
Internet Technology
02. Network Protocol Layers & Sockets

Paul Krzyzanowski

Rutgers University

Spring 2016

1 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Protocols

2 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Whatôs in the data?

ÅFor effective communication

ïsame language, same conventions

ÅFor computers:

ïelectrical encoding of data

ïwhere is the start of the packet?

ïwhich bits contain the length?

ïis there a checksum? where is it?

how is it computed?

ïwhat is the format of an address?

ïbyte ordering

3 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Protocols

These instructions & conventions are known as protocols

Protocols encompass data formats, order of messages, responses

4 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Layering

To ease software development and maximize flexibility:

ïNetwork protocols are generally organized in layers

ïReplace one layer without replacing surrounding layers

ïHigher-level software does not have to know how to format an

Ethernet packet

 é or even know that Ethernet is being used

5 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Protocols

6

Exist at different levels

understand format of address

and how to compute a checksum

request web page

humans vs. whales

different wavelengths

French vs. Hungarian

versus

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Layering

Most popular model of guiding

(not specifying) protocol layers is

 OSI reference model

Adopted and created by ISO

7 layers of protocols

7

OSI = Open Systems Interconnection

From the ISO = International Organization for Standardization

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

OSI Reference Model: Layer 1

Transmits and receives raw data to

communication medium

Does not care about contents

Media, voltage levels, speed,

connectors

Physical 1

Examples: USB, Bluetooth, 802.11

8

Deals with representing bits

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Data Link

OSI Reference Model: Layer 2

Detects and corrects errors

Organizes data into frames before

passing it down. Sequences

packets (if necessary)

Accepts acknowledgements from

immediate receiver

Physical 1

2

Examples: Ethernet MAC, PPP

9

Deals with frames

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Network

Data Link

OSI Reference Model: Layer 3

Relay and route information to

destination

Manage journey of datagrams and

figure out intermediate hops (if

needed)

Physical 1

2

3

Examples: IP, X.25

10

Deals with datagrams

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Transport

Network

Data Link

OSI Reference Model: Layer 4

Provides an interface for end-to-
end (application-to-application)
communication: sends & receives
segments of data. Manages flow
control. May include end-to-end
reliability

Network interface is similar to a
mailbox

Physical 1

2

3

4

Examples: TCP, UDP

11

Deals with segments

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Session

Transport

Network

Data Link

OSI Reference Model: Layer 5

Services to coordinate dialogue
and manage data exchange

Software implemented switch

Manage multiple logical
connections

Keep track of who is talking:
establish & end communications

Physical 1

2

3

4

5

Examples: HTTP 1.1, SSL

12

Deals with data streams

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Presentation

Session

Transport

Network

Data Link

OSI Reference Model: Layer 6

Data representation

Concerned with the meaning of

data bits

Convert between machine

representations

Physical 1

2

3

4

5

6

Examples:
 XDR, ASN.1, MIME, XML

13

Deals with objects

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Application

Presentation

Session

Transport

Network

Data Link

OSI Reference Model: Layer 7

Collection of application-specific
protocols

Physical 1

2

3

4

5

6

7

Examples:
 web (HTTP)
 email (SMTP, POP, IMAP)
 file transfer (FTP)
 directory services (LDAP)

14

Deals with app-specific

protocols

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

IP vs. OSI stack

15

Application

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Internet protocol stack OSI protocol stack

1

2

3

4

5

6

7

1

2

3

4

5

6

7

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

A layer communicates with its counterpart

16

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical 1

2

3

4

5

6

7

Logical View

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

A layer communicates with its counterpart

17

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical 1

2

3

4

5

6

7

Logical View

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

A layer communicates with its counterpart

18

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical 1

2

3

4

5

6

7

Logical View

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

A layer communicates with its counterpart

19

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical 1

2

3

4

5

6

7

Logical View

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

But really traverses the stack

20

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical 1

2

3

4

5

6

7

Whatôs really happening

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Encapsulation

At any layer

ïThe higher level protocol headers are just treated like data

ïLower level protocol headers can be ignored

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 21

Ethernet IP TCP HTTP HTTP message

The Application Layer

22 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Writing network applications

Network applications communicate with each other over a network

ÅRegular processes running on computers

ïAny process can access the network

ÅUse a network API to communicate

ïThe app developer does not have to program the lower layers

ÅSpeak a well-defined application-layer protocol

ïIf the protocol is well-defined, the implementation language does not

matter

 E.g., Java on one side, C on the other

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 23

Application Architectures

ÅClient-server

ÅPeer-to-peer (P2P)

ÅHybrid

24 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Client-Server architecture

ÅClients send requests to a server

ÅThe server is always on and processes requests from

clients

ÅClients do not communicate with other clients

ÅExamples:

ïFTP, web, email

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 25

clients

servers

Peer-to-Peer (P2P) architecture

ÅLittle or no reliance on servers

ÅOne machine talks to another (peers)

ÅPeers are not owned by the service provider but by end

users

ÅSelf-scalability

ïSystem can process more workload as more machines join

ÅExamples

ïBitTorrent, Skype

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 26

peer

peer

peer
peer

peer

Hybrid architecture

ÅMany peer-to-peer architectures still rely on a server

ïLook up, track users

ïTrack content

ïCoordinate access

ÅBut traffic-intensive workloads are delegated to peers

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 27

servers

peer

peer

peer

peer
peer

Itôs always (mostly) client-server!

Even for P2P architectures, we may use client-server

terminology

ïClient: process making a request

ïServer: process fulfilling the request

28 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Network API

ÅApp developers need access to the network

ÅA Network Application Programming Interface (API)

provides this

ïCore services provided by the operating system

ÅOperating System controls access to resources (the network)

ïLibraries handle the rest

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 29

What do we need as programmers?

ÅReliable data transfer

ïReliable delivery of a stream of bytes from one machine to another

ïIn-order message delivery

ïLoss-tolerant applications

ÅCan handle unreliable data streams

ÅThroughput

ïBandwidth sensitive applications: require a particular bitrate

ïElastic applications: can adapt to available bitrate

ÅDelay & Jitter Control

ïJitter = variation in delay

ÅSecurity

ïAuthentication of endpoints, encryption of content, assured data

integrity

 30 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

What IP gives us

IP give us two transport protocols

ïTCP: Transmission Control Protocol

ÅConnection-oriented service

ïOperating system keeps state

ÅFull-duplex connection: both sides can send messages over the same link

ÅReliable data transfer: the protocol handles retransmission

ÅIn-order data transfer: the protocol keeps track of sequence numbers

ïUDP: User Datagram Protocol

ÅConnectionless service: lightweight transport layer over IP

ÅData may be lost

ÅData may arrive out of sequence

ÅChecksum for corrupt data: operating system drops bad packets

31 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

What IP does not give us

ÅThroughput (bandwidth) control

ÅDelay and jitter control

ÅSecurity

32

Weôll see how these were

addressed later in the

course

Usually addressed at the

application with protocols such as

SSL. Stay tuned for VPNsé

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Addressing machines

(Weôll examine IP addresses in depth later)

Machine addresses

ïWe identify machines with IP addresses: 32-bit numbers

ïExample

 cs.rutgers.edu = 128.6.4.2 = 0x80060402

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 33

0x80 0x06 0x04 0x02

Addressing applications

Communication endpoint at the machine

ïPort number: 16-bit value

ïPort number = transport endpoint

ÅAllows application-application communication

ÅIdentifies a specific data stream

ïSome services use well-known port numbers (0 ï 1023)

ÅIANA: Internet Assigned Numbers Authority (www.iana.org)

ÅAlso see the file /etc/services

 ftp: 21/TCP ssh: 22/tcp smtp: 25/tcp http: 80/tcp ntp: 123/udp

ïPorts for proprietary apps: 1024 ï 49151

ïDynamic/private ports: 49152 ï 65535

34 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

The Application Layer:

Sockets

35 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Sockets

ÅDominant API for transport layer connectivity

ÅCreated at UC Berkeley for 4.2BSD Unix (1983)

ÅDesign goals

ïCommunication between processes should not depend on whether

they are on the same machine

ïCommunication should be efficient

ïInterface should be compatible with files

ïSupport different protocols and naming conventions

ÅSockets is not just for the Internet Protocol family

36 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

What is a socket?

Abstract object from which messages are sent and received

ïLooks like a file descriptor

ïApplication can select particular style of communication

ÅStream (connection-oriented), datagram (connectionless),

message-based, in-order delivery

ïUnrelated processes should be able to locate communication

endpoints

ÅSockets can have a name

ÅName should be meaningful in the communications domain

ïE.g., Address & port for IP communications

37 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

How are sockets used?

38

Client: web browser Server: web server

Send HTTP request message

to get a page

Receive HTTP request message

Process HTTP request

Send HTTP response message

Receive HTTP response message

Display a page

ti
m

e

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Connection-Oriented (TCP) socket operations

39

Create a socket

Name the socket

(assign local address, port)

Connect to the other side

read / write byte streams

close the socket

Create a socket

Name the socket

(assign local address, port)

Set the socket for listening

Wait for and accept a

connection; get a socket for

the connection

close the socket

read / write byte streams

close the listening socket

Client
Server

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Connectionless (UDP) socket operations

40

Create a socket

Name the socket

(assign local address, port)

Send a message

Receive a message

close the socket

Create a socket

Name the socket

(assign local address, port)

close the socket

Send a message

Receive a message

Client Server

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

The sockets system call interface

41 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

POSIX system call interface

42

System call Function

socket Create a socket

bind Associate an address with a socket

listen Set the socket to listen for connections

accept Wait for incoming connections

connect Connect to a socket on the server

read/write,

sendto/recvfrom,

sendmsg/recvmsg

Exchange data

close/shutdown Close the connection

s
e

rv
e

r
c
lie

n
t

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Step 1 (client & server)

Create a socket

int s = socket (domain, type, protocol)

AF_INET SOCK_STREAM

SOCK_DGRAM
useful if some families have

more than one protocol to

support a given service.

0: unspecified

Conceptually similar to open BUT

- open creates a new reference to a possibly existing object

- socket creates a new instance of an object

Address Family: group of

protocols for communication.

AF_INET is for IPv4

AF_INET6 is IPv6

AF_BTH is Bluetooth

Type of protocol within the family.

SOCK_STREAM: reliable, in-order, 2-way.

TCP/IP

SOCK_DGRAM: datagrams (UDP/IP)

SOCK_RAW: ñrawò ï allows app to modify

the network layer header

New socket

43 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Step 2 (client & server)

Name the socket (assign address, port)

int error = bind (s, addr, addrlen)

socket Address structure

struct sockaddr*

length of address

structure

The socket from the socket

system call.
This is a data structure that

makes sense for whatever

address family you selected.

Naming for an IP socket is the process of assigning our address to the socket.

The address is the full transport address: the IP address of the network interface

as well as the UDP or TCP port number

44 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Step 3a (server)

Set socket to be able to accept connections

int error = listen (s, backlog)

socket queue length for pending

connections

The socket from the socket

system call.

Number of connections youôll allow between

accept system calls

The socket that the server created with socket is now configured to accept new

connections. This socket will only be used for accepting connections. Data will

flow onto another socket.

45 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Step 3b (server)

Wait for a connection from client

int snew = accept (s, clntaddr, &clntalen)

socket pointer to address structure length of address

structure

Block the process until an incoming connection comes in.

This tells you where the socket

came from: full transport

address.

new socket

for this communication session

46

This is the listening

socket

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Step 3 (client)

Connect to server

int error = connect (s, svraddr, svraddrlen)

socket address structure

struct sockaddr*

length of address

structure

The socket from which weôre

connecting.
Full transport address of the

destination: address and port

number of the service.

The client can send a connection request to the server once the server did

a listen and is waiting for accept.

47 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Step 4. Exchange data

read/write system calls (same as for file systems)

send/recv system calls

 int send(int s, void *msg, int len, uint flags);

 int recv(int s, void *buf, int len, uint flags);

sendto/recvfrom system calls

 int sendto(int s, void *msg, int len, uint flags,

 struct sockaddr *to, int tolen);

 int recvfrom(int s, void *buf, int len, uint flags,

 struct sockaddr *from, int *fromlen)

sendmsg/recvmsg system calls

 int sendmsg(int s, struct msghdr *msg, uint flags);

 int recvmsg(int s, struct msghdr *msg, uint flags);

fo
r

c
o
n
n
e
c
ti
o
n

-o
ri
e
n
te

d

s
e
rv

ic
e

Like read and write but these

support extra flags, such as

bypassing routing or processing out

of band data. Not all sockets

support these.

If weôre using UDP

(connectionless), we donôt

need to do connect, listen,

accept. These calls allows

you to specify the

destination address

(sendto, sendmsg) to send

a message and get the

source address (recvfrom,

recvmsg) when receiving a

message.

48 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Step 5

Close connection

shutdown(s, how)

how:

SHUT_RD (0): can send but not receive

SHUT_WR (1): cannot send more data

SHUT_RDWR (2): cannot send or receive (=0+1)

You can use the regular close system call too, which does a complete

shutdown, the same as shutdown(s, SHUT_RDWR).

49 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Java provides shortcuts that combine calls

Example

50

Socket s = new Socket(ñwww.rutgers.eduò, 2211)

int s = socket(AF_INET, SOCK_STREAM, 0);

struct sockaddr_in myaddr; /* initialize address structure */

myaddr.sin_family = AF_INET;

myaddr.sin_addr.s_addr = htonl(INADDR_ANY);

myaddr.sin_port = htons(0);

bind(s, (struct sockaddr *)&myaddr, sizeof(myaddr));

/* look up the server's address

struct hostent *hp; /* host information */

struct sockaddr_in servaddr; /* server address */

memset((char*)&servaddr, 0, sizeof(servaddr));

servaddr.sin_family = AF_INET;

servaddr.sin_port = htons(2211);

hp = gethostbyname(ñwww.rutgers.eduò);

if (connect(fd, (struct sockaddr *)&servaddr, sizeof(servaddr)) < 0) {

 /* connect failed */

}

Java

C

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Using sockets in Java

Åjava.net package

ïSocket class

ÅDeals with sockets used for TCP/IP communication

ïServerSocket class

ÅDeals with sockets used for accepting connections

ïDatagramSocket class

ÅDeals with datagram packets (UDP/IP)

ÅBoth Socket and ServerSocket rely on the SocketImpl

class to actually implement sockets

ïBut you donôt have to think about that as a programmer

51 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Create a socket for listening: server

Server:

ïcreate, name, and listen are combined into one method

ïServerSocket constructor

Several other flavors (see API reference)

52

ServerSocket svc = new ServerSocket (80, 5);

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

backlog port

1. Server: create a socket for listening

53

Client: web browser Server: web server

Send HTTP request message

to get a page
Receive HTTP request message

Process HTTP request

Send HTTP response message

Receive HTTP response message

Display a page

ti
m

e

Server Socket svc = new ServerSocket(80, 5);

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Server: wait for (accept) a connection

Åaccept method of ServerSocket

ïblock until connection arrives

ïreturn a Socket

This is a new socket for this ñconnectionò

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 54

ServerSocket svc = new ServerSocket (80, 5);

Socket req = svc. accept ();

2. Server: wait for a connection (blocking)

55

Client: web browser Server: web server

Send HTTP request message

to get a page
Receive HTTP request message

Process HTTP request

Send HTTP response message

Receive HTTP response message

Display a page

ti
m

e

Server Socket svc = new ServerSocket(80);

Socket req = svc.accept();

Block until an incoming connection comes in

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

Create a socket: client

Client:

ïcreate, name, and connect operations are combined into one

method

ïSocket constructor

Several other flavors (see API reference)

56

host port

Socket s = new Socket (www.rutgers.edu , 2211);

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

3. Client: connect to server socket (blocking)

57

Client: web browser Server: web server

ti
m

e

Send HTTP request message

to get a page

Receive HTTP request message

Process HTTP request

Send HTTP response message
Receive HTTP response message

Display a page

Server Socket svc = new ServerSocket(80, 5);

Blocks until connection is set up

Socket req = svc.accept();
Socket s = new Socket(ñpk.orgò, 80);

Receive connection request from client

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

3a. Connection accepted

58

Client: web browser Server: web server

Send HTTP request message

to get a page

Receive HTTP request message

Process HTTP request

Send HTTP response message
Receive HTTP response message

Display a page

ti
m

e

Server Socket svc = new ServerSocket(80, 5);

Socket s = new Socket(ñpk.orgò, 80);

Connection is established Connection is accepted

Socket req = svc.accept();

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016

