 mV peak-to-peak noise is present on a signal, specifying
200 mV as hysteresis value will prevent the algorithm from determining small
negative noise peaks as local minimum.

Note The returned value is the position on the x-axis of the waveform in terms of x-
position, not a sample number. The units of this numerical value are the x-units
of the waveform.

Example
The following example determines the position of a local minimum on a 1 V sine
wave with 10 mV noise, starting from 500 ms searching forwards, using a
hysteresis of 40 mV:

Perception Analysis

I2690-9.2 en HBM: public 161

 Signal = @SineWave(10k; 10000; 50) + 0.01 * @Noise(10k;
10000)

 NVPos = @NextValleyPos(Formula.Signal; 500m; 40m)

See Also
"@NextHillPos" on page 157, "@PrevHillPos" on page 169 and
"@PrevValleyPos" on page 173

Perception Analysis

162 I2690-9.2 en HBM: public

4.62 @Noise

Function
Generates a waveform containing noise.

Syntax
@Noise(FSampling; NSamples)

Parameters

FSampling Number: sampling frequency.
NSamples Number of samples.

Output
Waveform containing noise.

Description
This function creates a waveform containing random noise with an amplitude
between -1 and 1. The sampling frequency and number of samples to generate
must be specified.

The possibility to generate noise can be very useful to investigate the influence
of noise on the analysis of a measured or generated waveform.

Example
The following example generates a 5 V amplitude sine wave hidden in 10 V
peak-to-peak noise.

 Signal = 5 * @SineWave(10k; 1000; 50) + 10 *
@Noise(10k; 1000)

See Also
"@Pulse" on page 175, "@Ramp" on page 179, "@SineWave" on
page 201 and "@SquareWave" on page 212

Perception Analysis

I2690-9.2 en HBM: public 163

4.63 @Not

Function
This function performs a logical NOT evaluation on the input parameters.

Syntax
@Not(Param1)

Parameters

Param1 Number used for the NOT evaluation.

Output
The output is a 1 or a 0.

Description
The @Not function performs a logical NOT evaluation on the input parameter.
Depending on the evaluation the result will be 1 or 0. A numerical value not
equal to 0 corresponds to a logical “True” and a numerical 0 corresponds to a
logical “False”.

The truth table of the NOT function is:

 Param1 Result
 True False
 False True

Example
The following is a list of examples and their return value.

 NotExampl1 = @Not(1) => 0 (= false)
 NotExampl2 = @Not(4) => 0 (= false)
 NotExampl3 = @Not(0) => 1 (= true)

See Also
"@And" on page 55 and "@Or" on page 165

Perception Analysis

164 I2690-9.2 en HBM: public

4.64 @Or

Function
This function performs a logical OR evaluation on the input parameters.

Syntax
@Or(Param1; …; ParamN)

Parameters

Param1 Number: first parameter used for the OR evaluation.
ParamN Number: last parameter used for the OR evaluation.

N >= 2

Output
The output is a 1 or a 0.

Description
The @Or function performs a logical OR evaluation on the input parameters.
Depending on the evaluation the result will be 1 or 0. A numerical value not
equal to 0 corresponds to a logical “True” and a numerical 0 corresponds to a
logical “False”.

The truth table of the OR function is:
Param1 Param2 Result

True True True
True False True
False True True
False False False

Example

The following is a list of examples and their return value.
 OrExampl1 = @Or(1; 1) => 1 (= true)
 OrExampl2 = @Or(1;4;10) => 1 (= true)
 OrExampl3 = @Or(1;4;0;6) => 1 (= true)
 OrExampl4 = @Or(0;0) => 0 (= false)

See Also
"@And" on page 55 and "@Not" on page 164

Perception Analysis

I2690-9.2 en HBM: public 165

4.65 @Period

Function
Determines the period of a waveform. The period is the reciprocal of the
frequency.

Syntax

@Period(Waveform)
@Period(Waveform; Begin)
@Period(Waveform; Begin; End)

Parameters

Waveform Input waveform for which the period is to be determined.
Begin Number: segment begin.
End Number: segment end.

Output
The output is a numerical value.

Description
The period of the waveform or waveform segment is determined. The segment
limits (Begin and End) are used to select a range of samples. If no segment
limits are specified, the complete waveform is used. When only Begin is
specified, the waveform segment from Begin to the end of the waveform is used.

Note The Begin and End parameters have to be specified in the units of the
horizontal axis (for example time) and not in samples.

The period is determined using base and top magnitude algorithms. The mean
of these magnitudes is considered to be the zero level. The number of zero
crossings in the range Begin to End is calculated. The crossings should be in
the same direction as the first one. The crossings are determined with a
hysteresis around the zero level to suppress the effects of noise. The hysteresis
is +/- 5% of the difference between top and base.

From the time difference between the first and last zero crossing in the same
direction and the number of zero crossings in between, the period of the
waveform is determined.

Example
The following example determines the period of a 50 Hz signal:

Perception Analysis

166 I2690-9.2 en HBM: public

 Signal = @SineWave(10k; 10k; 50) + 0.01 * @Noise(10k;
10k)

 Period = @Period(Formula.Signal)
 Freq = 1 / Formula.Period

See Also
"@Frequency" on page 115

Perception Analysis

I2690-9.2 en HBM: public 167

4.66 @Pow

Function
Exponentiation, the mathematical operation, written an, involving two
parameters: the base “a” and the exponent “n”.

Syntax
@Pow(Base; Exponent)

Parameters

Base Base waveform or numerical value.
Exponent Exponent waveform or numerical value.

Output
Waveform or numerical value containing the exponentiation of base and
exponent.

Description
The exponential function calculates the base raised to the power exponent.

If both the base and the exponent are numerical values, the result is a numerical
value.

If either the base or the exponent is a waveform, the exponentiation function is
calculated for each individual sample in combination with the numerical value.
The result is a waveform.

Note It is not possible to use a waveform for both base and exponent.

Example
The following results are equivalent:

 Input = 2 * @SineWave(10k; 10k; 10)
 Result1 = @Exp(Formula.Input)
 Result2 = @Pow(System.Constants.e; Formula.Input)

See Also
"@Exp" on page 85

Perception Analysis

168 I2690-9.2 en HBM: public

4.67 @PrevHillPos

Function
This function searches for the position of the previous local maximum in a
waveform.

Syntax
@PrevHillPos(Waveform; StartPos; Hysteresis)

Parameters

Waveform Input waveform for which the position of the previous local
maximum is to be determined.

StartPos Number: start position in x-units where searching should start
(backwards).

Hysteresis Number: noise suppression hysteresis value.

Output
The output is the x-position of the previous local maximum.

Description
The x-position of the previous local maximum in the waveform is determined.

Searching starts from the x-position specified by StartPos to the left. If StartPos
is past the end of the waveform, the end of the waveform is used as start
position for the search.

The hysteresis value is used to suppress the effects of noise on the signal. If
for instance 100 mV peak-to-peak noise is present on a signal, specifying
200 mV as hysteresis value will prevent the algorithm from determinig small
noise peaks as local maximum.

Note The returned value is the position on the x-axis of the waveform in terms of x-
position, not a sample number. The units of this numerical value are the x-units
of the waveform.

Example
The following example determines the position of a local maximum on a 1 V
sine wave with 10 mV noise, starting from 500 ms searching backwards, using
a hysteresis of 40 mV:

Perception Analysis

I2690-9.2 en HBM: public 169

 Signal = @SineWave(10k; 10000; 50) + 0.01 * @Noise(10k;
10000)

 PHPos = @PrevHillPos(Formula.Signal; 500m; 40m)

See Also
"@NextHillPos" on page 157, "@NextValleyPos" on page 161 and
"@PrevValleyPos" on page 173

Perception Analysis

170 I2690-9.2 en HBM: public

4.68 @PrevLvlCross

Function
Determines the position of the previous crossing of a waveform with a
specified signal level.

Syntax

@PrevLvlCross(Waveform; StartPos; Level)
@PrevLvlCross(Waveform; StartPos; Level; Slope)

Parameters

Waveform Input waveform for which the position of the previous level
crossing is to be determined.

StartPos Number: start position in x-units where searching should start
(backwards).

Level Number: amplitude level to search for.
Slope Number: direction of the slope (-1, 0, 1)

Output
The output is the x-position of the previous level crossing.

Description
The x-position of the previous level crossing of the waveform with the specified
level in the specified direction is determined.
Searching starts at the x-position specified by StartPos and goes to the left in
the negative time direction.

The Slope parameter controls the type of level crossing to search for:

l Slope = 1: Positive level crossing (from below level to above level)
l Slope = -1: Negative level crossing (from above level to below level)
l Slope = 0: Any crossing (either positive or negative)

Note The returned value is the position on the x-axis of the waveform in terms of
x-position, not a sample number. The units of this numerical value are the
x-units of the waveform.

Example
The following example determines the start and end time of the last TTL pulse
present in the TTLSignal. This signal is assumed to be a real-world signal.

Perception Analysis

I2690-9.2 en HBM: public 171

 TTLSignal = Active.Group1.Recorder_A.Ch_A1
 TimeEnd = @PrevLvlCrossing(Formula.TTLSignal; 1E20;

2.5; 1)
 TimeStart = @PrevLvlCrossing(Formula.TTLSignal;

Formula.TimeEnd; 2.5; -1)

See Also
"@NextLvlCross" on page 159

Perception Analysis

172 I2690-9.2 en HBM: public

4.69 @PrevValleyPos

Function
This function searches for the position of the previous local minimum in a
waveform.

Syntax
@PrevValleyPos(Waveform; StartPos; Hysteresis)

Parameters

Waveform Input waveform for which the position of the previous local
minimum is to be determined.

StartPos Number: start position in x-units where searching should start
(backwards).

Hysteresis Number: noise suppression hysteresis value.

Output
The output is the x-position of the previous local minimum.

Description
The x-position of the previous local minimum in the waveform is determined.

Searching starts from the x-position specified by StartPos to the left. If StartPos
is past the end of the waveform, the end of the waveform is used as start
position for the search.

The hysteresis value is used to suppress the effects of noise on the signal. If
for instance 100 mV peak-to-peak noise is present on a signal, specifying
200 mV as hysteresis value will prevent the algorithm from determining small
negative noise peaks as local minimum.

Note The returned value is the position on the x-axis of the waveform in terms of
x-position, not a sample number. The units of this numerical value are the
x-units of the waveform.

Example
The following example determines the position of a local minimum on a 1 V sine
wave with 10 mV noise, starting from 500 ms searching backwards, using a
hysteresis of 40 mV:

Perception Analysis

I2690-9.2 en HBM: public 173

 Signal = @SineWave(10k; 10000; 50) + 0.01 * @Noise(10k;
10000)

 PVPos = @PrevValleyPos(Formula.Signal; 500m; 40m)

See Also
"@NextHillPos" on page 157, "@NextValleyPos" on page 161 and
"@PrevHillPos" on page 169

Perception Analysis

174 I2690-9.2 en HBM: public

4.70 @Pulse

Function
Generates a waveform containing a single pulse.

Syntax

@Pulse(FSampling; NSamples;PulseStart)
@Pulse(FSampling; NSamples;PulseStart; PulseWidth)

Parameters

FSampling Number: sampling frequency
NSamples Number of samples
PulseStart Number: Sample where pulse starts
PulseWidth Number: Pulse width in samples the default value is set to 1.

Output
Waveform containing a single pulse.

Description
This function creates a single pulse waveform. The sampling frequency,
number of samples to generate the single pulse can be specified. There is no
limit on the length of the waveform. The amplitude of the pulse wave is 1 V.

The pulse function can be used to determine the impulse and step response of
a filter function.

You can use this function to synthesize a variety of waveforms. This data can
be used as input for other analysis functions.

Example

 SignalPulse = @Pulse(80k; 80k; 20k)
 ImpulseResponse = @FilterButterworthLP

(Formula.SignalPulse; 2; 200)
 SignalStep = @Pulse(80k; 80k; 20k; 10k)
 StepResponse = @FilterButterworthLP

(Formula.SignalStep; 2; 200)
If you are only interested in a part of the signal than you can use the pulse
function to make all values zero outside of a specified interval. This interval can
be defined by the PulseStart and PulseWidth parameters of the Pulse function.

Perception Analysis

I2690-9.2 en HBM: public 175

 SignalInterval = Formula.SignalStep *
Active.Group1.Recorder_A.Ch_A1

See Also
"@Noise" on page 163, "@SineWave" on page 201, "@SquareWave" on
page 212 and "@Ramp" on page 179

Perception Analysis

176 I2690-9.2 en HBM: public

4.71 @PulseWidth

Function
Determines the pulse width of a pulse in a waveform.

Syntax

@PulseWidth(Waveform)
@PulseWidth(Waveform; Begin)
@PulseWidth(Waveform; Begin; End)

Parameters

Waveform Input waveform containing the pulse.
Begin Number: segment begin.
End Number: segment end.

Output
The output is a numerical value.

This function works “while recording” when the Begin and End parameters are
set. The result will be calculated when the data between Begin and End is
available.

Description
The pulse width is determined by taking the time difference between the first
and second 50% magnitude transitions of the pulse in the waveform (or
waveform segment).

Magnitude percentage crossings are calculated using the base and top
magnitudes. The base and top magnitudes are determined by searching two
dominant populations in the waveform (or waveform segment) magnitude
histogram and taking the mean values of these two populations.

The segment limits (Begin and End) are used to select a range of samples. If
no segment limits are specified, the complete waveform is used.

When only Begin is specified, the waveform segment from Begin to the end of
the waveform is used.

Note The Begin and End parameters have to be specified in the units of the horizontal
axis (for example time) and not in samples.

Perception Analysis

I2690-9.2 en HBM: public 177

Example
The following example creates a pulse and calculates the 50%-50% pulse
width. The result is 150 ms:

 Sig1 = @Ramp(1k; 100; 0; 0)
 Sig2 = @Ramp(1k; 51; 0; 10)
 Sig3 = @Ramp(1k; 99; 10; 10)
 Sig4 = Sig4 x
 Signal = @Join(Formula.Sig1; Formula.Sig2;

Formula.Sig3; Formula.Sig4; Formula.Sig1)
 Width = @PulseWidth(Formula.Signal)

See Also
"@FallTime" on page 87 and "@RiseTime" on page 196

Perception Analysis

178 I2690-9.2 en HBM: public

4.72 @Ramp

Function
Generates a waveform containing one or more linear ramps.

Syntax

@Ramp(FSampling; NSamples; YStart; YEnd)
@Ramp(FSampling; NSamples; YStart; YEnd; Count)

Parameters

FSampling Number: sampling frequency.
NSamples Number of samples.
YStart Number: value of first sample.
YEnd Number: value of last sample.
Count Number of ramps.

Output
Waveform containing one or more linear ramps.

Description
This function creates a waveform containing one or more linear ramps starting
at YStart and ending at YEnd. The sampling frequency and number of samples
to generate can also be specified. The length of the waveform is limited to 1
GigaSamples.

When specifying the optional parameter Count, the specified number of ramps
will be generated. Using the Count value results in a sawtooth waveform. When
Count is not specified, the value 0 will be used. This will create a single ramp
only, not a single sawtooth.

The possibility to generate a ramp function in combination with the @Join
function and other waveform generation functions is used to synthesize a
variety of waveforms. The simulated data can be used as input for other
analysis functions.

Example
The following example generates a simulated pulse of 10 V amplitude with
4 V peak-to-peak noise added:

 Sig1 = @Ramp(1k; 100; 0; 0)

Perception Analysis

I2690-9.2 en HBM: public 179

 Sig2 = @Ramp(1k; 51; 0; 10)
 Sig3 = @Ramp(1k; 100; 10; 10)
 Sig4 = @Ramp(1k; 51; 10; 0)
 Signal = @Join(Formula.Sig1; Formula.Sig2;

Formula.Sig3; Formula.Sig4) + 2 * @Noise(1k;
302)

See Also
"@Noise" on page 163, "@Pulse" on page 175, "@SineWave" on page 201
and "@SquareWave" on page 212

Perception Analysis

180 I2690-9.2 en HBM: public

4.73 @ReadAsciiFile

Function
Imports waveform data from an ASCII (text) file.

Syntax
@ReadAsciiFile(Filename)

Parameters

Filename String: the full path giving the name and the unique location of
the ASCII file.

Output
The output is a waveform.

Description
This function imports waveform data from an ASCII file. The samples of the
imported data are interpreted as being equidistant.

The ASCII file must contain a header and a data part. Two different types of
headers are supported: a short version and a long version.

Short Header:
Line Description Example
1 Number of header rows 5
2 Data delimiter (dot, comma, tab or

semi-column)
;

3 Number of data pairs n
4 Scale factor for x and y (x; y) 5.0E-8;2.44E+0
5 Units for x and y (x; y) s;A

Long Header:
Line Description Example
1 Number of header rows 12
2 Data delimiter (dot, comma, tab or

semi-column)
;

3 Number of data pairs n
4 Date of data generation 17.03.00
5 Time of data generation 23:59

Perception Analysis

I2690-9.2 en HBM: public 181

Long Header:
Line Description Example
6 Extra information about producer of the

data, this line can be blank. Only for
compatibility reasons.

TDG 0.5

7 Comments (max. 80 characters) First example: Test 1;
8 Scale factor for x and y (x; y) 5.0E-8;2.44E+0
9 Units for x and y (x; y) s;A
10 Name of scaled units (x; y) time;current
11 Resolution of y-data in bit 12
12 Use of dynamic range in % 80

Data:
The data comes after the header and starts at line 6 or line 13, depending on
the size of the header.

Each data line contains an x, y pair. The separator between the x and y value
is defined at line 2 of the header.

The samples of the imported data are interpreted as being equidistant.

The first data line contains the first (lowest) x-value.

Example
The following example shows how the file “ReferenceCurve.asc“ is read.

 Signal = @ReadAsciiFile("d:\data\ReferenceCurve.asc")

Perception Analysis

182 I2690-9.2 en HBM: public

4.74 @ReadLogFile

Function
Reads a sequence of numerical values from a Perception log file and creates
a waveform from those values.

Syntax
@ ReadLogFile (Filename; Fieldname)
@ ReadLogFile (Filename; Fieldname; X-Units)
@ ReadLogFile (Filename; Fieldname; X-Units; SampleInterval)
@ ReadLogFile (Filename; Fieldname; X-Units; SampleInterval; X-Start)

Parameters

Filename String: the full path giving the name and the unique location
of the Perception log file to be read.

Fieldname String: the name of the numerical field in the Perception
logging file to be read.

X-Units String: The X-Units of the new created waveform data source;
the default value is empty.

SampleInterval Number: The sample interval of the new created waveform
data source; the sample interval is expressed in X-Units; the
default value is 1.

X-Start Number: The start of the new created waveform data source
expressed in X-Units; the default value is 0

Output
The output is a waveform.

Description
This function reads numerical logged values from a Perception log file and
creates a waveform from these values. Perception has the ability to save
numerical values into a log file; these loggings can be done manually or as part
of an automation setup ; for example after each recording. For more information
on Perception logging, please refer to the Perception Data Acquisition Software
manual.

Perception Analysis

I2690-9.2 en HBM: public 183

The log file is an xml structured file. See Figure 4.32 for an example of such a
file.

Figure 4.32: Log file example

Perception Analysis

184 I2690-9.2 en HBM: public

The same log file can also be opened into Microsoft® Excel:

Figure 4.33: Microsoft® Excel logfile

As can be seen each logging is a row in the Microsoft® Excel sheet. Via the
ReadLogFile() function it is now possible to select one of the numerical
columns and read the column data into Perception as a waveform data source.
The selection is done by the second parameter the so called Fieldname; for
example: Active.UserData.X

It is also possible to use UserData.X or even X; but if the field name is
abbreviated, take care that the abbreviation is unique and does not conflict with
other field names.

The ReadLogFile() function always compares the abbreviated name with the
ending part of the original field name, therefore X is correct for
Active.UserData.X, however UserData is incorrect and will result in an empty
waveform.

Perception Analysis

I2690-9.2 en HBM: public 185

When the logging rows are not equidistant in time, therefore the X-Units of the
new created waveform is not set to time but is left empty.

Use for example “Setpoints” if a logging was done for each set-point whatever
this might be. If there are however time equidistant loggings then you can use
the SampleInterval to set the time between the loggings and set the X-Units
to s.

Example

 Y = @ReadLogFile("C:\Users\Public\Documents
\SharedLogfiles\VibrationLogfile2.XML";
"Active.UserData.Y")

 X = @ReadLogFile("C:\Users\Public\Documents
\SharedLogfiles\VibrationLogfile2.XML"; "X")

The new X and Y waveforms can be shown in the Perception Y-t display or in
an X-Y display (see Figure 4.34).

Figure 4.34: X and Y waveforms in Perception

See Also
"@ReadAsciiFile" on page 181

Perception Analysis

186 I2690-9.2 en HBM: public

4.75 @Reduce

Function
Reduces the number of samples in a waveform by resampling.

Syntax
@Reduce(Waveform; Factor)

Parameters

Waveform Waveform to be resampled.
Factor Number: resampling factor.

Output
Resampled waveform.

Description
A waveform is resampled to reduce the amount of data. The resampling factor
is rounded to the nearest integer N and should be in range 2, 3, ..., (waveform
length)/2. The output waveform receives sample 1, sample 1+N, sample 1+2N,
etc. until no more samples are available. The length of the output waveform is
N times smaller than as the length of the input waveform. The sampling interval
of the output waveform is N times the sampling interval of the input waveform.
The x-coordinate of the first sample is not changed.

Resampling can cause aliasing effects when high frequency components are
present in the waveform. In this case, use the smoothing function @Smooth for
lowpass filtering of the data before resampling.

Example
The following example resamples a sine wave by a factor of 10, effectively
lowering the sampling rate by a factor of 10. The number of samples is reduced
from 1000 to 100 samples.

 Sine1000 = @SineWave(10k; 1000; 50)
 Sine100 = @Reduce(Formula.Sine1000; 10)

See Also
"@Res2" on page 195 and "@Smooth" on page 202

Perception Analysis

I2690-9.2 en HBM: public 187

4.76 @RefCheck

Function
Compares a waveform or waveform segment against one or two reference
waveforms.

Syntax

@RefCheck(Waveform; UpperEnvelope)
@RefCheck(Waveform; UpperEnvelope; LowerEnvelope)
@RefCheck(Waveform; UpperEnvelope; LowerEnvelope; Begin)
@RefCheck(Waveform; UpperEnvelope; LowerEnvelope; Begin; End)

Parameters

Waveform Input waveform to be compared.
UpperEnvelope Waveform containing the upper envelope.
LowerEnvelope Waveform containing the lower envelope.
Begin Number: begin position of segment for comparison.
End Number: end position of segment for comparison.

Output
Number indicating success (between the reference waveforms) or failure.

Description
This function is used to compare a waveform against one or two reference
waveforms. The output is the x position of the first level crossing of the input
waveform with the Upper or Lower waveform.

If the input waveform is between the upper and lower waveform then the return
value will be a “Not-a-number” (Nan) value.

The segment limits (Begin and End) are used to select a range of samples. If
no segment limits are specified, the complete waveform is used.

When only Begin is specified, the waveform segment from Begin to the end of
the waveform is used.

Example
The following example creates a sine wave and two 'envelope' sine waves. The
noise is used to create a success or failure. A higher noise value will result in
failure.

Perception Analysis

188 I2690-9.2 en HBM: public

 Signal = @SineWave(8000; 8001; 5)
 Upper = Formula.Signal + 0.1
 Lower = Formula.Signal - 0.1
 Noise = 0.1 * @Noise(8000; 8001)
 Signal2 = Formula.Signal + Formula.Noise
 Check = @RefCheck(Formula.Signal2; Formula.Upper;

Formula.Lower)
 Result = @IIF(Formula.Check; "NOT OK"; "OK")

Perception Analysis

I2690-9.2 en HBM: public 189

4.77 @RelativeTime2Local

Function
Returns a string representing the absolute local time corresponding to the time
elapsed since the start of the signal.

Syntax

@RelativeTime2Local(Signal; Rel Time)
@RelativeTime2Local(Signal; Rel Time; Decimals)
@RelativeTime2Local(Signal; Rel Time; Decimals; DateFormat)

Parameters

Signal Input waveform
Rel Time Number: input time elapsed since start (e.g. cursor X value)

in seconds.
Decimals Number: number of decimals to display the fractional part of

the seconds. Default 3. Number has to be between 0 and 9.
DateFormat String: date format: “None”, “Short” or “Long”. Default “None”

means no date information.

Output
A string representing the absolute local time corresponding to the time elapsed
since the start of the signal.

The output can look like:

Figure 4.35: @RelativeTime2Local - output

Perception Analysis

190 I2690-9.2 en HBM: public

Description
This function is used to determine the absolute local time of a data sample. This
function is often used to determine the absolute time at the cursor position.

Example
This example shows the absolute local time of the X-location of cursor 1.

 T_Local = @RelativeTime2Local
(Active.Group1.Recorder_A.Input_shaft_vib;
Display.Display.Cursor1.XPosition; 5;
"Short")

See Also
"@RelativeTime2UTC" on page 192

Perception Analysis

I2690-9.2 en HBM: public 191

4.78 @RelativeTime2UTC

Function
Returns a string representing the absolute UTC time corresponding to the time
elapsed since the start of the signal.

Syntax
@RelativeTime2UTC(Signal; Rel Time)
@RelativeTime2UTC(Signal; Rel Time; Decimals)
@RelativeTime2UTC(Signal; Rel Time; Decimals; DateFormat)

Parameters

Signal Input waveform
Rel Time Number: input time elapsed since start (e.g. cursor X value) in

seconds.
Decimals Number: number of decimals to display the fractional part of

the seconds. Default 3. Number has to be between 0 and 9.
DateFormat String: date format: “None”, “Short” or “Long”. Default “None”

means no date information.

Output
A string representing the absolute UTC time corresponding to the time elapsed
since the start of the signal.

Figure 4.36: @RelativeTime2UTC - Output

Description
This function is used to determine the absolute UTC time of a data sample. This
function is often used to determine the absolute time at the cursor position.

Perception Analysis

192 I2690-9.2 en HBM: public

Example
This example shows the absolute local time of the X-location of cursor 1.

 T_UTC = @RelativeTime2UTC
(Active.Group1.Recorder_A.Input_shaft_vib;
Display.Display.Cursor1.XPosition; 5;
"Short")

See Also
"@RelativeTime2Local" on page 190

Perception Analysis

I2690-9.2 en HBM: public 193

4.79 @RemoveGlitch

Function
Returns a waveform with new data between a specified start and end time by
using a straight line between those two points.

Syntax
@RemoveGlitch(Waveform; Begin; End)

Parameters

Waveform Input waveform for which the glitch is to be removed.
Begin Number: glitch start time
End Number: glitch end time

Output
The output is a waveform with the same length as the original waveform.

Description
The resulting waveform creates a straight line between the Begin and End
times. The rest of the original waveform remains unchanged.

Note If the formula is used to remove a glitch while recording, then the Begin and
End parameters must be within the bounds of the available data. If either the
Begin or End time does not have a corresponding data value in the waveform,
then the RemoveGlitch function cannot be calculated.

Example
The following example creates a 50 Hz sine wave with duration of 2 seconds.
Then the function creates a new 2-second-long waveform, where the samples
in the interval between 1 second and 1.5 seconds are replaced with a straight
line

 Signal = @SineWave(1k; 2000; 50)
 Cropped = @RemoveGlitch(Formula.Signal; 1000m; 1500m)

Perception Analysis

194 I2690-9.2 en HBM: public

4.80 @Res2

Function
Resamples a waveform so that its length becomes a power of two.

Syntax
@Res2(Waveform)

Parameters

Waveform Waveform to be resampled.

Output
Resampled waveform.

Description
This function resamples a waveform so that the new number of samples is equal
to the next power of two greater than or equal to the original length. This function
can be used effectively for calculating spectra of any desired segment of a
waveform. The number of samples in such a segment will typically not be equal
to a power of two, which is required by an FFT algorithm. By using the @Res2
function on this segment first, a new waveform is created containing the same
signal but sampled at a higher sampling rate in such a way that the number of
samples will be a power of two. This resampled waveform can be used for FFT
calculations without the need to truncate or zero-pad the waveform.

Because the resampling factor will typically not be an integer, values of the
waveform between two samples have to be generated. This is done using linear
interpolation.
The sampling interval of the waveform is corrected for the resampling factor.

Example
The following example generates a sine wave of 2500 samples and resamples
it to a waveform with 4096 samples. The value of Length will be 4096.

 Signal = @SineWave(10k; 2500; 100)
 Resampled = @Res2(Formula.Signal)
 Length = @Length(Formula.Resampled)

See Also
"@Reduce" on page 187

Perception Analysis

I2690-9.2 en HBM: public 195

4.81 @RiseTime

Function
Determines the rise time of a pulse in a waveform.

Syntax

@RiseTime(Waveform)
@RiseTime(Waveform; Begin)
@RiseTime(Waveform; Begin; End)

Parameters

Waveform Input waveform containing the leading edge of a pulse.
Begin Number: segment begin.
End Number: segment end.

Output
The output is a numerical value.

This function works “while recording” when the Begin and End parameters are
set. The result will be calculated when the data between Begin and End is
available.

Description
The rise time is determined by taking the time difference between the proximal
point (10% magnitude transition) and the distal point (90% magnitude transition)
on the first leading edge of a pulse in the waveform (or waveform segment).

Magnitude percentage crossings are calculated using the base and top
magnitudes. The base and top magnitudes are determined by searching two
dominant populations in the waveform (or waveform segment) magnitude
histogram and taking the mean values of these two populations.

The segment limits (Begin and End) are used to select a range of samples. If
no segment limits are specified, the complete waveform is used. When only
Begin is specified, the waveform segment from Begin to the end of the
waveform is used.

Note The Begin and End parameters have to be specified in the units of the horizontal
axis (for example time) and not in samples.

Perception Analysis

196 I2690-9.2 en HBM: public

Example
The following example creates a pulse and calculates the 10%-90% rise time
of the leading edge. The result is 40 ms:

 Sig1 = @Ramp(1k; 100; 0; 0)
 Sig2 = @Ramp(1k; 51; 0; 10)
 Sig3 = @Ramp(1k; 100; 10; 10)
 Sig4 = @Ramp(1k; 51; 10; 0)
 Signal = @Join(Formula.Sig1; Formula.Sig2;

Formula.Sig3; Formula.Sig4; Formula.Sig1)
 Rise = @RiseTime(Formula.Signal)

See Also
"@FallTime" on page 87 and "@PulseWidth" on page 177

Perception Analysis

I2690-9.2 en HBM: public 197

4.82 @RMS

Function
Calculates the Root Mean Square of a waveform.

Syntax

@RMS(Waveform)
@RMS(Waveform; Begin)
@RMS(Waveform; Begin; End)

Parameters

Waveform Input waveform for which the RMS is to be calculated.
Begin Number: segment begin.
End Number: segment end.

Output
The output is a numerical value.

Description

The RMS is calculated using the following formula:

RMS = 1

N

n2

n=n1

y2(n)with N = (n2 n1 + 1)§ {

The segment limits (Begin and End) are used to select a range of samples. If
no segment limits are specified, the complete waveform is used. When only
Begin is specified, the waveform segment from Begin to the end of the wave-
form is used.

Note The Begin and End parameters have to be specified in the units of the horizontal
axis (for example time) and not as samples.

Example
The following example creates a 10 V amplitude sine wave of 50 Hz and
calculates the RMS value using the complete waveform:

 Signal = 10.0 * @SineWave(20k; 1000; 50)
 RMSAmpl = @RMS(Formula.Signal)

See Also
"@Energy" on page 82, "@Mean" on page 147 and "@StdDev" on page 213

Perception Analysis

198 I2690-9.2 en HBM: public

4.83 @SAEJ211Filter

Function
Filters the input signal in accordance to the SAE J211 standard.

Syntax
@SAEJ211Filter(Signal; CFC)

Parameters

Signal Input waveform
CFC Number: Channel Frequency Class

Output
The output is the filtered waveform.

Description
The function performs a digital lowpass filtering to eliminate high frequency
noise from raw data. The filter is a 4-pole phase-less lowpass Butterworth filter.
The filter type complies with the SAE J211 standard that is widely used in the
automotive industry.

The relation between the cut-off frequency (Fc) and the Channel Frequency
Class (CFC) is defined as follows:

 Fc = CFC * 1.67.

The cut off frequency should be not less than one-quarter of the sampling
frequency.

Example
The following example generates a sine wave with some high frequency noise.
The signal is filtered with the SAE J211 filter function:

 Signal = 5 * @SineWave(80000; 1000; 400)
 + @Noise(80000; 1000)

 Filtered = @SAEJ211Filter(Formula.Signal; 300)

The cutoff frequency is: Fc = 1.67 * 300 = 500 Hz

Perception Analysis

I2690-9.2 en HBM: public 199

4.84 @Sin

Function
Calculates the sine of the input parameter.

Syntax
@Sin(Par)

Parameters

Par Input waveform or numerical value.

Output
Waveform or numerical value containing the sine of the input.

Description
The trigonometric function sine is calculated assuming the input parameter is
the angle in radians. If a waveform parameter is used, the sine is calculated for
each individual sample.

Example
The following example calculates the sine of the variable “Angle” specified in
degrees:

 Angle = 36
 AngleRad = System.Constants.Pi * Formula.Angle / 180
 SinAngle = @Sin(Formula.AngleRad)

See Also
"@ATan" on page 59, "@Cos" on page 69 and "@Tan" on page 221

Perception Analysis

200 I2690-9.2 en HBM: public

4.85 @SineWave

Function
Generates a waveform described by the sine function.

Syntax
@SineWave(FSampling; NSamples; FSignal)

Parameters

FSampling Number: sampling frequency.
NSamples Number of samples.
FSignal Number: signal frequency.

Output
Waveform containing a sine wave.

Description
This function creates a sine wave. The sampling frequency and number of
samples that generate a sine wave frequency can be specified. There is no limit
on the length of the waveform. The amplitude of the sine wave is 1 V.

You can use this function to synthesize a variety of waveforms. This data can
be used as input for other analysis functions.

Example
The following example generates a 100 ms waveform segment containing a
simulated 50 Hz sine wave of 10 V amplitude, sampled at 10 kHz with 4 V
peak-to-peak noise added:

 Signal = 10 * @SineWave(10k; 1000; 50) + 2 *
@Noise(10k; 1000)

Or you can add multiple sine waves for more complex waveforms:

 Signal2 = 5 * @SineWave(10k; 1000; 50)
 + 7 * @SineWave(10k; 1000; 60)
 + 12 * @SineWave(10k; 1000; 90)

See Also
"@Noise" on page 163, "@Pulse" on page 175, "@Ramp" on page 179 and
"@SquareWave" on page 212

Perception Analysis

I2690-9.2 en HBM: public 201

4.86 @Smooth

Function
Smoothing a waveform using a moving average filter.

Syntax
@Smooth(Waveform; N)

Parameters

Waveform Waveform to be smoothed.
N Number of samples of the smoothing factor.

Output
Smoothed waveform.

Description
The waveform is smoothed by taking a moving unweighted average over the
specified number of samples according to the following formula:

Output(n) = 1

'

'

N

k = n N

Input (k)
k = n N

§

 With:
 N = Smoothing factor
 N' = (N-1)/2
 n = Sample number in range 1 to 'end-of-waveform'

The smoothing factor N controls the number of samples used for building the
average. If N is not an odd integer, it will be rounded to the nearest odd integer
first. If the value is smaller than 3, it is set to 3. If the value is larger than 1001,
it is set to 1001. A higher value of N produces a more pronounced smoothing
effect.

Smoothing effectively filters out high frequency components. The best filtering
is achieved if the number of samples is equal to some integer multiple of the
period of the disturbances. Due to the symmetric nature of the smoothing the
position of characteristic features of the waveform is not changed.

The length of the output waveform is the same as the length of the input
waveform. For smoothing near the edges, the function assumes that the
waveform is extended with the same data values as the edge.

Perception Analysis

202 I2690-9.2 en HBM: public

If a triangular weighted smoothing is required, this can be achieved by
smoothing the waveform twice. To suppress only high frequency disturbances,
it is often more effective to use the @Smooth function several times using a
smaller number of samples than once using a large number of samples.

Example
The following example extracts the high frequency noise from a 50 Hz sine
wave by subtracting the smoothed signal from the original signal:

 Mains = 220 * @SineWave(200k; 4096; 50)
 + 10 * @Noise(200k; 4096)

 Smo1 = @Smooth(Formula.Mains; 55)
 Noise = Formula.Mains - Formula.Smo1

See Also
"@Integrate" on page 127

Perception Analysis

I2690-9.2 en HBM: public 203

4.87 @SpaceVectorInverseTransformation

Function
Generates a Waveform of the required Space Vector Inverse
Transformation component for either amplitude-invariant or power-invariant
transformations.

Syntax

@SpaceVectorInverseTransformation(Alpha; Beta; Zero(System);
Component; Transformation)

Parameters

Alpha Input waveform of the alpha signal.
Beta Input waveform of the beta signal.
Zero(System) Input waveform or Value [rad] of the zero(system) signal.
Component Required output Component (0=”signal1”, 1=”signal2”,

2=”signal3”, 3=”magnitude”, 4=”angle[rad]”)
Transformation Invariant Inverse Transformation Rule (0=”amplitude”,

1=”power”)

Output
Waveform of the required component and transformation.

Description
The Space Vector Transformation (also known as the Clarke transformation) is
a mathematical transformation that is used to simplify the analysis of three-
phase power systems. After applying the Space Vector Transformation to the
three-phases circuits to obtain the alpha, beta & zero(system) component, the
Space Vector Inverse Transformation can be applied to these resulting signals
to re-obtain the original input signals of the thee-phases.

The following fomula is applied for amplitude-invariant inverse transformation:

1

2 =
3

2

2
3⁄ 0 2

3⁄

1
3⁄

3
3
⁄ 2

3⁄−

Perception Analysis

204 I2690-9.2 en HBM: public

Waveforms for the magnitude and direction are defined as:

And for the power-invariant transformation, the following formula is applied:

1

2

3

=
3

2

2
3⁄ 0 2

3
⁄

−1
3⁄

1
3

⁄
2
3
⁄

Ø

 −

Waveforms for the magnitude and direction are defined as:

Where:
I1 Component of the phase1 signal

I2 Component of the phase2 signal

I3 Component of the phase3 signal

Im Magnitude

I∡ Direction

IAα The amplitude-invariant “alpha” input value

IAβ The amplitude-invariant “beta” input value

IAØ The amplitude-invariant “zero(system)” input value

IAm The amplitude-invariant “magnitude”

IA∡ The amplitude-invariant “direction” (in radians)

IPα The power-invariant “alpha” input value

IPβ The power-invariant “beta” input value

IpØ The power-invariant “zero(system)” input value

Ipm The power-invariant “magnitude”

Ip∡ The power-invariant “direction” (in radians)

Perception Analysis

I2690-9.2 en HBM: public 205

Notes:
l The Transformation parameter is optional and has the default value

0=”amplitude”.
l The input waveforms (Alpha, Beta & Zero(System)) all required the same

sampling frequency.
l This function is only available in the Formula database sheet (see "Formula

database sheet" on page 13) if the eDrive option (1-PERC-OP-EDR) is part
of your license.

Example
Given that the three-phase input signals are available as Formula. SVATa,
Formula. SVATb, Formula. SVATz, the following Space Vector amplitude
transformation waveforms can be defined:

 Name Formula
 Phase1 = @SpaceVectorInverseTransformation(Formula.

SVATa; Formula.SVATb; Formula.SVATz; 0; 0
 Phase2 = @SpaceVectorInverseTransformation(Formula.

SVATa; Formula.SVATb; Formula.SVATz; 1; 0)
 Phase3 = @SpaceVectorInverseTransformation(Formula.

SVATa; Formula.SVATb; Formula.SVATz; 2; 0)
 Mag = @SpaceVectorInverseTransformation(Formula.

SVATa; Formula.SVATb; Formula.SVATz; 3; 0)
 Dir = @SpaceVectorInverseTransformation(Formula.

SVATa; Formula.SVATb; Formula.SVATz; 4; 0)

Likewise the power-invariant variations are:

 Name Formula
 Phase1 = @SpaceVectorInverseTransformation(Formula.

SVPTa; Formula.SVPTb; Formula.SVPTz; 0; 1)
 Phase2 = @SpaceVectorInverseTransformation(Formula.

SVPTa; Formula.SVPTb; Formula.SVPTz; 1; 1)
 Phase3 = @SpaceVectorInverseTransformation(Formula.

SVPTa; Formula.SVPTb; Formula.SVPTz; 2; 1)
 Mag = @SpaceVectorInverseTransformation(Formula.

SVPTa; Formula.SVPTb; Formula.SVPTz; 3; 1)
 Dir = @SpaceVectorInverseTransformation(Formula.

SVPTa; Formula.SVPTb; Formula.SVPTz; 4; 1)

The Zero(System) input parameter can also be specified as a value. Usually
this waveform will have a constant 0 (zero) value. For example:

Perception Analysis

206 I2690-9.2 en HBM: public

 Name Formula
 Phase1 = @SpaceVectorInverseTransformation(Formula.

SVPTa; Formula.SVPTb; 0; 0; 1)

See Also
"@SpaceVectorTransformation" on page 208

Perception Analysis

I2690-9.2 en HBM: public 207

4.88 @SpaceVectorTransformation

Function
Generates a Waveform for the required Space Vector Transformation
component for either amplitude-invariant or power-invariant transformations.

Syntax

@SpaceVectorTransformation(Signal1; Signal2; Signal3; Component;
Transformation)

Parameters

Signal1 Input waveform of phase1 signal.
Signal2 Input waveform of phase2 signal.
Signal3 Input waveform of phase3 signal.
Component Required output Component (0=”alpha”, 1=”beta”,

2=”zero(system)”, 3=”magnitude”, 4=”angle[rad]”)
Transformation Invariant Transformation Rule (0=”amplitude”,1=”power”)

Output
The waveform of the required component and transformation.

Description
The Space Vector Transformation (also known as the Clarke transformation) is
a mathematical transformation that is used to simplify the analysis of three-
phase power systems.

The Vector Space Transformation is defined by the following matrix and can be
applied for any three-phase quantities (e.g. voltage, currents, etc.)

The following formula is applied for amplitude-invariant transformation:

=
2

3

1 −1
2⁄ −1

2⁄

0 3
2

⁄ − 3
2

⁄−
1

2

Perception Analysis

208 I2690-9.2 en HBM: public

Waveforms for the magnitude and direction are defined as:

And for the power-invariant transformation, the following formula is applied:

Ø

=
2

3

1 −1
2⁄

−1
2⁄

0 3
2
⁄ − 3

2
⁄

1

2

3

−

Waveforms for the magnitude and direction are defined as:

Where:
I1 Value of the phase1 signal

I2 Value of the phase2 signal

I3 Value of the phase3 signal

IAα The amplitude-invariant “alpha” component

IAβ The amplitude-invariant “beta” component

IAØ The amplitude-invariant “zero(system)” component

IAm The amplitude-invariant “magnitude”

IA∡ The amplitude-invariant “direction” (in radians)

IPα The power-invariant “alpha” component

IPβ The power-invariant “beta” component

IPØ The power-invariant “zero(system)” component

IPm The power-invariant “magnitude”

IP∡ The power-invariant “direction” (in radians)

Perception Analysis

I2690-9.2 en HBM: public 209

Notes:
l The Transformation parameter is optional and has the default value

0=”amplitude”.
l The input waveforms (phase1, phase2 & phase3) all required the same

sampling frequency.
l This function is only available in the Formula database sheet (see "Formula

database sheet" on page 13) if the eDrive option (1-PERC-OP-EDR) is part
of your license.

Example
Given that the three-phase input signals are available as Formula.Phase1,
Formula.Phase2, Formula.Phase3, the following Space Vector amplitude
transformation waveforms can be defined:

 Name Formula
 SVATa = @SpaceVectorTransformation(Formula.Phase1;

Formula.Phase2; Formula.Phase3; 0; 0)
 SVATb = @SpaceVectorTransformation(Formula.Phase1;

Formula.Phase2; Formula.Phase3; 1; 0)
 SVATz = @SpaceVectorTransformation(Formula.Phase1;

Formula.Phase2; Formula.Phase3; 2; 0)
 SVATm = @SpaceVectorTransformation(Formula.Phase1;

Formula.Phase2; Formula.Phase3; 3; 0)
 SVATd = @SpaceVectorTransformation(Formula.Phase1;

Formula.Phase2; Formula.Phase3; 4; 0)

Likewise the power-invariant variations are:

 Name Formula
 SVPTa = @SpaceVectorTransformation(Formula.Phase1;

Formula.Phase2; Formula.Phase3; 0; 1)
 SVPTb = @SpaceVectorTransformation(Formula.Phase1;

Formula.Phase2; Formula.Phase3; 1; 1)
 SVPTz = @SpaceVectorTransformation(Formula.Phase1;

Formula.Phase2; Formula.Phase3; 2; 1)
 SVPTm = @SpaceVectorTransformation(Formula.Phase1;

Formula.Phase2; Formula.Phase3; 3; 1)
 SVPTd = @SpaceVectorTransformation(Formula.Phase1;

Formula.Phase2; Formula.Phase3; 4; 1)

See Also
"@SpaceVectorInverseTransformation" on page 204 and
"@DQ0Transformation" on page 78

Perception Analysis

210 I2690-9.2 en HBM: public

4.89 @Sqrt

Function
Calculates the square root of the given parameter.

Syntax
@Sqrt(Par)

Parameter

Par Input waveform or numerical value.

Output
Waveform or numerical value containing the square root of the input.

Description
This function calculates the square root of the input parameter.

If a waveform parameter is used, the square root function is calculated for each
individual sample. Negative values in a waveform will result in the negative
square root of the absolute value. For numerical values the square root of a
negative value does not exist.

Example
Examples of possible square root operations are:

 Signal = 4 * @SineWave(10k; 1000; 50)
 Result = @Sqrt(Formula.Signal)
 Five = @Sqrt(25)
 NoValue = @Sqrt(-1)

See Also
"@Pow" on page 168

Perception Analysis

I2690-9.2 en HBM: public 211

4.90 @SquareWave

Function
Generates a waveform containing a square wave.

Syntax
@SquareWave(FSampling; NSamples; NFrequency)

Parameters

FSampling Number: sample frequency of the waveform.
NSamples Number of samples in the waveform.
NFrequency Number: frequency of the generated square wave.

Output
Waveform containing a square wave.

Description
This function creates a square wave. The sampling frequency, number of
samples to generate and square wave frequency can be specified. There is no
limit to the length of the waveform. The amplitude of the square wave is 1 V.

The possibility to generate a square wave function is used to synthesize a
variety of waveforms. The simulated data can be used as input for other
analysis functions.

Example
The following example generates a 100 ms waveform segment containing a
simulated 50 Hz square wave of 10 V amplitude, sampled at 10 kHz with 2 V
peak-to-peak noise added:

 Signal = 10 * @SquareWave(10k;1000;50)
 + 2 * @Noise(10k;1000)

See Also
"@Noise" on page 163, "@Pulse" on page 175, "@Ramp" on page 179 and
"@SineWave" on page 201

Perception Analysis

212 I2690-9.2 en HBM: public

4.91 @StdDev

Function
Calculates the standard deviation of a waveform.

Syntax

@StdDev(Waveform)
@StdDev(Waveform; Begin)
@StdDev(Waveform; Begin; End)

Parameters

Waveform Input waveform for which the standard deviation is to be
calculated.

Begin Number: segment begin.
End Number: segment end.

Output
The output is a numerical value.

Description
The standard deviation is a statistical characteristic of a waveform. It is
approximately the root means square deviation of the samples in the waveform
from the mean value of the waveform: a measure of the spread of its values.

The standard deviation is calculated using the following formula:

StdDev = 1

N 1

n2

n=n1

y((n) y)2§{ {

in which: y = 1

N

n2

n=n1

y(n)§
 with N = (n2 n1 + 1)

The segment limits (Begin and End) are used to select a range of samples. If
no segment limits are specified, the complete waveform is used.

When only Begin is specified, the waveform segment from Begin to the end of
the waveform is used.

Perception Analysis

I2690-9.2 en HBM: public 213

Note The Begin and End parameters have to be specified in the units of the
horizontal axis (for example time) and not in samples.

Example

The following example creates a sine wave of 50 Hz and an RMS amplitude of
1 on top of a DC component of 100. From this signal the standard deviation is
determined:
 Signal = 100 + @Sqrt(2) * @SineWave(20k; 2000; 50)
 StdDev = @StdDev(Formula.Signal)

See Also
"@Energy" on page 82, "@Mean" on page 147 and "@RMS" on page 198

Perception Analysis

214 I2690-9.2 en HBM: public

4.92 @STLX_SignalStart

Function
This function is used to recognize the start of a signal.

Syntax

@STLX_SignalStart(Waveform; Frequency; StartPos; EndPos)

Parameters

Waveform Sinusoidal input waveform.
Frequency Frequency of the sinusoidal waveform.
StartPos Optional; beginning of search. This parameter is optional if not

entered the lowest possible time value is used.
EndPos Optional; end of search. This parameter is optional if not

entered the highest possible time value is used.

Output
A Numerical value indicating the start of the signal.

Description
This function is using the existing @STLSignalStart() function, however, to be
more accurate it is doing some extra steps:

l The function automatically rescales the input signal (similar to the
@STLXRescale() function).

l The @STLSignalStart() is using the rescaled signal to find the start
(Tstart1).

l Via a linear interpolation around the found start point this function tries to
find a better start position (TStart2). This location is the zero crossing
location of the line found via the linear interpolation.

Perception Analysis

I2690-9.2 en HBM: public 215

0.06 / F

TStart2

0.5% of signal period

+ Y - axis threshold (≈3% of Amplitude)

- Y - axis threshold (≈3% of Amplitude)

X - axisTStart1

Figure 4.37: STLXSignal - TStart1 and TStart2 positions

See Also
TBD

Perception Analysis

216 I2690-9.2 en HBM: public

4.93 @STLX_SignalEnd

Function
This function is used to recognize the end of a signal.

Syntax

@STLX_SignalEnd(Waveform; Frequency; StartPos; EndPos)

Parameters

Waveform Sinusoidal input waveform.
Frequency Frequency of the sinusoidal waveform.
StartPos Optional; beginning of search. This parameter is optional if not

entered the lowest possible time value is used.
Optional; end of search. This parameter is optional if not
entered the highest possible time value is used.

Output
A Numerical value indicating the start of the signal.

Description
This function is using the existing @STLSignalEnd() function.

The function starts searching at “StartPos”, the search direction depends on
the value of “EndPos”:
l Searches backwards if “StartPos” is greater than “EndPos”.
l Searches forwards if “EndPos” is greater than “StartPos”.

When “StartPos” and “EndPos” are not entered in the formula, the function
starts searching at the beginning of the signal in forward direction until it finds
an end condition or it stops when there are no more data points.

The following steps are done to get a more accurate end position:
l The function automatically rescales the input signal (similar to the

@STLXRescale() function).
l The @STLSignalEnd() is using the rescaled signal to find the end location.
l Via a linear interpolation around the found end point this function tries to

find a better end position. This location is the zero crossing location of the
line found via the linear interpolation.

See Also
"@STLX_SignalStart" on page 215

Perception Analysis

I2690-9.2 en HBM: public 217

4.94 @Sweep

Function
Selects a specific sweep from a multi-sweep recording.

Syntax
@Sweep(Signal; NSweep)

Parameters

Signal Waveform: multi-sweep recording.
NSweep Integer number of the sweep to be selected.

Output
Waveform containing only the selected sweep.

Description
Some recorder hardware and software settings make it possible to make
multi-sweep recordings. Each valid trigger event will create a new sweep. The
waveform of a channel from a multi-sweep recording contains multiple sweeps.

The @Sweep function makes it possible to select one specific sweep from the
waveform. Nsweep is a numerical value in range 1 to number of sweeps.

Note The selected waveform contains only one sweep.

Example
This example calculates the maximum value of the pressure in the second
sweep of the recording.

 PressureSweep = @Sweep
(Active.Group1.Recorder_A.Ch_A2; 2)

 MaxPressure = @Max(Formula.PressureSweep)

Perception Analysis

218 I2690-9.2 en HBM: public

4.95 @SweptSineWave

Function
This function generates a waveform described by the sine function sweeping
from a start frequency to an end frequency.

Syntax
@SweptSineWave(FSampling; NSamples; FStart; FEnd)
@SweptSineWave(FSampling; NSamples; FStart; FEnd; Mode)
@SweptSineWave(FSampling; NSamples; FStart; FEnd; Mode;
NLeadSamples)

Parameters

FSampling Number: sampling frequency.
NSamples Number: number of samples.
FStart Number: start frequency, must be larger than 0.
FEnd Number: end frequency, must be larger than the start

frequency.
Mode Number: the sweep mode, 0 = Logarithmic, 1 = Linear.
NLeadSamples Number: number of lead samples.

Output
Waveform containing a swept sine wave.

Description
This function creates a swept sine wave with an amplitude of 1 V. The sampling
frequency and number of samples can be specified.

The generated signal sweeps from start frequency to end frequency. The lead
samples come prior to this. Lead samples are useful to prevent windowing
effects. The frequency sweep can be either linear or logarithmic. The transition
from lead-in to sweep is always at a zero-crossing.

Example
The following example will generate a waveform sampled at 20 kHz with a
length of 80 k samples, starting at 1 Hz, logarithmic sweeping to 100 Hz from
sample 30 k onwards.

 Signal = @SweptSineWave(20k; 80k; 1; 100; 0; 30k)

Perception Analysis

I2690-9.2 en HBM: public 219

The output will look like (see Figure 4.38):

Figure 4.38: @SweptSineWave - Example 1

The following example will generate a waveform, starting at 1 Hz, linear
sweeping to 100 Hz.

 Signal = @SweptSineWave(20k; 80k; 1; 100; 0)

The output will look like (see Figure 4.39):

Figure 4.39: @SweptSineWave - Example 2

See Also
"@SineWave" on page 201

Perception Analysis

220 I2690-9.2 en HBM: public

4.96 @Tan

Function
Calculates the tangent of the input parameter.

Syntax
@Tan(Par)

Parameters

Par Input waveform or numerical value.

Output
Waveform or numerical value containing the tangent of the input.

Description
The trigonometric function tangent is calculated assuming the input parameter
is the angle in radians. When a waveform parameter is used, the tangent is
calculated for each individual sample.

The function @ATan is the inverse trigonometric function of the function @Tan.

Example
The following example calculates the tangent of the variable “Angle” specified
in degrees:

 Angle = 72
 AngleRad = System.Constants.Pi * Formula.Angle / 180
 TanAngle = @Tan(Formula.AngleRad)

See Also
"@ATan" on page 59, "@Cos" on page 69 and "@Sin" on page 200

Perception Analysis

I2690-9.2 en HBM: public 221

4.97 @TimeMaxAbove

Function
This function returns a number representing the time interval of the longest
period that the signal is above a specified level.

Syntax

@TimeMaxAbove(Signal)
@TimeMaxAbove(Signal; Level)
@TimeMaxAbove(Signal; Level; Start)
@TimeMaxAbove(Signal; Level; Start; End)

Parameters

Signal Input waveform
Level Number: The used level default value is 0
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value representing the time interval of the longest
period that the signal is above a specified level.

Description
This function is used when searching for the longest period that a signal is
above a specified level. In Figure 4.40 this is P1.

Level

Signal

P1 P3P2 P4 P5

Figure 4.40: TimeMaxAbove

Perception Analysis

222 I2690-9.2 en HBM: public

See Also
"@TimeMaxAboveBegin" on page 224, "@TimeMinAbove" on page 230,
"@TimeTotalAbove" on page 238 and "@TimeMaxBelow" on page 226

Perception Analysis

I2690-9.2 en HBM: public 223

4.98 @TimeMaxAboveBegin

Function
This function returns a number representing the start time of the longest period
that the signal is above a specified level.

Syntax

@TimeMaxAboveBegin(Signal)
@TimeMaxAboveBegin(Signal; Level)
@TimeMaxAboveBegin(Signal; Level; Start)
@TimeMaxAboveBegin(Signal; Level; Start; End)

Parameters

Signal Input waveform
Level Number: The used level default value is 0
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value representing the start time of the longest period
that the signal is above a specified level

Description
This function is used when you want to know where the longest period that a
signal is above a specified level begins. In Figure 4.41 on page 225 the longest
period is P1, the start of P1 it T1, this number will be returned by the
@TimeMaxAboveBegin function.

Perception Analysis

224 I2690-9.2 en HBM: public

Level

Signal

P1 P3P2 P4 P5

T1

Figure 4.41: TimeMaxAboveBegin

See Also
"@TimeMaxAbove" on page 222, "@TimeMinAbove" on page 230,
"@TimeTotalAbove" on page 238 and "@TimeMaxBelow" on page 226

Perception Analysis

I2690-9.2 en HBM: public 225

4.99 @TimeMaxBelow

Function
This function returns a number representing the time interval of the longest
period that the signal is below a specified level.

Syntax

@TimeMaxBelow(Signal)
@TimeMaxBelow(Signal; Level)
@TimeMaxBelow(Signal; Level; Start)
@TimeMaxBelow(Signal; Level; Start; End)

Parameters

Signal Input waveform
Level Number: The used level default value is 0
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value representing the time interval of the longest
period that the signal is below a specified level.

Description
This function is used when searching for the longest period that a signal is below
a specified level. In Figure 4.42 this is P1.

Level

Signal

P1 P3P2 P4 P5 P6

Figure 4.42: TimeMaxBelow

Perception Analysis

226 I2690-9.2 en HBM: public

See Also
"@TimeMaxBelowBegin" on page 228, "@TimeMinBelow" on page 234,
"@TimeTotalBelow" on page 242 and "@TimeMaxAbove" on page 222

Perception Analysis

I2690-9.2 en HBM: public 227

4.100 @TimeMaxBelowBegin

Function
This function returns a number representing the start time of the longest period
that the signal is Below a specified level.

Syntax

@TimeMaxBelowBegin(Signal)
@TimeMaxBelowBegin(Signal; Level)
@TimeMaxBelowBegin(Signal; Level; Start)
@TimeMaxBelowBegin(Signal; Level; Start; End)

Parameters

Signal Input waveform
Level Number: The used level default value is 0
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value representing the start time of the longest period
that the signal is below a specified level.

Description
This function is used when you want to know where the longest period that a
signal is below a specified level begins.In Figure 4.43 on page 229 the longest
period is P1, the start of P1 it T1, this number will be returned by the
@TimeMaxBelowBegin function.

Perception Analysis

228 I2690-9.2 en HBM: public

Level

Signal

P1 P3P2 P4 P5 P6

T1

Figure 4.43: TimeMaxBelowBegin

See Also
"@TimeMaxBelow" on page 226, "@TimeMinBelow" on page 234,
"@TimeTotalBelow" on page 242 and "@TimeMaxAbove" on page 222

Perception Analysis

I2690-9.2 en HBM: public 229

4.101 @TimeMinAbove

Function
This function returns a number representing the time interval of the shortest
period that the signal is above a specified level.

Syntax

@TimeMinAbove(Signal)
@TimeMinAbove(Signal; Level)
@TimeMinAbove(Signal; Level; Start)
@TimeMinAbove(Signal; Level; Start; End)

Parameters

Signal Input waveform
Level Number: The used level default value is 0
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value representing the time interval of the shortest
period that the signal is above a specified level.

Description
This function is used when searching for the shortest period that a signal is
above a specified level. In the picture below this is P5.

Level

Signal

P1 P3P2 P4 P5

Figure 4.44: TimeMinAbove

Perception Analysis

230 I2690-9.2 en HBM: public

See Also
"@TimeMinAboveBegin" on page 232, "@TimeMinAbove" on page 230,
"@TimeTotalAbove" on page 238 and "@TimeMinBelow" on page 234

Perception Analysis

I2690-9.2 en HBM: public 231

4.102 @TimeMinAboveBegin

Function
This function returns a number representing the start time of the shortest period
that the signal is above a specified level.

Syntax

@TimeMinAboveBegin(Signal)
@TimeMinAboveBegin(Signal; Level)
@TimeMinAboveBegin(Signal; Level; Start)
@TimeMinAboveBegin(Signal; Level; Start; End)

Parameters

Signal Input waveform
Level Number: The used level default value is 0
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value representing the start time of the shortest period
that the signal is above a specified level.

Description
This function is used when you want to know where the longest period that a
signal is above a specified level begins. In Figure 4.45 on page 233 the shortest
period is P5, the start of P5 it T5, this number will be returned by the
@TimeMinAboveBegin function.

Perception Analysis

232 I2690-9.2 en HBM: public

Level

Signal

P1 P3P2 P4 P5

T5

Figure 4.45: TimeMinAboveBegin

See Also
"@TimeMinAbove" on page 230, "@TimeTotalAbove" on page 238 and
"@TimeMinBelow" on page 234

Perception Analysis

I2690-9.2 en HBM: public 233

4.103 @TimeMinBelow

Function
This function returns a number representing the time interval of the shortest
period that the signal is below a specified level.

Syntax

@TimeMinBelow(Signal)
@TimeMinBelow(Signal; Level)
@TimeMinBelow(Signal; Level; Start)
@TimeMinBelow(Signal; Level; Start; End)

Parameters

Signal Input waveform
Level Number: The used level default value is 0
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value representing the time interval of the shortest
period that the signal is below a specified level.

Description
This function is used when searching for the shortest period that a signal is
below a specified level. In the picture below this is P4.

Level

Signal

P1 P3P2 P4 P5 P6

Figure 4.46: TimeMinBelow

Perception Analysis

234 I2690-9.2 en HBM: public

See Also
"@TimeMinBelowBegin" on page 236, "@TimeTotalBelow" on page 242 and
"@TimeMinBelow" on page 234

Perception Analysis

I2690-9.2 en HBM: public 235

4.104 @TimeMinBelowBegin

Function
This function returns a number representing the start time of the shortest period
that the signal is above a specified level.

Syntax

@TimeMinBelowBegin(Signal)
@TimeMinBelowBegin(Signal; Level)
@TimeMinBelowBegin(Signal; Level; Start)
@TimeMinBelowBegin(Signal; Level; Start; End)

Parameters

Signal Input waveform
Level Number: The used level default value is 0
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value representing the start time of the shortest period
that the signal is above a specified level.

Description
This function is used when you want to know where the longest period that a
signal is above a specified level begins. In Figure 4.47 on page 237 the shortest
period is P4, the start of P4 it T4, this number will be returned by the
@TimeMinBelowBegin function.

Perception Analysis

236 I2690-9.2 en HBM: public

Level

Signal

P1 P3P2 P4 P5 P6

T4

Figure 4.47: TimeMinBelowBegin

See Also
"@TimeMinBelow" on page 234 and "@TimeTotalBelow" on page 242

Perception Analysis

I2690-9.2 en HBM: public 237

4.105 @TimeTotalAbove

Function
This function returns a number representing the total amount of time that the
signal is above a specified level.

Syntax

@TimeTotalAbove(Signal)
@TimeTotalAbove(Signal; Level)
@TimeTotalAbove(Signal; Level; Start)
@TimeTotalAbove(Signal; Level; Start; End)

Parameters

Signal Input waveform
Level Number: The used level default value is 0
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value representing the total amount of time that the
signal is above a specified level.

Perception Analysis

238 I2690-9.2 en HBM: public

Description
This function is used when you want to know how long a signal has been above
a specified level. In Figure 4.48 this is the sum of the interval lengths of P1, P2,
P3, P4 and P5.

Level

Signal

P1 P3P2 P4 P5

Figure 4.48: TimeTotalAbove

See Also
"@TimeTotalAboveBegin" on page 240, "@TimeMinAbove" on page 230,
"@TimeTotalAbove" on page 238 and "@TimeMaxBelow" on page 226

Perception Analysis

I2690-9.2 en HBM: public 239

4.106 @TimeTotalAboveBegin

Function
This function returns a number representing the start of the first period where
the signal is above the specified level.

Syntax

@TimeTotalAboveBegin(Signal)
@TimeTotalAboveBegin(Signal; Level)
@TimeTotalAboveBegin(Signal; Level; Start)
@TimeTotalAboveBegin(Signal; Level; Start; End)

Parameters

Signal Input waveform
Level Number: The used level default value is 0
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value representing the start of the first period where
the signal is above the specified level.

Description
This function is used when you want to know where the first period where the
signal is above the specified level starts. In Figure 4.49 on page 241 this is
T1, this number will be returned by the @TimeTotalAboveBegin function.

Perception Analysis

240 I2690-9.2 en HBM: public

Level

Signal

P1 P3P2 P4 P5

T1

Figure 4.49: TimeTotalAboveBegin

See Also
"@TimeTotalAbove" on page 238, "@TimeMinAbove" on page 230 and
"@TimeMaxBelow" on page 226

Perception Analysis

I2690-9.2 en HBM: public 241

4.107 @TimeTotalBelow

Function
This function returns a number representing the total amount of time that the
signal is below a specified level.

Syntax

@TimeTotalBelow(Signal)
@TimeTotalBelow(Signal; Level)
@TimeTotalBelow(Signal; Level; Start)
@TimeTotalBelow(Signal; Level; Start; End)

Parameters

Signal Input waveform
Level Number: The used level default value is 0
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value representing the total amount of time that the
signal is below a specified level.

Description
This function is used when you want to know how long a signal has been below
a specified level. In Figure 4.50 this is the sum of the interval lengths of P1, P2,
P3, P4, P5 and P6.

Perception Analysis

242 I2690-9.2 en HBM: public

Level

Signal

P1 P3P2 P4 P5 P6

Figure 4.50: TimeTotalBelow

See Also
"@TimeTotalBelowBegin" on page 244, "@TimeMinAbove" on page 230,
"@TimeTotalBelow" on page 242 and "@TimeMaxBelow" on page 226

Perception Analysis

I2690-9.2 en HBM: public 243

4.108 @TimeTotalBelowBegin

Function
This function returns a number representing the start of the first period where
the signal is below the specified level.

Syntax

@TimeTotalBelowBegin(Signal)
@TimeTotalBelowBegin(Signal; Level)
@TimeTotalBelowBegin(Signal; Level; Start)
@TimeTotalBelowBegin(Signal; Level; Start; End)

Parameters

Signal Input waveform
Level Number: The used level default value is 0
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value representing the start of the first period where
the signal is below the specified level.

Description
This function is used when you want to know where the first period where the
signal is below the specified level starts. In Figure 4.51 on page 245 this is
T1, this number will be returned by the @TimeTotalBelowBegin function.

Perception Analysis

244 I2690-9.2 en HBM: public

Level

Signal

P1 P3P2 P4 P5 P6

T1

Figure 4.51: TimeTotalBelowBegin

See Also
"@TimeTotalBelow" on page 242, "@TimeMinAbove" on page 230 and
"@TimeMaxBelow" on page 226

Perception Analysis

I2690-9.2 en HBM: public 245

4.109 @TriggerTime

Function
Returns the trigger position of a selected sweep.

Syntax

@TriggerTime(Waveform)
@TriggerTime(Waveform; NSweep)

Parameters

Waveform Waveform containing at least one sweep.
NSweep Number: selected sweep, default = 1.

Output
A number containing the trigger position in X-Units.

Description
Some recorder hardware and software settings make it possible to make
multi-sweep recordings. Each valid trigger event will create a new sweep. The
waveform of a channel from a multi-sweep recording contains trigger time
information for each individual sweep.

The @TriggerTime function makes it possible to get the trigger time in X-units
for the specified sweep number.

This function can be used in combination with for example the “SweepReview”
display. This kind of display shows only one single sweep. The display can
move to each individual sweep. The trigger position of the shown sweep is
always referenced to zero. Also the cursor values are referenced to the trigger
position of the sweep. When a calculation is needed involving a cursor position,
the actual location of the cursor in the original waveform needs to be calculated
using the corresponding triggertime.

Example
This example shows the calculation of the maximum value of the voltage
20 ms around the trigger position of the second sweep from a multi-sweep
recording.

 Signal = Active.Group1.Recorder_A.Ch_A2
 TPos = @TriggerTime(Formula.Signal; 2)

Perception Analysis

246 I2690-9.2 en HBM: public

 MaxVoltage = @Max(Formula.Signal; Formula.TPos - 10m;
Formula.TPos + 10m)

See Also
"@TriggerTimeToText" on page 248

Perception Analysis

I2690-9.2 en HBM: public 247

4.110 @TriggerTimeToText

Function
Returns the trigger position of the selected sweep in a time-date formatted
string.

Syntax

@TriggerTimeToText(Waveform)
@TriggerTimeToText (Waveform; NSweep)
@TriggerTimeToText (Waveform; NSweep; Decimals)
@TriggerTimeToText(Waveform; NSweep; Decimals; TimeFormat)
@TriggerTimeToText(Waveform; NSweep; Decimals; TimeFormat;
DateFormat)

Parameters

Waveform Waveform with at least one sweep
NSweep Number: selected sweep, default = 1
Decimals Number of decimals for the fractional part of the seconds, in

the range 0 through 9. Default = 3
TimeFormat “Relative” (default) Time since start of recording
 “Local” Local time
 “UTC” Coordinated Universal Time (UTC)
DateFormat “None” (default) No date information
 “Short” Short date string representation
 “Long” Long date string representation

Output
The output is a string that represents the trigger position.

Description
Various recorder hardware and software settings allow you to create multi-
sweep recordings. Each valid trigger event will create a new sweep. The
waveform of a channel from a multi-sweep recording contains trigger time
information for each individual sweep.

The @TriggerTimeToText function makes it possible to get the trigger time of
a specified sweep as a text string.

Perception Analysis

248 I2690-9.2 en HBM: public

This function can be used in combination with for example the Perception
SweepReview display. This display shows a single sweep. The display can
move to each individual sweep. The trigger position of that sweep is always
referenced to zero; however with the TriggerTimeToText function it is possible
to present the trigger time in other relations and in different formats.

The date and time formats are associated with the regional settings of Windows
and therefore they can vary from machine to machine. Refer to your Windows
Help for more details.

Note This function works only for recordings recorded with internal time base, this
means that the x-axis dimension is time. The Time and Date format strings are
not case-sensitive. The return value is a string that can also be used and
interpreted by other programs (like Excel) as a string.

Example
This example shows the trigger time of the second sweep in UTC time.

 Signal = Active.Group1.Recorder_A.Ch_A2
 TriggerUTC = @TriggerTimeToText

(Formula.Signal; 2; 6; "UTC"; "Short")

The output string could be: “3-3-2008 10:40:45.301455”

When only the time is required:

 TriggerTime = @TriggerTimeToText
(Formula.Signal; 2; 0; "Local"; "none")

This could result in: "11:40:45"

See Also
"@TriggerTime" on page 246

Perception Analysis

I2690-9.2 en HBM: public 249

4.111 @TrueFrequency

Function
Returns a waveform that represents the frequency as function of time.

Syntax

@TrueFrequency(Waveform)
@TrueFrequency(Waveform; Cycles)
@TrueFrequency(Waveform; Cycles; Fc)
@TrueFrequency(Waveform; Cycles; Fc; Hysteresis)
@TrueFrequency(Waveform; Cycles; Fc; Hysteresis; Begin)
@TrueFrequency(Waveform; Cycles; Fc; Hysteresis; Begin; End)

Parameters

Waveform Waveform for the Frequency calculation.
Cycles Number of cycles to be used for the calculating of the

frequency, the number of cycles has to be an integer value (1,
2, 3 .. etc.). The default value is 1 cycle.

Fc Cut-off frequency of 2nd order phase less lowpass Bessel filter.
This filter is used to filter the input signal before looking at the
zero crossings. If not entered or 0 then no filtering is done.

Hysteresis Number: Hysteresis in % of the difference between the
maximum and minimum value of the input signal. This
hysteresis is used to find the correct zero crossing values. The
default value is 20%.

Begin Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
Waveform containing the Frequency value as function of time started at
Begin until End.

Perception Analysis

250 I2690-9.2 en HBM: public

Description
This function will create a new waveform with the same sample rate as the
original signal. The actual value of the created waveform is the value of the
frequency at specific times of the supplied waveform. The parameter Cycles
determines how many cycles have to be used for calculating the frequency in
a given point, by default this is one cycle. The function uses the zero crossing
to determine a cycle. The hysteresis value is used to determine the correct zero
crossings and eliminate incorrect zero crossings caused by noise. An internal
2nd order phase less lowpass Bessel filter can be used to filter the signal before
the zero crossings are detected. If the parameter Fc has not been entered or
is equal to 0 then no filter is used.

Example
The following example creates a waveform showing the true Frequency value
of the voltage over each cycle. The maximum frequency is also calculated.

 Frequency = @TrueFrequency
(Active.Group1.Recorder_Voltage.Voltage;
5; 100)

 MaxFreq = @Max(Formula.Frequency)

Perception Analysis

I2690-9.2 en HBM: public 251

4.112 @TrueRMS

Function
Returns a waveform that represents the true RMS (Root Mean Square) per
number of cycles.

Syntax

@TrueRMS(Waveform)
@TrueRMS(Waveform; Cycles; Begin; End)

Parameters

Waveform Waveform for the RMS calculation.
Cycles Number of cycles to be used for the RMS calculation.
Begin Number: segment begin
End Number: segment end

Output
Waveform containing the RMS value over the requested number of cycles.

Description
This function will create a new waveform with the same sample rate as the
original signal. The actual value of the created waveform is the value of the true
RMS of the supplied waveform.
The default value is 1 cycle. Other values will be converted to a multiple of 0.5
cycles. The function uses the zero crossing to determine a cycle. Use the
Cycles parameter to set the number of cycles - in multiples of 0.5 - for the
calculation.

Example
The following example creates a waveform showing the true RMS value of the
voltage over each cycle. The average RMS over the complete signal is
calculated.

 RMS_Signal = @TrueRMS
(Active.Group1.Recorder_Voltage.Voltage;1)

 AverageRMS = @Mean(Formula.RMS_Signal)

See Also
"@RMS" on page 198

Perception Analysis

252 I2690-9.2 en HBM: public

4.113 @TrueRMSRef

Function
Returns a waveform that represents the true RMS (Root Mean Square) per
number of cycles. A reference waveform can also be used to calculate the
cycles by determining the zero crossing values of the reference waveform.

Syntax
@TrueRMSRef(Waveform)
@TrueRMSRef(Waveform; Reference)
@TrueRMSRef(Waveform; Reference; Cycles)
@TrueRMSRef(Waveform; Reference; Cycles; Begin)
@TrueRMSRef(Waveform; Reference; Cycles; Begin; End)

Parameters

Waveform Waveform for the RMS calculation.
Reference Reference waveform to be used to determine the zero cross-

ings.
Cycles Number of cycles to be used for the RMS calculation.
Begin Number: segment begin
End Number: segment end

Output
Waveform containing the RMS value over the requested number of cycles.

Description
This function will create a new waveform with the same sample rate as the
original signal. The actual value of the created waveform is the value of the true
RMS of the supplied waveform.
A reference waveform can be used to calculate the cycles by determining the
zero crossing values from this reference waveform. If this reference waveform
is not defiend, the waveform itself will then be used to determine the cycles.
The default number of cycles is 1. Other values will be converted to a multiple
of 0.5 cycles. The function uses the zero crossing to calculate a cycle. Use the
Cycles parameter to set the number of cycles - in multiples of 0.5 - for the
calculation.

Example
The following example creates a waveform showing the true RMS value of the
voltage over each cycle. The average RMS over the complete signal is
calculated.

Perception Analysis

I2690-9.2 en HBM: public 253

 RMS_Signal = @TrueRMSRef
(Active.Group1.Recorder_Voltage.Voltage;
Active.Group1.Recorder_Voltage.RefSignal;
1)
AverageRMS = @Mean(Formula.RMS_Signal)

See Also
"@RMS" on page 198 and "@TrueRMS" on page 252

Perception Analysis

254 I2690-9.2 en HBM: public

4.114 @Value

Function
Returns the amplitude value of a waveform at a specified x-position.

Syntax
@Value(Waveform; XPos)

Parameters

Waveform Waveform whose value is to be determined at the specified x-
position.

XPos Number: x-position at which the value of the waveform is to be
determined.

Output
Amplitude value of the waveform at the specified x-position.

Description
The value of a waveform at a specified x-position is determined. The x-position
is to be specified as x-coordinate, not as a sample number. If the x-coordinate
is between two sampling points, linear interpolation is used to determine the
value at this x-position.

If the x-position is before the first sample or after the last sample of the waveform
data set, the function returns no value.

Example
The following example searches a signal named Marker for a rising level
crossing with level 2.5 and stores the time found in the variable TimeMarker.
Then the value of another signal is determined at this position. Real-world
signals are assumed.

 Marker = Active.Group1.Recorder_A.Ch_A1
 OtherSignal = Active.Group1.Recorder_A.Ch_A2
 TimeMarker = @NextLvlCross(Formula.Marker; 0; 2.5; 1)
 ValueAtMark = @Value(Formula.OtherSignal;

Formula.TimeMarker)

Perception Analysis

I2690-9.2 en HBM: public 255

4.115 @XDelta

Function
Returns the sampling interval (the time between samples) of a waveform.

Syntax
@XDelta(Waveform)

Parameters

Waveform Input waveform.

Output
The output is a numerical value.

Description
This function returns the sampling interval (period) of a waveform. The sampling
interval is the reciprocal (inverse) value of the sampling frequency and
represents the difference in x units between adjacent samples.

Example
The following example creates a sine wave with a sampling frequency of
1 kHz. The variable dx receives the sampling interval of this signal (1 ms). The
variable sf receives the sampling frequency:

 Signal = 25 * @SineWave(1k; 1000; 50)
 dx = @XDelta(Formula.Signal)
 sf = 1.0 / @XDelta(Formula.Signal)

See Also
"@Length" on page 136, "@XFirst" on page 259 and "@XLast" on page 260

Perception Analysis

256 I2690-9.2 en HBM: public

4.116 @XDeltaHigh

Function
Determines the highest sampling interval of a waveform.

Syntax
@XDeltaHigh(Waveform)

Parameters

Waveform Waveform for which the highest sampling interval is
determined.

Output
The output is a numerical value: the difference in x units between two samples.

Description
When working with multi-time base waveforms, the highest sampling interval
of the waveform is determined. The sampling interval is the reciprocal value of
the sampling frequency and represents the difference in x units between
adjacent samples.

Example
This example creates a waveform containing 2 different sample rates. The
XDelta functions are used to determine the sampling frequency.

 SignalLow = @SineWave(10k;10k;50)
 SignalHigh = @SineWave(100k;10k;50)
 Signal_LHL = @Join(Formula.SignalLow;

Formula.SignalHigh; Formula.SignalLow)
 XDelta = @XDelta(Formula.Signal_LHL)
 XHigh = @XDeltaHigh(Formula.Signal_LHL)
 XLow = @XDeltaLow(Formula.Signal_LHL)

See Also
"@XDelta" on page 256 and "@XDeltaLow" on page 258

Perception Analysis

I2690-9.2 en HBM: public 257

4.117 @XDeltaLow

Function
Determines the lowest sampling interval of a waveform.

Syntax
@XDeltaLow(Waveform)

Parameters

Waveform Waveform for which the highest sampling interval is
determined.

Output
The output is a numerical value: the difference in x units between two samples.

Description
When working with multi-time base waveforms, the lowest sampling interval of
the waveform is determined. The sampling interval is the reciprocal value of the
sampling frequency and represents the difference in x units between adjacent
samples.

Example
This example creates a waveform containing 2 different sample rates. The
XDelta functions are used to determine the sampling frequency.

 SignalLow = @SineWave(10k;10k;50)
 SignalHigh = @SineWave(100k;10k;50)
 Signal_LHL = @Join(Formula.SignalLow;

Formula.SignalHigh; Formula.SignalLow)
 XDelta = @XDelta(Formula.Signal_LHL)
 XHigh = @XDeltaHigh(Formula.Signal_LHL)
 XLow = @XDeltaLow(Formula.Signal_LHL)

See Also
"@XDelta" on page 256 and "@XDeltaHigh" on page 257

Perception Analysis

258 I2690-9.2 en HBM: public

4.118 @XFirst

Function
Returns the x-coordinate of the first sample in a waveform.

Syntax
@XFirst(Waveform)

Parameters

Waveform Input waveform.

Output
The output is a numerical value.

Description
The x-coordinate of the first sample is returned. The x-coordinate is a value in
terms of the horizontal units of the waveform (typically time).

Example
The following example creates a sine wave. Generated signals always start at
time 0. The waveform is shifted horizontally by 100 ms. When the x-coordinate
of the first sample of this shifted waveform is determined, it will be 100 ms.

 Signal = @SineWave(10k; 1000; 50)
 Shifted = @XShift(Formula.Signal; 100m)
 Start = @XFirst(Formula.Shifted)

See Also
"@Length" on page 136, "@XDelta" on page 256, "@XLast" on page 260 and
"@XShift" on page 261

Perception Analysis

I2690-9.2 en HBM: public 259

4.119 @XLast

Function
Returns the x-coordinate of the last sample in a waveform.

Syntax
@XLast(Waveform)

Parameters

Waveform Input waveform.

Output
The output is a numerical value.

Description
The x-coordinate of the last sample is returned. The x-coordinate is a value in
terms of the horizontal units of the waveform (typically time).

Example
The following example creates a sine wave. Generated signals always start at
time 0. The example shows two ways of determining the x-coordinate of the
last sample in the waveform:

 Signal = @SineWave(10k; 1000; 50)
 XEnd1 = @XFirst(Formula.Signal) +

(@Length(Formula.Signal) - 1)*
@XDelta(Formula.Signal)

 XEnd2 = @XLast(Formula.Signal)

See Also
"@Length" on page 136, "@XDelta" on page 256, "@XFirst" on page 259 and
"@XShift" on page 261

Perception Analysis

260 I2690-9.2 en HBM: public

4.120 @XShift

Function
Shifts a waveform horizontally by a specified amount of time.

Syntax
@XShift(Waveform, Shift)

Parameters

Waveform Waveform to be shifted horizontally.
Shift Number: amount of shift.

Output
Original waveform shifted in time.

Description
This function does not alter the contents of a waveform but changes the
horizontal scaling information in such a way that the waveform is shifted
horizontally by the specified amount of time (or other units). Positive values shift
the waveform to the right, negative values shift the waveform to the left.

Example
The following example makes sure the waveform´s horizontal axis always starts
at zero. We assume a real-world signal.

 Signal = Active.Group1.Recorder_A.Ch_A1
 Shift = -1 * @XFirst(Formula.Signal)
 CorrSignal = @XShift(Formula.Signal; Formula.Shift)

See Also
"@XDelta" on page 256, "@XFirst" on page 259 and "@XLast" on page 260

Perception Analysis

I2690-9.2 en HBM: public 261

4.121 @XYArray

Function
Creates a waveform using a two-dimensional array.

Syntax
@XYArray(X1; Y1; ...; ...; XN; YN)

Parameters

X1 X value of first sample.
Y1 Y value of first sample.
XN X value of last sample; N>= 2.
YN Y value of last sample; N>= 2.

Output
Waveform containing all the points of the array.

Description
This function creates a waveform containing all the points passed by the
parameters X1, Y1, X2, Y2 etc. The entered points should be ordered in time.

The output waveform contains equidistant data points. This function will
evaluate the input X values and define the best possible new sample rate. For
the sample rate the 1, 2, 5 series is used.

Assume X1 = 0 ms, X2 = 30 ms, X3 = 50 ms. This yields a sampling interval of
20 ms.

Assume X1 = 25 ms, X2 = 30 ms, X3 = 50 ms. This yields a sampling interval
of 5 ms.

Assume X1 = 2 s, X2 = 12 s, X3 = 15 s. This yields a sampling interval of 2 s.

Note The output samples are equidistant; the number of samples can be larger than
the number of input samples.

Example
The following example creates a waveform containing 8 data points, while only
5 points were entered. The three new points are generated by the XYArray
function.

Perception Analysis

262 I2690-9.2 en HBM: public

 NewWave = @XYArray(0; 0; 1; 2; 2; 1; 5; -3; 7; 0)

See Also
"@YArray" on page 264

Perception Analysis

I2690-9.2 en HBM: public 263

4.122 @YArray

Function
This function creates a waveform using a single dimensional array as data
input.

Syntax
@YArray(Fsampling; Y1; ...; YN)

Parameters

FSampling Number: Sampling frequency
Y1 Number: amplitude (Y-value) of first data point
YN Number: amplitude (Y-value) of last data point. N >=2

Output
The output is a waveform containing all data points of the array.

Description
This function creates a waveform containing all the points passed by the
parameters Y1 through YN. The first parameter defines the sampling frequency
(= 1 / sampling period)

Example
The following example creates a waveform containing 9 data points with a
sampling frequency of 100 Hz.

 Signal = @YArray(100; 0; 1; 2; 2; 1; -1; -3; 2; 0)

See Also
"@XYArray" on page 262

Perception Analysis

264 I2690-9.2 en HBM: public

5 Reference Guide - HIC
5.1 Introduction - HIC

HIC functions are used for analyzing crash test data. HIC is an abbreviation of
Head Injury Criterion.

Perception Analysis

I2690-9.2 en HBM: public 265

5.2 @Con3ms

Function
This function returns the highest acceleration level with a continuous duration
of at least 3 milliseconds.

Syntax

@Con3ms(Signal)
@Con3ms(Signal; Start)
@Con3ms(Signal; Start; End)

Parameters

Signal Input waveform
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value containing highest acceleration level with a
cumulative duration of at least 3 milliseconds.

Description
Con3ms injury criterion calculates the highest acceleration level with a
continuous duration of at least 3 milliseconds. For an implementation we refer
to the document: Crash Analysis Criteria Description Version 2.1.1 from
the Data Processing Vehicle Safety Workgroup, chapter 6 page 6-2. In this
document they call it Xms.

Perception Analysis

266 I2690-9.2 en HBM: public

The Con3ms value can be calculated with one peak, as shown in Figure 5.1,
or with several peaks, as shown in Figure 5.2.

Con3ms_T

Con3ms

A
m

p
li
tu

d
e

t [ms]

3 ms

Figure 5.1: Con3ms value (One peak)

Con3ms_T

Con3ms

A
m

p
li
tu

d
e

t [ms]

3 ms

Figure 5.2: Con3ms value (Several peaks)

See Also
"@Cum3ms" on page 269, "@Cum3ms_T" on page 271 and "@Con3ms_T"
on page 268

Perception Analysis

I2690-9.2 en HBM: public 267

5.3 @Con3ms_T

Function
This function returns the start time of the highest acceleration level with a
continuous duration of at least 3 milliseconds.

Syntax

@Con3ms_T(Signal)
@Con3ms_T(Signal; Start)
@Con3ms_T(Signal; Start; End)

Parameters

Signal Input waveform
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value containing start time of the highest acceleration
level with a continuous duration of at least 3 milliseconds.

Description
See also the Con3ms description on page 266.

See Also
"@Con3ms" on page 266, "@Cum3ms" on page 269 and "@Cum3ms_T" on
page 271

Perception Analysis

268 I2690-9.2 en HBM: public

5.4 @Cum3ms

Function
This function returns the highest acceleration level with a cumulative duration
of at least 3 milliseconds.

Syntax

@Cum3ms(Signal)
@Cum3ms(Signal; Start)
@Cum3ms(Signal; Start; End)

Parameters

Signal Input waveform
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value containing highest acceleration level with a
cumulative duration of at least 3 milliseconds.

Description
Cum3ms injury criterion calculates the highest acceleration level with a
cumulative duration of at least 3 milliseconds. For an implementation we refer
to the document: Crash Analysis Criteria Description Version 2.1.1 from
the Data Processing Vehicle Safety Workgroup, chapter 6 page 6-2. In this
document they call it Xms.

In the cumulative calculation, separate periods of the measurement signal are
added, until 3 milliseconds are reached.

Perception Analysis

I2690-9.2 en HBM: public 269

The Cum3ms value can be calculated with one peak, as shown in Figure 5.3,
or with several peaks, as shown in Figure 5.4.

Cum3ms_T

Cum3ms
A

m
p

li
tu

d
e

t [ms]

3 ms

Figure 5.3: Cum3ms value (One peak)

The special case shown in the second figure.

Cum3ms_T

Cum3ms

A
m

p
li
tu

d
e

t [ms]

1,8 ms 2,7 ms

Figure 5.4: Cum3ms value (Several peaks)

See Also
"@Con3ms" on page 266, "@Cum3ms_T" on page 271 and "@Con3ms_T"
on page 268

Perception Analysis

270 I2690-9.2 en HBM: public

5.5 @Cum3ms_T

Function
This function returns the start time of the highest acceleration level with a
cumulative duration of at least 3 milliseconds.

Syntax

@Cum3ms_T(Signal)
@Cum3ms _T(Signal; Start)
@Cum3ms _T(Signal; Start; End)

Parameters

Signal Input waveform
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value containing start time of the highest acceleration
level with a cumulative duration of at least 3 milliseconds.

Description
See also the Cum3ms description on page 269.

See Also
"@Con3ms" on page 266, "@Cum3ms" on page 269 and "@Con3ms_T" on
page 268

Perception Analysis

I2690-9.2 en HBM: public 271

5.6 @HIC

Function
The HIC functions calculate the Head Injury Criterion of a waveform.

Syntax

@HIC(Signal)
@HIC(Signal; Start)
@HIC(Signal; Start; End)

Parameters

Signal Input waveform
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value containing the calculated HIC value.

Description
HIC is the abbreviation for Head Injury Criterion. For an implementation we refer
to the document: Crash Analysis Criteria Description Version 2.1.1 from
the Data Processing Vehicle Safety Workgroup, chapter 2 page 2-2.

The Head Injury Criterion is a measure of the likelihood of head injury arising
from an impact. The HIC can be used to assess safety related to vehicles,
personal protective gear, and sport equipment.

Normally the variable is derived from the acceleration/time history of an
accelerometer mounted at the centre of gravity of a dummy’s head, when the
dummy is exposed to crash forces.

The HIC functions calculate the Head Injury Criterion of a waveform. The
parameters Start and End are optional and define the part of the input signal
to be used for the HIC calculations. The HIC value is calculated with the
following formula:

HIC=supt1 ;t2 (1

t2 t1

t

t1

a dt)
2.5

(t2
2

t1)∫

a = a2x+a
2

y + a
2

z

{
{

Perception Analysis

272 I2690-9.2 en HBM: public

The HIC function determines the interval defined by t1 and t2 where the HIC
attains a maximum value. The variable a is the resultant acceleration of the
center of gravity of the head in units of acceleration of gravity (1g = 9.81 m/s2).

See Also
"@HICStartTime" on page 274 and "@HICEndTime" on page 275

Perception Analysis

I2690-9.2 en HBM: public 273

5.7 @HICStartTime

Function
This function returns the start of the interval (t1) as found during the HIC
calculations.

Syntax

@HICStartTime(Signal)
@HICStartTime(Signal; Start)
@HICStartTime(Signal; Start; End)

Parameters

Signal Input waveform
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value containing the start of the interval (t1) as found
during the HIC calculations.

Description
The HICStartTime function returns the start in time of the interval (t1) where the
HIC has its maximum value. See also the HIC description on page 272.

See Also
"@HIC" on page 272 and "@HICEndTime" on page 275

Perception Analysis

274 I2690-9.2 en HBM: public

5.8 @HICEndTime

Function
This function returns the end of the interval (t2) as found during the HIC
calculations.

Syntax

@HICEndTime(Signal)
@HICEndTime(Signal; Start)
@HICEndTime(Signal; Start; End)

Parameters

Signal Input waveform
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value containing the end of the interval (t2) as found
during the HIC calculations.

Description
The HICEndTime function returns the end in time of the interval (t2) where the
HIC has its maximum value. See also the HIC description on page 272.

See Also
"@HIC" on page 272 and "@HICStartTime" on page 274

Perception Analysis

I2690-9.2 en HBM: public 275

5.9 @HIC15

Function
This function returns the maximum HIC value when working with a fixed 15
millisecond interval.

Syntax

@HIC15(Signal)
@HIC15(Signal; Start)
@HIC15(Signal; Start; End)

Parameters

Signal Input waveform
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value containing the HIC value when working with a
fixed 15 millisecond interval.

Description
See also the HIC function on page 272.

See Also
"@HIC36" on page 279, "@HIC15StartTime" on page 277 and
"@HIC15EndTime" on page 278

Perception Analysis

276 I2690-9.2 en HBM: public

5.10 @HIC15StartTime

Function
This function returns the start of the interval (t1) as found during the HIC15
calculations.

Syntax

@HIC15StartTime(Signal)
@HIC15StartTime(Signal; Start)
@HIC15StartTime(Signal; Start; End)

Parameters

Signal Input waveform
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value containing the start of the interval (t1) as found
during the HIC15 calculations.

Description
The HIC15StartTime function returns the start in time of the interval (t1) where
the HIC has its maximum value and the interval has a maximum of 15 ms. See
also the HIC description on page 272.

See Also
"@HIC15" on page 276 and "@HIC15EndTime" on page 278

Perception Analysis

I2690-9.2 en HBM: public 277

5.11 @HIC15EndTime

Function
This function returns the end of the interval (t2) as found during the HIC15
calculations.

Syntax

@HIC15EndTime(Signal)
@HIC15EndTime(Signal; Start)
@HIC15EndTime(Signal; Start; End)

Parameters

Signal Input waveform
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value containing the end of the interval (t2) as found
during the HIC15 calculations.

Description
The HIC15EndTime function returns the end in time of the interval (t2) where
the HIC has its maximum value and the interval has a maximum of 15 ms. See
also the HIC description on page 272.

See Also
"@HIC15" on page 276 and "@HIC15StartTime" on page 277

Perception Analysis

278 I2690-9.2 en HBM: public

5.12 @HIC36

Function
This function returns the maximum HIC value when working with a fixed 36
millisecond interval.

Syntax

@HIC36(Signal)
@HIC36(Signal; Start)
@HIC36(Signal; Start; End)

Parameters

Signal Input waveform
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value containing the HIC value when working with a
fixed 36 millisecond interval.

Description
See also the HIC function on page 272.

See Also
"@HIC36" on page 279, "@HIC36StartTime" on page 280 and
"@HIC36EndTime" on page 281

Perception Analysis

I2690-9.2 en HBM: public 279

5.13 @HIC36StartTime

Function
This function returns the start of the interval (t1) as found during the HIC36
calculations.

Syntax

@HIC36StartTime(Signal)
@HIC36StartTime(Signal; Start)
@HIC36StartTime(Signal; Start; End)

Parameters

Signal Input waveform
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value containing the start of the interval (t1) as found
during the HIC36 calculations.

Description
The HIC36StartTime function returns the start in time of the interval (t1) where
the HIC has its maximum value and the interval has a maximum of 36 ms. See
also the HIC description "Description" on page 272.

See Also
"@HIC36" on page 279 and "@HIC36EndTime" on page 281

Perception Analysis

280 I2690-9.2 en HBM: public

5.14 @HIC36EndTime

Function
This function returns the end of the interval (t2) as found during the HIC36
calculations.

Syntax

@HIC36EndTime(Signal)
@HIC36EndTime(Signal; Start)
@HIC36EndTime(Signal; Start; End)

Parameters

Signal Input waveform
Start Number: Start of segment, default begin of signal
End Number: End of segment, default end of signal

Output
The output is a numerical value containing the end of the interval (t2) as found
during the HIC36 calculations.

Description
The HIC36EndTime function returns the end in time of the interval (t2) where
the HIC has its maximum value and the interval has a maximum of 36 ms. See
also the HIC description on page 272.

See Also
"@HIC36" on page 279 and "@HIC36StartTime" on page 280

Perception Analysis

I2690-9.2 en HBM: public 281

6 Reference Guide - Cycle Math
6.1 Introduction - Cycle Math

A characteristic of a sinusoid waveform is a cycle (or period). A full cycle is
defined as the time segment where the waveform crosses its center amplitude
in the same direction (rising or falling) twice.

The cycle math formulas calculate a characteristic value of a waveform on a
cycle-per-cycle basis. In order to determine which input samples to use for the
calculation of this characteristic value, the formulas employ a cycle detection
algorithm, which determines and collects the times of center-amplitude
crossings (or simply called zero crossings, if the center amplitude is zero).

The cycle detection algorithm principle works as follows (see Figure 6.1):

l Assume that the input signal is y(n), which is a sinusoid oscillating around
a center amplitude.

l Let the Hysteresis Band be the amplitude range from the -threshold level
to the +threshold level (user-defined).

l Find and store the sample at index k1 where the signal is:
l Entering the Hysteresis Band, or
l Leaving the Hysteresis Band

l Find the next sample at index k2, where the signal is: (symmetrically to the
previous step)
l Leaving the Hysteresis Band, or
l Entering the Hysteresis Band

l Calculate the center amplitude crossing time by linear interpolation
between the samples at indices k1 and k2. This crossing time detection can
occur in two ways: either a rising edge crossing (point A) or a falling edge
crossing (point B). See Figure 6.1.

l Finally, store all center-amplitude crossings; these can be then used by
specific formulas listed in this section to perform cycle-based calculations.

Perception Analysis

282 I2690-9.2 en HBM: public

k1

k2 k3

k4

t

+Threshold

-Threshold
B

C

A

Figure 6.1: Level crossings

A Level crossing at rising edge

B Level crossing at falling edge

C Hysteresis band

A cycle formula works as follows:

l First, the cycle detection algorithm will determine the center amplitude
crossing times.

l Each pair of crossing times, such as times A and B of Figure 6.1, defines
a cycle time segment.

l The formula will gather the samples of the input waveform that belong to
this time segment and apply a math function on them to calculate the cycle
value.

l The formula's output waveform will assign this value to all samples that
belong to the respective time segment.

The cycle math formulas have the versatility of applying a math function on input
samples for a duration of a full cycle, for a half-cycle, or for a multiple number
of cycles. For instance, a user might want to see the RMS value of the samples
that correspond to two consecutive cycles of the input sine wave.

Perception Analysis

I2690-9.2 en HBM: public 283

Linear Interpolation
In order to calculate the level crossing time precisely, the cycle detection
algorithm employs linear interpolation in the following manner:
For a signal y(n), assume that a - threshold crossing is detected at sample index
k1 (time t1), and a +threshold crossing is detected at sample index k2 (time t2).
The time of the center amplitude crossing tC is then determined by the linear
interpolation equation:

tC = t1 + (CA y(k1))
t2 t1

y(k2) y(k1)

CA = Center Amplitude level

If the input signal contains noise, this calculation may result in a tC value that
differs significantly from the actual time tP where the signal crosses the center
amplitude, as shown in Figure 6.2. Therefore, use the tC time in this case, not
the tP time.

k1

y(n)

tk2

tP tC

Figure 6.2: Linear Interpolation

Perception Analysis

284 I2690-9.2 en HBM: public

Performance
The cycle math formulas use a reference waveform, which is used to detect the
level crossings. Depending on the defined reference waveform, cycle detection
is performed either implicitly or explicitly. The reference waveform can be one
of the following:

A A @CycleDetect function on a waveform, which is defined on page 291.
The current formula will use the level crossing times found in the
@CycleDetect function directly to determine the output cycles and their
values.

B A recorded (sinusoid) signal. In this case, a @CycleDetect function will be
created implicitly, with this signal as its input, in order to determine the level
crossing times. The current formula will then use this @CycleDetect
function, as in case (A). The disadvantage of this option is that the user
cannot explicitly input a desired center level and threshold to the
@CycleDetect function.

C A @CycleInterval function, which is defined on page 303. The current
formula will use the level crossing times calculated in the @CycleInterval
function directly to determine the output cycles and their values.

D No value. When the parameter is omitted, a @CycleDetect function applied
on the input waveform will be created implicitly. The current formula will use
this @CycleDetect function as in case (A).

Formula defaults
The cycle formulas may have optional parameters. The default behavior of the
formulas is defined as the behavior when the optional parameters are not
entered by the user.

Continuous vs. Sweep recordings
l If a signal contains a single sampling frequency (which is the simple

behavior for continuous recordings), the cycle formulas process the whole
length of the waveform. The user might notice a delay in the representation
of a cycle formula for relatively long recordings.

l If a recorded signal is sampled at more than one frequency, the cycle
formulas will operate only on each segment of the signal which has a
separate sampling frequency.

l If a recorded signal contains sweeps (which are not continuous in time),
the cycle formulas will operate on each sweep separately.

The output of a cycle formula has the same sampling frequency as its input,
and contains a number of samples which is equal to the number of samples for
the input waveform.

Perception Analysis

I2690-9.2 en HBM: public 285

6.2 @CycleArea

Function
Calculates the area of every cycle detected on a reference signal.

Syntax

@CycleArea(Waveform; Cycles; ReferenceWaveform)

Parameters

Waveform Input waveform to be used for calculation of math
function.

Cycles Number of cycles of the reference waveform used to
calculate one output value.

ReferenceWaveform Waveform to be used as a reference to detect cycles.

Output
A waveform which has a value of zero before the first level crossing, and after
the end of the last cycle.

Description
For a range of input samples y(k1) to y(k2), where k1 and k2 are the indices
defined by the detected cycle, the output samples y'(k1) to y'(k2) will be assigned
the value:

Area =

k2

k=k1

│ │y(k) x§ ●

Δx = x-difference between two consecutive samples

The start and end indices (k1 and k2) for these segments ("cycles") are
calculated from the level crossing times determined by the CycleDetect
algorithm, which is applied on the ReferenceWaveform.

The Cycles and ReferenceWaveform parameters are optional.

If the Cycles parameter is omitted, the default value is 1.

Perception Analysis

286 I2690-9.2 en HBM: public

If the ReferenceWaveform parameter is omitted, a CycleDetect formula is
created for the input Waveform.

See Also
"@Area" on page 56

Perception Analysis

I2690-9.2 en HBM: public 287

6.3 @CycleCount

Function
Counts the number of cycles detected on a reference signal.

Syntax

@CycleCount(Waveform; Cycles; Level; Threshold; SuppressTime)

Parameters

Waveform Input waveform to be used for calculation of math function.
Cycles Number of cycles of the reference waveform used to calculate

one output value.
Level Number: Y-value used as the center of oscillation of the

periodic waveform.
Threshold Number: Y-value used to indicate a level crossing.
SuppressTime Minimum required duration (in seconds) of a half cycle, all half

cycles with duration below this value are suppressed.

Output
At any given offset of time t in the recorded data for the input Waveform, the
formula’s output will be equal to the number of cycles detected on the Waveform
signal from the start of the recorded signal until time t.

Description
If the Cycles parameter is N, the output is incremented by one for each N cycles
of the Waveform.

Note For very long recordings, the output value of this formula may increase to a high
number; to see the output on Perception's TimeDisplay correctly, it might be
necessary to apply a different scale on the Y-axis.

The Cycles, Level, and Threshold parameters are optional.

If the Cycles parameter is omitted, the default value is 1.

See Also
"@Cycles" on page 74

Perception Analysis

288 I2690-9.2 en HBM: public

6.4 @CycleCrestFactor

Function
Calculates the Crest Factor of every cycle detected on a reference signal. The
“Crest Factor” is the ratio between the absolute maximum and the RMS of that
cycle.

Syntax

@CycleCrestFactor(Waveform; Cycles; ReferenceWaveform)

Parameters

Waveform Input waveform to be used for calculation of math
function.

Cycles Number of cycles of the reference waveform used to
calculate one output value.

ReferenceWaveform Waveform to be used as a reference to detect cycles.

Output
A waveform which has a value of zero before the first level crossing, and after
the end of the last cycle.

Description
Cycle Crest Factor

MAX

RMS

Cycle

Figure 6.3: Cycle crest factor

Perception Analysis

I2690-9.2 en HBM: public 289

CyleCrestFactor =
Abs(CycleMax)

CycleRMS

N = k2 – k1 + 1

The start and end indices (k1 and k2) for these segments ("cycles") are
calculated from the level crossing times determined by the CycleDetect
algorithm, which is applied on the ReferenceWaveform.

The Cycles and ReferenceWaveform parameters are optional.

If the Cycles parameter is omitted, the default value is 1.

If the ReferenceWaveform parameter is omitted, a CycleDetect formula is
created for the input Waveform.

See Also
"@CycleDetect" on page 291

Perception Analysis

290 I2690-9.2 en HBM: public

6.5 @CycleDetect

Function
Performs level crossing detection on the input waveform.

Syntax

@CycleDetect(Waveform; Level; Threshold; HoldOffTime)

Parameters

Waveform Waveform to be used as a reference to detect cycles.
Level Number: Y-value used as the center of oscillation of the

periodic waveform.
Threshold Number: Y-value used to indicate a level crossing.
HoldOffTime Minimum required duration (in seconds) of a half cycle,

all half cycles with duration below this value are
suppressed.

Output
A square waveform which has a positive value between two consecutive level
crossing times when the respective input samples value is above the threshold;
it has a negative value between two consecutive level crossing times when the
respective input samples are below the threshold.

Description
Put together, the Threshold and Level parameters indicate a hysteresis band,
which is an amplitude range positioned symmetrically around the Level value.
The hysteresis band's upper and lower levels are used to detect cycles. Each
input Waveform sample is compared against the lower and upper levels of the
hysteresis band. The respective output samples are calculated based on these
comparisons.

If the Level and/or Threshold parameters are omitted, they are calculated based
on the input Waveform. The Threshold value is calculated as 5% of the input
waveform’s Display Range; the Level value is calculated as the middle of the
Display Range.

The output is set to 0 for all samples before the first level crossing.

When it is known that the input waveform contains a DC offset, using this DC
offset value as the detection level is recommended.

Perception Analysis

I2690-9.2 en HBM: public 291

For better performance (faster calculation), it is also recommended to explicitly
define the Level and Threshold parameters – so that the formula function does
not need to calculate them.

Example

 cycledetect = @CycleDetect
(Active.Group1.Recorder_Vrms.Vrms;0;150)

This example creates the square waveform that shows the times of zero
crossings in the Vrms signal, using a threshold of 150 V. The output is the red
trace in Figure 6.4. The hysteresis band is indicated by the dashed lines, which
are located at +150 V and -150 V.

Figure 6.4 shows a segment of a signal which is a sine wave with noise (blue
trace). The red trace is the generated waveform of the @CycleDetect formula.

Figure 6.4: Example of CycleInterval output

See Also
"@CycleInterval" on page 303

Perception Analysis

292 I2690-9.2 en HBM: public

6.6 @CycleEnergy

Function
Calculates the energy of every cycle detected on a reference signal.

Syntax

@CycleEnergy(Waveform; Cycles; ReferenceWaveform)

Parameters

Waveform Input waveform to be used for calculation of math
function.

Cycles Number of cycles of the reference waveform used to
calculate one output value.

ReferenceWaveform Waveform to be used as a reference to detect cycles.

Output
A waveform which has a value of zero before the first level crossing, and after
the end of the last cycle.

Description
For a range of input samples y(k1) to y(k2), where k1 and k2 are the indices
defined by the detected cycle, the output samples y'(k1) to y'(k2) will be assigned
the value:

Energy =

k2

k=k1

y 2((k)) x§ ●

Δx = x-difference between two consecutive samples

The start and end indices (k1 and k2) for these segments ("cycles") are
calculated from the level crossing times determined by the CycleDetect
algorithm, which is applied on the ReferenceWaveform.

The Cycles and ReferenceWaveform parameters are optional.

If the Cycles parameter is omitted, the default value is 1.

Perception Analysis

I2690-9.2 en HBM: public 293

If the ReferenceWaveform parameter is omitted, a CycleDetect formula is
created for the input Waveform.

See Also
"@Energy" on page 82

Perception Analysis

294 I2690-9.2 en HBM: public

6.7 @CycleFrequency

Function
Calculates the frequency of all the cycles detected on the reference signal.

Syntax

@CycleFrequency(Waveform; Cycles; ReferenceWaveform)

Parameters

Waveform Input waveform to be used for calculation of math
function.

Cycles Number of cycles of the reference waveform used to
calculate one output value.

ReferenceWaveform Waveform to be used as a reference to detect cycles.

Output
The frequency in Hz that is calculated on the ReferenceWaveform. The
frequency is the inverse of the time difference between two level crossings that
determine the duration of a sinus cycle.

Description
If the ReferenceWaveform and the input Waveform are the same signal, and
the Cycles parameter is 1, then the output is the actual frequency of the
Waveform.

The frequency is calculated with the formula:

F = 1/¢T

where ΔΤ:

l Is the duration of half of a period of the Reference Waveform, when
Cycles = 0.5.

l Is the duration of 1 period of the Reference Waveform, when Cycles = 1.
l Is the duration of 2 periods of the Reference Waveform, when Cycles = 2.
l etc.

The Cycles and ReferenceWaveform parameters are optional.

If the Cycles parameter is omitted, the default value is 1.

Perception Analysis

I2690-9.2 en HBM: public 295

If the ReferenceWaveform parameter is omitted, a CycleDetect formula is
created for the input Waveform.

Example

 freq = @CycleFrequency(Group1.Recorder_A.Ch_A1; 1)

The formula above omits the ReferenceWaveform parameter, so it will detect
zero crossings in the Ch_A1 waveform. Then, for each full cycle detected on
Ch_A1, it will calculate the frequency and assign this value to all output samples
that belong to the cycle.

See Also
"@Frequency" on page 115, "@TrueFrequency" on page 250

Perception Analysis

296 I2690-9.2 en HBM: public

6.8 @CycleFundamental

Function
Generates the Waveform of the Cycle Fundamental of every cycle detected
on a reference signal.

Syntax

@CycleFundamental(Waveform; Cycles; ReferenceWaveform)

Parameters

Waveform Input waveform to be used for the calculation of the
Fundamental waveform.

Cycles Number of cycles of the reference waveform used to calculate
one output value.

ReferenceWav
eform

Waveform to be used as a reference to detect cycles.

Output
Waveform of the Fundamental Frequency.

Description
By performing harmonic analysis on an input signal it is possible to determine
the basic waveforms, that is sines and cosines that compose the original input
signal. As such any waveform f(t) is represented by the Fourier series as:

The Fundamental frequency is the component of the above expression when
n takes the value of 1; that is the term:

Perception Analysis

I2690-9.2 en HBM: public 297

Where

For each detected cycle, in the period t1, t2, @CycleFundamental will determine
the values A_1 and B_1 so that it can generate the waveform given by the
expression:

The Cycles and ReferenceWaveform parameters are optional.

If the Cycles parameter is omitted, the default value is 1.

If the ReferenceWaveform parameter is omitted, a CycleDetect formula is
created for the input Waveform.

Example
Given that the input signal is available as Formula.input, the function
@CycleDetect determines the zero level crossings which are used by the
@CycleFundamental function to determine the Fundamental waveform for the
detected cycle:

 Name Formula
 cd = @CycleDetech(Formula.input; 0.0, 0.1)
 fund = @CycleFundamental(Formula.input; 1; Formula.cd)

See Also
"@CycleDetect" on page 291

Perception Analysis

298 I2690-9.2 en HBM: public

6.9 @CycleFundamentalPhase

Function
Returns a waveform representing the phase difference between the cycle
fundamentals of two signals for each detected cycle in the cycle detect signal.
The phase difference is in radians from 0 to 2π.

Syntax

@CycleFundamentalPhase(Waveform1; Waveform2; CycleDetect)

Parameters

Waveform1 Input waveform 1 to be used for the calculation of the cycle
fundamental waveform 1.

Waveform2 Input waveform 2 to be used for the calculation of the cycle
fundamental waveform 2.

Cycle detect The waveform to be used as reference. This must be a
predefined @CycleDetect or @CycleInterval formula.

Output
A waveform representing the phase difference between the cycle fundamentals
of two signals for each detected cycle in the cycle detect signal. It has a value
of zero before the first and after the last detected cycle.

Description
The CycleFundamentalPhase function determines the phase of the cycle
fundamentals of two input signals with a cycle detect signal as reference. The
phase difference θ is defined as:

θ = θ1 – θ2 (rad)

where:
 θ (rad) = Phase difference in radians from 0 to 2π.
 θ1 (rad) = Phase of the cycle fundamental of input signal 1
 θ2 (rad) = Phase of the cycle fundamental of input signal 2

Example
The following example calculates the fundamental phase difference between
two sine waves. The sine wave Signal_2 is 90 degrees behind sine wave
Signal_1. The cycle detect of Signal_1 is used as reference.

Perception Analysis

I2690-9.2 en HBM: public 299

 Name Formula
 Signal_1 = @SineWave(1000;1000;5; 0)
 Signal_2 = @SineWave(1000;1000;5; -90)
 Reference = @CycleDetect(Formula.Signal_1)
 CycleFP = @CycleFundamentalPhase(Formula.Signal_1;

Formula.Signal_2; Formula.Reference)

Result:

Figure 6.5: Result of the CycleFundamentalPhase example

See Also
"@CycleDetect" on page 291 and "@CycleFundamental" on page 297

Perception Analysis

300 I2690-9.2 en HBM: public

6.10 @CycleFundamentalRMS

Function
Returns a waveform representing the RMS value of the fundamental of the
signal for each detected cycle in the cycle detect signal.

Syntax

@CycleFundamentalRMS(Waveform; CycleDetect)

Parameters

Waveform Input waveform to be used for the calculation of the cycle
fundamental RMS.

Cycle detect The waveform to be used as reference. This must be a
predefined @CycleDetect or @CycleInterval formula.

Output
Returns a waveform representing the RMS value of the fundamental of the
signal for each detected cycle in the cycle detect signal.

Description
The CycleFundamentalRMS function calculates the RMS value of the
fundamental of the signal for each detected cycle in the cycle detect signal. It
has a value of zero before the first and after the last detected cycle.

Example
The following example calculates the RMS value fundamental RMS value of
sine wave. The cycle detect of Signal_1 is used as reference.

 Name Formula
 Signal_1 = @SineSquare(1000;1000;5; 0)
 Reference = @CycleDetect(Formula.Signal_1)
 CycleFR = @CycleFundamentalRMS(Formula.Signal_1;

Formula.Reference)

Perception Analysis

I2690-9.2 en HBM: public 301

Result:

Figure 6.6: Result of the CycleFundamentalRMS example

See Also
"@CycleDetect" on page 291 and "@CycleFundamental" on page 297

Perception Analysis

302 I2690-9.2 en HBM: public

6.11 @CycleInterval

Function
Generates a square waveform with a specified interval between the high and
low states.

Syntax

@CycleInterval(Waveform; Interval; StartOffset)

Settings

Waveform Waveform to be used as a reference.
Interval Number: time in seconds representing the half-period of the

output square waveform.
StartOffset Number: time in seconds indicating a shift of the output signal

on the X-axis. The default value is 0.

Output
A square waveform with 50% duty cycle. The duration between the start of a
high pulse and the end of the following low pulse is equal to 2*Interval.

The output of this formula is equivalent to the output of the @SquareWave
formula when the @CycleInterval formula has been defined with the
appropriate parameters.

Description
The reference Waveform parameter is only used to determine the start time of
the signal and to use it as the start time of the output waveform.

The StartOffset parameter is optional. If the StartOffset is defined, the start time
of the output waveform is calculated by adding the StartOffset to the start time
of the reference Waveform.

This formula can be used as the reference waveform parameter for the other
Cycle formulas. The result is that all the cycles of the calculated math function
have the same duration, i.e. they constantly operate on the same amount of
samples.

Example
Assume that signal Ch_A1 is recorded at a sampling frequency of 1 MS/s, and
it contains 1 MSamples. Then the formula

Perception Analysis

I2690-9.2 en HBM: public 303

 ci = @CycleInterval(Group1.Recorder_A.Ch_A1; 0.1)
is equivalent to the formula:
 sw = @SquareWave(1000000; 1000000; 5)

Assuming that Ch_A1 starts at 0 s, this formula will indicate that the cycle start
times are located at times 0.2 s, 0.4 s, 0.6 s, 0.8 s, etc.

The formula can be used to calculate a math function on the signal Ch_A1,
using a constant cycle length of 2*100 = 200 ms from the start of the recording
– which is equivalent to 200 kSamples (= 1 MS/s * 0.2 s) of the input signal.

See Also
"@CycleDetect" on page 291

Perception Analysis

304 I2690-9.2 en HBM: public

6.12 @CycleLevel

Function
Returns a waveform that uses the value of the input signal at the start of a cycle
of the reference signal and repeats that value (sample and hold) during half,
one or multiple cycles of that reference signal.

Syntax

@CycleLevel(Waveform; Cycles; ReferenceWaveform)

Parameter

Waveform Input waveform to be used for the input samples.
Cycles Number of cycles of the reference waveform to repeat

the same output value.
Possible values: 0.5, 1, 2, 3, etc..

ReferenceWaveform Waveform to be used as a reference to detect cycles.

Output
A waveform that uses the value of the input signal at the start of a cycle of the
reference signal and repeats that value during half, one or multiple cycles of
that reference signal.
The waveform value is zero before the first cycle begins and after the last one
ends.

Description
For a range of input samples y(k1) to y(k2), where k1 and k2 are the indices
defined by the detected cycle, the output samples y'(k1) to y'(k2) will be
assigned the value of y(k1).

The Cycles and ReferenceWaveform parameters are optional.

If the Cycles parameter is omitted, the default value is 1. A value of 0.5 indicates
half a cycle of the reference signal.

If the ReferenceWaveform parameter is omitted, a CycleDetect formula is
created for the input Waveform.

In order to improve performance in case the same cycle reference signal is
needed for multiple functions, you can generate the block cycle signal yourself
using the CycleDetect function, and pass it as a reference waveform.

Perception Analysis

I2690-9.2 en HBM: public 305

Example
The following example calculates an output signal where the ‘y’ value is set to
a new ‘y’ value at each zero crossing of the second signal (sig2). The ‘y’ value
is set to the ‘y’ value of the first signal (sig1) at the zero crossing point.
The waveform value is zero before the first cycle begins and after the last one
ends.

 sig1 = @SineWave(1k;1k+1;3;90)
 sig2 = @SineWave(1k;1k+1;12)
 cd = @CycleDetect(Formula.sig2;0;0.1)
 cl = @CycleLevel(Formula.sig1;1;Formula.cd)

Result:

Figure 6.7: Result of CycleLevel example

See Also
"@CycleMax" on page 307, "@CycleMean" on page 308 and "@CycleMin"
on page 310.

Perception Analysis

306 I2690-9.2 en HBM: public

6.13 @CycleMax

Function
Calculates the maximum value in every cycle detected on a reference signal.

Syntax

@CycleMax(Waveform; Cycles; ReferenceWaveform)

Parameters

Waveform Input waveform to be used for calculation of math
function.

Cycles Number of cycles of the reference waveform used to
calculate one output value.

ReferenceWaveform Waveform to be used as a reference to detect cycles.

Output
A waveform which contains the maximum value of every detected cycle. The
waveform value is zero before the first cycle begins and after the last one ends.

Description
For a range of input samples y(k1) to y(k2), where k1 and k2 are the indices
defined by the detected cycle, if sample y(k) is the maximum (where k1≤k≤k2),
the output samples y'(k1) to y'(k2) will be assigned the value of y(k).

The Cycles and ReferenceWaveform parameters are optional.

If the Cycles parameter is omitted, the default value is 1.

If the ReferenceWaveform parameter is omitted, a CycleDetect formula is
created for the input Waveform.

See Also
"@Max" on page 142

Perception Analysis

I2690-9.2 en HBM: public 307

6.14 @CycleMean

Function
Calculates the mean value in every cycle detected on a reference signal.

Syntax

@CycleMean(Waveform; Cycles; ReferenceWaveform)

Parameters

Waveform Input waveform to be used for calculation of math
function.

Cycles Number of cycles of the reference waveform used to
calculate one output value.

ReferenceWaveform Waveform to be used as a reference to detect cycles.

Output
A waveform which contains the mean value of every detected cycle. The
waveform value is zero before the first cycle begins and after the last one ends.

Description
The formula performs the following operation:

For a range of input samples y(k1) to y(k2), where k1 and k2 are the indices
defined by the detected cycle, the output samples y'(k1) to y'(k2) will be assigned
the value:

Mean = 1

N

k2

k = k1

y(k)§

N = k2 – k1 + 1

The start and end indices (k1 and k2) for these segments ("cycles") are
calculated from the level crossing times determined by the CycleDetect
algorithm, which is applied on the ReferenceWaveform.

The Cycles and ReferenceWaveform parameters are optional.

If the Cycles parameter is omitted, the default value is 1.

Perception Analysis

308 I2690-9.2 en HBM: public

If the ReferenceWaveform parameter is omitted, a CycleDetect formula is
created for the input Waveform.

See Also
"@Mean" on page 147

Perception Analysis

I2690-9.2 en HBM: public 309

6.15 @CycleMin

Function
Calculates the minimum value in every cycle detected on a reference signal.

Syntax

@CycleMin(Waveform; Cycles; ReferenceWaveform)

Parameters

Waveform Input waveform to be used for calculation of math
function.

Cycles Number of cycles of the reference waveform used to
calculate one output value.

ReferenceWaveform Waveform to be used as a reference to detect cycles.

Output
A waveform which contains the minimum value of every detected cycle. The
waveform value is zero before the first cycle begins and after the last one ends.

Description
For a range of input samples y(k1) to y(k2), where k1 and k2 are the indices
defined by the detected cycle, if sample y(k) is the minimum (where k1≤k≤k2),
the output samples y'(k1) to y'(k2) will be assigned the value of y(k).

The Cycles and ReferenceWaveform parameters are optional.

If the Cycles parameter is omitted, the default value is 1.

If the ReferenceWaveform parameter is omitted, a CycleDetect formula is
created for the input Waveform.

See Also
"@Min" on page 152

Perception Analysis

310 I2690-9.2 en HBM: public

6.16 @CyclePeriod

Function
Calculates the period of every cycle detected on a reference signal.

Syntax

@CyclePeriod(Waveform; Cycles; ReferenceWaveform)

Parameters

Waveform Input waveform to be used for calculation of math
function.

Cycles Number of cycles of the reference waveform used to
calculate one output value.

ReferenceWaveform Waveform to be used as a reference to detect cycles.

Output
A waveform which contains the period of every detected cycle. The waveform
value is zero before the first cycle begins and after the last one ends.

Description
This function is the inverse of the @CycleFrequency function. If the parameters
given for the two functions are identical and the output of @CycleFrequency is
F at time t, the output of @CyclePeriod at time t will then be T = 1/F.

The Cycles and ReferenceWaveform parameters are optional.

If the Cycles parameter is omitted, the default value is 1.

If the ReferenceWaveform parameter is omitted, a CycleDetect formula is
created for the input Waveform.

See Also
"@Period" on page 166,"@CycleFrequency" on page 295

Perception Analysis

I2690-9.2 en HBM: public 311

6.17 @CyclePhase

Function
Calculates the phase difference θ between two waveforms based on the rising
edge level crossings of the two waveforms.

Syntax

@CyclePhase(InputWaveform; ReferenceWaveform)

Parameters

InputWaveform The waveform to be used to determine the time tθ. This
can be an analog or digital channel or a predefined
@CycleDetect formula.

RerenceWaveform The waveform to be used as reference for the
calculation of level crossing times and cycle period
Tθ. This can be an analog or digital channel or a
predefined @CycleDetect or @CycleInterval formula.

Output
A waveform containing the phase difference for each detected cycle of the
reference waveform. It has a value of zero before the first and after the last
rising edge level crossing of the reference waveform. If for a cycle no rising
edge level crossing is found for the input waveform the phase difference is
undefined for this cycle.

Description
The CyclePhase function calculates the phase difference θ between two
waveforms based on the rising edge level crossings of the two waveforms.

The phase difference θ is defined as:

θ = 2 π * t θ / T θ (r a d)

where:
 Tθ (s) = Cycle period of the reference signal.
 tθ (s) = Time between a rising edge level crossing of the reference signal

and the first following rising edge level crossing of the input signal
which lies in Tθ.

For faster results, use manually created @CycleDetect or @CycleInterval
formulas for the signal and the reference signal and use these as input signals
for the CyclePhase function.

Perception Analysis

312 I2690-9.2 en HBM: public

Example
The following example calculates the phase difference between two sine
waves. The sine wave Signal is 90 degrees behind sine wave Reference.

 Name Formula
 Signal = @SineWave(1000;1000;5; -90)
 Reference = @SineWave(1000;1000;5)
 CyclePhase = @CyclePhase(Formula.Signal;Formula.

Reference)

Result:

Figure 6.8: Result of the CyclePhase example

See Also
"@CycleDetect" on page 291

Perception Analysis

I2690-9.2 en HBM: public 313

6.18 @CycleRPM

Function
Calculates the revolutions per minute (RPM) of every cycle detected on a
reference signal.

Syntax

@CycleRPM(Waveform; Cycles; ReferenceWaveform)

Parameters

Waveform Input waveform representing angular position in
degrees.

Cycles Number of cycles of the reference waveform used to
calculate one output value.

ReferenceWaveform Waveform to be used as a reference to detect cycles.

Output
Waveform representing the RPM value for each detected cycle of the source
channel.

Description
The revolutions per minute (RPM) is calculated by determining the amount of
angular rotation of the waveform that represents the angular position over the
time periods that are defined by the detected cycles.

The Cycles and ReferenceWaveform parameters are optional.
If the Cycles parameter is omitted, the default value is 1.
If the ReferenceWaveform parameter is omitted, a CycleDetect formula is
created for the input Waveform.

Example
Given that the input signal is available as Formula.input, the function
@CycleDetect determines the zero level crossings which are used by the
@CycleRPM function to determine the RPM value for each detected cycle:

 Name Formula
 cd = @CycleDetect(Formula.input; 0.0, 0.1)
 rpm = @CycleRPM(Formula.input; 1; Formula.cd)

See Also
"@CycleDetect" on page 291

Perception Analysis

314 I2690-9.2 en HBM: public

6.19 @CycleRMS

Function
Calculates the root mean square value of every cycle detected on a reference
signal.

Syntax

@CycleRMS(Waveform; Cycles; ReferenceWaveform)

Parameters

Waveform Input waveform to be used for calculation of math
function.

Cycles Number of cycles of the reference waveform used to
calculate one output value.

ReferenceWaveform Waveform to be used as a reference to detect cycles.

Output
A waveform which contains the RMS value of every detected cycle. The
waveform value is zero before the first cycle begins and after the last one ends.

Description
For a range of input samples y(k1) to y(k2), where k1 and k2 are the indices
defined by the detected cycle, the output samples y’(k1) to y’(k2) will be assigned
the value:

RMS =
1

N

k2

k = k1

(y(k))2§

N = k2 – k1 + 1

The start and end indices (k1 and k2) for these segments ("cycles") are
calculated from the level crossing times determined by the CycleDetect
algorithm, which is applied on the ReferenceWaveform.

The Cycles and ReferenceWaveform parameters are optional.

If the Cycles parameter is omitted, the default value is 1.

Perception Analysis

I2690-9.2 en HBM: public 315

If the ReferenceWaveform parameter is omitted, a CycleDetect formula is
created for the input Waveform.

See Also
"@RMS" on page 198

Perception Analysis

316 I2690-9.2 en HBM: public

6.20 @CycleStdDev

Function
Calculates the standard deviation of every cycle detected on a reference
signal.

Syntax

@CycleStdDev(Waveform; Cycles; ReferenceWaveform)

Parameters

Waveform Input waveform to be used for calculation of math
function.

Cycles Number of cycles of the reference waveform used to
calculate one output value.

ReferenceWaveform Waveform to be used as a reference to detect cycles.

Output
A waveform which contains the standard deviation from the mean value of every
detected cycle. The waveform value is zero before the first cycle begins and
after the last one ends.

Description
For a range of input samples y(k1) to y(k2), where k1 and k2 are the indices
defined by the detected cycle, the output samples y'(k1) to y'(k2) will be assigned
the value:

StdDev = 1

N

k2

k=k1

(y(k) y)2§ {

y = 1

N

k2

k=k1

y(k)§

N = k2 – k1 + 1

The start and end indices (k1 and k2) for these segments ("cycles") are
calculated from the level crossing times determined by the CycleDetect
algorithm, which is applied on the ReferenceWaveform.

Perception Analysis

I2690-9.2 en HBM: public 317

The Cycles and ReferenceWaveform parameters are optional.

If the Cycles parameter is omitted, the default value is 1.

If the ReferenceWaveform parameter is omitted, a CycleDetect formula is
created for the input Waveform.

See Also
"@StdDev" on page 213

Perception Analysis

318 I2690-9.2 en HBM: public

6.21 @CycleTHD

Function
Calculates the Total Harmonic Distortion (THD) of every cycle detected on
a reference signal.

Syntax

@CycleTHD(Waveform; Cycles; ReferenceWaveform)

Parameters

Waveform Input waveform to be used for the calculation of the Cycle
THD.

Cycles Number of cycles of the reference waveform used to
calculate one output value.

ReferenceWaveform Waveform to be used as a reference to detect cycles.

Output
Waveform that contains the THD value of each detected cycle as a percentage.
The waveform value is zero before the first and after the last detected cycles.

Description
The total harmonic distortion (THD) is a measurement of the harmonic distortion
that is present in a signal. The measurement can be applied both signals that
represent voltage as well as current levels.

The THD for voltage is defined as:

2 2

Where
Vrms = Root Mean Square Voltage

V1 = Root Mean Square Voltage of the 1st Harmonic (Fundamental
frequency)

The THD for Current is defined as:

Perception Analysis

I2690-9.2 en HBM: public 319

Where
Irms = Root Mean Square Current

I1 = Root Mean Square Current of the 1st Harmonic (Fundamental frequency)

The Cycles and ReferenceWaveform parameters are optional.

If the Cycles parameter is omitted, the default value is 1.

If the ReferenceWaveform parameter is omitted, a CycleDetect formula is
created for the input Waveform.

Example
Given that the input signal is available as Formula.input, the function
@CycleDetect determines the zero level crossings which are used by the
@CycleTHD function to determine the THD value for each detected cycle:

 Name Formula
 cd = @CycleDetect(Formula.input; 0.0, 0.1)
 thd = @CycleTHD(Formula.input; 1; Formula.cd)

See Also
"@CycleDetect" on page 291 and "@CycleFundamental" on page 297.

Perception Analysis

320 I2690-9.2 en HBM: public

7 Pulse Measurement and Analysis
7.1 General

IEEE Standard Pulse Terms and Definitions
The contents of this section are based on the IEEE Std 194-1977 and IEEE Std
181-1977.

For more information visit the website of the IEEE Standards Association:
www.standards.ieee.org/

Wave, Pulse and Transition
l Wave: A modification of the physical state of a medium which propagates

in the medium as a function of time as a result of one or more disturbances.
l Pulse: A wave which departs from a first nominal state, attains a second

nominal state, and ultimately returns to the first nominal state. Throughout
the remainder of this document the term pulse is included in the term wave.

l Transition: A portion of a wave or pulse between a first nominal state.
Throughout the remainder of this document the term transition is included
in the terms pulse and wave.

Refer to the following diagram for an overview of the single pulse waveform.

Perception Analysis

I2690-9.2 en HBM: public 321

http://www.standards.ieee.org/

The Single Pulse

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
19 20

21
22 23

24 25
26

27

29

28

t
o

t
1

Magnitude origin line

Time origin line

Figure 7.1: Diagram of the single pulse waveform

1 Time origin line A line of constant and specified time which,
unless otherwise specified, has a time equal to
zero and passes through the first datum time t
0 of a waveform epoch.

2 Pulse start line Pulse Start Line. The time reference line at
pulse start time.

3 Top center point A specified time referenced point or magnitude
referenced point on a pulse wafeform top. If no
point is specified, the top center point is time
referenced point at the intersection of a pulse
waveform and the top center line.

4 Pulse stop line Pulse Stop Line. The time reference line at
pulse stop time.

5 Top magnitude The magnitude of the top as obtained by a
specified procedure or algorithm.

6 Pulse amplitude The algebraic difference between the top
magnitude and the base magnitude.

Perception Analysis

322 I2690-9.2 en HBM: public

7 Proximal (First transition
point)

A magnitude referenced point at the
intersection of a waveform and a proximal line.

8 Mesial (First transition
point)

A magnitude referenced point at the
intersection of a waveform and a mesial line.

9 Distal (First transition
point)

A magnitude referenced point at the
intersection of a waveform and a distal line.

10 Top center line The time reference line at the average of pulse
start and pulse stop time.

11 Distal (Last transition
point)

A magnitude referenced point at the
intersection of a waveform and a distal line.

12 Mesial (Last transition
point)

A magnitude referenced point at the
intersection of a waveform and a mesial line.

13 Proximal (Last transition
point)

A magnitude referenced point at the
intersection of a waveform and a proximal line.

14 Top line The magnitude reference line at the top
magnitude.

15 Distal line A magnitude reference line at a specified
magnitude in the distal region of a pulse
waveform. Unless otherwise specified, the
distal line is at the 90 percent reference
magnitude.

16 Mesial line A magnitude reference line at a specified
magnitude in the mesial region of a pulse
waveform. Unless otherwise specified, the
mesial line is at the 50 percent reference
magnitude.

17 Proximal line A magnitude reference line at a specified
magnitude in the proximal region of a pulse
waveform. Unless otherwise specified, the
proximal line is at the 10 percent reference
magnitude.

18 Baseline The magnitude reference line at the base
magnitude.

19 First base point Unless otherwise specified, the first datum
point in a pulse epoch.

20 Last base point Unless otherwise specified, the last datum
point in a pulse epoch.

21 Base magnitude The magnitude of the base as obtained by a
specified procedure or algorithm. Unless
otherwise specified, both portions of the base
are included in the procedure or algorithm.

22 First transit duration The transit duration of the first transition
waveform in a pulse waveform.

Perception Analysis

I2690-9.2 en HBM: public 323

23 Last transit duration The transit duration of the last transition
waveform in a pulse waveform.

24 Pulse start time The instant specified by a magnitude
referenced point on the first transition of a
pulse waveform. Unless otherwise specified,
the pulse start time is at the mesial point on the
first transition.

25 Pulse duration The duration between pulse start time and
pulse stop time.

26 Offset The algebraic difference between two
specified magnitude reference lines. Unless
otherwise specified, the two magnitude
reference lines are the waveform baseline and
the magnitude origin line.

27 Pulse stop time The instant specified by a magnitude
referenced point on the last transition of a
pulse waveform. Unless otherwise specified,
the pulse stop time is at the mesial point on the
last transition.

28 Magnitude origin line A line of specified magnitude which, unless
otherwise specified, has a magnitude equal to
zero and extends through the waveform
epoch.

29 Pulse waveform epoch The span of time for which wafeform data are
known or knowable. A waveform epoch
manifested by equations may extend in time
from – infinity to + infinity or, like all waveform
data, may extend from a first datum time to 0
to a second datum time t 1.

Perception Analysis

324 I2690-9.2 en HBM: public

8 IIR Filters
8.1 Introduction

The Perception formula database contains a series of IIR filters. These filters
implement a class that filters the input sequence using the direct form IIR
filter specified by the feedback and feedforward coefficients. IIR is an
abbreviation of Infinite Impulse Response. The relation between the output and
input signal looks like the following formula Figure 8.1.

y(n) =
N

k =0

b xk (n k)
N

k =1

aky(n k)§ §{ { {

Figure 8.1: Infinite Impulse Response – output, input

where:
 N = Filter order
 bi = Feedforward filter coefficients, often also called the zeros

 ai = Feedback filter coefficients, often also called the poles

 x(n) = Input signal
 y(n) = Output signal

The block diagram looks like figure Figure 8.2:

x[n] y[n]

b0

b1

b2 -a2

-aN

-a1

bN

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

∑

∑

∑

∑

∑

∑

Figure 8.2: Infinite Impulse Response – Block diagram

Perception Analysis

I2690-9.2 en HBM: public 325

All the filter formulas start with “@Filter”. The complete list of filter functions
can be find below.
 @FilterButterworthLP
 @FilterButterworthHP
 @FilterButterworthBP
 @FilterButterworthBS
 @FilterBesselLP
 @FilterBesselHP
 @FilterBesselBP
 @FilterBesselBS
 @FilterChebyshevLP
 @FilterChebyshevHP
 @FilterChebyshevBP
 @FilterChebyshevBS

Three different types of filters are available:

l Bessel
l Butterworth
l Chebyshev

For each type there is a Lowpass (LP), Highpass (HP), Bandpass (BP) and
Bandstop (BS) implementation.

8.1.1 Bessel
A Bessel filter is a type of linear filter with a maximally flat group delay
(maximally linear phase response). Bessel filter has a good step response with
very little overshoot; however the frequency response is worse than that of
Butterworth filter. Bessel filters have near linear phase response. The
applications of Bessel are where the phase relations are critical.

This filter is best used in the time domain.

It is also recommended to use a Bessel filter when the signal to be filtered
contains non sinusoidal signals like for example square waveforms or noise
and you want to use the filtered signal for timing purposes. Bessel is then the
best choice because all of the different frequency components of the original
signal will have almost the same delay after they have been filtered.

Advantages
Best step response-very little overshoot or ringing.

Perception Analysis

326 I2690-9.2 en HBM: public

Disadvantages
Slower initial rate of attenuation beyond the pass-band than Butterworth.

8.1.2 Butterworth
The Butterworth filter is a type of signal processing filter designed to have as
flat a frequency response as possible in the passband so that it is also termed
a maximally flat magnitude filter. It has a good frequency response with no
ripple; however the phase response may be quite nonlinear especially for high
order filters.

This filter is best used in the frequency domain.

If the signal to be filtered is a sinusoidal signal than Butterworth is often the best
choice, the nonlinear phase response doesn’t matter too much because we are
dealing with only one dominant frequency in the input signal, therefore the
deformation of the output signal will be minimal.

Advantages
l Maximally flat magnitude response in the pass-band.
l Good all-around performance.
l Pulse response better than Chebyshev.
l Rate of attenuation better than Bessel.

Diavantages
l Some overshoot and ringing in step response.

8.1.3 Chebyshev (Type I)
Chebyshev filters have a steeper roll-off and more passband ripple (type I) than
Butterworth filters. Chebyshev filters have the property that they minimize the
error between the idealized and the actual filter characteristic over the range of
the filter, but with ripples in the passband.

Compared to a Butterworth filter, a Chebyshev filter can achieve a sharper
transition between the passband and the stopband with a lower order filter.

This filter is best used in the frequency domain.

Advantages:
l Better rate of attenuation beyond the pass-band than Butterworth.

Diavantages:
l Ripple in pass-band.
l Considerably more ringing in step response than Butterworth.

Perception Analysis

I2690-9.2 en HBM: public 327

8.1.4 Magnitude Spectrum
The following Figure 8.3 shows the magnitude spectrums of the three different
2nd order lowpass IIR filters. The Bessel filter has the worsted frequency
response in the stop band. The Chebyshev has the steepest roll-off, but has a
ripple in the passband.

10.00

-10.00

-20.00

-30.00

-40.00

-50.00

-60.00

-70.00

-80.00

-90.00

-100.0
1.000 10.00 k100.010.00 100.0 k1.000 kFc

0.000

Frequency [Hz]

Magnitude Spectrum
M

a
g

n
it

u
d

e
 [

d
B

]

Passband Stopband

Bessel

Butterworth

Chebyshev

Figure 8.3: Magnitude spectrum of lowpass filters

Perception Analysis

328 I2690-9.2 en HBM: public

Figure 8.4 shows the passband of the three different filters.

2.000

1.000

0.000

-1.000

-2.000

-3.000
0.000 40.00 60.00 80.0020.00 100.0 120.0 140.0 160.0 180.0 200.0

Frequency [Hz]

Magnitude Spectrum Passband 2nd order filters

M
a

g
n

it
u

d
e

 [
d

B
]

Bessel

Butterworth

Chebyshev

Figure 8.4: Magnitude Spectrum Passband of filters

Perception Analysis

I2690-9.2 en HBM: public 329

Figure 8.5 shows the stopband of the three filters.

5.000

-5.000

-10.00

-15.00

-20.00

-25.00

-30.00

-35.00
100.0 1.000 kFc

0.000

Frequency [Hz]

Magnitude Spectrum 2nd order filters

M
a

g
n

it
u

d
e

 [
d

B
]

Passband Stopband

Bessel

Butterworth

Chebyshev

Figure 8.5: Magnitude Spectrum – stopband

Perception Analysis

330 I2690-9.2 en HBM: public

8.1.5 Impulse Response
The following Figure 8.6 shows the Impulse response of the three different
2nd order lowpass IIR filters. The Bessel filter provides the best impulse
response.

0ms 2ms 4ms 6ms 8ms

Bessel
Butterworth
Chebyshev

Figure 8.6: Impulse response of lowpass filters

Perception Analysis

I2690-9.2 en HBM: public 331

8.1.6 Step Response
Figure 8.7 below shows the step response of the three different 2nd order
lowpass IIR filters.

0ms 2ms 4ms 6ms

Bessel
Butterworth
Chebyshev

Figure 8.7: Step response of lowpass filters

Again the Bessel filter gives the best step response. The above impulse and
step responses can be reconstructed by using the following formulas:

Figure 8.8: Filter response

Perception Analysis

332 I2690-9.2 en HBM: public

The above formulas can also be used to examine the step and impulse
responses of any filter you can create with the current filter formulas of
Perception.

8.1.7 Phaseless Filtering
Phaseless filtering is done by using the reverse order technique. This technique
filters the signal twice. The order of the used filter is half of the entered order
value (Order/2). During the first step the signal will be filtered as usual, during
the second step the filtered output will be filtered again using the same filter but
the data points will go through the filter in reverse order. Because we use the
filter twice the overall filter order will be equal to the entered order value
(Order). If the entered order is an odd value than the filter order will be the first
even value below this odd value. If for example the entered order value is 7
then the filter will have an order value of 6. The phase shift of the filtered signal
will be zero, see Figure 8.9.

180.0

-20.00

-40.00

-60.00

-80.00

-100.0

-120.0

-140.0

-160.0

-180.0
1.000 1.000 k100.010.00 10.00 k

160.0

140.0

120.0

100.0

80.00

60.00

40.00

20.00

0.000

Frequency [Hz]

Phase Response

M
a

g
n

it
u

d
e

 [
d

B
]

Butterworth 2nd order lowpass with Fc = 200Hz

Not Phaseless

Phaseless

Figure 8.9: Phase response of filters

There will be a difference between the magnitude spectrums of the phaseless
and not phaseless filters. This difference is because the phaseless filter is the
result of filtering with a filter with half the order twice, therefore the attenuation
at the cutoff frequency is not -3 dB but -6 dB, see Figure 8.10.

Perception Analysis

I2690-9.2 en HBM: public 333

3.000

-3.000

-6.000

-9.000

-12.00

-15.00

-18.00

-21.00

-24.00

-27.00

-30.00

-33.00

-36.00

-39.00
1.000 1.000 k100.010.00 10.00 k

0.000

Frequency [Hz]

Magnitude Spectrum

M
a

g
n

it
u

d
e

 [
d

B
]

Butterworth 2nd order lowpass with Fc = 200Hz

Not Phaseless

Phaseless

-6dB

-3dB

Figure 8.10: Magnitude Spectrum - Attenuation

8.1.8 Importance of sampling rate and cutoff frequency
It is important to know the influence off the sampling rate of a discrete signal to
be filtered and the filter cutoff frequency. The sampling rate must be at least
twice the cutoff frequency, this is also known as the Nyquist frequency.

The filter magnitude curve will also be influenced by the sampling frequency. A
second order filter has a roll-off of 12 dB/Octave or 40 dB/Decade, however for
frequencies near half the sampling rate the filter behaves different, see
Figure 8.11. You should be aware of this difference if you want to compare
digital filtering with analog filtering. Analog filters roll off with a constant slope
for the complete stopband.

Perception Analysis

334 I2690-9.2 en HBM: public

10.00

-10.00

-20.00

-30.00

-40.00

-50.00

-60.00

-70.00

-80.00

-90.00

-100.0
1.000 10.00 k100.010.00 100.0 k1.000 k

0.000

Frequency [Hz]

Magnitude Spectrum

M
a

g
n

it
u

d
e

 [
d

B
]

Butterworth 2nd order lowpass with Fc = 200Hz

Fs = 20kHz
Fs = 1kHz

Roll of 40dB/Decade40dB

1 Decade

Figure 8.11: Frequencies at half sample rate

Perception Analysis

I2690-9.2 en HBM: public 335

Index
A

Abs ... 53
ACosine .. 54
Analysis .. 11

Constants .. 16
Formula sheet ... 13
Functions ... 17
Load Formulas .. 30
Modifying layout .. 18
Operators .. 13
Print Formulas ... 31
Save Formulas .. 31
Tools .. 13
Variables ... 16

And ... 55
Area .. 56
Arithmetic Operations

Addition ... 43
Division .. 49
Modulo ... 52
Multiplication .. 47
Subtraction .. 45
Unary minus .. 51

ASine .. 58
ATan ... 59
ATan2 ... 60

B

BlockFFT .. 63

C

Clip ... 65
Comparator .. 67
Cos ... 69
Creating formulas ... 20

Entering comment ... 25
Entering formulas .. 26
Function Creator .. 20
Problems in formulas 27

CurveFitting .. 70
Cut .. 72

Cycle Math
Continuous vs. Sweep recordings 285
Formula defaults .. 285
Linear Interpolation 284
Performance .. 285

Cycle Math Formulas
CycleArea .. 286
CycleCount .. 288
CycleCrestFactor ... 289
CycleDetect ... 291
CycleEnergy .. 293
CycleFrequency .. 295
CycleFundamental 297
CycleFundamentalPhase 299
CycleFundamentalRMS 301
CycleInterval .. 303
CycleLevel ... 305
CycleMax ... 307
CycleMean .. 308
CycleMin .. 310
CyclePeriod ... 311
CycleRMS ... 315
CycleRPM ... 314
CycleStdDev .. 317
CycleTHD .. 319

Cycles ... 74

D

Diff .. 76
DQ0Transformation .. 78

E

Energy .. 82
EqualTo .. 84
Exception .. 33
Exp ... 85
ExpWave .. 86

F

FallTime .. 87
FilterBesselBP .. 101

Perception Analysis

336 I2690-9.2 en HBM: public

FilterBesselBS .. 103
FilterBesselHP .. 99
FilterBesselLP .. 97
FilterButterworthBP .. 93
FilterButterworthBS .. 95
FilterButterworthHP .. 91
FilterButterworthLP ... 89
FilterChebyshevBP ... 110
FilterChebyshevBS ... 112
FilterChebyshevLP ... 105
FormatDate .. 117
FormatTime .. 119
Formula database sheet 13
Frequency .. 115
Function Overview .. 34

Cycle Math section .. 41
HIC section .. 40

G

General ... 33
GreaterEqualThan .. 121
GreaterThan ... 122

H

HIC Formulas
Con3ms ... 266
Con3ms_T ... 268
Cum3ms .. 269
Cum3ms_T .. 271
HIC .. 272
HIC15 .. 276
HIC15EndTime .. 278
HIC15StartTime ... 277
HIC36 .. 279
HIC36EndTime .. 281
HIC36StartTime ... 280
HICEndTime .. 275
HICStartTime ... 274

Histogram ... 123

I

IEEE Standard Pulse Terms and Definitions 321
IIF ... 125
IIR Filters .. 325

Bessel .. 326
Butterworth .. 327
Chebyshev (Type I) 327
Magnitude Spectrum 328

IIRFilters
Cutoff frequency .. 334
Impulse Response 331
Phaseless Filtering 333
Sampling rate .. 334
Step Response .. 332

Information sheet, Extended (option)
Tools .. 13

Install the Analysis option 11
Integrate ... 127
IntLookUp ... 128
IntLookUp12 ... 131
Introduction ... 11

Cycle Math .. 282
Introduction - HIC ... 265
IsNaN .. 133

J

Join ... 134

L

Length .. 136
LessEqualThan .. 137
LessThan .. 138
License ... 3
Ln ... 139
Log ... 141

M

Max ... 142
MaxNum ... 144
MaxPos .. 145
Mean .. 147
MedianFilter .. 149
Min .. 152
MinNum .. 154
MinPos ... 155

Perception Analysis

I2690-9.2 en HBM: public 337

N

NextHillPos ... 157
NextLvlCross .. 159
NextValleyPos .. 161
Noise .. 163
Not .. 164

O

Or .. 165
Overview ... 34

P

Period ... 166
Pow .. 168
PrevHillPos ... 169
PrevLvlCross .. 171
PrevValleyPos .. 173
Print

Formulars .. 31
Pulse .. 175
PulseWidth ... 177

R

Ramp .. 179
ReadAsciiFile ... 181
ReadLogFile ... 183
Reduce ... 187
RefCheck .. 188
RelativeTime2Local .. 190
RelativeTime2UTC ... 192
RemoveGlitch ... 194
Res2 ... 195
RiseTime .. 196
RMS .. 198

S

SAEJ211 .. 199
Sin .. 200
SineWave ... 201
Smooth ... 202
SpaceVectorInverseTransformation 204
SpaceVectorTransformation 208

Sqrt ... 211
SquareWave ... 212
StdDev .. 213
STLX_SignalEnd .. 217
STLX_SignalStart ... 215
Sweep .. 218
SweptSineWave ... 219

T

Tan ... 221
The Single Pulse .. 322
TimeMaxAbove .. 222
TimeMaxAboveBegin 224
TimeMaxBelow ... 226
TimeMaxBelowBegin .. 228
TimeMinAbove ... 230
TimeMinAboveBegin .. 232
TimeMinBelow .. 234
TimeMinBelowBegin ... 236
TimeTotalAbove ... 238
TimeTotalAboveBegin 240
TimeTotalBelow .. 242
TimeTotalBelowBegin 244
TriggerTime .. 246
TriggerTimeToText ... 248
TrueFrequency ... 250
TrueRMS .. 252
TrueRMSRef ... 253

U

Update the key information 11

V

Value .. 255

W

Warranty ... 3
Wave, Pulse and Transition 321

X

XDelta ... 256
XDeltaHigh ... 257

Perception Analysis

338 I2690-9.2 en HBM: public

XDeltaLow .. 258
XFirst .. 259
XLast .. 260
XShift .. 261
XYArray .. 262

Y

YArray ... 264

Perception Analysis

I2690-9.2 en HBM: public 339

340 I2690-9.2 en HBM: public

Head Office
HBM
Im Tiefen See 45
64293 Darmstadt
Germany
Tel: +49 6151 8030
Email: info@hbm.com

France
HBM France SAS
46 rue du Champoreux
BP76
91542 Mennecy Cedex
Tél:+33 (0)1 69 90 63 70
Fax: +33 (0) 1 69 90 63 80
Email: info@fr.hbm.com

UK
HBM United Kingdom
1 Churchill Court, 58 Station Road
North Harrow, Middlesex, HA2 7SA
Tel: +44 (0) 208 515 6100
Email: info@uk.hbm.com

USA
HBM, Inc.
19 Bartlett Street
Marlborough, MA 01752, USA
Tel : +1 (800) 578-4260
Email: info@usa.hbm.com

PR China
HBM Sales Office
Room 2912, Jing Guang Centre
Beijing, China 100020
Tel: +86 10 6597 4006
Email: hbmchina@hbm.com.cn

© Hottinger Baldwin Messtechnik GmbH. All rights reserved.
All details describe our products in general form only.
They are not to be understood as express warranty and do
not constitute any liability whatsoever.

measure and predict with confidence I2
69

0-
9.

2
en

	Perception Analysis Option
	Table of Contents
	1 Analysis Option
	1.1 Introduction
	1.1.1 How to install the Analysis option

	1.2 Formula database sheet
	1.3 Definitions
	1.3.1 Constants
	1.3.2 Variables
	1.3.3 Functions

	1.4 Modifying the layout
	1.4.1 Add, delete and clear rows
	1.4.2 Moving around

	1.5 Creating formulas
	1.5.1 Function creator
	1.5.2 Entering comment
	1.5.3 Entering formulas
	1.5.4 Problems in formulas

	1.6 Formula menu
	1.6.1 Load Formulas
	1.6.2 Save Formulas
	1.6.3 Print Formulas
	1.6.4 Move Sheet

	2 Formula Database Functions
	2.1 General
	2.2 Overview
	2.2.1 Function Overview
	2.2.2 Funtion Overview - HIC section
	2.2.3 Function Overview - Cycle Math section

	3 Arithmetic Operations
	3.1 + (Addition)
	3.2 - (Subtraction)
	3.3 * (Multiplication)
	3.4 / (Division)
	3.5 – (Unary minus)
	3.6 @Modulo

	4 Reference Guide
	4.1 @Abs
	4.2 @ACosine
	4.3 @And
	4.4 @Area
	4.5 @ASine
	4.6 @ATan
	4.7 @ATan2
	4.8 @BlockFFT
	4.9 @Clip
	4.10 @Comparator
	4.11 @Cos
	4.12 @CurveFitting
	4.13 @Cut
	4.14 @Cycles
	4.15 @Diff
	4.16 @DQ0Transformation
	4.17 @Energy
	4.18 @EqualTo
	4.19 @Exp
	4.20 @ExpWave
	4.21 @FallTime
	4.22 @FilterButterworthLP
	4.23 @FilterButterworthHP
	4.24 @FilterButterworthBP
	4.25 @FilterButterworthBS
	4.26 @FilterBesselLP
	4.27 @FilterBesselHP
	4.28 @FilterBesselBP
	4.29 @FilterBesselBS
	4.30 @FilterChebyshevLP
	4.31 @FilterChebyshevHP
	4.32 @FilterChebyshevBP
	4.33 @FilterChebyshevBS
	4.34 @Frequency
	4.35 @FormatDate
	4.36 @FormatTime
	4.37 @GreaterEqualThan
	4.38 @GreaterThan
	4.39 @Histogram
	4.40 @IIF
	4.41 @Integrate
	4.42 @IntLookUp
	4.43 @IntLookUp12
	4.44 @IsNaN
	4.45 @Join
	4.46 @Length
	4.47 @LessEqualThan
	4.48 @LessThan
	4.49 @Ln
	4.50 @Log
	4.51 @Max
	4.52 @MaxNum
	4.53 @MaxPos
	4.54 @Mean
	4.55 @MedianFilter
	4.56 @Min
	4.57 @MinNum
	4.58 @MinPos
	4.59 @NextHillPos
	4.60 @NextLvlCross
	4.61 @NextValleyPos
	4.62 @Noise
	4.63 @Not
	4.64 @Or
	4.65 @Period
	4.66 @Pow
	4.67 @PrevHillPos
	4.68 @PrevLvlCross
	4.69 @PrevValleyPos
	4.70 @Pulse
	4.71 @PulseWidth
	4.72 @Ramp
	4.73 @ReadAsciiFile
	4.74 @ReadLogFile
	4.75 @Reduce
	4.76 @RefCheck
	4.77 @RelativeTime2Local
	4.78 @RelativeTime2UTC
	4.79 @RemoveGlitch
	4.80 @Res2
	4.81 @RiseTime
	4.82 @RMS
	4.83 @SAEJ211Filter
	4.84 @Sin
	4.85 @SineWave
	4.86 @Smooth
	4.87 @SpaceVectorInverseTransformation
	4.88 @SpaceVectorTransformation
	4.89 @Sqrt
	4.90 @SquareWave
	4.91 @StdDev
	4.92 @STLX_SignalStart
	4.93 @STLX_SignalEnd
	4.94 @Sweep
	4.95 @SweptSineWave
	4.96 @Tan
	4.97 @TimeMaxAbove
	4.98 @TimeMaxAboveBegin
	4.99 @TimeMaxBelow
	4.100 @TimeMaxBelowBegin
	4.101 @TimeMinAbove
	4.102 @TimeMinAboveBegin
	4.103 @TimeMinBelow
	4.104 @TimeMinBelowBegin
	4.105 @TimeTotalAbove
	4.106 @TimeTotalAboveBegin
	4.107 @TimeTotalBelow
	4.108 @TimeTotalBelowBegin
	4.109 @TriggerTime
	4.110 @TriggerTimeToText
	4.111 @TrueFrequency
	4.112 @TrueRMS
	4.113 @TrueRMSRef
	4.114 @Value
	4.115 @XDelta
	4.116 @XDeltaHigh
	4.117 @XDeltaLow
	4.118 @XFirst
	4.119 @XLast
	4.120 @XShift
	4.121 @XYArray
	4.122 @YArray

	5 Reference Guide - HIC
	5.1 Introduction - HIC
	5.2 @Con3ms
	5.3 @Con3ms_T
	5.4 @Cum3ms
	5.5 @Cum3ms_T
	5.6 @HIC
	5.7 @HICStartTime
	5.8 @HICEndTime
	5.9 @HIC15
	5.10 @HIC15StartTime
	5.11 @HIC15EndTime
	5.12 @HIC36
	5.13 @HIC36StartTime
	5.14 @HIC36EndTime

	6 Reference Guide - Cycle Math
	6.1 Introduction - Cycle Math
	6.2 @CycleArea
	6.3 @CycleCount
	6.4 @CycleCrestFactor
	6.5 @CycleDetect
	6.6 @CycleEnergy
	6.7 @CycleFrequency
	6.8 @CycleFundamental
	6.9 @CycleFundamentalPhase
	6.10 @CycleFundamentalRMS
	6.11 @CycleInterval
	6.12 @CycleLevel
	6.13 @CycleMax
	6.14 @CycleMean
	6.15 @CycleMin
	6.16 @CyclePeriod
	6.17 @CyclePhase
	6.18 @CycleRPM
	6.19 @CycleRMS
	6.20 @CycleStdDev
	6.21 @CycleTHD

	7 Pulse Measurement and Analysis
	7.1 General

	8 IIR Filters
	8.1 Introduction
	8.1.1 Bessel
	8.1.2 Butterworth
	8.1.3 Chebyshev (Type I)
	8.1.4 Magnitude Spectrum
	8.1.5 Impulse Response
	8.1.6 Step Response
	8.1.7 Phaseless Filtering
	8.1.8 Importance of sampling rate and cutoff frequency

	Index

