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FROM THE AUTHOR’S PREFACE TO THE FIRST
EDITION

EINSTEIN’S Theory of Relativity has advanced our ideas of the
structure of the cosmos a step further. It is as if a wall which sep-
arated us from Truth has collapsed. Wider expanses and greater
depths are now exposed to the searching eye of knowledge, regions
of which we had not even a presentiment. It has brought us much
nearer to grasping the plan that underlies all physical happening.

Although very recently a whole series of more or less popular
introductions into the general theory of relativity has appeared,
nevertheless a systematic presentation was lacking. I therefore
considered it appropriate to publish the following lectures which
I gave in the Summer Term of 1917 at the Fidgen. Technische
Hochschule in Ziirich. At the same time it was my wish to present
this great subject as an illustration of the intermingling of philo-
sophical, mathematical, and physical thought, a study which is
dear to my heart. This could be done only by building up the
theory systematically from the foundations, and by restricting at-
tention throughout to the principles. But I have not been able to
satisfy these self-imposed requirements: the mathematician pre-
dominates at the expense of the philosopher.

The theoretical equipment demanded of the reader at the out-
set is a minimum. Not only is the special theory of relativity dealt
with exhaustively, but even Maxwell’s theory and analytical ge-
ometry are developed in their main essentials. This was a part
of the whole scheme. The setting up of the Tensor Calculus—by
means of which, alone, it is possible to express adequately the
physical knowledge under discussion—occupies a relatively large
amount of space. It is therefore hoped that the book will be found



suit able for making physicists better acquainted with this math-
ematical instrument, and also that it will serve as a text-book for
students and win their sympathy for the new ideas.

HERMANN WEYL
RiBBITZ IN MECKLENBURG
Faster, 1918

PREFACE TO THE THIRD EDITION

ALTHOUGH this book offers fruits of knowledge in a refrac-
tory shell, yet communications that have reached me have shown
that to some it has been a source of comfort in troublous times.
To gaze up from the ruins of the oppressive present towards the
stars is to recognise the indestructible world of laws, to strengthen
faith in reason, to realise the “harmonia mundi”’ that transfuses
all phenomena, and that never has been, nor will be, disturbed.

My endeavour in this third edition has been to attune this har-
mony more perfectly. Whereas the second edition was a reprint
of the first, I have now undertaken a thorough revision which af-
fects Chapters II and IV above all. The discovery by Levi-Civita,
in 1917, of the conception of infinitesimal parallel displacements
suggested a renewed examination of the mathematical foundation
of Riemann’s geometry. The development of pure infinitesimal
geometry in Chapter II, in which every step follows quite natu-
rally, clearly, and necessarily, from the preceding one, is, I believe,
the final result of this investigation as far as the essentials are
concerned. Several shortcomings that were present in my first
account in the Mathematische Zeitschrift (Bd. 2, 1918) have now



been eliminated. Chapter IV, which is in the main devoted to Ein-
stein’s Theory of Gravitation has, in consideration of the various
important works that have appeared in the meanwhile, in partic-
ular those that refer to the Principle of Energy-Momentum, been
subjected to a very considerable revision. Furthermore, a new
theory by the author has been added, which draws the physical
inferences consequent on the extension of the foundations of geom-
etry beyond Riemann, as shown in Chapter II, and represents an
attempt to derive from world-geometry not only gravitational but
also electromagnetic phenomena. Even if this theory is still only
in its infant stage, I feel convinced that it contains no less truth
than Einstein’s Theory of Gravitation—whether this amount of
truth is unlimited or, what is more probable, is bounded by the
Quantum Theory.

I wish to thank Mr. Weinstein for his help in correcting the
proof-sheets.

HERMANN WEYL
ACLA POZzZOLI, NEAR SAMADEN
August, 1919

PREFACE TO THE FOURTH EDITION

IN this edition the book has on the whole preserved its general
form, but there are a number of small changes and additions, the
most important of which are: (1) A paragraph added to Chapter I1
in which the problem of space is formulated in conformity with the
view of the Theory of Groups; we endeavour to arrive at an un-
derstanding of the inner necessity and uniqueness of Pythagorean
space metrics based on a quadratic differential form. (2) We show



that the reason that Einstein arrives necessarily at uniquely de-
termined gravitational equations is that the scalar of curvature is
the only invariant having a certain character in Riemann’s space.
(3) In Chapter IV the more recent experimental researches dealing
with the general theory of relativity are taken into consideration,
particularly the deflection of rays of light by the gravitational field
of the sun, as was shown during the solar eclipse of 29th May,
1919, the results of which aroused great interest in the theory on
all sides. (4) With Mie’s view of matter there is contrasted an-
other (vide particularly §32 and §36), according to which matter
is a limiting singularity of the field, but charges and masses are
force-fluxes in the field. This entails a new and more cautious
attitude towards the whole problem of matter.

Thanks are due to various known and unknown readers for
pointing out desirable modifications, and to Professor Nielsen (at
Breslau) for kindly reading the proof-sheets.

HERMANN WEYL

ZURICH, November, 1920



TRANSLATOR’S NOTE

IN this rendering of Professor Weyl’s book into English, pains
have been taken to adhere as closely as possible to the original,
not only as regards the general text, but also in the choice of
English equivalents for technical expressions. For example, the
word affine has been retained. It is used by Mobius in his Der
Barycentrische Calcul, in which he quotes a Latin definition of the
term as given by Euler. Veblen and Young have used the word in
their Projective Geometry, so that it is not quite unfamiliar to En-
glish mathematicians. Abbildung, which signifies representation,
is generally rendered equally well by transformation, inasmuch as
it denotes a copy of certain elements of one space mapped out on,
or expressed in terms of, another space. In some cases the Ger-
man word is added in parenthesis for the sake of those who wish
to pursue the subject further in original papers. It is hoped that
the appearance of this English edition will lead to further efforts
towards extending Einstein’s ideas so as to embrace all physical
knowledge. Much has been achieved, yet much remains to be done.
The brilliant speculations of the latter chapters of this book show
how vast is the field that has been opened up by Einstein’s genius.
The work of translation has been a great pleasure, and I wish to
acknowledge here the courtesy with which suggestions concern-
ing the type and the symbols have been received and followed by
Messrs. Methuen & Co. Ltd. Acting on the advice of interested
mathematicians and physicists I have used Clarendon type for
the vector notation. My warm thanks are due to Professor G. H.
Hardy of New College and Mr. T. W. Chaundy, M.A., of Christ
Church, for valuable suggestions and help in looking through the
proofs. Great care has been taken to render the mathematical



text as perfect as possible.

HENRY L. BROSE
CHRIST CHURCH, OXFORD
December, 1921
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SPACE—TIME—MATTER
INTRODUCTION

SPACE and time are commonly regarded as the forms of ex-
istence of the real world, matter as its substance. A definite
portion of matter occupies a definite part of space at a definite
moment of time. It is in the composite idea of motion that these
three fundamental conceptions enter into intimate relationship.
Descartes defined the objective of the exact sciences as consisting
in the description of all happening in terms of these three fun-
damental conceptions, thus referring them to motion. Since the
human mind first wakened from slumber, and was allowed to give
itself free rein, it has never ceased to feel the profoundly mysteri-
ous nature of time-consciousness, of the progression of the world
in time,—of Becoming. It is one of those ultimate metaphysical
problems which philosophy has striven to elucidate and unravel
at every stage of its history. The Greeks made Space the subject-
matter of a science of supreme simplicity and certainty. Out of
it grew, in the mind of classical antiquity, the idea of pure sci-
ence. Geometry became one of the most powerful expressions of
that sovereignty of the intellect that inspired the thought of those
times. At a later epoch, when the intellectual despotism of the
Church, which had been maintained through the Middle Ages,
had crumbled, and a wave of scepticism threatened to sweep away
all that had seemed most fixed, those who believed in Truth clung
to Geometry as to a rock, and it was the highest ideal of ev-
ery scientist to carry on his science “more geometrico”. Matter
was imagined to be a substance involved in every change, and it
was thought that every piece of matter could be measured as a
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quantity, and that its characteristic expression as a “substance”
was the Law of Conservation of Matter which asserts that mat-
ter remains constant in amount throughout every change. This,
which has hitherto represented our knowledge of space and mat-
ter, and which was in many quarters claimed by philosophers as
a priori knowledge, absolutely general and necessary, stands to-
day a tottering structure. First, the physicists in the persons
of Faraday and Maxwell, proposed the “electromagnetic field” in
contra-distinction to matter, as a reality of a different category.
Then, during the last century, the mathematician, following a dif-
ferent line of thought, secretly undermined belief in the evidence
of Euclidean Geometry. And now, in our time, there has been un-
loosed a cataclysm which has swept away space, time, and matter
hitherto regarded as the firmest pillars of natural science, but only
to make place for a view of things of wider scope, and entailing a
deeper vision.

This revolution was promoted essentially by the thought of one
man, Albert Einstein. The working-out of the fundamental ideas
seems, at the present time, to have reached a certain conclusion;
yet, whether or not we are already faced with a new state of affairs,
we feel ourselves compelled to subject these new ideas to a close
analysis. Nor is any retreat possible. The development of scientific
thought may once again take us beyond the present achievement,
but a return to the old narrow and restricted scheme is out of the
question.

Philosophy, mathematics, and physics have each a share in the
problems presented here. We shall, however, be concerned above
all with the mathematical and physical aspect of these questions.
I shall only touch lightly on the philosophical implications for the
simple reason that in this direction nothing final has yet been
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reached, and that for my own part I am not in a position to
give such answers to the epistemological questions involved as my
conscience would allow me to uphold. The ideas to be worked out
in this book are not the result of some speculative inquiry into the
foundations of physical knowledge, but have been developed in the
ordinary course of the handling of concrete physical problems—
problems arising in the rapid development of science which has, as
it were, burst its old shell, now become too narrow. This revision
of fundamental principles was only undertaken later, and then
only to the extent necessitated by the newly formulated ideas. As
things are to-day, there is left no alternative but that the separate
sciences should each proceed along these lines dogmatically, that is
to say, should follow in good faith the paths along which they are
led by reasonable motives proper to their own peculiar methods
and special limitations. The task of shedding philosophic light on
to these questions is none the less an important one, because it
is radically different from that which falls to the lot of individual
sciences. This is the point at which the philosopher must exercise
his discretion. If he keep in view the boundary lines determined
by the difficulties inherent in these problems, he may direct, but
must not impede, the advance of sciences whose field of inquiry is
confined to the domain of concrete objects.

Nevertheless I shall begin with a few reflections of a philosoph-
ical character. As human beings engaged in the ordinary activi-
ties of our daily lives, we find ourselves confronted in our acts of
perception by material things. We ascribe a ‘“real” existence to
them, and we accept them in general as constituted, shaped, and
coloured in such and such a way, and so forth, as they appear to us
in our perception in “general,” that is ruling out possible illusions,
mirages, dreams, and hallucinations.
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These material things are immersed in, and transfused by, a
manifold, indefinite in outline, of analogous realities which unite to
form a single ever-present world of space to which I, with my own
body, belong. Let us here consider only these bodily objects, and
not all the other things of a different category, with which we as
ordinary beings are confronted; living creatures, persons, objects
of daily use, values, such entities as state, right, language, etc.
Philosophical reflection probably begins in every one of us who
is endowed with an abstract turn of mind when he first becomes
sceptical about the world-view of naive realism to which I have
briefly alluded.

It is easily seen that such a quality as “green” has an ex-
istence only as the correlate of the sensation “green” associated
with an object given by perception, but that it is meaningless to
attach it as a thing in itself to material things existing in them-
selves. This recognition of the subjectivity of the qualities of
sense is found in Galilei (and also in Descartes and Hobbes) in
a form closely related to the principle underlying the construc-
tive mathematical method of our modern physics which
repudiates ‘“qualities”. According to this principle, colours are
“really” vibrations of the aether, i.e. motions. In the field of philos-
ophy Kant was the first to take the next decisive step towards the
point of view that not only the qualities revealed by the senses,
but also space and spatial characteristics have no objective signif-
icance in the absolute sense; in other words, that space, too, is
only a form of our perception. In the realm of physics it is
perhaps only the theory of relativity which has made it quite clear
that the two essences, space and time, entering into our intuition
have no place in the world constructed by mathematical physics.
Colours are thus ‘“really” not even sether-vibrations, but merely
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a series of values of mathematical functions in which occur four
independent parameters corresponding to the three dimensions of
space, and the one of time.

Expressed as a general principle, this means that the real
world, and every one of its constituents with their accompanying
characteristics, are, and can only be given as, intentional objects
of acts of consciousness. The immediate data which I receive are
the experiences of consciousness in just the form in which I receive
them. They are not composed of the mere stuff of perception, as
many Positivists assert, but we may say that in a sensation an ob-
ject, for example, is actually physically present for me—to whom
that sensation relates—in a manner known to every one, yet, since
it is characteristic, it cannot be described more fully. Following
Brentano, I shall call it the “intentional object”. In experienc-
ing perceptions I see this chair, for example. My attention is fully
directed towards it. I “have” the perception, but it is only when I
make this perception in turn the intentional object of a new inner
perception (a free act of reflection enables me to do this) that I
“know” something regarding it (and not the chair alone), and as-
certain precisely what I remarked just above. In this second act
the intentional object is immanent, i.e. like the act itself, it is a real
component of my stream of experiences, whereas in the primary
act of perception the object is transcendental, i.e. it is given in
an experience of consciousness, but is not a real component of it.
What is immanent is absolute, i.e. it is exactly what it is in the
form in which I have it, and I can reduce this, its essence, to the
axiomatic by acts of reflection. On the other hand, transcendental
objects have only a phenomenal existence; they are appearances
presenting themselves in manifold ways and in manifold “grada-
tions”. One and the same leaf seems to have such and such a size,
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or to be coloured in such and such a way, according to my posi-
tion and the conditions of illumination. Neither of these modes
of appearance can claim to present the leaf just as it is “in itself”.
Furthermore, in every perception there is, without doubt, involved
the thesis of reality of the object appearing in it; the latter is,
indeed, a fixed and lasting element of the general thesis of real-
ity of the world. When, however, we pass from the natural view
to the philosophical attitude, meditating upon perception, we no
longer subscribe to this thesis. We simply affirm that something
real is “supposed” in it. The meaning of such a supposition now
becomes the problem which must be solved from the data of con-
sciousness. In addition a justifiable ground for making it must be
found. I do not by this in any way wish to imply that the view
that the events of the world are a mere play of the consciousness
produced by the ego, contains a higher degree of truth than naive
realism; on the contrary, we are only concerned in seeing clearly
that the datum of consciousness is the starting-point at which we
must place ourselves if we are to understand the absolute meaning
as well as the right to the supposition of reality. In the field of
logic we have an analogous case. A judgment, which I pronounce,
affirms a certain set of circumstances; it takes them as true. Here,
again, the philosophical question of the meaning of, and the jus-
tification for, this thesis of truth arises; here, again, the idea of
objective truth is not denied, but becomes a problem which has
to be grasped from what is given absolutely. “Pure consciousness”
is the seat of that which is philosophically a priori. On the other
hand, a philosophic examination of the thesis of truth must and
will lead to the conclusion that none of these acts of perception,
memory, etc., which present experiences from which I seize reality,
gives us a conclusive right to ascribe to the perceived object an
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existence and a constitution as perceived. This right can always
in its turn be over-ridden by rights founded on other perceptions,
etc.

It is the nature of a real thing to be inexhaustible in content;
we can get an ever deeper insight into this content by the contin-
ual addition of new experiences, partly in apparent contradiction,
by bringing them into harmony with one another. In this inter-
pretation, things of the real world are approximate ideas. From
this arises the empirical character of all our knowledge of reality.*

Time is the primitive form of the stream of consciousness. It
is a fact, however obscure and perplexing to our minds, that the
contents of consciousness do not present themselves simply as be-
ing (such as conceptions, numbers, etc.), but as being now filling
the form of the enduring present with a varying content. So that
one does not say this is but this is now, yet now no more. If we
project ourselves outside the stream of consciousness and repre-
sent its content as an object, it becomes an event happening in
time, the separate stages of which stand to one another in the
relations of earlier and later.

Just as time is the form of the stream of consciousness, so one
may justifiably assert that space is the form of external material
reality. All characteristics of material things as they are presented
to us in the acts of external perception (e.g. colour) are endowed
with the separateness of spatial extension, but it is only when we
build up a single connected real world out of all our experiences
that the spatial extension, which is a constituent of every percep-
tion, becomes a part of one and the same all-inclusive space. Thus
space is the form of the external world. That is to say, every ma-

*Vide note 1.
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terial thing can, without changing content, equally well occupy a
position in Space different from its present one. This immediately
gives us the property of the homogeneity of space which is the
root of the conception, Congruence.

Now, if the worlds of consciousness and of transcendental real-
ity were totally different from one another, or, rather, if only the
passive act of perception bridged the gulf between them, the state
of affairs would remain as I have just represented it, namely, on
the one hand a consciousness rolling on in the form of a lasting
present, yet spaceless; on the other, a reality spatially extended,
yet timeless, of which the former contains but a varying appear-
ance. Antecedent to all perception there is in us the experience
of effort and of opposition, of being active and being passive. For
a person leading a natural life of activity, perception serves above
all to place clearly before his consciousness the definite point of
attack of the action he wills, and the source of the opposition to
it. As the doer and endurer of actions I become a single indi-
vidual with a psychical reality attached to a body which has its
place in space among the material things of the external world,
and by which I am in communication with other similar individu-
als. Consciousness, without surrendering its immanence, becomes
a piece of reality, becomes this particular person, namely myself,
who was born and will die. Moreover, as a result of this, con-
sciousness spreads out its web, in the form of time, over reality.
Change, motion, elapse of time, becoming and ceasing to be, exist
in time itself; just as my will acts on the external world through
and beyond my body as a motive power, so the external world
is in its turn active (as the German word “Wirklichkeit,” reality,
derived from “wirken” = to act, indicates). Its phenomena are re-
lated throughout by a causal connection. In fact physics shows
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that cosmic time and physical form cannot be dissociated from
one another. The new solution of the problem of amalgamating
space and time offered by the theory of relativity brings with it a
deeper insight into the harmony of action in the world.

The course of our future line of argument is thus clearly out-
lined. What remains to be said of time, treated separately, and
of grasping it mathematically and conceptually may be included
in this introduction. We shall have to deal with space at much
greater length. Chapter I will be devoted to a discussion of Eu-
clidean space and its mathematical structure. In Chapter II
will be developed those ideas which compel us to pass beyond the
Euclidean scheme; this reaches its climax in the general space-
conception of the metrical continuum (Riemann’s conception of
space). Following upon this Chapter III will discuss the prob-
lem mentioned just above of the amalgamation of Space and
Time in the world. From this point on the results of mechanics
and physics will play an important part, inasmuch as this prob-
lem by its very nature, as has already been remarked, comes into
our view of the world as an active entity. The edifice constructed
out of the ideas contained in Chapters II and IIT will then in the
final Chapter IV lead us to Einstein’s General Theory of Relativ-
ity, which, physically, entails a new Theory of Gravitation, and
also to an extension of the latter which embraces electromagnetic
phenomena in addition to gravitation. The revolutions which are
brought about in our notions of Space and Time will of necessity
affect the conception of matter too. Accordingly, all that has to
be said about matter will be dealt with appropriately in Chapters
III and IV.

To be able to apply mathematical conceptions to questions
of Time we must postulate that it is theoretically possible to fix
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in Time, to any order of accuracy, an absolutely rigorous now
(present) as a point of Time—i.e. to be able to indicate points
of time, one of which will always be the earlier and the other the
later. The following principle will hold for this “order-relation”.
If A is earlier than B and B is earlier than C, then A is earlier
than C'. Each two points of Time, A and B, of which A is the
earlier, mark off a length of time; this includes every point which
is later than A and earlier than B. The fact that Time is a form of
our stream of experience is expressed in the idea of equality: the
empirical content which fills the length of Time AB can in itself
be put into any other time without being in any way different
from what it is. The length of time which it would then occupy is
equal to the distance AB. This, with the help of the principle of
causality, gives us the following objective criterion in physics for
equal lengths of time. If an absolutely isolated physical system
(i.e. one not subject to external influences) reverts once again to
exactly the same state as that in which it was at some earlier
instant, then the same succession of states will be repeated in
time and the whole series of events will constitute a cycle. In
general such a system is called a clock. Each period of the cycle
lasts equally long.

The mathematical fixing of time by measuring it is based
upon these two relations, “earlier (or later) times” and “equal
times”. The nature of measurement may be indicated briefly as
follows: Time is homogeneous, i.e. a single point of time can only
be given by being specified individually. There is no inherent prop-
erty arising from the general nature of time which may be ascribed
to any one point but not to any other; or, every property logically
derivable from these two fundamental relations belongs either to
all points or to none. The same holds for time-lengths and point-
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pairs. A property which is based on these two relations and which
holds for one point-pair must hold for every point-pair AB (in
which A is earlier than B). A difference arises, however, in the
case of three point-pairs. If any two time-points O and E are given
such that O is earlier than F it is possible to fix conceptually fur-
ther time-points P by referring them to the unit-distance OF.
This is done by constructing logically a relation ¢ between three
points such that for every two points O and E, of which O is
the earlier, there is one and only one point P which satisfies the
relation ¢ between O, E and P, i.e. symbolically,

OP =t-OF

(e.g. OP = 2 - OF denotes the relation OF = EP). Num-
bers are merely concise symbols for such relations as ¢, defined
logically from the primary relations. P is the “time-point with
the abscissa t in the co-ordinate system (taking OF as unit
length)”. Two different numbers ¢ and ¢* in the same co-ordinate
system necessarily lead to two different points; for, otherwise, in
consequence of the homogeneity of the continuum of time-lengths,
the property expressed by

t-AB=t"- AB,

since it belongs to the time-length AB = OF, must belong to
every time-length, and hence the equations AC' =t- AB, AC =
t*- AB would both express the same relation, i.e. t would be equal
to t*. Numbers enable us to single out separate time-points rel-
atively to a unit-distance OF out of the time-continuum by a
conceptual, and hence objective and precise, process. But the ob-
jectivity of things conferred by the exclusion of the ego and its



INTRODUCTION 12

data derived directly from intuition, is not entirely satisfactory;
the co-ordinate system which can only be specified by an individ-
ual act (and then only approximately) remains as an inevitable
residuum of this elimination of the percipient.

It seems to me that by formulating the principle of measure-
ment in the above terms we see clearly how mathematics has come
to play its role in exact natural science. An essential feature
of measurement is the difference between the “determination” of
an object by individual specification and the determination of the
same object by some conceptual means. The latter is only possi-
ble relatively to objects which must be defined directly. That is
why a theory of relativity is perforce always involved in mea-
surement. The general problem which it proposes for an arbitrary
domain of objects takes the form: (1) What must be given such
that relatively to it (and to any desired order of precision) one can
single out conceptually a single arbitrary object P from the con-
tinuously extended domain of objects under consideration? That
which has to be given is called the co-ordinate system, the con-
ceptual definition is called the co-ordinate (or abscissa) of P
in the co-ordinate system. Two different co-ordinate systems are
completely equivalent for an objective standpoint. There is no
property, that can be fixed conceptually, which applies to one co-
ordinate system but not to the other; for in that case too much
would have been given directly. (2) What relationship exists be-
tween the co-ordinates of one and the same arbitrary object P in
two different co-ordinate systems?

In the realm of time-points, with which we are at present con-
cerned, the answer to the first question is that the co-ordinate
system consists of a time-length OF (giving the origin and the
unit of measure). The answer to the second question is that the
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required relationship is expressed by the formula of transformation
t=at'+b  (a>0)

in which a and b are constants, whilst ¢ and ¢’ are the co-ordinates
of the same arbitrary point P in an “unaccented” and “accented”
system respectively. For all possible pairs of co-ordinate systems
the characteristic numbers, a and b, of the transformation may
be any real numbers with the limitation that a must always be
positive. The aggregate of transformations constitutes a group,
as their nature would imply, i.e.,

1. “identity” t = t' is contained in it.

2. Every transformation is accompanied by its reciprocal in the
group, i.e. by the transformation which exactly cancels its effect.

Thus, the inverse of the transformation (a,b), viz. t = at’ + b, is
1 b 1 b

— = |, viz. t' = -t — —.
a  a a a

3. If two transformations of a group are given, then the one
which is produced by applying these two successively also belongs
to the group. It is at once evident that, by applying the two
transformations

t=at' +b t'=dt"+ v

in succession, we get
t= alt” + bl

where a; = a - a’ and by = (al’) + b; and if @ and o’ are positive,
so is their product.

The theory of relativity discussed in Chapters III and IV pro-
poses the problem of relativity, not only for time-points, but for
the physical world in its entirety. We find, however, that this
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problem is solved once a solution has been found for it in the case
of the two forms of this world, space and time. By choosing a co-
ordinate system for space and time, we may also fix the physically
real content of the world conceptually in all its parts by means of
numbers.

All beginnings are obscure. Inasmuch as the mathematician
operates with his conceptions along strict and formal lines, he,
above all, must be reminded from time to time that the origins
of things lie in greater depths than those to which his methods
enable him to descend. Beyond the knowledge gained from the
individual sciences, there remains the task of comprehending.
In spite of the fact that the views of philosophy sway from one
system to another, we cannot dispense with it unless we are to
convert knowledge into a meaningless chaos.



CHAPTER 1

EUCLIDEAN SPACE. ITS MATHEMATICAL
FORMULATION AND ITS ROLE IN PHYSICS

§ 1. Deduction of the Elementary Conceptions of Space
from that of Equality

JUST as we fixed the present moment (“now”) as a geometrical
point in time, so we fix an exact “here,” a point in space, as the
first element of continuous spatial extension, which, like time, is
infinitely divisible. Space is not a one-dimensional continuum like
time. The principle by which it is continuously extended cannot
be reduced to the simple relation of “earlier” or “later”. We shall
refrain from inquiring what relations enable us to grasp this conti-
nuity conceptually. On the other hand, space, like time, is a form
of phenomena. Precisely the same content, identically the same
thing, still remaining what it is, can equally well be at some place
in space other than that at which it is actually. The new portion
of Space S’ then occupied by it is equal to that portion S which
it actually occupied. S and S’ are said to be congruent. To
every point P of S there corresponds one definite homologous
point P’ of S’ which, after the above displacement to a new posi-
tion, would be surrounded by exactly the same part of the given
content as that which surrounded P originally. We shall call this
“transformation” (in virtue of which the point P’ corresponds to
the point P) a congruent transformation. Provided that the
appropriate subjective conditions are satisfied the given material
thing would seem to us after the displacement exactly the same
as before. There is reasonable justification for believing that a
rigid body, when placed in two positions successively, realises this

15
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idea of the equality of two portions of space; by a rigid body we
mean one which, however it be moved or treated, can always be
made to appear the same to us as before, if we take up the ap-
propriate position with respect to it. I shall evolve the scheme of
geometry from the conception of equality combined with that of
continuous connection—of which the latter offers great difficulties
to analysis—and shall show in a superficial sketch how all funda-
mental conceptions of geometry may be traced back to them. My
real object in doing so will be to single out translations among
possible congruent transformations. Starting from the concep-
tion of translation I shall then develop Euclidean geometry along
strictly axiomatic lines.

First of all the straight line. Its distinguishing feature is that
it is determined by two of its points. Any other line can, even
when two of its points are kept fixed, be brought into another
position by a congruent transformation (the test of straightness).

Thus, if A and B are two different points, the straight line
g = AB includes every point which becomes transformed into it-
self by all those congruent transformations which transform AB
into themselves. (In familiar language, the straight line lies evenly
between its points.) Expressed kinematically, this is tantamount
to saying that we regard the straight line as an axis of rotation.
It is homogeneous and a linear continuum just like time. Any
arbitrary point on it divides it into two parts, two “rays”. If B lies
on one of these parts and C' on the other, then A is said to be
between B and C and the points of one part lie to the right of A,
the points of the other part to the left. (The choice as to which
is right or left is determined arbitrarily.) The simplest fundamen-
tal facts which are implied by the conception “between” can be
formulated as exactly and completely as a geometry which is to
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be built up by deductive processes demands. For this reason we
endeavour to trace back all conceptions of continuity to the con-
ception “between,” i.e. to the relation “A is a point of the straight
line BC' and lies between B and C” (this is the reverse of the real
intuitional relation). Suppose A’ to be a point on ¢ to the right
of A, then A" also divides the line ¢ into two parts. We call that
to which A belongs the left-hand side. If, however, A’ lies to the
left of A the position is reversed. With this convention, analogous
relations hold not only for A and A’ but also for any two points
of a straight line. The points of a straight line are ordered by the
terms left and right in precisely the same way as points of time
by the terms earlier and later.

Left and right are equivalent. There is one congruent trans-
formation which leaves A fixed, but which interchanges the two
halves into which A divides the straight line. Every finite portion
of straight line AB may be superposed upon itself in such a way
that it is reversed (i.e. so that B falls on A, and A falls on B).
On the other hand, a congruent transformation which transforms
A into itself, and all points to the right of A into points to the
right of A, and all points to the left of A into points to the left
of A, leaves every point of the straight line undisturbed. The
homogeneity of the straight line is expressed in the fact that the
straight line can be placed upon itself in such a way that any
point A of it can be transformed into any other point A’ of it, and
that the half to the right of A can be transformed into the half to
the right of A’, and likewise for the portions to the left of A and A’
respectively (this implies a mere translation of the straight line).
If we now introduce the equation AB = A’B’ for the points of the
straight line by interpreting it as meaning that AB is transformed
into the straight line A’B’ by a translation, then the same things
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hold for this conception as for time. These same circumstances
enable us to introduce numbers, and to establish a reversible and
single correspondence between the points of a straight line and
real numbers by using a unit of length OF.

Let us now consider the group of congruent transformations
which leaves the straight line ¢ fixed, i.e. transforms every point
of ¢ into a point of ¢ again.

We have called particular attention to rotations among these
as having the property of leaving not only g as a whole, but also
every single point of g unmoved in position. How can translations
in this group be distinguished from twists?

I shall here outline a preliminary argument in which not only
the straight line, but also the plane is based on a property of
rotation.

Two rays which start from a point O form an angle. Every
angle can, when inverted, be superposed exactly upon itself, so
that one arm falls on the other, and vice versa. Every right angle
is congruent with its complementary angle. Thus, if A is a straight
line perpendicular to g at the point A, then there is one rotation
about ¢ (“inversion”) which interchanges the two halves into which
h is divided by A. All the straight lines which are perpendicular
to g at A together form the plane E through A perpendicular to g.
Each pair of these perpendicular straight lines may be produced
from any other by a rotation about g.

If g is inverted, and placed upon itself in some way, so that A is
transformed into itself, but so that the two halves into which A
divides g are interchanged, then the plane F of necessity coincides
with itself. The plane may also be defined by taking this property
in conjunction with that of symmetry of rotation. Two congruent
tables of revolution (i.e. symmetrical with respect to rotations) are
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plane if, by means of inverting one, so that its axis is vertical in
the opposite direction, and placing it on the other, the two table-
surfaces can be made to coincide. The plane is homogeneous. The
point A on E which appears as the centre in this example is in
no way unique among the points of E. A straight line ¢’ passes
through each one A’ of them in such a way that E is made up
of all straight lines through A" perpendicular to ¢’. The straight
lines ¢’ which are perpendicular to F at its points A’ respectively
form a group of parallel straight lines. The straight line g with
which we started is in no wise unique among them. The straight
lines of this group occupy the whole of space in such a way that
only one straight line of the group passes through each point of
space. This in no way depends on the point A of the straight
line g, at which the above construction was performed.

If A* is any point on ¢, then the plane which is erected normally
to g at A* cuts not only ¢ perpendicularly, but also all straight
lines of the group of parallels. All such normal planes £* which
are erected at all points A* on g form a group of parallel planes.
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These also fill space continuously and uniquely. We need only
take another small step to pass from the above framework of space
to the rectangular system of co-ordinates. We shall use it here,
however, to fix the conception of spatial translation.

Translation is a congruent transformation which transforms
not only g but every straight line of the group of parallels into
itself. There is one and only one translation which transfers the
arbitrary point A on ¢ to the arbitrary point A* on the same
straight line.

I shall now give an alternate method of arriving at the con-
ception of translation. The chief characteristic of translation is
that all points are of equal importance in it, and that the be-
haviour of a point during translation does not allow any objective
assertion to be made about it, which could not equally well be
made of any other point (this means that the points of space for
a given translation can only be distinguished by specifying each
one singly [“that one there”], whereas in the case of rotation, for
example, the points on the axis are distinguished by the property
that they preserve their positions). By using this as a basis we
get the following definition of translation, which is quite indepen-
dent of the conception of rotation. Let the arbitrary point P be
transformed into P’ by a congruent transformation: we shall call
P and P’ connected points. A second congruent transformation
which has the property of again transforming every pair of con-
nected points into connected points, is to be called interchange-
able with the first transformation. A congruent transformation
is then called a translation, if it gives rise to interchangeable con-
gruent transformations, which transform the arbitrary point A
into the arbitrary point B. The statement that two congruent
transformations I and II are interchangeable signifies (as is easily
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proved from the above definition) that the congruent transforma-
tion resulting from the successive application of I and II is identical
with that which results when these two transformations are per-
formed in the reverse order. It is a fact that one translation (and,
as we shall see, only one) exists, which transforms the arbitrary
point A into the arbitrary point B. Moreover, not only is it a
fact that, if T denote a translation and A and B any two points,
there is, according to our definition, a congruent transformation,
interchangeable with T, which transforms A into B, but also that
the particular translation which transforms A into B has the
required property. A translation is therefore interchangeable with
all other translations, and a congruent transformation which is
interchangeable with all translations is also necessarily a transla-
tion. From this it follows that the congruent transformation which
results from successively performing two translations, and also the
“inverse” of a translation (i.e. that transformation which exactly
reverses or neutralises the original translation) is itself a trans-
lation. Translations possess the “group” property.* There is no
translation which transforms A into A except identity, in which
every point remains undisturbed. For if such a translation were
to transform P into P’, then, according to definition, there must
be a congruent transformation, which transforms A into P and
simultaneously A into P’; P and P’ must therefore be identical
points. Hence there cannot be two different translations both of
which transform A into another point B.

As the conception of translation has thus been defined indepen-
dently of that of rotation, the translational view of the straight
line and plane may thus be formed in contrast with the above

*Vide note 2.
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view based on rotations. Let a be a translation which transfers
the point Ag to A. This same translation will transfer A; to a
point Ay, As to As, etc. Moreover, through it Ay will be derived
from a certain point A_1, A_; from A_», etc. This does not yet
give us the whole straight line, but only a series of equidistant
points on it. Now, if n is a natural number (integer), a trans-

a
lation — exists which, when repeated n times, gives a. If, then,
n

. . a . .
starting from the point Ay we use — in the same way as we just

now used a we shall obtain an arraynof points on the straight line
under construction, which will be n times as dense.

If we take all possible whole numbers as values of n this ar-
ray will become denser in proportion as n increases, and all the
points which we obtain finally fuse together into a linear contin-
uum, in which they become embedded, giving up their individual
existences (this description is founded on our intuition of continu-
ity). We may say that the straight line is derived from a point by
an infinite repetition of the same infinitesimal translation and its
inverse. A plane, however, is derived by translating one straight
line, g, along another, h. If ¢ and h are two different straight
lines passing through the point Ag, then if we apply to g all the
translations which transform A into itself, all straight lines which
thus result from g together form the common plane of g and h.

We succeed in introducing logical order into the structure of
geometry only if we first narrow down the general conception of
congruent transformation to that of translation, and use this as
an axiomatic foundation (§§2 and 3). By doing this, however,
we arrive at a geometry of translation alone, viz. affine geometry
within the limits of which the general conception of congruence has
later to be re-introduced (§4). Since intuition has now furnished
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us with the necessary basis we shall in the next paragraph enter
into the region of deductive mathematics.

§ 2. The Foundations of Affine Geometry

For the present we shall use the term vector to denote a trans-
lation or a displacement a in the space. Later we shall have oc-
casion to attach a wider meaning to it. The statement that the
displacement a transfers the point P to the point @ (“transforms”
P into ()) may also be expressed by saying that () is the end-point
of the vector a whose starting-point is at P. If P and () are any
two points then there is one and only one displacement a which
transfers P to ). We shall call it the vector defined by P and @),
and indicate it by P@

The translation ¢ which arises through two successive trans-
lations a and b is called the sum of a and b, i.e. ¢ = a + b.
The definition of summation gives us: (1) the meaning of multi-
plication (repetition) and of the division of a vector by an integer;
(2) the purport of the operation which transforms the vector a
into its inverse —a; (3) the meaning of the nil-vector 0, viz. “iden-
tity,” which leaves all points fixed, i.e. a+0 = a and a+(—a) = 0.

ma
It also tells us what is conveyed by the symbols — = Aa, in
n
which m and n are any two natural numbers (integers) and A de-
. m .
notes the fraction +=—. By taking account of the postulate of

n
continuity this also gives us the significance of Aa, when \ is any
real number. The following system of axioms may be set up for
affine geometry:—
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I. Vectors

Two vectors a and b uniquely determine a vector a + b as
their sum. A number A and a vector a uniquely define a vector Aa,
which is “A times a” (multiplication). These operations are subject
to the following laws:—

(o) Addition—

(1) a+ b =b + a (Commutative Law).

(2) (a+b)+c=a+ (b+c) (Associative Law).

(3) If a and c are any two vectors, then there is one and only
one value of x for which the equation a+ x = c holds. It is called
the difference between ¢ and a and signifies ¢ — a (Possibility of
Subtraction).

(8) Multiplication—

(1) (A + p)a = (Aa) + (pa) (First Distributive Law).

(2) AMpa) = (Au)a (Associative Law).

(3)1-a=a.

(4) A(a+b) = (Aa) + (Ab) (Second Distributive Law).

For rational multipliers A, y, the laws () follow from the ax-
ioms of addition if multiplication by such factors be defined from
addition. In accordance with the principle of continuity we shall
also make use of them for any arbitrary real numbers, but we pur-
posely formulate them as separate axioms because they cannot be
derived in the general form from the axioms of addition by logical
reasoning alone. By refraining from reducing multiplication to ad-
dition we are enabled through these axioms to banish continuity,
which is so difficult to fix precisely, from the logical structure of
geometry. The law (/) 4 comprises the theorems of similarity.

(7) The “Axiom of Dimensionality,” which occupies the next
place in the system, will be formulated later.
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I1. Points and Vectors

1. Every pair of points A and B determines a vector a; ex-
pressed symbolically AB = a. If A is any point and a any vector,
there is one and only one point B for which AB = a.

2. 1f AB — a, BC = b, then AC — a+ b.

In these axioms two fundamental categories of objects occur,
viz. points and vectors; and there are three fundamental relations,
those expressed symbolically by—

at+b=c b=l AB=a. (1)

All conceptions which may be defined from (1) by logical reasoning
alone belong to affine geometry. The doctrine of affine geometry
is composed of all theorems which can be deduced logically from
the axioms (1), and it can thus be erected deductively on the
axiomatic basis (1) and (2). The axioms are not all logically in-
dependent of one another for the axioms of addition for vectors
(I, 2 and 3) follow from those (II) which govern the relations be-
tween points and vectors. It was our aim, however, to make the
vector-axioms I suffice in themselves, so that we should be able to
deduce from them all those facts which involve vectors exclusively
(and not the relations between vectors and points).

From the axioms of addition Iae we may conclude that a definite
vector O exists which, for every vector a, satisfies the equation
a+ 0 = a. From the axioms II it further follows that 1@ is
equal to this vector 0 when, and only when, the points A and B
coincide.

If O is a point and e is a vector differing from 0, the end-
points of all vectors OP which have the form e (£ being an arbi-
trary real number) form a straight line. This explanation gives
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the translational or affine view of straight lines the form of an
exact definition which rests solely upon the fundamental concep-
tions involved in the system of affine axioms. Those points P for
which the abscissa £ is positive form one-half of the straight line
through O, those for which £ is negative form the other half. If
we write e in place of e, and if e is another vector, which is not
of the form £e;, then the end-points P of all vectors ﬁ which
have the form & e, +&e; form a plane E (in this way the plane is
derived affinely by sliding one straight line along another). If we
now displace the plane E along a straight line passing through O
but not lying on E, the plane passes through all space. Accord-
ingly, if e3 is a vector not expressible in the form & e; + &seo,
then every vector can be represented in one and only one way as
a linear combination of e;, e;, and es, viz.

&re1 + &reg + Ezes.

We thus arrive at the following set of definitions:—
A finite number of vectors eq, e,, ..., €, is said to be linearly
independent if

§1e1 + &aea + -+ pey (2)

only vanishes when all the co-efficients ¢ vanish simultaneously.
With this assumption all vectors of the form (2) together con-
stitute a so-called h-dimensional linear vector-manifold (or
simply vector-field); in this case it is the one mapped out by the
vectors ey, €s, . .., €,. An h-dimensional linear vector-manifold M
can be characterised without referring to its particular base e, as
follows:—

(1) The two fundamental operations, viz. addition of two vec-
tors and multiplication of a vector by a number do not transcend
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the manifold, i.e. the sum of two vectors belonging to M as also
the product of such a vector and any real number also lie in M.

(2) There are h linearly independent vectors in M, but every
h + 1 are linearly dependent on one another.

From the property (2) (which may be deduced from our orig-
inal definition with the help of elementary results of linear equa-
tions) it follows that h, the dimensional number, is as such charac-
teristic of the manifold, and is not dependent on the special vector
base by which we map it out. The dimensional axiom which was
omitted in the above table of axioms may now be formulated.

There are n linearly independent vectors, but every
n + 1 are linearly dependent on one another,
or: The vectors constitute an n-dimensional linear manifold. If
n = 3 we have affine geometry of space, if n = 2 plane geometry,
if n = 1 geometry of the straight line. In the deductive treat-
ment of geometry it will, however, be expedient to leave the value
of n undetermined, and to develop an “n-dimensional geometry”
in which that of the straight line, of the plane, and of space are
included as special cases. For we see (at present for affine ge-
ometry, later on for all geometry) that there is nothing in the
mathematical structure of space to prevent us from exceeding the
dimensional number 3. In the light of the mathematical unifor-
mity of space as expressed in our axioms, its special dimensional
number 3 appears to be accidental, so that a systematic deduc-
tive theory cannot be restricted by it. We shall revert to the idea
of an n-dimensional geometry, obtained in this way, in the next
paragraph.” We must first complete the definitions outlined.

If O is an arbitrary point, then the sum-total of all the end-

*Vide note 3.
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points P of vectors, the origin of which is at O and which belong to
an h-dimensional vector field M as represented by (2), occupy fully
an h-dimensional point-configuration. We may, as before,
say that it is mapped out by the vectors ey, e, ..., e, which
start from O. The one-dimensional configuration of this type is
called a straight line, the two-dimensional a plane. The point O
does not play a unique part in this linear configuration. If O’ is any

other point of it, then O’P traverses the same vector manifold M
if all possible points of the linear aggregate are substituted for P
in turn.

If we measure off all vectors of the manifold M firstly from
the point O and then from any other arbitrary point O the two
resulting linear point aggregates are said to be parallel to one
another. The definition of parallel planes and parallel straight
lines is contained in this. That part of the h-dimensional linear
assemblage which results when we measure off all the vectors (2)
from O, subject to the limitation

Ogé-lgla 0§£2§17 SR O§£h§17

will be called the h-dimensional parallelepiped which has its
origin at O and is mapped out by the vectors ey, ey, ..., €.
(The one-dimensional parallelepiped is called distance, the two-
dimensional one is called parallelogram. None of these concep-
tions is limited to the case n = 3, which is presented in ordinary
experience.)

A point O in conjunction with n linear independent vectors ey,
€, ..., e, will be called a co-ordinate system (C). Every vector x
can be presented in one and only one way in the form

x =§e + ey + -+ e, (3)
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The numbers &; will be called its components in the co-ordinate
system (C). If P is any arbitrary point and if O? is equal to
the vector (3), then the ¢; are called the co-ordinates of P. All
co-ordinate systems are equivalent in affine geometry. There is no
property of this geometry which distinguishes one from another.
If

O €}, e, ...,e

’n

denote a second co-ordinate system, equations

;=) ajey (4)
k=1

will hold in which the o form a number system which must have a
non-vanishing determinant (since the €] are linearly independent).
If & are the components of a vector x in the first co-ordinate
system and ¢ the components of the same vector in the second
co-ordinate system, then the relation

&= aig, (5)
k=1
holds; this is easily shown by substituting the expressions (4) in
the equation
D_Giei =D e
Let aq, ao, ..., ay, be the co-ordinates of O in the first co-ordinate

system. If x; are the co-ordinates of any arbitrary point in the first
system and « its co-ordinates in the second, the equations

T = Z afxl + (6)
k=1
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hold. For x; — «; are the components of
——y S
0P =0P-00

in the first system; 2 are the components of 51_3 in the second.
Formulee (6) which give the transformation for the co-ordinates are
thus linear. Those (viz. 5) which transform the vector components
are easily derived from them by cancelling the terms «; which
do not involve the variables. An analytical treatment of affine
geometry is possible, in which every vector is represented by its
components and every point by its co-ordinates. The geometrical
relations between points and vectors then express themselves as
relations between their components and co-ordinates respectively
of such a kind that they are not destroyed by linear arbitrary
transformations.

Formulae (5) and (6) may also be interpreted in another way.
They may be regarded as a mode of representing an affine trans-
formation in a definite co-ordinate system. A transformation, i.e.
a rule which assigns a vector x’ to every vector x and a point P’
to every point P, is called linear or affine if the fundamental affine
relations (1) are not disturbed by the transformation: so that if
the relations (1) hold for the original points and vectors they also
hold for the transformed points and vectors:

—
a+b=c b’ = )\a’ AB =a —1b

and if in addition no vector differing from 0 transforms into the
vector 0. Expressed in other words this means that two points are
transformed into one and the same point only if they are them-
selves identical. Two figures which are formed from one another
by an affine transformation are said to be affine. From the point
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of view of affine geometry they are identical. There can be no
affine property possessed by the one which is not possessed by
the other. The conception of linear transformation thus plays
the same part in affine geometry as congruence plays in general
geometry; hence its fundamental importance. In affine transfor-
mations linearly independent vectors become transformed into lin-
early independent vectors again; likewise an h-dimensional linear
configuration into a like configuration; parallels into parallels; a
co-ordinate system O | e, ey, ..., e, into a new co-ordinate sys-
tem O’ | e}, €, ... €.

Let the numbers o, «;, have the same meaning as above. The
vector (3) is changed by the affine transformation into

x' =& €] + ey + -+ el

If we substitute in this the expressions for €] and use the original
co-ordinate system O | e, ey, ...,e, to picture the affine trans-
formation, then, interpreting &; as the components of any vector
and £/ as the components of its transformed vector,

&= oG (5
k=1

—
If P becomes P’, the vector (ﬁ becomes O'P’, and it follows from
this that if z; are the co-ordinates of P and z/ those of P’, then

n
I k
T; = E o Ty + Q.
k=1

In analytical geometry it is usual to characterise linear con-
figurations by linear equations connecting the co-ordinates of the
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“current” point (variable). This will be discussed in detail in the
next paragraph. Here we shall just add the fundamental concep-
tion of “linear forms” upon which this discussion is founded. A
function L(x), the argument x of which assumes the value of ev-
ery vector in turn, these values being real numbers only, is called
a linear form, if it has the functional properties

L(a+b) = L(a) + L(b); L(\a) = \- L(a).

In a co-ordinate system e, ey, ..., e, each of the n vector-
components &; of x is such a linear form. If x is defined by (3),
then any arbitrary linear form L satisfies

L(x) = &1L(er) + &aL(ey) + -+ + & L(ey).

Thus if we put L(e;) = a;, the linear form, expressed in terms of
components, appears in the form

a1&1 + aséo + -+ - + ay€,  (the a;’s are its constant co-efficients).

Conversely, every expression of this type gives a linear form. A
number of linear forms L, Lo, L3, ..., L; are linearly indepen-
dent, if no constants \; exist, for which the identity-equation
holds:

AMLy(x) 4+ AoLo(X) + ...+ A Lp(x) =0

except \; = 0. n 4+ 1 linear forms are always linearly inter-
dependent.

§ 3. The Conception of n-dimensional Geometry. Linear
Algebra. Quadratic Forms

To recognise the perfect mathematical harmony underlying the
laws of space, we must discard the particular dimensional number



EUCLIDEAN SPACE 33

n = 3. Not only in geometry, but to a still more astonishing de-
gree in physics, has it become more and more evident that as soon
as we have succeeded in unravelling fully the natural laws which
govern reality, we find them to be expressible by mathematical
relations of surpassing simplicity and architectonic perfection. It
seems to me to be one of the chief objects of mathematical in-
struction to develop the faculty of perceiving this simplicity and
harmony, which we cannot fail to observe in the theoretical physics
of the present day. It gives us deep satisfaction in our quest for
knowledge. Analytical geometry, presented in a compressed form
such as that I have used above in exposing its principles, conveys
an idea, even if inadequate, of this perfection of form. But not
only for this purpose must we go beyond the dimensional number
n = 3, but also because we shall later require four-dimensional ge-
ometry for concrete physical problems such as are introduced by
the theory of relativity, in which Time becomes added to Space
in a four-dimensional geometry.

We are by no means obliged to seek illumination from the
mystic doctrines of spiritists to obtain a clearer vision of multi-
dimensional geometry. Let us consider, for instance, a homoge-
neous mixture of the four gases, hydrogen, oxygen, nitrogen, and
carbon dioxide. An arbitrary quantum of such a mixture is spec-
ified if we know how many grams of each gas are contained in it.
If we call each such quantum a vector (we may bestow names at
will) and if we interpret addition as implying the union of two
quanta of the gases in the ordinary sense, then all the axioms I
of our system referring to vectors are fulfilled for the dimensional
number n = 4, provided we agree also to talk of negative quanta of
gas. One gram of pure hydrogen, one gram of oxygen, one gram
of nitrogen, and one gram of carbon dioxide are four “vectors,”
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independent of one another from which all other gas quanta may
be built up linearly; they thus form a co-ordinate system. Let
us take another example. We have five parallel horizontal bars
upon each of which a small bead slides. A definite condition of
this primitive “adding-machine” is defined if the position of each
of the five beads upon its respective rod is known. Let us call such
a condition a “point” and every simultaneous displacement of the
five beads a “vector,” then all of our axioms are satisfied for the
dimensional number n = 5. From this it is evident that construc-
tions of various types may be evolved which, by an appropriate
disposal of names, satisfy our axioms. Infinitely more important
than these somewhat frivolous examples is the following one which
shows that our axioms characterise the basis of our opera-
tions in the theory of linear equations. If o; and « are given
numbers,

0T + Ty + ...+ apr, =0 (7)

is usually called a homogeneous linear equation in the un-
knowns x;, whereas

0T + Ty + ... F T, = (8)

is called a non-homogeneous linear equation. In treating the
theory of linear homogeneous equations, it is found useful to have
a short name for the system of values of the variables x;; we shall
call it “vector”. In carrying out calculations with these vectors, we
shall define the sum of the two vectors

(a1,as,...,a,) and (b1, bs,...,b,)
to be the vector

(a1+b1,a2+b2,...,an+bn)
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and A times the first vector to be
(a1, Aag, ..., Aay).

The axioms I for vectors are then fulfilled for the dimensional
number n.

€1 = (17070"-'70)7

form a system of independent vectors. The components of any
arbitrary vector (xy, s, ..., x,) in this co-ordinate system are the
numbers x; themselves. The fundamental theorem in the solution
of linear homogeneous equations may now be stated thus:—

if Li(x), Lao(x), ..., Lp(x)

are h linearly independent linear forms, the solutions x of the
equations

Li(x) =0, Ls(x)=0, ..., Lp(x)=0

form an (n — h)-dimensional linear vector manifold.

In the theory of non-homogeneous linear equations we shall
find it advantageous to denote a system of values of the variables x;
a “point”. If x; and z} are two systems which are solutions of
equation (8), their difference

/ /
Ty — Ty, Ty— T, ..., T, — Tp
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is a solution of the corresponding homogeneous equation (7). We
shall, therefore, call this difference of two systems of values of
the variables x; a “vector,” viz. the “vector” defined by the two
“points” (z;) and (x}); we make the above conventions for the
addition and multiplication of these vectors. All the axioms
then hold. In the particular co-ordinate system composed of the
vectors e; given above, and having the “origin” O = (0,0, ...,0),
the co-ordinates of a point (z;) are the numbers x; themselves.
The fundamental theorem concerning linear equations is: those
points which satisfy h independent linear equations, form a point-
configuration of n — h dimensions.

In this way we should not only have arrived quite naturally
at our axioms without the help of geometry by using the theory
of linear equations, but we should also have reached the wider
conceptions which we have linked up with them. In some ways,
indeed, it would appear expedient (as is shown by the above for-
mulation of the theorem concerning homogeneous equations) to
build up the theory of linear equations upon an axiomatic basis
by starting from the axioms which have here been derived from
geometry. A theory developed along these lines would then hold
for any domain of operations, for which these axioms are fulfilled,
and not only for a “system of values in n variables”. It is easy to
pass from such a theory which is more conceptual, to the usual one
of a more formal character which operates from the outset with
numbers z; by taking a definite co-ordinate system as a basis, and
then using in place of vectors and points their components and
co-ordinates respectively.

It is evident from these arguments that the whole of affine
geometry merely teaches us that space is a region of three di-
mensions in linear quantities (the meaning of this statement
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will be sufficiently clear without further explanation). All the
separate facts of intuition which were mentioned in § 1 are simply
disguised forms of this one truth. Now, if on the one hand it is
very satisfactory to be able to give a common ground in the the-
ory of knowledge for the many varieties of statements concerning
space, spatial configurations, and spatial relations which, taken
together, constitute geometry, it must on the other hand be em-
phasised that this demonstrates very clearly with what little right
mathematics may claim to expose the intuitional nature of space.
Geometry contains no trace of that which makes the space of in-
tuition what it is in virtue of its own entirely distinctive qualities
which are not shared by “states of addition-machines” and “gas-
mixtures” and “systems of solutions of linear equations”. It is left
to metaphysics to make this “comprehensible” or indeed to show
why and in what sense it is incomprehensible. We as mathemati-
cians have reason to be proud of the wonderful insight into the
knowledge of space which we gain, but, at the same time, we must
recognise with humility that our conceptual theories enable us to
grasp only one aspect of the nature of space, that which, moreover,
is most formal and superficial.

To complete the transition from affine geometry to complete
metrical geometry we yet require several conceptions and facts
which occur in linear algebra and which refer to bilinear and
quadratic forms. A function Q(x,y) of two arbitrary vectors x
and y is called a bilinear form if it is a linear form in x as well
as in y. If in a certain co-ordinate system &; are the components
of x, n; those of y, then an equation

n

Qxy) = ) ansim

i,k=1
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with constant co-efficients a;;, holds. We shall call the form “non-
degenerate” if it vanishes identically in y only when the vector
x = 0. This happens when, and only when, the homogeneous

equations
n

Z ax& =0

i=1
have a single solution & = 0 or when the determinant |a;;| # 0.
From the above explanation it follows that this condition, viz.
the non-vanishing of the determinant, persists for arbitrary lin-
ear transformations. The bilinear form is called symmetrical if
Q(y,x) = Q(x,y). This manifests itself in the co-efficients by the
symmetrical property ax; = a;x. Every bilinear form Q(x,y) gives
rise to a quadratic form which depends on only one variable

vector x
n

Q(x) = Q(x,x) = Y autiy.
ik=1
In this way every quadratic form is derived in general from
one, and only one, symmetrical bilinear form. The quadratic
form @(x) which we have just formed may also be produced from
the symmetrical form

HOxy)+Qly.x)}

by identifying x with y.

To prove that one and the same quadratic form cannot arise
from two different symmetrical bilinear forms, one need merely
show that a symmetrical bilinear form @Q(x,y) which satisfies the
equation ((x,x) identically for x, vanishes identically. This, how-
ever, immediately results from the relation which holds for every
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symmetrical bilinear form

Qx+y,x+y)=0Q(x,%x)+2Q(x,y) + Q(y,y) (9)

If Q(x) denotes any arbitrary quadratic form then Q(x,y) is al-
ways to signify the symmetrical bilinear form from which Q(x) is
derived (to avoid mentioning this in each particular case). When
we say that a quadratic form is non-degenerate we wish to convey
that the above symmetrical bilinear form is non-degenerate. A
quadratic form is positive definite if it satisfies the inequality
Q(x) > 0 for every value of the vector x # 0. Such a form is cer-
tainly non-degenerate, for no value of the vector x # 0 can make
Q(x,y) vanish identically in y, since it gives a positive result for

y = X.

§ 4. The Foundations of Metrical Geometry

To bring about the transition from affine to metrical geometry
we must once more draw from the fountain of intuition. From it
we obtain for three-dimensional space the definition of the scalar
product of two vectors a and b. After selecting a definite vector
as a unit we measure out the length of a and the length (negative
or positive as the case may be) of the perpendicular projection of b
upon a and multiply these two numbers with one another. This
means that the lengths of not only parallel straight lines may be
compared with one another (as in affine geometry) but also such
as are arbitrarily inclined to one another. The following rules hold
for scalar products:—

Aa-b=\a-b) (a+a’)-b=(a-b)+(a’ -b)

and analogous expressions with reference to the second factor; in
addition, the commutative law a - b = b - a. The scalar product
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of a with a itself, viz. a - a = a2, is always positive except when
a = 0, and is equal to the square of the length of a. These
laws signify that the scalar product of two arbitrary vectors, i.e.
x -y is a symmetrical bilinear form, and that the quadratic form
which arises from it is positive definite. We thus see that not the
length, but the square of the length of a vector depends in a simple
rational way on the vector itself; it is a quadratic form. This is
the real content of Pythagoras’ Theorem. The scalar product is
nothing more than the symmetrical bilinear form from which this
quadratic form has been derived. We accordingly formulate the
following:—

METRICAL AXIOM: If a unit vector e, differing from zero, be
chosen, every two vectors x and y uniquely determine a number
(x-y) = Q(x,y); the latter, being dependent on the two vectors, is
a symmetrical bilinear form. The quadratic form (x - x) = Q(x)
which arises from it is positive definite. Q(e) = 1.

We shall call ) the metrical groundform. We then have that
an affine transformation which, in general, transforms the vector x
into X' is a congruent one if it leaves the metrical groundform
unchanged: —

Qx) = Q(x). (10)

Two geometrical figures which can be transformed into one another
by a congruent transformation are congruent.* The conception of
congruence is defined in our axiomatic scheme by these state-
ments. If we have a domain of operation in which the axioms
of §2 are fulfilled, we can choose any arbitrary positive definite

*We take no notice here of the difference between direct congruence and
mirror congruence (lateral inversion). It is present even in affine transforma-
tions, in n-dimensional space as well as 3-dimensional space.
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quadratic form in it, “promote” it to the position of a fundamen-
tal metrical form, and, using it as a basis, define the conception
of congruence as was just now done. This form then endows the
affine space with metrical properties and Euclidean geometry in
its entirety now holds for it. The formulation at which we have
arrived is not limited to any special dimensional number.

It follows from (10), in virtue of relation (9) of §3, that for a
congruent transformation the more general relation

QKX,y') =Q(x,y)

holds.

Since the conception of congruence is defined by the metrical
groundform it is not surprising that the latter enters into all for-
mulae which concern the measure of geometrical quantities. Two
vectors a and a’ are congruent if, and only if,

We could accordingly introduce (Q(a) as a measure of the vec-
tor a. Instead of doing this, however, we shall use the positive
square root of Q(a) for this purpose and call it the length of the
vector a (this we shall adopt as our definition) so that the further
condition is fulfilled that the length of the sum of two parallel
vectors pointing in the same direction is equal to the sum of the
lengths of the two single vectors. If a, b as well as a’, b’ are two
pairs of vectors, all of length unity, then the figure formed by the
first two is congruent with that formed by the second pair, if, and
only if, Q(a,b) = Q(a’,b’).

In this case again we do not introduce the number Q(a,b)
itself as a measure of the angle, but a number 6 which is related
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to it by the transcendental function cosine thus:—
cosf = Q(a,b)

so as to be in agreement with the theorem that the numerical
measure of an angle composed of two angles in the same plane is
the sum of the numerical values of these angles. The angle which
is formed from any two arbitrary vectors a and b (# 0) is then
calculated from

Qab)
\/Q(av a) ’ Q(bv b)

In particular, two vectors a, b are said to be perpendicular to
one another if Q(a, b) = 0. This reminder of the simplest metrical
formulee of analytical geometry will suffice.

The angle defined by (11) which has been formed by two vec-
tors is shown always to be real by the inequality

Q*(a,b) < Q(a) - Q(b) (12)

which holds for every quadratic form ) which is > 0 for all values
of the argument. It is most simply deduced by forming

Q(Aa+ pb) = N’Q(a) + 22 uQ(a, b) + 1*Q(b) > 0.

Since this quadratic form in A and p cannot assume both positive
and negative values its “discriminant” Q*(a, b)—Q(a)-Q(b) cannot
be positive.

A number, n, of independent vectors form a Cartesian co-
ordinate system if for every vector

(11)

cosf =

X =T1€1 + T2€2 + ...+ Tp€y
Qx)=al+a5+... +22 (13)
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holds, i.e. if
1 (i=k),

From the standpoint of metrical geometry all co-ordinate sys-
tems are of equal value. A proof (appealing directly to our geo-
metrical sense) of the theorem that such systems exist will now
be given not only for a “definite” but also for any arbitrary non-
degenerate quadratic form, inasmuch as we shall find later in the
theory of relativity that it is just the “indefinite” case that plays
the decisive role. We enunciate as follows:—

Corresponding to every non-degenerate quadratic form @) a co-
ordinate system e; can be introduced such that

Q(ei’ ej) = {

Qx) = elx% + 62.1'% 4 enxi (6, = £1). (14)

Proof—Let us choose any arbitrary vector e; for which
Q(e1) # 0. By multiplying it by an appropriate positive con-
stant we can arrange so that Q(e;) = +1. We shall call a vector x
for which Q(e;,x) = 0 orthogonal to e;. If x* is a vector which
is orthogonal to e, and if z; is any arbitrary number, then

X =x1€] + (15)
satisfies Pythagoras’ Theorem:—
Q(x) = 21Q(er) + 221Q(e1, x7) + Q(x") = +a1 + Q(x").

The vectors orthogonal to e; constitute an (n — 1)-dimensional
linear manifold, in which Q(x) is a non-degenerate quadratic
form. Since our theorem is self-evident for the dimensional
number n = 1, we may assume that it holds for (n — 1) dimensions
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(proof by successive induction from the case (n —1) to that
of n). According to this, n — 1 vectors e, ..., e,, orthogonal
to e; exist, such that for

X" = 1x9€y + -+ + 1€,

the relation
Qx*)=da3+... £22

holds. This enables @(x) to be expressed in the required form.
Then

Qei) =€ Qe ex) =0 (i #k).
These relations result in all the e;’s being independent of one
another and in each vector x being representable in the form (13).
They give
T = € - Qe x). (16)

An important corollary is to be made in the “indefinite” case.
The numbers r and s attached to the ¢;’s, and having positive
and negative signs respectively, are uniquely determined by the
quadratic form: it may be said to have r positive and s negative
dimensions. (s may be called the inertial index of the quadratic
form, and the theorem just enunciated is known by the name
“Law of Inertia”. The classification of surfaces of the second or-
der depends on it.) The numbers r and s may be characterised
invariantly thus:—

There are r mutually orthogonal vectors e, for which Q(e) > 0;
but for a vector x which is orthogonal to these and not equal to O,
it necessarily follows that Q(x) < 0. Consequently there cannot
be more than r such vectors. A corresponding theorem holds for s.
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r vectors of the required type are given by those r fundamen-
tal vectors e; of the co-ordinate system upon which the expres-
sion (14) is founded, to which the positive signs ¢; correspond.
The corresponding components x; (i = 1,2,3, ..., r) are definite
linear forms of x [cf. (16)]: z; = L;(x). If, now, e; (i =1,2,...,7)
is any system of vectors which are mutually orthogonal to one
another, and satisfy the condition Q(e;) > 0, and if x is a vector
orthogonal to these e;, we can set up a linear combination

y=XMAe;+ ...+ \e. +pux

in which not all the co-efficients vanish and which satisfies the
r homogeneous equations

It is then evident from the form of the expression that Q(y) must
be negative unless y = 0. In virtue of the formula

Qly) — {MQ(er) + - + \}Q(er)} = Q%)

it then follows that Q(x) < 0 except in the case in which if y = 0,
A =--- =\, also = 0. But then, by hypothesis, u must # 0, i.e.
x = 0.

In the theory of relativity the case of a quadratic form with one
negative and n — 1 positive dimensions becomes important. In three-
dimensional space, if we use affine co-ordinates,

—ri a3+ 23 =0

is the equation of a cone having its vertex at the origin and consisting
of two sheets, as expressed by the negative sign of 2%, which are only
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connected with one another at the origin of co-ordinates. This division
into two sheets allows us to draw a distinction between past and future
in the theory of relativity. We shall endeavour to describe this by an
elementary analytical method here instead of using characteristics of
continuity.

Let @@ be a non-degenerate quadratic form having only one nega-
tive dimension. We choose a vector, for which @Q(e) = —1. We shall
call these vectors x, which are not zero and for which Q(x) < 0 “neg-
ative vectors”. According to the proof just given for the Theorem of
Inertia, no negative vector can satisfy the equation Q(e,x) = 0. Neg-
ative vectors thus belong to one of two classes or “cones” according as
Q(e,x) < 0 or > 0; e itself belongs to the former class, —e to the latter.
A negative vector x lies “inside” or “on the sheet” of its cone according
as Q(x) < 0 or = 0. To show that the two cones are independent of the
choice of the vector e, one must prove that, from Q(e) = Q(e') = —1,

/
and Q(x) < 0, it follows that the sign of 252
Q(e,x)
of _Q(ea e/)-

Every vector x can be resolved into two summands

is the same as that

x=ze+x"

such that the first is proportional and the second (x*) is orthogonal
to e. One need only take x = —Q(e, x) and we then get

Q(x) = —2* + Q(x*);

Q(x*) is, as we know, necessarily > 0. Let us denote it by Q*.
The equation

Q" =12+ Q(x) = Q*(e,x) + Q(x)

then shows that Q* is a quadratic form (degenerate), which satisfies
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the identity or inequality, Q*(x) > 0. We now have

Qx)=-2"+Q*(x) <0, Q&) =—*+ Q%) <0,
{r=-Q(e,x)}; {e = —-Q(e,e)}.

From the inequality (12) which holds for Q*, it follows that
{Q*(e/,x)}Q < Q*(e/) X Q*(X) < 6,21'2;

consequently
—-Q(e',x) = ér — Q*(e,x)
has the same sign as the first summand ¢'x.

Let us now revert to the case of a definitely positive metrical
groundform with which we are at present concerned. If we use a
Cartesian co-ordinate system to represent a congruent transfor-
mation, the co-efficients of transformation o¥ in formula (5'), §2,
will have to be such that the equation

PG =G+

is identically satisfied by the &’s. This gives the “conditions for

orthogonality”
IS (17
0 (@)

They signify that the transition to the inverse transformation con-
verts the co-efficients of into af:—

n
i = Z 0, &p-
k=1
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It furthermore follows that the determinant A = || of a congru-
ent transformation is identical with that of its inverse, and since
their product must equal 1, A = £1. The positive or the negative
sign would occur according as the congruence is real or inverted
as in a mirror (“lateral inversion”).

Two possibilities present themselves for the analytical treat-
ment of metrical geometry. Either one imposes no limitation
upon the affine co-ordinate system to be used: the problem is
then to develop a theory of invariance with respect to arbitrary
linear transformations, in which, however, in contra-distinction to
the case of affine geometry, we have a definite invariant quadratic
form, viz. the metrical groundform

Qx) = Z 9ik&ikk

ik=1

once and for all as an absolute datum. Or, we may use Carte-
sian co-ordinate systems from the outset: in this case, we are
concerned with a theory of invariance for orthogonal transforma-
tions, i.e. linear transformations, in which the co-efficients satisfy
the secondary conditions (17). We must here follow the first course
so as to be able to pass on later to generalisations which extend
beyond the limits of Euclidean geometry. This plan seems ad-
visable from the algebraic point of view, too, since it is easier to
gain a survey of those expressions which remain unchanged for all
linear transformations than of those which are only invariant for
orthogonal transformations (a class of transformations which are
subjected to secondary limitations not easy to define).

We shall here develop the Theory of Invariance as a “Tensor
Calculus” along lines which will enable us to express in a conve-
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nient mathematical form, not only geometrical laws, but also all
physical laws.

§ 5. Tensors

Two linear transformations,
&=> g, (ol #0) (18)
k
mi=y_ am,  (|af] #0) (18)
k

in the variables ¢ and 7 respectively, leading to the variables &, 7
are said to be contra-gredient to one another, if they make the
bilinear form Y, 7;£* transform into itself, i.e.

Z ni& = Z mig'. (19)

Contra-gredience is thus a reversible relationship. If the variables
§, n are transformed into &, 7 by one pair of contra-gredient trans-
formations A, A, and then &, 77 into &, 77 by a second pair B, B it

follows from ' B _
an‘fz = Zﬁiél = Zﬁz‘fl
that the two transformations combined, which transform ¢ directly

into &, and 7 into 7 are likewise contra-gredient. The co-efficients
of two contra-gredient substitutions satisfy the conditions

S arak = = {1 (i =h) (20)
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If we substitute for the ¢’s in the left-hand member of (19) their
values in terms of ¢ obtained from (18), it becomes evident that
the equations (18') are derived by reduction from

ni = Zafnk- (21)
k

There is thus one and only one contra-gredient transformation
corresponding to every linear transformation. For the same reason

as (21) - »
£=3ai
; t

holds. By substituting these expressions and (21) in (19), we find
that the co-efficients, in addition to satisfying the conditions (20),
satisfy

An orthogonal transformation is one which is contra-gredient to it-
self. If we subject a linear form in the variables &; to any arbitrary
linear transformation the co-efficients become transformed contra-
grediently to the variables, or they assume a “contra-variant” re-
lationship to these, as it is sometimes expressed.

In an affine co-ordinate system O | ey, ey, ..., €, we have up to
the present characterised a displacement x by the uniquely defined

components &' given by the equation
x=¢e + &%+ -+,

If we pass over into another affine co-ordinate system O | e,

€s,...,€,, whereby
- k
e = E o e,
k
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the components of x undergo the transformation
&= o
k
as is seen from the equation

These components thus transform themselves contra-grediently
to the fundamental vectors of the co-ordinate system, and are
related contra-variantly to them; they may thus be more precisely
termed the contra-variant components of the vector x. In
metrical space, however, we may also characterise a displace-
ment in relation to the co-ordinate system by the values of its
scalar product with the fundamental vectors e; of the co-ordinate
system

§i=(x-e).
In passing over into another co-ordinate system these quanti-
ties transform themselves—as is immediately evident from their
definition—*“co-grediently” to the fundamental vectors (just like
the latter themselves), i.e. in accordance with the equations

&= alts
K

they behave “co-variantly”. We shall call them the co-variant
components of the displacement. The connection between co-
variant and contra-variant components is given by the formulae

&= (ei-ep)e = gut (22)

k
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or by their inverses (which are derived from them by simple reso-
lution) respectively

&= 9" (22)
k

In a Cartesian co-ordinate system the co-variant components coin-
cide with the contra-variant components. It must again be empha-
sised that the contra-variant components alone are at our disposal
in affine space, and that, consequently, wherever in the following
pages we speak of the components of a displacement without spec-
ifying them more closely, the contra-variant ones are implied.

Linear forms of one or two arbitrary displacements have al-
ready been discussed above. We can proceed from two argu-
ments to three or more. Let us take, for example, a trilinear form
A(x,y,z). If in an arbitrary co-ordinate system we represent the
two displacements x, y by their contra-variant components, z by
its co-variant components, i.e. £, n°, and (; respectively, then A is
algebraically expressed as a trilinear form of these three series of
variables with definite number-co-efficients

> ancn'G. (23)

1,5,k

Let the analogous expression in a different co-ordinate system,
indicated by bars, be
> @t (23)
irjik
A connection between the two algebraic trilinear forms (23)
and (23') then exists, by which the one resolves into the other if
the two series of variables £, n are transformed contra-grediently
to the fundamental vectors, but the series ( co-grediently to the
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latter. This relationship enables us to calculate the co-efficient al,,
of A in the second co-ordinate system if the co-efficients al,
and also the transformation co-efficient o leading from one
co-ordinate system to the other are known. We have thus arrived
at the conception of the “r-fold co-variant, s-fold contra-variant
tensor of the (r + s)th degree™ it is not confined to metrical
geometry but only assumes the space to be affine. We shall now
give an explanation of this tensor in abstracto. To simplify our
expressions we shall take special values for the numbers r and s
as in the example quoted above: r=2, s=1[, r+s=3. We
then enunciate:—

A trilinear form of three series of variables which is depen-
dent on the co-ordinate system is called a doubly co-variant, singly
contra-variant tensor of the third degree if the above relationship
is as follows. The expressions for the linear form in any two co-
ordinate systems, viz.:—

Z ay &G, Z ay £ G

resolve into one another, if two of the series of variables (viz.
the first two & and n) are transformed contra-grediently to the
fundamental vectors of the co-ordinate system and the third co-
grediently to the same. The co-efficients of the linear form are
called the components of the tensor in the co-ordinate system in
question. Furthermore, they are called co-variant in the indices,
1, k, which are associated with the variables to be transformed
contra-grediently, and contra-variant in the others (here only the
one index ).

The terminology is based upon the fact that the co-efficients
of a uni-linear form behave co-variantly if the variables are trans-
formed contra-grediently, but contra-variantly if they are trans-
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formed co-grediently. Co-variant indices are always attached as
suffixes to the co-efficients, contra-variant ones written at the top
of the co-efficients. Variables with lowered indices are always to
be transformed co-grediently to the fundamental vectors of the co-
ordinate system, those with raised indices are to be transformed
contra-grediently to the same. A tensor is fully known if its com-
ponents in a co-ordinate system are given (assuming, of course,
that the co-ordinate system itself is given); these components may,
however, be prescribed arbitrarily. The tensor calculus is con-
cerned with setting out the properties and relations of tensors,
which are independent of the co-ordinate system. In an extended
sense a quantity in geometry and physics will be called a tensor
if it defines uniquely a Linear algebraic form depending on the
co-ordinate system in the manner described above; and conversely
the tensor is fully characterised if this form is given. For example,
a little earlier we called a function of three displacements which
depended linearly and homogeneously on each of their arguments
a tensor of the third degree—one which is twofold co-variant and
singly contra-variant. This was possible in metrical space. In
this space, indeed, we are at liberty to represent this quantity by
a “none” fold, single, twofold or threefold co-variant tensor. In
affine space, however, we should only have been able to express it
in the last form as a co-variant tensor of the third degree.

We shall illustrate this general explanation by some examples
in which we shall still adhere to the standpoint of affine geometry
alone.

1. If we represent a displacement a in an arbitrary co-ordinate
system by its (contra-variant) components a’ and assign to it the
linear form

a'éy +ad’6+ -+,
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having the variables &; in this co-ordinate system, we get a contra-
variant tensor of the first order.

From now on we shall no longer use the term “vector” as being
synonymous with “displacement” but to signify a “tensor of the
first order,” so that we shall say, displacements are contra-
variant vectors. The same applies to the velocity of a moving
point, for it is obtained by dividing the infinitely small displace-
ment which the moving point suffers during the time-element dt
by dt (in the limiting case when dt — 0). The present use of
the word vector agrees with its usual significance which includes
not only displacements but also every quantity which, after the
choice of an appropriate unit, can be represented uniquely by a
displacement.

2. It is usually claimed that force has a geometrical character
on the ground that it may be represented in this way. In op-
position, however, to this representation there is another which,
we nowadays consider, does more justice to the physical nature
of force, inasmuch as it is based on the conception of work. In
modern physics the conception work is gradually usurping the con-
ception of force, and is claiming a more decisive and fundamental
role. We shall define the components of a force in a co-ordinate
system O | e; to be those numbers p; which denote how much work
it performs during each of the virtual displacements e; of its point
of application. These numbers completely characterise the force.
The work performed during the arbitrary displacement

x=¢'er + &%+ -+ e,

of its point of application is then = >~ p;¢*. Hence it follows that
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for two definite co-ordinate systems the relation
szfi = Zﬁz?
i i

holds, if the variables &, as signified by the upper indices, are
transformed contra-grediently with respect to the co-ordinate sys-
tem. According to this view, then, forces are co-variant vec-
tors. The connection between this representation of forces and
the usual one in which they are displacements will be discussed
when we pass from affine geometry, with which we are at present
dealing, to metrical geometry. The components of a co-variant
vector become transformed co-grediently to the fundamental vec-
tors in passing to a new co-ordinate system.

Additional Remarks.—Since the transformations of the
components a’ of a co-variant vector and of the components b’
of a contra-variant vector are contra-gredient to one another,
>, a;b’ is a definite number which is defined by these two vectors
and is independent of the co-ordinate system. This is our first
example of an invariant tensor operation. Numbers or scalars are
to be classified as tensors of zero order in the system of tensors.

It has already been explained under what conditions a bilinear
form of two series of variables is called symmetrical and what
makes a symmetrical bilinear form non-degenerate. A bilinear
form F(&,n) is called skew-symmetrical if the interchange of
the two sets of variables converts it into its negative, i.e. merely
changes its sign

This property is expressed in the co-efficients a;; by the equations
ap; = —a;,. These properties persist if the two sets of variables
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are subjected to the same linear transformations. The property of
being skew-symmetrical, symmetrical or (symmetrical and) non-
degenerate, possessed by co-variant or contra-variant tensors of
the second order is thus independent of the co-ordinate system.
Since the bilinear unit form resolves into itself after a contra-
gredient transformation of the two series of variables there is
among the mixed tensors of the second order (i.e. those which

are simply co-variant and simply contra-variant) one, called the
1=k
unit tensor, which has the components 6% = ( ) in every
0(i+#k)
co-ordinate system.
3. The metrical structure underlying Euclidean space assigns

to every two displacements
=Yoo y-Yife
i i

a number which is independent of the co-ordinate system and is
their scalar product

Xy =Y _guln" g = (e ep).
ik

Hence the bilinear form on the right depends on the co-ordinate
system in such a way that a co-variant tensor of the second order
is given by it, viz. the fundamental metrical tensor. The
metrical structure is fully characterised by it. It is symmetrical
and non-degenerate.

4. A linear vector transformation makes any displace-
ment x correspond linearly to another displacement, X', i.e. so that
the sum x’ +y’ corresponds to the sum x +y and the product Ax’
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to the product Ax. In order to be able to refer conveniently to
such linear vector transformations, we shall call them matrices.
If the fundamental vectors e; of a co-ordinate system become

1_2 : k
k

as a result of the transformation it will in general convert the
arbitrary displacement

X = Zfiei into x' = Zgi L= Z aféley. (24)

We may, therefore, characterise the matrix in the particular co-
ordinate system chosen by the bilinear form

> ais.
ik
It follows from (24) that the relation

D aflle, =) aféle, (=X)
ik

i,k

holds between two co-ordinate systems (we have used the same
terminology as above) if

Zf_iéi = Zfiez‘ (= x);

thus

D oakdn = afen
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if the n® are transformed co-grediently to the fundamental vectors
and the £ are transformed contra-grediently to them (the latter
remark about the transformations of the variables is self-evident
so that in future we shall simply omit it in similar cases). In this
way matrices are represented as tensors of the second order. In
particular, the unit tensor corresponds to “identity” which assigns
to every displacement x itself.

As was shown in the examples of force and metrical space it
often happens that the representation of geometrical or physical
quantities by a tensor becomes possible only after a unit measure
has been chosen: this choice can only be made by specifying it in
each particular case. If the unit measure is altered the represen-
tative tensors must be multiplied by a universal constant, viz. the
ratio of the two units of measure.

The following criterion is manifestly equivalent to this expo-
sition of the conception tensor. A linear form in several series
of vartables, which is dependent on the co-ordinate system, 1is
a tensor if in every case it assumes a value independent of the
co-ordinate system (a) whenever the components of an arbitrary
contra-variant vector are substituted for every contra-gredient se-
ries of variables, and (b) whenever the components of an arbitrary
co-variant vector are substituted for a co-gredient series.

If we now return from affine to metrical geometry, we see
from the arguments at the beginning of the paragraph that the
difference between co-variants and contra-variants which affects
the tensors themselves in affine geometry shrinks to a mere differ-
ence in the mode of representation.

Instead of talking of co-variant, mixed, and contra-variant ten-
sors we shall hence find it more convenient here to talk only of
the co-variant, mixed, and contra-variant components of a ten-
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sor. After the above remarks it is evident that the transition
from one tensor to another which has a different character of co-
variance may be formulated simply as follows. If we interpret the
contra-gredient variables in a tensor as the contra-variant compo-
nents of an arbitrary displacement, and the co-gredient variables
as co-variant components of an arbitrary displacement, the tensor
becomes transformed into a linear form of several arbitrary dis-
placements which is independent of the co-ordinate system. By
representing the arguments in terms of their co-variant or contra-
variant components in any way which suggests itself as being ap-
propriate we pass on to other representations of the same ten-
sor. From the purely algebraic point of view the conversion of a
co-variant index into a contra-variant one is performed by sub-
stituting new &;’s for the corresponding variables £° in the linear
form in accordance with (22). The invariant nature of this pro-
cess depends on the circumstance that this substitution transforms
contra-gredient variables into co-gredient ones. The converse pro-
cess is carried out according to the inverse equations(22'). The
components themselves are changed (on account of the symmetry
of the g;x’s) from contra-variants to co-variants, i.e. the indices
are “lowered” according to the rule:

Substitute a; = Zgijaj for a*

J

irrespective of whether the numbers a° carry any other indices or
not: the raising of the index is effected by the inverse equations.

If, in particular, we apply these remarks to the fundamental
metrical tensor, we get

> gt =D =Y Gt =) g%
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Thus its mixed components are the numbers 4}, its contra-variant
components are the co-efficients g of the equations (22'), which
are the inverse of (22). It follows from the symmetry of the tensor
that these as well as the g;;’s satisfy the condition of symmetry
gk = gk,

With regard to notation we shall adopt the convention of de-
noting the co-variant, mixed, and contra-variant components of
the same tensor by similar letters, and of indicating by the posi-
tion of the index at the top or bottom respectively whether the
components are contra-variant or co-variant with respect to the
index, as is shown in the following example of a tensor of the
second order:

D ansnt =D ap&nt = afn =) a*em
(in which the variables with lower and upper indices are connected
in pairs by (22)).

In metrical space it is clear, from what has been said, that
the difference between a co-variant and a contra-variant vector
disappears: in this case we can represent a force, which, according
to our view, is by nature a co-variant vector, as a contra-variant
vector, too, i.e. by a displacement. For, as we represented it above
by the linear form Y, p;&’ in the contra-gredient variables &', we
can now transform the latter by means of (22) into one having
co-gredient variables &;, viz. Y. p’§;. We then have

DG =Y gup'd =D g™ =D pigs

the representative displacement p is thus defined by the fact that
the work which the force performs during an arbitrary displace-
ment is equal to the scalar product of the displacements p and x.



CHAPTER 1 62

In a Cartesian co-ordinate system in which the fundamental
tensor has the components

)1 (i =k),
g"’“_{o (i # k),

the connecting equations (22) are simply: & = &' If we confine
ourselves to the use of Cartesian co-ordinate systems, the differ-
ence between co-variants and contra-variants ceases to exist, not
only for tensors but also for the tensor components. It must, how-
ever, be mentioned that the conceptions which have so far been
outlined concerning the fundamental tensor g;; assume only that
it is symmetrical and non-degenerate, whereas the introduction of
a Cartesian co-ordinate system implies, in addition, that the cor-
responding quadratic form is definitely positive. This entails a dif-
ference. In the Theory of Relativity the time co-ordinate is added
as a fully equivalent term to the three-space co-ordinates, and
the measure-relation which holds in this four-dimensional man-
ifold is not based on a definite form but on an indefinite one
(Chapter III). In this manifold, therefore, we shall not be able to
introduce a Cartesian co-ordinate system if we restrict ourselves
to real co-ordinates; but the conceptions here developed which
are to be worked out in detail for the dimensional number n = 4
may be applied without alteration. Moreover, the algebraic sim-
plicity of this calculus advises us against making exclusive use of
Cartesian co-ordinate systems, as we have already mentioned at
the end of §4. Above all, finally, it is of great importance for
later extensions which take us beyond Euclidean geometry that
the affine view should even at this stage receive full recognition
independently of the metrical one.
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Geometrical and physical quantities are scalars, vectors, and
tensors: this expresses the mathematical constitution of the space
in which these quantities exist. The mathematical symmetry
which this conditions is by no means restricted to geometry but,
on the contrary, attains its full validity in physics. As natural
phenomena take place in a metrical space this tensor calculus is
the natural mathematical instrument for expressing the unifor-
mity underlying them.

§ 6. Tensor Algebra. Examples

Addition of Tensors.—The multiplication of a linear form,
bilinear form, trilinear form ... by a number, likewise the addition
of two linear forms, or of two bilinear forms ... always gives rise
to a form of the same kind. Vectors and tensors may thus be
multiplied by a number (a scalar), and two or more tensors of the
same order may be added together. These operations are carried
out by multiplying the components by the number in question or
by addition, respectively. Every set of tensors of the same order
contains a unique tensor 0, of which all the components vanish,
and which, when added to any tensor of the same order, leaves
the latter unaltered. The state of a physical system is described
by specifying the values of certain scalars and tensors.

The fact that a tensor which has been derived from them by
mathematical operations and is an invariant (i.e. dependent upon
them alone and not upon the choice of the co-ordinate system) is
equal to zero is what, in general, the expression of a physical law
amounts to.

Examples.—The motion of a point is represented analytically
by giving the position of the moving-point or of its co-ordinates,



CHAPTER 1 64

I‘.
respectively, as functions of the time t. The derivatives d_tz are

the contra-variant components u® of the vector “velocity”. By mul-
tiplying it by the mass m of the moving-point, m being a scalar
which serves to express the inertia of matter, we get the “impulse”
(or “momentum”). By adding the impulses of several points of
mass or of those, respectively, of which one imagines a rigid body
to be composed in the mechanics of point-masses, we get the total
impulse of the point-system or of the rigid body. In the case of
continuously extended matter we must supplant these sums by
integrals. The fundamental law of motion is

dG"

i P Gh=mu (25)

where G denote the contra-variant components of the impulse of
a mass-point and p’ denote those of the force.

Since, according to our view, force is primarily a co-variant
vector, this fundamental law is possible only in a metrical space,
but not in a purely affine one. The same law holds for the total
impulse of a rigid body and for the total force acting on it.

Multiplication of Tensors.—By multiplying together two
linear forms >, a;£%, >, b in the variables ¢ and 7, we get a

bilinear form

Z a;by§ in’“

ik
and hence from the two vectors a and b we get a tensor ¢ of the
second order, i.e.

Equation (26) represents an invariant relation between the vectors
a and b and the tensor c, i.e. if we pass over to a new co-ordinate
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system precisely the same equations hold for the components (dis-
tinguished by a bar) of these quantities in this new co-ordinate
system, i.e.

In the same way we may multiply a tensor of the first order by
one of the second order (or generally, a tensor of any order by a
tensor of any order). By multiplying

Z az’éi by Z bfﬂiCk

in which the Greek letters denote variables which are to be trans-
formed contra-grediently or co-grediently according as the indices
are raised or lowered, we derive the trilinear form

> abint

i,k,l

and, accordingly, by multiplying the two tensors of the first and
second order, a tensor ¢ of the third order, i.e.

a; - bl = cy.

This multiplication is performed on the components by merely
multiplying each component of one tensor by each component of
the other, as is evident above. It must be noted that the co-
variant components (with respect to the index [, for example) of
the resultant tensor of the third order, i.e. ¢}, = a;b, are given by:
Citt = a;by. It is thus immediately permissible in such multipli-
cation formulee to transfer an index on both sides of the equation
from below to above or wvice versa.
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Examples of Skew-symmetrical and Symmetrical Ten-
sors.—If two vectors with the contra-variant components a‘, b,
are multiplied first in one order and then in the reverse order, and
if we then subtract the one result from the other, we get a skew-
symmetrical tensor ¢ of the second order with the contra-variant
components

= a'th — afb.

This tensor occurs in ordinary vector analysis as the “vectorial
product” of the two vectors a and b. By specifying a certain di-
rection of twist in three-dimensional space, it becomes possible
to establish a reversible one-to-one correspondence between these
tensors and the vectors. (This is impossible in four-dimensional
space for the obvious reason that, in it, a skew-symmetrical tensor
of the second order has six independent components, whereas a
vector has only four; similarly in the case of spaces of still higher
dimensions.) In three-dimensional space the above method of rep-
resentation is founded on the following. If we use only Cartesian
co-ordinate systems and introduce in addition to a and b an arbi-
trary displacement &, the determinant

at a®> a®
B2 | = (B 4 M2 4 126
¢ e

becomes multiplied by the determinant of the co-efficients of trans-
formation, when we pass from one co-ordinate system to another.
In the case of orthogonal transformations this determinant = +1.
If we confine our attention to “proper” orthogonal transformations,
i.e. such for which this determinant = +1 the above linear form
in the £’s remains unchanged. Accordingly, the formulae

23 % 31 % 12 %
c = C = Cy C = Cq
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express a relation between the skew-symmetrical tensor ¢ and a
vector ¢*, this relation being invariant for proper orthogonal trans-
formations. The vector ¢* is perpendicular to the two vectors
a and b, and its magnitude (according to elementary formulee of
analytical geometry) is equal to the area of the parallelogram of
which the sides are a and b. It may be justifiable on the ground
of economy of expression to replace skew-symmetrical tensors by
vectors in ordinary vector analysis, but in some ways it hides the
essential feature; it gives rise to the well-known “swimming-rules”
in electrodynamics, which in no wise signify that there is a unique
direction of twist in the space in which electrodynamics events
occur; they become necessary only because the magnetic inten-
sity of field is regarded as a vector, whereas it is, in reality, a
skew-symmetrical tensor (like the so-called vectorial product of
two vectors). If we had been given one more space-dimension,
this error could never have occurred.

In mechanics the skew-symmetrical tensor product of two vec-
tors occurs—

1. As moment of momentum (angular momentum) about a
point O. If there is a point-mass at P and if ¢!, &2, &3 are the
components of OP and u' are the (contra-variant) components of
the velocity of the points at the moment under consideration, and
m its mass, the momentum of momentum is defined by

The moment of momentum of a rigid body about a point O is the
sum of the moments of momentum of each of the point-masses of
the body.

2. As the turning-moment (torque) of a force. If the lat-
ter acts at the point P and if p’ are its contra-variant components,
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the torque is defined by

The turning-moment of a system of forces is obtained by simple
addition. In addition to (25) the law

=q" 27
i’ (27)

holds for a point-mass as well as for a rigid body free from con-
straint. The turning-moment of a rigid body about a fixed point O
is governed by the law (27) alone.

A further example of a skew-symmetrical tensor is the rate
of rotation (angular velocity) of a rigid body about the fixed
point O. If this ro‘gt_%on about O brings the point P in general
to P’, the vector OP’ is produced, and hence also PP’, by a
linear transformation from OP. If ¢ are the components of OP,
6" those of PP’ v} the components of this linear transformation
(matrix), we have

06 =) ik, (28)
k

We shall concern ourselves here only with infinitely small rota-
tions. They are distinguished among infinitesimal matrices by the
additional property that, regarded as an identity in &,

6(2 @-8) = 5(2 gikf%’f) = 0.

This gives

Zgi(sgi = 0.



EUCLIDEAN SPACE 69

By inserting the expressions (28) we get

Zviififk = Zvikgifk =0.

This must be identically true in the variables ¢;, and hence
Uki + Vi = 0

i.e. the tensor which has v;;, for its co-variant components is skew-
symmetrical.

A rigid body in motion experiences an infinitely small rota-
tion during an infinitely small element of time dt. We need only
to divide by 0t the infinitesimal rotation-tensor v just formed to
derive (in the limit when 6t — 0) the skew-symmetrical tensor
“angular velocity,” which we shall again denote by v. If u signify
the contra-variant components of the velocity of the point P, and
u; its co-variant components in the formulee (28), the latter re-
solves into the fundamental formula of the kinematics of a rigid

body, viz.
k

The existence of the “instantaneous axis of rotation” follows from
the circumstance that the linear equations

Z Uz’kfk =0
k

with the skew-symmetrical co-efficients v;, always have solutions
in the case n = 3, which differ from the trivial one ¢! = ¢2 =
€ = 0. One usually finds angular velocity, too, represented as a
vector.
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Finally the “moment of inertia” which presents itself in the
rotation of a body offers a simple example of a symmetrical tensor
of the second order.

If a point-mass of mass m is situated at the point P to which
the vector Oﬁ starting from the centre of rotation O and with the
components &' leads, we call the symmetrical tensor of which the
contra-variant components are given by m&i€® (multiplication!),
the “inertia of rotation” of the point-mass (with respect to the
centre of rotation O). The inertia of rotation T of a point-system
or body is defined as the sum of these tensors formed separately
for each of its points P. This definition is different from the usual
one, but is the correct one if the intention of regarding the velocity
of rotation as a skew-symmetrical tensor and not as a vector is to
be carried out, as we shall presently see. The tensor T% plays
the same part with regard to a rotation about O as that of the
scalar m in translational motion.

Contraction.—If af are the mixed components of a tensor
of the second order, Y, a! is an invariant. Thus, if a@¥ are the
mixed components of the same tensor after transformation to a
new co-ordinate system, then

S
Proof—The variables ¢!, n; of the bilinear form
> i€y
ik

must be subjected to the contra-gredient transformations

= Z@igk, ni = deﬁk
K K
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if we wish to bring them into the form
Z a; €' .
ik

From this it follows that

I
53
I
S
ST
Q
= .
Q¢
O

and

l
3

e ple)
_Z by (20)

The invariant Y, a! which has been formed from the compo-
nents a¥ of a matrix is called the trace (spur) of the matrix.

This theorem enables us immediately to carry out a general
operation on tensors, called “contraction,” which takes a second
place to multiplication. By making a definite upper index in the
mixed components of a tensor coincide with a definite lower one,
and summing over this index, we derive from the given tensor a
new one the order of which is two less than that of the original
one, e.g. we get from the components a{ of a tensor of the fifth
order a tensor of the third order, thus:—

Z ahzr = Chz (30)

The connection expressed by (30) is an invariant one, i.e. it pre-
serves its form when we pass over to a new co-ordinate system,
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Viz.

Z ahzr = Chz (31)

To see this we only need the help of two arbitrary contra-variant
vectors £, 0 and a co-variant one (;. By means of them we form
the components,

> aména = i,

h,i,l

of a mixed tensor of the second order: to this we apply the theorem
2 I=20
which was just proved. We then get the formula

Z GG = Z "G

Rl Rl

in which the ¢’s are defined by (30), the &’s by (31). The &,’s are
thus, in point of fact, the components of the same tensor of the
third order in the new system, of which the components in the old
one = cl, .

Examples of this process of contraction have been met with
in abundance in the above. Wherever summation took place with
respect to certain indices, the summation index appeared twice in
the general member of summation, once above and once below the
co-efficient: each such summation was an example of contraction.
For example, in formula (29): by multiplication of v;, with & one
can form the tensor v;,£! of the third order; by making k coincide
with [ and summing for k, we get the contracted tensor of the first
order u;. If a matrix A transforms the arbitrary displacement x
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into x’ = A(x), and if a second matrix B transforms this x’ into
x" = —B(x'), a combination BA results from the two matrices,
which transforms x directly into x” = BA(x). If A has the com-
ponents a¥ and B components b¥, the components of the combined

matrix BA are
k r k
c; = g ba,.
I8

Here, again, we have the case of multiplication followed by con-
traction.

The process of contraction may be applied simultaneously for
several pairs of indices. From the tensors of the 1st, 2nd, 3rd, ...
order with the co-variant components a;, a;x, @, ..., we thus
get, in particular, the invariants

a;a-, (07710 Qi@ ...
i i,k

i,k,l

If, as is here assumed, the quadratic form corresponding to the
fundamental metrical tensor is definitely positive, these invariants
are all positive, for, in a Cartesian co-ordinate system they disclose
themselves directly as the sums of the squares of the components.
Just as in the simplest case of a vector, the square root of these
invariants may be termed the measure or the magnitude of the
tensor of the 1st, 2nd, 3rd, ... order.

We shall at this point make the convention, once and for all,
that if an index occurs twice (once above and once below) in a
term of a formula to which indices are attached, this is always to
signify that summation is to be carried out with respect to the
index in question, and we shall not consider it necessary to put a
summation sign in front of it.
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The operations of addition, multiplication, and contraction
only require affine geometry: they are not based upon a “fun-
damental metrical tensor”. The latter is only necessary for the
process of passing from co-variant to contra-variant components
and the reverse.

Euler’s Equations for a Spinning Top

As an exercise in tensor calculus, we shall deduce Euler’s equa-
tions for the motion of a rigid body under no forces about a fixed
point O. We write the fundamental equations (27) in the co-
variant form

d L,
dt
and multiply them, for the sake of briefness, by the contra-variant
components w* of an arbitrary skew-symmetrical tensor which is
constant (independent of the time), and apply contraction with
respect to ¢ and k. If we put H;;, equal to the sum

> maugk

which is to be taken over all the points of mass, we get

=0

1 ik ik
§Likw = szw =H s
an invariant, and we can compress our equation into

dH
— = 2
o =0 (32)

If we introduce the expressions (29) for u;, and the tensor of iner-
tia 7', then
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We have hitherto assumed that a co-ordinate system which is
fixed in space has been used. The components 7' of inertia then
change with the distribution of matter in the course of time. If,
however, in place of this we use a co-ordinate system which is fixed
in the body, and consider the symbols so far used as referring to
the components of the corresponding tensors with respect to this
co-ordinate system, whereas we distinguish the components of the
same tensors with respect to the co-ordinate system fixed in space
by a horizontal bar, the equation (32) remains valid on account
of the invariance of H. The T}’s are now constants; on the other
hand, however, the w**’s vary with the time. Our equation gives
us
dwik

ik
Hy -2 — o, 34
WA Hik =g (34)

dH
dt
ik

To determine , we choose two arbitrary vectors fixed in

the body, of which the co-variant components in the co-ordinate
system attached to the body are & and 7; respectively. These
quantities are thus constants, but their components &;, 7; in the
space co-ordinate system are functions of the time. Now,

w*Eme = Wy,

and hence, differentiating with respect to the time

dw™ ok (4 £ Ak
g = (dt M+ & - dt) (35)
By formula (29)
d ? T ~T
L

dt
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We thus get for the right-hand side of (35)
W™ (07 &Mk + VREiThr ),
and as this is an invariant, we may remove the bars, obtaining
dwz’k
dt

This holds identically in ¢ and n; thus if the H* are arbitrary
numbers,

= w™ (&} + Emeoy).

§iMke

d ik )
Hz' ;U—t = U}Zk(U;Hrk + UZHZ‘T).
If we take the H;.’s to be the quantities which we denoted above
by this symbol, the second term of (34) is determined, and our

equation becomes

dH; .
{ dtk + (v Hyp —i—v,ZHZ’T)} w® =0,

which is an identity in the skew-symmetrical tensor w’; hence

d(H;, — Hy,)

dt V[ Hyi + 0 Hy

v; Hyp, + vy, Z-T] _0

We shall now substitute the expression (33) for H;;. Since, on
account, of the symmetry of T},

v Hip (= vpvi 1)

is also symmetrical in ¢ and k, the two last terms of the sum
in the square brackets destroy one another. If we now put the
symmetrical tensor

r T .S
V] U = Grs0 U = (U, V),
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we finally get our equations into the form

d T T
E(UirT]: - Ukr,-rir) = (Ua U)ier - (U7v)k7‘T;; .

It is well known that we may introduce a Cartesian co-ordinate
system composed of the three principal axes of inertia, so that in
these

_f1G=n. 0 i
gik—{o (i £ ) and Ty, =0 (fori#k).

If we then write T} in place of T}, and do the same for the re-
maining indices, our equations in this co-ordinate system assume
the simple form

d’UZ'k
dt

(T; + 1) —~ = (Ti = T) (v, v)in-

These are the differential equations for the components v, of the
unknown angular velocity—equations which, as is known, may
be solved in elliptic functions of . The principal moments of
inertia 7; which occur here are connected with those, T}, given in
accordance with the usual definitions by the equations

T =To+Ty, Ti=Ty+T, T;=T+T.

The above treatment of the problem of rotation may, in contra-
distinction to the usual method, be transposed, word for word,
from three-dimensional space to multi-dimensional spaces. This is,
indeed, irrelevant in practice. On the other hand, the fact that we
have freed ourselves from the limitation to a definite dimensional
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number and that we have formulated physical laws in such a way
that the dimensional number appears accidental in them, gives
us an assurance that we have succeeded fully in grasping them
mathematically.

The study of tensor-calculus® is, without doubt, attended by
conceptual difficulties—over and above the apprehension inspired
by indices, which must be overcome. From the formal aspect,
however, the method of reckoning used is of extreme simplicity;
it is much easier than, e.g., the apparatus of elementary vector-
calculus. There are two operations, multiplication and contrac-
tion; then putting the components of two tensors with totally
different indices alongside of one another; the identification of an
upper index with a lower one, and, finally, summation (not ex-
pressed) over this index. Various attempts have been made to
set up a standard terminology in this branch of mathematics in-
volving only the vectors themselves and not their components,
analogous to that of vectors in vector analysis. This is highly
expedient in the latter, but very cumbersome for the much more
complicated framework of the tensor calculus. In trying to avoid
continual reference to the components we are obliged to adopt an
endless profusion of names and symbols in addition to an intri-
cate set of rules for carrying out calculations, so that the balance
of advantage is considerably on the negative side. An emphatic
protest must be entered against these orgies of formalism which
are threatening the peace of even the technical scientist.

*Vide note 4.
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§ 7. Symmetrical Properties of Tensors

It is obvious from the examples of the preceding paragraph
that symmetrical and skew-symmetrical tensors of the second or-
der, wherever they are applied, represent entirely different kinds of
quantities. Accordingly the character of a quantity is not in gen-
eral described fully, if it is stated to be a tensor of such and such
an order, but symmetrical characteristics have to be added.

A linear form of several series of variables is called symmet-
rical if it remains unchanged after any two of these series of vari-
ables are interchanged, but is called skew-symmetrical if this
converts it into its negative, i.e. reverses its sign. A symmetrical
linear form does not change if the series of variables are subjected
to any permutations among themselves; a skew-symmetrical one
does not change if an even permutation is carried out with the
series of variables, but changes its sign if the permutation is odd.
The co-efficients a;; of a symmetrical trilinear form (we purposely
choose three again as an example) satisfy the conditions

Qikl = Akl = Qlik = Qkil = Qi = Q4lk-

Of the co-efficients of a skew-symmetrical tensor only those which
have three different indices can be # 0 and they satisfy the equa-
tions

Qi = Qkl; = Qlik = — Akl = — Qs = —Q4lk-

There can consequently be no (non-vanishing) skew-symmetri-
cal forms of more than n series of variables in a domain of n vari-
ables. Just as a symmetrical bilinear form may be entirely re-
placed by the quadratic form which is derived from it by identify-
ing the two series of variables, so a symmetrical trilinear form is
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uniquely determined by the cubical form of a single series of vari-
ables with the co-efficients a;;;, which is derived from the trilinear
form by the same process. If in a skew-symmetrical trilinear form

F= Zaiklginkcl
vy
we perform the 3! permutations on the series of variables &, 7, (,
and prefix a positive or negative sign to each according as the
permutation is even or odd, we get the original form six times.
If they are all added together, we get the following scheme for

them:— '
' g ¢ ¢
F= izaikl 771 77: ni : (36)
¢ ¢ ¢

In a linear form the property of being symmetrical or skew-
symmetrical is not destroyed if each series of variables is subjected
to the same linear transformation. Consequently, a meaning may
be attached to the terms symmetrical and skew-symmetrical,
co-variant or contra-variant tensors. But these expressions
have no meaning in the domain of mixed tensors. We need spend
no further time on symmetrical tensors, but must discuss skew-
symmetrical co-variant tensors in somewhat greater detail as they
have a very special significance.

The components £ of a displacement determine the direction
of a straight line (positive or negative) as well as its magnitude.
If £ and 1 are any two linearly independent displacements, and
if they are marked out from any arbitrary point O, they trace out
a plane. The ratios of the quantities
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define the “position” of this plane (a “direction” of the plane) in
the same way as the ratios of the & fix the position of a straight
line (its “direction”). The £%* are each = 0 if, and only if, the two
displacements ¢!, n' are linearly dependent; in this case they do
not map out a two-dimensional manifold. When two linearly inde-
pendent displacements £ and 7’ trace out a plane, a definite sense
of rotation is implied, viz. the sense of the rotation about O in
the plane which for a turn < 180° brings & to coincide with 7; also
a definite measure (quantity), viz. the area of the parallelogram
enclosed by £ and 7. If we mark off two displacements &, n from
an arbitrary point O, and two &,, 7, from an arbitrary point O,
then the position, the sense of rotation, and the magnitude of the
plane marked out are identical in each if, and only if, the £%*’s of
the one pair coincide with those of the other, i.e.

gt — &' = Enl — &l

So that just as the £’s determine the direction and length of
a straight line, so the £*’s determine the sense and surface area
of a plane; the completeness of the analogy is evident.

To express this we may call the first configuration a one-
dimensional space-element, the second a two-dimensional
space-element. Just as the square of the magnitude of a one-
dimensional space-element is given by the invariant

GE = gal's = Q(¢)

so the square of the magnitude of the two-dimensional space-
element is given, in accordance with the formulee of analytical
geometry, by

ik
%fl ik
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for which we may also write

Em(En" — &) = (&€ (0" k) — (&m") (i)
= Q(&) - Qn) — Q*(&,m).

In the same sense the determinants

GRS
gkl — i b
¢t d

which are derived from three independent displacements &, 1, (,
are the components of a three-dimensional space-element, the
magnitude of which is given by the square root of the invariant

1 ikl
58" it
In three-dimensional space this invariant is

51235123 = 91i92k93lfikl51237

and since ¢ = ££123 according as ikl is an even or an odd
permutation of 123, it assumes the value
g- (€%

where ¢ is the determinant of the co-efficients g;;, of the fundamen-
tal metrical form. The volume of the parallelepiped thus becomes

&b &2 &3] (taking the absolute,
=vag-\n 0 i.e. positive value of
¢t ¢% (3| the determinants).
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This agrees with the elementary formulee of analytical geometry.
In a space of more than three dimensions we may similarly pass
on to four-dimensional space-elements, etc.

Just as a co-variant tensor of the first order assigns a num-
ber linearly (and independently of the co-ordinate system) to ev-
ery one-dimensional space-element (i.e. displacement), so a skew-
symmetrical co-variant tensor of the second order assigns a num-
ber to every two-dimensional space-element, a skew-symmetrical
tensor of the third order to each three-dimensional space-element,
and so on: this is immediately evident from the form in which
(36) is expressed. For this reason we consider it justifiable to call
the co-variant skew-symmetrical tensors simply linear tensors.
Among operations in the domain of linear tensors we shall mention
the two following ones:—

a;by — arb; = cig, (37)
a;by — agby + aibi, = cing. (38)

The former produces a linear tensor of the second order from two
linear tensors of the first order; the latter produces a linear tensor
of the third order from one of the first and one of the second.

Sometimes conditions of symmetry more complicated than
those considered heretofore occur. In the realm of quadrilinear
forms F'(§,n,&',n') those play a particular part which satisfy the
conditions

F(n,&,&n)=F(&nn,&)=—-F(&ng,n), (391)
P&, &n) = F(&n,E1), (392)
F(&,n. &)+ F(&& ', n)+ F&n,n¢)=0. (393)
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For it may be shown that for every quadratic form of an arbitrary
two-dimensional space-element
gzk — fznk’ o Sknz

there is one and only one quadrilinear form F' which satisfies these
conditions of symmetry, and from which the above quadratic form
is derived by identifying the second pair of variables &', n' with
the first pair &, 7. We must consequently use co-variant tensors
of the fourth order having the symmetrical properties (39) if we
wish to represent functions which stand in quadratic relationship
with an element of surface.

The most general form of the condition of symmetry
for a tensor F' of the fifth order of which the first, second, and
fourth series of variables are contra-gredient, the third and fifth
co-gredient (we are taking a particular case) are

Z GSF S = 0
s

in which S signifies all permutations of the five series of vari-
ables in which the contra-gredient ones are interchanged among
themselves and likewise the co-gredient ones; Fg denotes the form
which results from F' after the permutation S; eg is a system of
definite numbers, which are assigned to the permutations S. The
summation is taken over all the permutations S. The kind of sym-
metry underlying a definite type of tensors expresses itself in one
or more of such conditions of symmetry.

§ 8. Tensor Analysis. Stresses

Quantities which describe how the state of a spatially extended
physical system varies from point to point have not a distinct value
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but only one “for each point”: in mathematical language they are
“functions of the place or point”. According as we are dealing with
a scalar, vector, or tensor, we speak of a scalar, vector, or tensor
field.

Such a field is given if a scalar, vector, or tensor of the proper
type is assigned to every point of space or to a definite region of
it. If we use a definite co-ordinate system the value of the scalar
quantities or of the components of the vector or tensor quantities
respectively, appear in the co-ordinate system as functions of the
co-ordinates of a variable point in the region under consideration.

Tensor analysis tells us how, by differentiating with respect to
the space co-ordinates, a new tensor can be derived from the old
one in a manner entirely independent of the co-ordinate system.
This method, like tensor algebra, is of extreme simplicity. Only

one operation occurs in it, viz. differentiation.
If

¢ = f(x1,29,...,2,) = f(x)

denotes a given scalar field, the change of ¢ corresponding to an
infinitesimal displacement of the variable point, in which its co-
ordinates z; suffer changes dx; respectively, is given by the total
differential

of of of
&Tldl’l—‘ra Qd 2+"'+a$n

dz,,.

df =

This formula signifies that if the Ax; are first taken as the compo-
nents of a finite displacement and the Af are the corresponding
changes in f, then the difference between

Af and ng
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does not only decrease absolutely to zero with the components
of the displacement, but also relatively to the amount of
the displacement, the measure of which may be defined as
|Azy| 4+ |Azy| + - - + |Az,|. We link up the linear form

>

in the variables ¢! to this differential. If we carry out the same con-
struction in another co-ordinate system (with horizontal bars over
the co-ordinates), it is evident from the meaning of the term differ-
ential that the first linear form passes into the second, if the s
are subjected to the transformation which is contra-gredient to
the fundamental vectors. Accordingly

of  of of
oxry Oxy 7 Ox,

are the co-variant components of a vector which arises from the
scalar field ¢ in a manner independent of the co-ordinate system.
In ordinary vector analysis it occurs as the gradient and is de-
noted by the symbol grad ¢.

This operation may immediately be transposed from a scalar
to any arbitrary tensor field. If, e.g., f} (z) are components of a
tensor field of the third order, contra-variant with respect to h,
but co-variant with respect to ¢ and k, then

b

is an invariant, if we take &, as standing for the components of
an arbitrary but constant co-variant vector (i.e. independent of
its position), and 7', ¢* each as standing for the components of a
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similar contra-variant vector in turn. The change in this invariant
due to an infinitesimal displacement with components dx; is given
by

a z']llc i,k
. Enn'CY day
Xy
hence b
no_ Ok
ikl aﬂfl

are the components of a tensor field of the fourth order, which
arises from the given one in a manner independent of the co-
ordinate system. Just this is the process of differentiation;
as is seen, it raises the order of the tensor by 1. We have still to
remark that, on account of the circumstance that the fundamental
metrical tensor is independent of its position, one obtains the
components of the tensor just formed, for example, which are
contra-variant with respect to the index k, by transposing the

hki
. Th
8ZE l ¢

change from co-variant to contra-variant is interchangeable with
differentiation. Differentiation may be carried out purely formally
by imagining the tensor in question multiplied by a vector having
the co-variant components

index k under the sign of differentiation to the top, viz.

0 0 0
— =, ... 40
oxy  Oxy’ " Oz, (40)
and treating the differential quotient 3 as the symbolic product
Z;
0
of f and —. The symbolic vector (40) is often encountered

ox;

7
in mathematical literature under the mysterious name ‘“nabla-
vector”.
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Examples.—The vector with the co-variant components u;

U
gives rise to the tensor of the second order — = w;;. From this

ox k
we form

These quantities are the co-variant components of a linear tensor
of the second order. In ordinary vector analysis it occurs (with
the signs reversed) as “rotation” (rot, spin or curl). On the other

hand the quantities
1 8u1 n auk
2\ 0z, Ox;

are the co-variant components of a symmetrical tensor of the sec-
ond order. If the vector u represents the velocity of continuously
extended moving matter as a function of its position, the vanishing
of this tensor at a point signifies that the immediate neighbour-
hood of the point moves as a rigid body; it thus merits the name
distortion tensor. Finally by contracting u} we get the scalar

(41)

ou’
8[EZ‘

which is known in vector analysis as “divergence” (div.).
By differentiating and contracting a tensor of the second order
having mixed components S¥ we derive the vector

oSk
(%ck ’

If v;, are the components of a linear tensor field of the second
order, then, analogously to formula (38) in which we substitute v
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or b and the symbolic vector “differentiation” for a, we get the
linear tensor of the third order with the components

ov ov;  0v;
K O OUik

Tensor (41), i.e. the curl, vanishes if v; is the gradient of a scalar
field; tensor (42) vanishes if vy, is the curl of a vector w;.
Stresses.—An important example of a tensor field is offered
by the stresses occurring in an elastic body; it is, indeed, from
this example that the name “tensor” has been derived. When ten-
sile or compressional forces act at the surface of an elastic body,
whilst, in addition, “volume-forces” (e.g. gravitation) act on vari-
ous portions of the matter within the body, a state of equilibrium
establishes itself, in which the forces of cohesion called up in the
matter by the distortion balance the impressed forces from with-
out. If we imagine any portion J of the matter cut out of the
body and suppose it to remain coherent after we have removed
the remaining portion, the impressed volume forces will not of
themselves keep this piece of matter in a state of equilibrium.
They are, however, balanced by the compressional forces acting
on the surface 2 of the portion J, which are exerted on it by the
portion of matter removed. We have actually, if we do not take
the atomic (granular) structure of matter into account, to imagine
that the forces of cohesion are only active in direct contact, with
the consequence that the action of the removed portion upon J
must be representable by superficial forces such as pressure: and
indeed, if S do is the pressure acting on an element of surface do
(S here denotes the pressure per unit surface), S can depend only
upon the place at which the element of surface do happens to be
and on the inward normal n of this element of surface with respect
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to J, which characterises the “position” of do. We shall write S,,
for S to emphasise this connection between S and n. If —n de-
notes the normal in a direction reversed to that of n, it follows
from the equilibrium of a small infinitely thin disc, that

S_, =-S,. (43)

We shall use Cartesian co-ordinates x1, xs, 3. The compres-
sional forces per unit of area at a point, which act on an element
of surface situated at the same point, the inward normals of which
coincide with the direction of the positive xi-, x9-, x3-axis respec-
tively will be denoted by S;, Sy, S3. We now choose any three
positive numbers aq, as, az, and a positive number ¢, which is to
converge to the value 0 (whereas the a; remain fixed). From the
point O under consideration we mark off in the direction of the
positive co-ordinate axes the distances

OPl = €aq, OP2 = €ag, OP3:€CZ3

and consider the infinitesimal tetrahedron OP;P,P; having
OP,P;, OP;P,, OP,P, as walls and P,P,P; as its “roof”. If
f is the superficial area of the roof and ay, as, as are the direction
cosines of its inward normals n, then the areas of the walls are

—f- al(_ 3¢ Gzaz) —f - as, —f-as.

The sum of the pressures on the walls and the roof becomes for
evanescent values of e:

f{S (a1S1 + a9Sy + a3S3)}

The magnitude of f is of the order €?: but the volume force acting
upon the volume of the tetrahedron is only of the order of magni-
tude €. Hence, owing to the condition for equilibrium, we must
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have
S, = (a181 + a9Sy + agsg).

With the help of (43) this formula may be extended immediately
to the case in which the tetrahedron is situated in any of the re-
maining 7 octants. If we call the components of S; with respect to
the co-ordinate axes S;i, Sj2, Si3, and if £, n® are the components
of any two arbitrary displacements of length 1, then

> St (44)
ik

is the component, in the direction 7, of the compressional force
which is exerted on an element of surface of which the inner normal
is £. The bilinear form (44) has thus a significance independent
of the co-ordinate system, and the S;;’s are the components of
a “stress” tensor field. We shall continue to operate in rectangu-
lar co-ordinate systems so that we shall not have to distinguish
between co-variant and contra-variant quantities.

We form the vector S| having components Sy;, Sg;, S3;. The
component of S| in the direction of the inward normal n of an
element of surface is then equal to the x;-component of S,,. The
x1-component of the total pressure which acts on the surface € of
the detached portion of matter J is therefore equal to the surface
integral of the normal components of S} and this, by Gauss’s
Theorem, is equal to the volume integral

—/divs’l-dv.
J

The same holds for the x5 and the x3 component. We have thus
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to form the vector p having the components

(this is performed, as we know, according to an invariant law).
The compressional forces S are then equivalent to a volume force
having the direction and intensity given by p per unit volume in
the sense that, for every dissociated portion of matter J,

/ando:/dev. (45)

If k is the impressed force per unit volume, the first condition of
equilibrium for the piece of matter considered coherent after being
detached is

/ (p+k)dV =0,
J
and as this must hold for every portion of matter
p+k=0. (46)

If we choose an arbitrary origin O and if r denote the radius
vector to the variable point P, and the square bracket denote
the “vectorial” product, the second condition for equilibrium, the
equation of moments, is

/Q[r, S, ] do + /J[r,k] v — o,

and since (46) holds generally we must have, besides (45),

/Q [r,S,] do = /J v, p| dV.
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The x; component of [r,S,] is equal to the component of
x9S% — x3S), in the direction of n. Hence, by Gauss’s theorem,
the ;1 component of the left-hand member is

— /J div(zoSh — 23S5) dV.
Hence we get the equation
div(2285 — 23S85) = —(22ps — T3p2).
But the left-hand member
= (zodivS; — 23divS},) + (S5 - grad x — S5 - grad x3)
= —(@2p3 — w3p2) + (S23 — 932).

Accordingly, if we form the x5 and x3 components in addition to
the xy component, this condition of equilibrium gives us

523 = 5327 831 = 5137 Sl2 = SQla

i.e. the symmetry of the stress-tensor S. For an arbitrary dis-
placement having the components &°,

> Siné'E"
Z gikgigk

is the component of the pressure per unit surface for the com-
ponent in the direction &, which acts on an element of surface
placed at right angles to this direction. (We may here again use
any arbitrary affine co-ordinate system.) The stresses are fully
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equivalent to a volume force of which the density p is calcu-
lated according to the invariant formulee

_ o8}

—Di (47)

In the case of a pressure p which is equal in all directions

st=pdt. n--3l
As a result of the foregoing reasoning we have formulated in
exact terms the conception of stress alone, and have discovered
how to represent it mathematically. To set up the fundamental
laws of the theory of elasticity it is, in addition, necessary to find
out how the stresses depend on the distortion brought about in
the matter by the impressed forces. There is no occasion for us to
discuss this in greater detail.

§ 9. Stationary Electromagnetic Fields

Hitherto, whenever we have spoken of mechanical or physical
things, we have done so for the purpose of showing in what manner
their spatial nature expresses itself: namely, that its laws manifest
themselves as invariant tensor relations. This also gave us an op-
portunity of demonstrating the importance of the tensor calculus
by giving concrete examples of it. It enabled us to prepare the
ground for later discussions which will grapple with physical the-
ories in greater detail, both for the sake of the theories themselves
and for their important bearing on the problem of time. In this
connection the theory of the electromagnetic field, which is
the most perfect branch of physics at present known, will be of
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the highest importance. It will here only be considered in so far
as time does not enter into it, i.e. we shall confine our attention
to conditions which are stationary and invariable in time.

Coulomb’s Law for electrostatics may be enunciated thus. If
any charges of electricity are distributed in space with the den-
sity p they exert a force

K=c¢c-E (48)

upon a point-charge e, whereby
p-r
E=—- [ -—dV. 49
/ 43 (49)

r here denotes the vector Cﬁ which leads from the “point of emer-
gence O” at which E is to be determined, to the “current point” or
source, with respect to which the integral is taken: r is its length
and dV is the element of volume. The force is thus composed of
two factors, the charge e of the small testing body, which depends
on its condition alone, and of the “intensity of field” E, which on
the contrary is determined solely by the given distribution of the
charges in space. We picture in our minds that even if we do not
observe the force acting on a testing body, an “electric field” is
called up by the charges distributed in space, this field being de-
scribed by the vector E; the action on a point-charge e expresses
itself in the force (48). We may derive E from a potential —¢ in
accordance with the formulae

E = grad ¢, —M¢:/§ﬂi (50)

From (50) it follows (1) that E is an irrotational (and hence lamel-
lar) vector, and (2) that the flux of E through any closed surface is
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equal to the charges enclosed by this surface, or that the electricity
is the source of the electric field; i.e. in formulae

curl E = 0, divE = p. (51)

Inversely, Coulomb’s Law arises out of these simple differential
laws if we add the condition that the field E vanish at infinite
distances. For if we put E = grad ¢ from the first of the equa-
tions (51), we get from the second, to determine ¢, Poisson’s equa-
tion A¢ = p, the solution of which is given by (50).

Coulomb’s Law deals with “action at a distance”. The in-
tensity of the field at a point is expressed by it depending on
the charges at all other points, near or far, in space. In contra-
distinction from this the far simpler formulae (51) express laws
relating to “infinitely near” action. As a knowledge of the values
of a function in an arbitrarily small region surrounding a point
is sufficient to determine the differential quotient of the function
at the point, the values of p and E at a point and in its immedi-
ate neighbourhood are brought into connection with one another
by (51). We shall regard these laws of infinitely near action as
the true expression of the uniformity of action in nature, whereas
we look upon (49) merely as a mathematical result following logi-
cally from it. In the light of the laws expressed by (51) which have
such a simple intuitional significance we believe that we under-
stand the source of Coulomb’s Law. In doing this we do indeed
bow to dictates of the theory of knowledge. Even Leibniz for-
mulated the postulate of continuity, of infinitely near action, as
a general principle, and could not, for this reason, become rec-
onciled to Newton’s Law of Gravitation, which entails action at
a distance and which corresponds fully to that of Coulomb. The
mathematical clearness and the simple meaning of the laws(51)
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are additional factors to be taken into account. In building up
the theories of physics we notice repeatedly that once we have
succeeded in bringing to light the uniformity of a certain group of
phenomena it may be expressed in formulee of perfect mathemati-
cal harmony. After all, from the physical point of view, Maxwell’s
theory in its later form bears uninterrupted testimony to the stu-
pendous fruitfulness which has resulted through passing from the
old idea of action at a distance to the modern one of infinitely
near action.

The field exerts on the charges which produce it a force of
which the density per unit volume is given by the formula

p = pE. (52)

This is the rigorous interpretation of the equation (48).

If we bring a test charge (on a small body) into the field, it also
becomes one of the field-producing charges, and formula (48) will
lead to a correct determination of the field E existing before the
test charge was introduced, only if the test charge e is so weak that
its effect on the field is imperceptible. This is a difficulty which
permeates the whole of experimental physics, viz. that by intro-
ducing a measuring instrument the original conditions which are
to be measured become disturbed. This is, to a large extent, the
source of the errors to the elimination of which the experimenter
has to apply so much ingenuity.

The fundamental law of mechanics: mass x acceleration =
force, tells us how masses move under the influence of given forces
(the initial velocities being given). Mechanics does not, however,
teach us what is force; this we learn from physics. The fundamen-
tal law of mechanics is a blank form which acquires a concrete
content only when the conception of force occurring in it is filled
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in by physics. The unfortunate attempts which have been made to
develop mechanics as a branch of science distinct in itself have, in
consequence, always sought help by resorting to an explanation in
words of the fundamental law: force signifies mass x acceleration.
In the present case of electrostatics, i.e. for the particular category
of physical phenomena, we recognise what is force, and how it is
determined according to a definite law by (52) from the phase-
quantities charge and field. If we regard the charges as being
given, the field equations (51) give the relation in virtue of which
the charges determine the field which they produce. With regard
to the charges, it is known that they are bound to matter. The
modern theory of electrons has shown that this can be taken in
a perfectly rigorous sense. Matter, is composed of elementary
quanta, electrons, which have a definite invariable mass, and, in
addition, a definite invariable charge. Whenever new charges ap-
pear to spring into existence, we merely observe the separation of
positive and negative elementary charges which were previously
so close together that the “action at a distance” of the one was
fully compensated by that of the other. In such processes, ac-
cordingly, just as much positive electricity “arises” as negative.
The laws thus constitute a cycle. The distribution of the elemen-
tary quanta of matter provided with charges fixed once and for
all (and, in the case of non-stationary conditions, also their veloc-
ities) determine the field. The field exerts upon charged matter a
ponderomotive force which is given by (52). The force determines,
in accordance with the fundamental law of mechanics, the acceler-
ation, and hence the distribution and velocity of the matter at the
following moment. We require this whole network of theo-
retical considerations to arrive at an experimental means
of verification,—if we assume that what we directly observe is
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the motion of matter. (Even this can be admitted only condition-
ally.) We cannot merely test a single law detached from this the-
oretical fabric! The connection between direct experience and the
objective element behind it, which reason seeks to grasp conceptu-
ally in a theory, is not so simple that every single statement of the
theory has a meaning which may be verified by direct intuition.
We shall see more and more clearly in the sequel that Geometry,
Mechanics, and Physics form an inseparable theoretical whole in
this way. We must never lose sight of this totality when we en-
quire whether these sciences interpret rationally the reality which
proclaims itself in all subjective experiences of consciousness, and
which itself transcends consciousness: that is, truth forms a sys-
tem. For the rest, the physical world-picture here described in its
first outlines is characterised by the dualism of matter and field,
between which there is a reciprocal action. Not till the advent of
the theory of relativity was this dualism overcome, and, indeed,
in favour of a physics based solely on fields (cf. §24).

The ponderomotive force in the electric field was traced back
to stresses even by Faraday. If we use a rectangular system of co-
ordinates 1, T2, x3 in which E;, F5, F5 are the components of the
electrical intensity of field, the x; component of the force-density
is

p:pE:E<aE1 OE; 8E3)

8:1:1 + 8x2 * 8173

By a simple calculation which takes account of the irrotational
property of E we discover from this that the components p; of
the force-density are derived by the formulee (47) from the stress
tensor, the components S;;, of which are tabulated in the following
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quadratic scheme

%(EQ2 + E§ — Ef) X —F Ey —FE5
—ExEy 5 (B3 + Ef — E3) —E5 B3 (53)
—FB3F, —E3E, s(Ef + E; — E3)

We observe that the condition of symmetry Si; = S is fulfilled.
It is, above all, important to notice that the components of the
stress tensor at a point depend only on the electrical intensity of
field at this point. (They, moreover, depend only on the field, and
not on the charge.) Whenever a force p can be retraced by (47) to
stresses S, which form a symmetrical tensor of the second order
only dependent on the values of the phase-quantities describing
the physical state at the point in question, we shall have to regard
these stresses as the primary factors and the actions of the forces
as their consequent. The mathematical justification for this point
of view is brought to light by the fact that the force p results from
differentiating the stress. Compared with forces, stresses are thus,
so to speak, situated on the next lower plane of differentiation, and
yet do not depend on the whole series of values traversed by the
phase-quantities, as would be the case for an arbitrary integral,
but only on its value at the point under consideration. It further
follows from the fact that the electrostatic forces which charged
bodies exert on one another can be retraced to a symmetrical
stress tensor, that the resulting total force as well as the resulting
couple vanishes (because the integral taken over the whole space
has a divergence = 0). This means that an isolated system of
charged masses which is initially at rest cannot of itself acquire a
translational or rotational motion as a whole.

The tensor (53) is, of course, independent of the choice of co-
ordinate system. If we introduce the square of the value of the
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field intensity A
|E|* = E;E"

then we have
Sik, = %gik’EP — B, B}

These are the co-variant stress components not only in a Cartesian
but also in any arbitrary affine co-ordinate system, if F; are the co-
variant components of the field intensity. The physical significance
of these stresses is extremely simple. If, for a certain point, we
use rectangular co-ordinates, the x; axis of which points in the
direction E: then

E1:|E’, EQIO, E3:0,

we thus find them to be composed of a tension having the intensity
|EJ? in the direction of the lines of force, and of a pressure of the
same intensity acting perpendicularly to them.

The fundamental laws of electrostatics may now be
summarised in the following invariant tensor form:—

oE; OFE o ‘
(I) Dz — &cf =0, or £, = &Z respectively;
(1T) or _ (54)
8331»
A system of discrete point-charges ey, ez, €3, ... has potential
energy
1 e;e”
U=—
87T Z Tik

itk



CHAPTER 1 102

in which 7;, denotes the distance between the two charges e;
and eg. This signifies that the virtual work which is performed
by the forces acting at the separate points (owing to the charges
at the remaining points) for an infinitesimal displacement of the
points is a total differential, viz. U. For continuously distributed
charges this formula resolves into

/ / L av av’
87T7”pp/

in which both volume integrations with respect to P and P’ are
to be taken over the whole space, and rpp: denotes the distance
between these two points. Using the potential ¢ we may write

U= —% / popdV.
The integrand is ¢ - div E. In consequence of the equation
div(pE) = ¢ - divE + E grad ¢

and of Gauss’s theorem, according to which the integral of div(¢E)
taken over the whole space is equal to 0, we have

—/pqadvz/(Egrad¢)dvz/yE|2dv;

i.e.
U:/§|E|2dv. (55)

This representation of the energy makes it directly evident that
the energy is a positive quantity. If we trace the forces back to
stresses, we must picture these stresses (like those in an elastic
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body) as being everywhere associated with positive potential en-
ergy of strain. The seat of the energy must hence be sought in the
field. Formula (55) gives a fully satisfactory account of this point.
It tells us that the energy associated with the strain amounts to
%|E |? per unit volume, and is thus exactly equal to the tension
and the pressure which are exerted along and perpendicularly to
the lines of force. The deciding factor which makes this view
permissible is again the circumstance that the value obtained for
the energy-density depends solely on the value, at the point in
question, of the phrase-quantity E which characterises the field.
Not only the field as a whole, but every portion of the field has
a definite amount of potential energy = [ %|E|2dv. In statics,
it is only the total energy which comes into consideration. Only
later, when we pass on to consider variable fields, shall we arrive
at irrefutable confirmation of the correctness of this view.

In the case of conductors in a statical field the charges collect
on the outer surface and there is no field in the interior. The
equations (51) then suffice to determine the electrical field in free
space in the “eether”. If, however, there are non-conductors, di-
electrics in the field, the phenomenon of dielectric polarisation
(displacement) must be taken into consideration. Two charges +e
and —e at the points P, and P, respectively, “source and sink” as
we shall call them, produce a field, which arises from the potential

e 1 1
4T \ry 19

in which r; and 75 denote the distances of the points P, P, from
the origin, O. Let the product of e and the vector P, P, be called
the moment m of the “source and sink” pair. If we now suppose
the two charges to approach one another in a definite direction at
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a point P, the charge increasing simultaneously in such a way that
the moment m remains constant, we get, in the limit, a “doublet”
of moment m, the potential of which is given by

1

Egradp—.
r

A

The result of an electric field in a dielectric is to give rise to

these doublets in the separate elements of volume: this effect is

known as polarisation. If m is the electric moment of the dou-

blets per unit volume, then, instead of (50), the following formula
holds for the potential

1
—47r¢:/ﬁdv+/m-gradp—dv. (56)
r r

From the point of view of the theory of electrons this circumstance
becomes immediately intelligible. Let us, for example, imagine an
atom to consist of a positively charged “nucleus” at rest, around
which an oppositely charged electron rotates in a circular path.
The mean position of the electron for the mean time of a com-
plete revolution of the electron round the nucleus will then coin-
cide with the position of the nucleus, and the atom will appear
perfectly neutral from without. But if an electric field acts, it
exerts a force on the negative electron, as a result of which its
path will lie excentrically with respect to the atomic nucleus, e.g.
will become an ellipse with the nucleus at one of its foci. In the
mean, for times which are great compared with the time of rev-
olution of the electron, the atom will act like a doublet; or if we
treat matter as being continuous we shall have to assume contin-
uously distributed doublets in it. Even before entering upon an
exact atomistic treatment of this idea we can say that, at least
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to a first approximation, the moment m per unit volume will be
proportional to the intensity E of the electric field: i.e. m = kE,
in which £ denotes a constant characteristic of the matter, which
is dependent on its chemical constitution, viz. on the structure of
its atoms and molecules.

Since

1 di
div <E> = mgrad — + vm
r r r

we may replace equation (56) by

i — / p-divm .,

r
From this we get for the field intensity E = grad ¢
divE = p — divm.
If we now introduce the “electric displacement”
D=E+m

the fundamental equations become:

curl E =0, divD = p. (57)

They correspond to equations (51); in one of them the intensity E
of field now occurs, in the other D the electric displacement. With
the above assumption m = kE we get the law of matter

D =¢E (58)

if we insert the constant ¢ = 1 + k, characteristic of the matter,
called the dielectric constant.
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These laws are excellently confirmed by observation. The influ-
ence of the intervening medium which was experimentally proved
by Faraday, and which expresses itself in them, has been of great
importance in the development of the theory of action by contact.
We may here pass over the corresponding extension of the formulae
for stress, energy, and force.

It is clear from the mode of derivation that (57) and (58) are
not rigorously valid laws, since they relate only to mean values
and are deduced for spaces containing a great number of atoms
and for times which are great compared with the times of revolu-
tion of the electrons round the atom. We still look upon (51)
as expressing the physical laws exactly. Our objective here
and in the sequel is above all to derive the strict physical laws.
But if we start from phenomena, such “phenomenological laws” as
(57) and (58) are necessary stages in passing from the results of
direct observation to the exact theory. In general, it is possible to
work out such a theory only by starting in this way. The validity
of the theory is then established if, with the aid of definite ideas
about the atomic structure of matter, we can again arrive at the
phenomenological laws by using mean value arguments. If the
atomic structure is known, this process must, in addition, yield
the values of the constants occurring in these laws and charac-
teristic of the matter in question (such constants do not occur in
exact physical laws). Since laws of matter such as (58), which only
take the influence of massed matter into account, certainly fail for
events in which the fine structure of matter cannot be neglected,
the range of validity of the phenomenological theory must be fur-
nished by an atomistic theory of this kind, as must also those laws
which have to be substituted in its place for the region beyond this
range. In all this the electron theory has met with great success,
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although, in view of the difficulty of the task, it is far from giving
a complete statement of the more detailed structure of the atom
and its inner mechanism.

In the first experiments with permanent magnets, magnetism
appears to be a mere repetition of electricity: here Coulomb’s Law
holds likewise! A characteristic difference, however, immediately
asserts itself in the fact that positive and negative magnetism can-
not be dissociated from one another. There are no sources, but
only doublets in the magnetic field. Magnets consist of infinitely
small elementary magnets, each of which itself contains positive
and negative magnetism. The amount of magnetism in every por-
tion of matter is de facto nil; this would appear to mean that there
is really no such thing as magnetism. The explanation of this was
furnished by Oersted’s discovery of the magnetic action of electric
currents. The exact quantitative formulation of this action as ex-
pressed by Biot and Savart’s Law leads, just like Coulomb’s Law,
to two simple laws of action by contact. If s denotes the density
of the electric current, and H the intensity of the magnetic field,
then

curl H = s, divH = 0. (59)

The second equation asserts the non-existence of sources in the
magnetic field. Equations (59) are exactly analogous to (51) if div
and curl be interchanged. These two operations of vector analysis
correspond to one another in exactly the same way as do scalar and
vectorial multiplication in vector algebra (div denotes scalar, curl
vectorial, multiplication by the symbolic vector “differentiation”).
The solution of the equations (59) vanishes for infinite distances;
for a given distribution of current it is given by

H = / y (60)
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which is exactly analogous to (49) and is, indeed, the expression
of Biot and Savart’s Law. This solution may be derived from a
“vector potential” —f in accordance with the formulee

H — — curlf, —47rf:/§dV.
T

Finally the formula for the density of force in the magnetic field
is
p = [s, H] (61)

corresponding exactly with (52).

There is no doubt that these laws give us a true statement of
magnetism. They are not a repetition but an exact counterpart
of electrical laws, and bear the same relation to the latter as vec-
torial products to scalar products. From them it may be proved
mathematically that a small circular current acts exactly like a
small elementary magnet thrust through it perpendicularly to its
plane. Following Ampére we have thus to imagine the magnetic
action of magnetised bodies to depend on molecular currents;
according to the electron theory these are straightway given by
the electrons circulating in the atom.

The force p in the magnetic field may also be traced back
to stresses, and we find, indeed, that we get the same values for
the stress components as in the electrostatic field: we need only
replace E by H. Consequently we shall use the corresponding
value %H2 for the density of the potential energy contained in the
field. This step will only be properly justified when we come to
the theory of fields varying with the time.

It follows from (59) that the current distribution is free of
sources: divs = 0. The current field can therefore be entirely di-
vided into current tubes all of which again merge into themselves,
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i.e. are continuous. The same total current flows through every
cross-section of each tube. In no wise does it follow from the laws
holding in a stationary field, nor does it come into consideration
for such a field, that this current is an electric current in the or-
dinary sense, i.e. that it is composed of electricity in motion; this
is, however, without doubt the case. In view of this fact the law
divs = 0 asserts that electricity is neither created nor destroyed.
It is only because the flux of the current vector through a closed
surface is nil that the density of electricity remains everywhere
unchanged—so that electricity is neither created nor destroyed.
(We are, of course, dealing with stationary fields exclusively.) The
expression vector potential f, introduced above, also satisfies
the equation divf = 0.

Being an electric current, s is without doubt a vector in the
true sense of the word. It then follows, however, from the Law of
Biot and Savart that H is not a vector but a linear tensor of
the second order. Let its components in any co-ordinate system
(Cartesian or even merely affine) be H;;. The vector potential f
is a true vector. If ¢; are its co-variant components and s* the
contra-variant components of the current-density (the current is
like velocity fundamentally a contra-variant vector), the following
table gives us the final form (independent of the dimensional num-
ber) of the laws which hold in the magnetic field produced
by a stationary electric current.

OHyy n OHy; n OHj,
0x; oxx, ox;

=0, (624)
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op; 0 .
H;y, = 85; — aﬁf respectively
OH;;, ,
= g’ 62
D1 S (622)
The stresses are determined by:
SF = H;, H* — 15F|H|? (623)

in which |H| signifies the strength of the magnetic field:
|H|* = Hy H™.
The stress tensor is symmetrical, since
H; Hy, = Hi Hy, = ¢"° Hyp Hys.
The components of the force-density are
pi = Hjs". (624)

The energy-density = 3| H .

These are the laws that hold for the field in empty space.
We regard them as being exact physical laws which are generally
valid, as in the case of electricity. For a phenomenological theory it
is, however, necessary to take into consideration the magnetisa-
tion, a phenomenon analogous to dielectric polarisation. Just as
D occurred in conjunction with E, so the “magnetic induction” B
associates itself with the intensity of field H. The laws

curl H = s, divB =0

hold in the field, as does the law which takes account of the mag-
netic character of the matter

B = uH. (63)
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The constant p is called magnetic permeability. But whereas the
single atom only becomes polarised by the action of the intensity
of the electrical field (i.e. becomes a doublet), (this takes place in
the direction of the field intensity), the atom is from the outset an
elementary magnet owing to the presence of rotating electrons in
it (at least, in the case of para- and ferro-magnetic substances).
All these elementary magnets, however, neutralise one another’s
effects, as long as they are irregularly arranged and all positions
of the electronic orbits occur equally frequently on the average.
The imposed magnetic force merely fulfils the function of direct-
ing the existing doublets. It evidently is due to this fact that the
range within which (63) holds is much less than the correspond-
ing range of (63). Permanent magnets and ferro-magnetic bodies
(iron, cobalt, nickel) are, above all, not subject to it.

In the phenomenological theory there must be added to the
laws already mentioned that of Ohm:

s=0cE (o = conductivity).

It asserts that the current follows the fall of potential and is pro-
portional to it for a given conductor. Corresponding to Ohm’s
Law we have in the atomic theory the fundamental law of me-
chanics, according to which the motion of the “free” electrons is
determined by the electric and magnetic forces acting on them
which thus produce an electric current. Owing to collisions with
the molecules no permanent acceleration can come about, but
(just as in the case of a heavy body which is falling and experi-
ences the resistance of the air) a mean limiting velocity is reached,
which may, to a first approximation at least, be put proportional
to the driving electric force E. In this way Ohm’s Law acquires a
meaning.
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If the current is produced by a voltaic cell or an accumulator,
the chemical action which takes place maintains a constant differ-
ence of potential, the “electromotive force,” between the two ends
of the conducting wire. Since the events which occur in the con-
trivance producing the current can obviously be understood only
in the light of an atomic theory, it leads to the simplest result phe-
nomenologically to represent it by means of a cross-section taken
through the conducting circuit at each end, beyond which the
potential makes a sudden jump equal to the electromotive force.

This brief survey of Maxwell’s theory of stationary fields will
suffice for what follows. We have not the space here to enlarge
upon details and concrete applications.
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THE METRICAL CONTINUUM
§ 10. Note on Non-Euclidean Geometry*

DOUBTS as to the validity of Euclidean geometry seem to have
been raised even at the time of its origin, and are not, as our
philosophers usually assume, outgrowths of the hypercritical ten-
dency of modern mathematicians. These doubts have from the
outset hovered round the fifth postulate. The substance of the
latter is that in a plane containing a given straight line g and a
point P external to the latter (but in the plane) there is only one
straight line through P which does not intersect g: it is called the
straight line parallel to P. Whereas the remaining axioms of Eu-
clid are accepted as being self-evident, even the earliest exponents
of Fuclid have endeavoured to prove this theorem from the remain-
ing axioms. Nowadays, knowing that this object is unattainable,
we must look upon these reflections and efforts as the beginning
of “non-Euclidean” geometry, i.e. of the construction of a geomet-
rical system which can be developed logically by accepting all the
axioms of Euclid, except the postulate of parallels. A report of
Proclus (A.D. 5) about these attempts has been handed down to
posterity. Proclus utters an emphatic warning against the abuse
that may be practised by calling propositions self-evident. This
warning cannot be repeated too often; on the other hand, we must
not fail to emphasise the fact that, in spite of the frequency with
which this property is wrongfully used, the “self-evident” property
is the final root of all knowledge, including empirical knowledge.
Proclus insists that “asymptotic lines” may exist.

*Vide note 1.

113
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We may picture this as follows. Suppose a straight line g
be given in a plane, also a point P outside it in the plane, and
a straight line s passing through P and which may be rotated
about P. Let s be perpendicular to ¢ initially. If we now ro-

Fic. 2.

tate s, the point of intersection of s and g glides along g, e.g. to
the right, and if we continue turning, a definite moment arrives
at which this point of intersection just vanishes to infinity; s then
occupies the position of an “asymptotic” straight line. If we con-
tinue turning, Euclid assumes that, at even this same moment,
a point of intersection already appears on the left. Proclus, on
the other hand, points out the possibility that one may perhaps
have to turn s through a further definite angle before a point of
intersection arises to the left. We should then have two “asymp-
totic” straight lines, one to the right, viz. s’, and the other to the
left, viz. s”. If the straight line s through P were then situated
in the angular space between s” and s’ (during the rotation just
described) it would cut g; if it lay between s’ and s”, it would not
intersect g. There must be at least one non-intersecting straight
line; this follows from the other axioms of Euclid. I shall recall a
familiar figure of our early studies in plane geometry, consisting
of the straight line A and two straight lines g and ¢’ which inter-
sect h at A and A’ and make equal angles with it, g and ¢’ are
each divided into a right and a left half by their point of intersec-



THE METRICAL CONTINUUM 115

tion with A. Now, if ¢ and ¢’ had a common point s to the right
of h, then, since BAA’'B’ is congruent with C'A’AC' (vide Fig. 3),

C' A/ B

Fiac. 3.

there would also be a point of intersection S* to the left of h. But
this is impossible since there is only one straight line that passes
through two given points S and S*.

Attempts to prove Euclid’s postulate were continued by Ara-
bian and western mathematicians of the Middle Ages. Passing
straight to a more recent period we shall mention the names of
only the last eminent forerunners of non-Euclidean geometry, viz.
the Jesuit father Saccheri (beginning of the eighteenth century)
and the mathematicians Lambert and Legendre. Saccheri was
aware that the question whether the postulate of parallels is valid
is equivalent to the question whether the sum of the angles of a
triangle are equal to or less than 180°. If they amount to 180°
in one triangle, then they must do so in every triangle and Eu-
clidean geometry holds. If the sum is < 180° in one triangle then
it is < 180° in every triangle. That they cannot be > 180° is
excluded for the same reason for which we just now concluded
that not all the straight lines through P can cut the fixed straight
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line g. Lambert discovered that if we assume the sum of the three
angles to be < 180° there must be a unique length in geometry.
This is closely related to an observation which Wallis had previ-
ously made that there can be no similar figures of different sizes in
non-Euclidean geometry (just as in the case of the geometry of the
surface of a rigid sphere). Hence if there is such a thing as “form”
independent of size, Euclidean geometry is justified in its claims.
Lambert, moreover, deduced a formula for the area of a triangle,
from which it is clear that, in the case of non-Euclidean geometry,
this area cannot increase beyond all limits. It appears that the
researches of these men has gradually spread the belief in wide
circles that the postulate of parallels cannot be proved. At that
time this problem occupied many minds. D’Alembert pronounced
it a scandal of geometry that it had not yet been decisively settled.
Even the authority of Kant, whose philosophic system claims Eu-
clidean geometry as a prior: knowledge representing the content
of pure space-intuition in adequate judgments, did not succeed in
settling these doubts permanently.

Gauss also set out originally to prove the axiom of parallels,
but he early gained the conviction that this was impossible and
thereupon developed the principles of a non-Euclidean geometry,
for which the axioms of parallels does not hold, to such an ex-
tent that, from it, the further development could be carried out
with the same ease as for Euclidean geometry. He did not make
his investigations known for, as he later wrote in a private letter,
he feared “the outcry of the Beeotians”; for, he said, there were
only a few people who understood what was the true essence of
these questions. Independently of Gauss, Schweikart, a professor
of jurisprudence, gained a full insight into the conditions of non-
Euclidean geometry, as is evident from a concise note addressed to
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Gauss. Like the latter he considered it in no wise self-evident, and
established that Euclidean geometry is valid in our actual space.
His nephew Taurinus whom he encouraged to study these ques-
tions was, in contrast to him, a believer of Euclidean geometry,
but we are nevertheless indebted to Taurinus for the discovery of
the fact that the formulee of spherical trigonometry are real on a
sphere which has an imaginary radius = /—1, and that through
them a geometrical system is constructed along analytical lines
which satisfies all the axioms of Euclid except the fifth postulate.

For the general public the honour of discovering and elabo-
rating non-Euclidean geometry must be shared between Nikolaj
Iwanowitsch Lobatschefskij (1793-1856), a Russian professor of
mathematics at Kasan, and Johann Bolyai (1802-1860), a Hun-
garian officer in the Austrian army. The ideas of both assumed a
tangible form in 1826. The chief manuscript of both, by which the
public were informed of their discovery and which offered an argu-
ment of the new geometry in the manner of Euclid, had its origin
in 1830-1831. The discussion by Bolyai is particularly clear, inas-
much as he carries the argument as far as possible without making
an assumption as to the validity or non-validity of the fifth postu-
late, and only afterwards derives the theorems of Euclidean and
non-Euclidean geometry from the theorems of his “absolute” ge-
ometry according to whether one decides in favour of or against
Euclid.

Although the structure was thus erected, it was by no means
definitely decided whether, in absolute geometry, the axiom of
parallels would not after all be shown to be a dependent theorem.
The strict proof that non-Euclidean geometry is absolutely
consistent in itself had yet to follow. This resulted almost of
itself in the further development of non-Euclidean geometry. As
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often happens, the simplest way of proving this was not discovered
at once. It was discovered by Klein as late as 1870 and depends
on the construction of a Euclidean model for non-Euclidean
geometry (vide note 2). Let us confine our attention to the plane!
In a Euclidean plane with rectangular co-ordinates x and y we
shall draw a circle U of radius unity with the origin as centre.
Introducing homogeneous co-ordinates

X1 X2

r=—, Yy=—
xT3 xT3
(so that the position of a point is defined by the ratio of three
numbers, i.e. x7 : X9 : 3), the equation to the circle becomes

—z7 — a3+ 25 =0.
Let us denote the quadratic form on the left by Q(x) and the
corresponding symmetrical bilinear form of two systems of value,
x;, x by Q(x,2’). A transformation which assigns to every point x
a transformed point 2’ according to the linear formulee

3
vp= oz, (o[ #0)

k=1

is called, as we know, a collineation (affine transformations are a
special class of collineations). It transforms every straight line,
point for point, into another straight line and leaves the cross-
ratio of four points on a straight line unaltered. We shall now
set up a little dictionary by which we translate the conceptions of
Euclidean geometry into a new language, that of non-Euclidean
geometry; we use inverted commas to distinguish its words. The
vocabulary of this dictionary is composed of only three words.
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The word “point” is applied to any point on the inside of U
(Fig. 4).

A “straight line” signifies the portion of a straight line lying
wholly in U. The collineations which transform the circle U into
itself are of two kinds; the first leaves the sense in which U is

described unaltered, whereas the second reverses it. The former
are called “congruent” transformations; two figures composed of
points are called “congruent” if they can be transformed into one
another by such a transformation. All the axioms of Euclid except
the postulate of parallels hold for these “points,” “straight lines,”
and the conception “congruence”. A whole sheaf of “straight lines”
passing through the “point” P which do not cut the one “straight
line” ¢ is shown in Fig. 4. This suffices to prove the consistency
of non-Euclidean geometry, for things and relations are shown for
which all the theorems of Euclidean geometry are valid provided
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that the appropriate nomenclature be adopted. It is evident, with-
out further explanation, that Klein’s model is also applicable to
spatial geometry.

We now determine the non-Euclidean distance between two
“points” in this model, viz. between

A= (x1:29:23) and A" = (2] : x : 2).

Let the straight line AA’ cut the circle U in the two points, By, Bs.
The homogeneous co-ordinates y; of these two points are of the
form

yi = Az + Na

and the corresponding ratio of the parameters, A : X', is given by
the equation Q(y) = 0, viz.

A Oz, d) £ V2 (z,2') — Q2)Q(2)
N Q(z) '

Hence the cross-ratio of the four points, A, A’, By, By is

Qz,2") + \/QZ(:E,x’) — Q(z2)Q(2")

AA = )
[A4] Qx,2’) — \/Qz(ac,x’) — Q(x)Q(2")

This quantity which depends on the two arbitrary “points,” A, A’,
is not altered by a “congruent” transformation. If A, A", A” are
any three “points” lying on a “straight line” in the order written,
then

[AA"] = [AA"] - [A'A"].
The quantity

Tlog[AA| = AA =7
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has thus the functional property

AA + AA" = AA".

As it has the same value for “congruent” distances AA’ too, we
must regard it as the non-Euclidean distance between the two
points, A, A’. Assuming the logs to be taken to the base e, we
get an absolute determination for the unit of measure, as was
recognised by Lambert. The definition may be written in the
shorter form:

Qx,2")
Q(z) - Q')

(cosh denotes the hyperbolic cosine).

(1)

coshr =

This measure-determination had already been enunciated before
Klein by Cayley* who referred it to an arbitrary real or imagi-
nary conic section 2(x) = 0: he called it the “projective measure-
determination”. But it was reserved for Klein to recognise that in
the case of a real conic it leads to non-Euclidean geometry.

It must not be thought that Klein’s model shows that the non-
Euclidean plane is finite. On the contrary, using non-Euclidean
measures [ can mark off the same distance on a “straight line” an
infinite number of times in succession. It is only by using Eu-
clidean measures in the Euclidean model that the distances of
these “equidistant” points becomes smaller and smaller. For non-
Euclidean geometry the bounding circle U represents unattain-
able, infinitely distant, regions.

If we use an imaginary conic, Cayley’s measure-determination
leads to ordinary spherical geometry, such as holds on the surface

*Vide note 3.
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of a sphere in Euclidean space. Great circles take the place of
straight lines in it, but every pair of points at the end of the same
diameter must be regarded as a single “point,” in order that two
“straight lines” may only intersect at one “point”. Let us project
the points on the sphere by means of (straight) rays from the
centre on to the tangential plane at a point on the surface of the
sphere, e.g. the south pole. Two diametrically opposite points will
then coincide on the tangential plane as a result of the transfor-
mation. We must, in addition, as in projective geometry, furnish
this plane with an infinitely distant straight line; this is given by
the projection of the equator. We shall now call two figures in this
plane “congruent” if their projections (through the centre) on to
the surface of the sphere are congruent in the ordinary Euclidean
sense. Provided this conception of “congruence” is used, a non-
Euclidean geometry, in which all the axioms of Euclid except the
fifth postulate are fulfilled, holds in this plane. Instead of this
postulate we have the fact that each pair of straight lines, with-
out exception, intersects, and, in accordance with this, the sum
of the angles in a triangle > 180°. This seems to conflict with
the Euclidean proof quoted above. The apparent contradiction
is explained by the circumstance that in the present “spherical”
geometry the straight line is closed, whereas Euclid, although he
does not explicitly state it in his axioms, tacitly assumes that it is
an open line, i.e. that each of its points divides it into two parts.
The deduction that the hypothetical point of intersection S on
the “right-hand” side is different from that S* on the “left-hand”
side is rigorously true only if this “openness” be assumed.

Let us mark out in space a Cartesian co-ordinate system
x1, T, x3, having its origin at the centre of the sphere and the
line connecting the north and south poles as its x3 axis, the
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radius of the sphere being the unit of length. If x1, x5, x5 are the
co-ordinates of any point on the sphere, i.e.

Q) =ai +a5+a3=1

then % and ? are respectively the first and second co-ordinate
of the tSranstH?led point in our plane x3 = 1, i.e. xy : x5 : 3 is the
ratio of the homogeneous co-ordinates of the transformed point.
Congruent transformations of the sphere are linear transforma-
tions which leave the quadratic form §2(z) invariant. The “con-
gruent” transformations of the plane in terms of our “spherical”
geometry are thus given by such linear transformations of the ho-
mogeneous co-ordinates as convert the equation Q(z) = 0, which
signifies an imaginary conic, into itself. This proves the statement
made above concerning the relationship between spherical geom-
etry and Cayley’s measure-relation. This agreement is expressed
in the formula for the distance r between two points A, A’, which
is here )

cosr = M (2)

() ()

At the same time we have confirmed the discovery of Taurinus that
Euclidean geometry is identical with non-Euclidean geometry on
a sphere of radius v/—1.

Euclidean geometry occupies an intermediate position between
that of Bolyai-Lobatschefsky and spherical geometry. For if we
make a real conic section change to a degenerate one, and thence
to an imaginary one, we find that the plane with its corresponding
Cayley measure-relation is at first Bolyai-Lobatschefskyan, then
Euclidean, and finally spherical.
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§11. The Geometry of Riemann

The next stage in the development of non-Euclidean geometry
that concerns us chiefly is that due to Riemann. It links up with
the foundations of Differential Geometry, in particular with that
of the theory of surfaces as set out by Gauss in his Disquisitiones
circa superficies curvas.

The most fundamental property of space is that its
points form a three-dimensional manifold. What does this
convey to us? We say, for example, that ellipses form a two-
dimensional manifold (as regards their size and form, i.e. consid-
ering congruent ellipses similar, non-congruent ellipses as dissim-
ilar), because each separate ellipse may be distinguished in the
manifold by two given numbers, the lengths of the semi-major
and semi-minor axis. The difference in the conditions of equilib-
rium of an ideal gas which is given by two independent variables,
such as pressure and temperature, form a two-dimensional mani-
fold, likewise the points on a sphere, or the system of pure tones
(in terms of intensity and pitch). According to the physiological
theory which states that the sensation of colour is determined by
the combination of three chemical processes taking place on the
retina (the black-white, red-green, and the yellow-blue process,
each of which can take place in a definite direction with a def-
inite intensity), colours form a three-dimensional manifold with
respect to quality and intensity, but colour qualities form only a
two-dimensional manifold. This is confirmed by Maxwell’s famil-
iar construction of the colour triangle. The possible positions of a
rigid body form a six-dimensional manifold, the possible positions
of a mechanical system having n degrees of freedom constitute, in
general, an n-dimensional manifold. The characteristic of an
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n-dimensional manifold is that each of the elements com-
posing it (in our examples, single points, conditions of a gas,
colours, tones) may be specified by the giving of n quan-
tities, the ‘“co-ordinates,” which are continuous functions
within the manifold. This does not mean that the whole man-
ifold with all its elements must be represented in a single and
reversible manner by value systems of n co-ordinates (e.g. this is
impossible in the case of the sphere, for which n = 2); it signi-
fies only that if P is an arbitrary element of the manifold, then
in every case a certain domain surrounding the point P must be
representable singly and reversibly by the value system of n co-
ordinates. If z; is a system of n co-ordinates, x; another system
of n co-ordinates, then the co-ordinate values x;, = of the same
element will in general be connected with one another by relations

x; = fi(xh, 2y, .. 2)) (i=1,2,...,n) (3)

which can be resolved into terms of x; and in which the f;’s are
continuous functions of their arguments. As long as nothing more
is known about the manifold, we cannot distinguish any one co-
ordinate system from the others. For an analytical treatment of
arbitrary continuous manifolds we thus require a theory of in-
variance with regard to arbitrary transformation of co-ordinates,
such as (3), whereas for the development of affine geometry in the
preceding chapter we used only the much more special theory of
invariance for the case of linear transformations.

Differential geometry deals with curves and surfaces in three-
dimensional Euclidean space; we shall here consider them mapped
out in Cartesian co-ordinates z, y, z. A curve is in general a
one-dimensional point-manifold; its separate points can be distin-
guished from one another by the values of a parameter u. If the
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point u on the curve happens to be at the point x, y, z in space,
then z, y, z will be certain continuous functions of wu:

r=ux(u), y=ylu), 2=z (4)

and (4) is called the “parametric” representation of the curve. If
we interpret u as the time, then (4) is the law of motion of a
point which traverses the given curve. The curve itself does not,
however, determine singly the parametric representation (4) of the
curve; the parameter u may, indeed, be subjected to any arbitrary
continuous transformation.

A two-dimensional point-manifold is called a surface. Its
points can be distinguished from one another by the values of two
parameters uy, us. It may therefore be represented parametrically
in the form

v = x(ug, up), y:y(ulﬂm)a z = z(ur, uz). (5)

The parameters u, us may likewise undergo any arbitrary contin-
uous transformation without affecting the represented curve. We
shall assume that the functions (5) are not only continuous but
have also continuous differential co-efficients. Gauss, in his general
theory, starts from the form (5) of representing any surface; the
parameters u;, ug are hence called the Gaussian (or curvilinear)
co-ordinates on the surface. For example, if, as in the preceding
section, we project the points of the surface of the unit sphere in a
small region encircling the origin of the co-ordinate system on to
the tangent plane z = 1 at the south pole, and if we make x, y, z
the co-ordinates of any arbitrary point on the sphere, u; and us
being respectively the x and y co-ordinates of the point of projec-
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tion in this plane, then

1
xr = “1 = e Z = (6)

7y ? *
V14 ud + uj V14 ud 4 uj V14 u? + ul

This is a parametric representation of the sphere. It does not, how-
ever, embrace the whole sphere, but only a certain region round
the south pole, viz. the part from the south pole to the equator,
excluding the latter. Another illustration of a parametric repre-
sentation is given by the geographical co-ordinates, latitude and
longitude.

In thermodynamics we use a graphical representation consist-
ing of a plane on which two rectangular co-ordinate axes are
drawn, and in which the state of a gas as denoted by its pressure p
and temperature 6 is represented by a point having the rectangu-
lar co-ordinates p, . The same procedure may be adopted here.
With the point u;, us on the surface, we associate a point in the
“representative” plane having the rectangular co-ordinates uy, us.
The formulee (5) do not then represent only the surface, but also
at the same time a definite continuous representation of this
surface on the uy, us plane. Geographical maps are familiar in-
stances of such representations of curved portions of surface by
means of planes. A curve on a surface is given mathematically by
a parametric representation

Uy = Ul(t), Ug = UQ(t), (7)

whereas a portion of a surface is given by a “mathematical re-
gion” expressed in the variables u;, us, and which must be char-
acterised by inequalities involving u; and wus; i.e. graphically by
means of the representative curve or the representative region in
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the ui-uo-plane. If the representative plane be marked out with a
network of co-ordinates in the manner of squared paper, then this
becomes transposed, through the representation, to the curved
surface as a net consisting of meshes having the form of little
parallelograms, and composed of the two families of “co-ordinate
lines” u; = const., us = const., respectively. If the meshes be
made sufficiently fine it becomes possible to map out any given
figure of the representative plane on the curved surface.

The distance ds between two infinitely near points of the sur-
face, namely,

(ur,us) and (uy + dug, us + dusg)
is determined by the expression
ds* = dz* + dy* + dz*

if we set 5 5
T T
dr = —d —d
x 9, up + 9, s (8)

in it, with corresponding expressions for dy and dz. We then get
a quadratic differential form for ds? thus:

2
ds® = Z Gir: du; dug, (9ki = 9ir) (9)

ik=1

in which the co-efficients are

_or e oy oy 0z 0z

and are not, in general, functions of u; and us.
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In the case of the parametric representation of the sphere (6)
we have

(1 4+ u? 4+ u3)(du? + du3) — (ug duy + uy dug)?

ds® =
(14 u? + ud)?

(10)
Gauss was the first to recognise that the metrical groundform is
the determining factor for geometry on surfaces. The lengths of
curves, angles, and the size of given regions on the surface depend
on it alone. The geometries on two different surfaces is accordingly
identical if, for a representation in appropriate parameters, the co-
efficients g;; of the metrical groundform coincide in value.

Proof—The length of any arbitrary curve, given by (7), on the
surface is furnished by the integral

du; duk
/ds_/\/zg’k a a
0,0

If we fix our attention on a definite point P° = (uf,u3) on the
surface and use the relative co-ordinates

u; — uf = duy, r—a’ = dx, y—1° =dy, 2—2=dz
for its immediate neighbourhood, then equation (8), in which the
derivatives are to be taken for the point P°, will hold more exactly
the smaller duy, dus, are taken; we say that it holds for “infinitely
small” values du; and dus. If we add to these the analogous equa-
tions for dy and dz, then they express that the immediate neigh-
bourhood of PV is a plane, and that du,, du, are affine co-ordinates
on it.* Accordingly we may apply the formulae of affine geometry

*We here assume that the determinants of the second order which can be
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to the region immediately adjacent to P°. For the angle 6 be-
tween two line-elements or infinitesimal displacements having the
components dui, dus and duq, dus respectively, we get

Q(d,9)
Q(d, d)Q(0,0)

in which Q(d, ¢) stands for the symmetrical bilinear form

cosf =

Z gir du; 0uy, corresponding to (9).

ik
The area of the infinitesimal parallelogram marked out by these
two displacements is found to be

dU1 dUQ
5U1 6U2

V9

in which ¢ denotes the determinant of the g;;’s. The area of a
curved portion of surface is accordingly given by the integral

// Vg duy dug

formed from the table of co-efficients of these equations,

o oy 0:
ou Oou; Ou
8UQ 8UQ 8UQ

do not all vanish. This condition is fulfilled for the regular points of the sur-
face, at which there is a tangent plane. The three determinants are identically
equal to 0, if, and only if, the surface degenerates to a curve, i.e. the functions
x, y, z of uy and us actually depend only on one parameter, a function of
ulandim.
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taken over the corresponding part of the representative plane.
This proves Gauss’ statement. The values of the expressions ob-
tained are of course independent of the choice of parametric rep-
resentation. This invariance with respect to arbitrary transfor-
mations of the parameters can easily be confirmed analytically.
All the geometric relations holding on the surface can be studied
on the representative plane. The geometry of this plane is the
same as that of the curved surface if we agree to accept the dis-
tance ds of two infinitely near points as expressed by (9) and not
by Pythagoras’ formula

ds® = duj + dus.

The geometry of the surface deals with the inner measure rela-
tions of the surface that belong to it independently of the manner
in which it is embedded in space. They are the relations that can
be determined by measurements carried out on the surface
itself. Gauss in his investigation of the theory of surfaces started
from the practical task of surveying Hanover geodetically. The
fact that the earth is not a plane can be ascertained by measuring
a sufficiently large portion of the earth’s surface. Even if each
single triangle of the network is taken too small for the deviation
from a plane to come into consideration, they cannot be put to-
gether to form a closed net on a plane in the way they do on the
earth’s surface. To show this a little more clearly let us draw a
circle C' on a sphere of radius unity (the earth), having its cen-
tre P on the surface of the sphere. Let us further draw radii of
this circle, i.e. arcs of great circles of the sphere radiating from P

and ending at the circumference of C' (let these arcs be < g) By

carrying out measurements on the sphere’s surface we can now



CHAPTER II 132

ascertain that these radii starting out in all directions are the
shortest lines connecting P to the circle C', and that they are all
of the same length r; by measurement we find the closed curve C
to be of length s. If we were dealing with a plane we should infer
from this that the “radii” are straight lines and hence the curve C'
would be a circle and we should expect s to be equal to 27r. In-
stead of this, however, we find that s is less than the value given
by the above formula, for in the actual case s = 27w sinr. We thus
discover by measurements carried out on the surface of the sphere
that this surface is not a plane. If, on the other hand, we draw
figures on a sheet of paper and then roll it up, we shall find the
same values for measurements of these figures in their new condi-
tion as before, provided that no distortion has occurred through
rolling up the paper. The same geometry will hold on it now as on
the plane. It is impossible for me to ascertain that it is curved by
carrying out geodetic measurements. Thus, in general, the same
geometry holds for two surfaces that can be transformed into one
another without distortion or tearing.

The fact that plane geometry does not hold on the sphere
means analytically that it is impossible to convert the quadratic
differential form (10) by means of a transformation

wuy = up(uly, uy) uy = uf(ug, us)
U = UQ(u/DUIQ) U'z = u;(ul, 2y

into the form

(du))? + (duby)?.
We know, indeed, that it is possible to do this for each point by a
linear transformation of the differentials, viz. by

du; = 1 duy + o dus (Z =1, 2)7 (11)
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but it is impossible to choose the transformation of the differ-
entials at each point so that the expressions (11) become total
differentials for du}, dus.

Curvilinear co-ordinates are used not only in the theory of
surfaces but also in the treatment of space problems, particularly
in mathematical physics in which it is often necessary to adapt
the co-ordinate system to the bodies presented, as is instanced in
the case of cylindrical, spherical, and elliptic co-ordinates. The
square of the distance, ds?, between two infinitely near points in
space, is always expressed by a quadratic form

3
> gir de; da (12)

ik=1

in which x1, x9, x5 are any arbitrary co-ordinates. If we uphold
Euclidean geometry, we express the belief that this quadratic form
can be brought by means of some transformation into one which
has constant co-efficients.

These introductory remarks enable us to grasp the full mean-
ing of the ideas developed fully by Riemann in his inaugural ad-
dress, “Concerning the Hypotheses which lie at the Base of Ge-
ometry”.* It is evident from Chapter I that Euclidean geome-
try holds for a three-dimensional linear point-configuration in a
four-dimensional Euclidean space; but curved three-dimensional
spaces, which exist in four-dimensional space just as much as
curved surfaces occur in three-dimensional space, are of a dif-
ferent type. Is it not possible that our three-dimensional space
of ordinary experience is curved? Certainly. It is not embedded
in a four-dimensional space; but it is conceivable that its inner

*Vide note 4.
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measure-relations are such as cannot occur in a “plane” space; it
is conceivable that a very careful geodetic survey of our space car-
ried out in the same way as the above-mentioned survey of the
earth’s surface might disclose that it is not plane. We shall con-
tinue to regard it as a three-dimensional manifold, and to suppose
that infinitesimal line elements may be compared with one another
in respect to length independently of their position and direction,
and that the square of their lengths, the distance between two
infinitely near points, may be expressed by a quadratic form (12),
any arbitrary co-ordinates x; being used. (There is a very good
reason for this assumption; for, since every transformation from
one co-ordinate system to another entails linear transformation-
formulee for the co-ordinate differentials, a quadratic form must
always again pass into a quadratic form as a result of the transfor-
mation.) We no longer assume, however, that these co-ordinates
may in particular be chosen as affine co-ordinates such that they
make the co-efficients g;; of the groundform become constant.
The transition from Euclidean geometry to that of Riemann
is founded in principle on the same idea as that which led from
physics based on action at a distance to physics based on infinitely
near action. We find by observation, for example, that the current
flowing along a conducting wire is proportional to the difference
of potential between the ends of the wire (Ohm’s Law). But we
are firmly convinced that this result of measurement applied to
a long wire does not represent a physical law in its most general
form; we accordingly deduce this law by reducing the measure-
ments obtained to an infinitely small portion of wire. By this
means we arrive at the expression (Chap. I, page 111) on which
Maxwell’s theory is founded. Proceeding in the reverse direction,
we derive from this differential law by mathematical processes
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the integral law, which we observe directly, on the supposition
that conditions are everywhere similar (homogeneity). We
have the same circumstances here. The fundamental fact of Eu-
clidean geometry is that the square of the distance between two
points is a quadratic form of the relative co-ordinates of the two
points (Pythagoras’ Theorem). But if we look upon this law as
being strictly valid only for the case when these two points are in-
finitely near, we enter the domain of Riemann’s geometry. This at
the same time allows us to dispense with defining the co-ordinates
more exactly since Pythagoras’ Law expressed in this form (i.e. for
infinitesimal distances) is invariant for arbitrary transformations.
We pass from Euclidean “finite” geometry to Riemann’s “infinitesi-
mal” geometry in a manner exactly analogous to that by which we
pass from “finite” physics to “infinitesimal” (or “contact”) physics.
Riemann’s geometry is Euclidean geometry formulated to meet
the requirements of continuity, and in virtue of this formulation it
assumes a much more general character. Euclidean finite geom-
etry is the appropriate instrument for investigating the straight
line and the plane, and the treatment of these problems directed
its development. As soon as we pass over to differential geome-
try, it becomes natural and reasonable to start from the property
of infinitesimals set out by Riemann. This gives rise to no com-
plications, and excludes all speculative considerations tending to
overstep the boundaries of geometry. In Riemann’s space, too,
a surface, being a two-dimensional manifold, may be represented
parametrically in the form x; = x;(uq,u2). If we substitute the
resulting differentials,

frg . d
8u1 ULt 8u2

d[EZ‘

. dUQ
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in the metrical groundform (12) of Riemann’s space, we get for the
square of the distance between two infinitely near surface-points
a quadratic differential form in du;, dus (as in Euclidean space).
The measure-relations of three-dimensional Riemann space may
be applied directly to any surface existing in it, and thus converts
it into a two-dimensional Riemann space. Whereas from the Eu-
clidean standpoint space is assumed at the very outset to be of
a much simpler character than the surfaces possible in it, viz. to
be rectangular, Riemann has generalised the conception of space
just sufficiently far to overcome this discrepancy. The princi-
ple of gaining knowledge of the external world from the
behaviour of its infinitesimal parts is the mainspring of the
theory of knowledge in infinitesimal physics as in Riemann’s ge-
ometry, and, indeed, the mainspring of all the eminent work of
Riemann, in particular, that dealing with the theory of complex
functions. The question of the validity of the “fifth postulate,” on
which historical development started its attack on Euclid, seems
to us nowadays to be a somewhat accidental point of departure.
The knowledge that was necessary to take us beyond the Euclidean
view was, in our opinion, revealed by Riemann.

We have yet to convince ourselves that the geometry of Bolyai
and Lobatschefsky as well as that of Euclid and also spherical ge-
ometry (Riemann was the first to point out that the latter was a
possible case of non-Euclidean geometry) are all included as par-
ticular cases in Riemann’s geometry. We find, in fact, that if we
denote a point in the Bolyai-Lobatschefsky plane by the rectangu-
lar co-ordinates uq, us of its corresponding point in Klein’s model
the distance ds between two infinitely near points is by (1)

(1 —u? — ud)(du? + dul) + (uy duy + ug dugy)?

ds® =
’ (1 — w2 —2)?

(13)
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By comparing this with (10) we see that the Theorem of Taurinus
is again confirmed. The metrical groundform of three-dimensional
non-Euclidean space corresponds exactly to this expression.
If we can find a curved surface in Euclidean
space for which formula (13) holds, provided ap-
propriate Gaussian co-ordinates uy, us be chosen,
then the geometry of Bolyai and Lobatschefsky is
valid on it. Such surfaces can actually be con-
structed; the simplest is the surface of revolution
derived from the tractrix. The tractrix is a plane
curve of the shape shown in Fig. 5, with one vertex
and one asymptote. It is characterised geometri-
cally by the property that any tangent measured
from the point of contact to the point of inter-
section with the asymptote is of constant length.
Suppose the curve to revolve about its asymptote Fiac. 5.
as axis. Non-Euclidean geometry holds on the
surface generated. This Euclidean model of striking simplicity
was first mentioned by Beltrami (vide note 5). There are certain
shortcomings in it; in the first place the form in which it is pre-
sented confines it to two-dimensional geometry; secondly, each of
the two halves of the surface of revolution into which the sharp
edge divides it represents only a part of the non-Euclidean plane.
Hilbert proved rigorously that there cannot be a surface free from
singularities in Euclidean space which pictures the whole of Lo-
batschefsky’s plane (vide note 6). Both of these weaknesses are
absent in the elementary geometrical model of Klein.
So far we have pursued a speculative train of thought and have
kept within the boundaries of mathematics. There is, however, a
difference in demonstrating the consistency of non-Euclidean ge-
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ometry and inquiring whether it or Euclidean geometry
holds in actual space. To decide this question Gauss long ago
measured the triangle having for its vertices Inselsberg, Brocken,
and Hoher Hagen (near Gottingen), using methods of the greatest
refinement, but the deviation of the sum of the angles from 180°
was found to lie within the limits of errors of observation. Lo-
batschefsky concluded from the very small value of the parallaxes
of the stars that actual space could differ from Euclidean space
only by an extraordinarily small amount. Philosophers have put
forward the thesis that the validity or non-validity of Euclidean
geometry cannot be proved by empirical observations. It must
in fact be granted that in all such observations essentially physi-
cal assumptions, such as the statement that the path of a ray of
light is a straight line and other similar statements, play a promi-
nent part. This merely bears out the remark already made above
that it is only the whole composed of geometry and physics that
may be tested empirically. Conclusive experiments are thus pos-
sible only if physics in addition to geometry is worked out for
Euclidean space and generalised Riemann space. We shall soon
see that without making artificial limitations we can easily trans-
late the laws of the electromagnetic field, which were originally set
up on the basis of Euclidean geometry, into terms of Riemann’s
space. Once this has been done there is no reason why experience
should not decide whether the special view of Euclidean geometry
or the more general one of Riemann geometry is to be upheld. It
is clear that at the present stage this question is not yet ripe for
discussion.

In this concluding paragraph we shall once again present the
foundations of Riemann’s geometry in the form of a résumé, in
which we do not restrict ourselves to the dimensional number

n=3.
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An n-dimensional Riemann space is an n-dimensional mani-
fold, not of an arbitrary nature, but one which derives its measure-
relations from a definitely positive quadratic differential form. The
two principal laws according to which this form determines the
metrical quantities are expressed in (1) and (2) in which the z;’s
denote any co-ordinates whatsoever.

1. If g is the determinant of the co-efficients of the groundform,
then the size of any portion of space is given by the integral

/ Vodzydzy ... dx, (14)

which is to be taken over the mathematical region of the vari-
ables x;, which corresponds to the portion of space in question.
2. If Q(d, 9) denote the symmetrical bilinear form, correspond-
ing to the quadratic groundform, of two line elements d and ¢ sit-
uated at the same point, then the angle # between them is given

by
QWY

An m-dimensional manifold existing in n-dimensional space
(1 <m < n) is given in parametric terms by

cos 6

(15)

x; = x;(Ur, Ug, .« oy Upy,) (1=1,2,...,n).
By substituting the differentials

ox; ox; Ox;
— .d .d co e = du,,
(9u1 ut 8%2 Uz + 8um Y

d%i

in the metrical groundform of space we get the metrical ground-
form of this m-dimensional manifold. The latter is thus itself an
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m-dimensional Riemann space, and the size of any portion of it
may be calculated from formula (14) in the case m = n. In this
way the lengths of segments of lines and the areas of portions of
surfaces may be determined.

§ 12. Continuation. Dynamical View of Metrical
Properties

We shall now revert to the theory of surfaces in Euclidean
space. The curvature of a plane curve may be defined in the
following way as the measure of the rate at which the normals
to the curve diverge. From a fixed point O we trace out the
vector Op, the “normal” to the curve at an arbitrary point P, and
make it of unit length. This gives us a point P, corresponding
to P, on the circle of radius unity. If P traverses a small arc As of
the curve, the corresponding point p will traverse an arc Ao of the
circle; Ao is the plane angle which is the sum of the angles that the
normals erected at all points of the arc of the curve make with their

Ao
respective neighbours. The limiting value of the quotient — for

an element of arc As which contracts to a point P is the curvature

o,

FiG. 6.
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at P. Gauss defined the curvature of a surface as the measure
of the rate at which its normals diverge in an exactly analogous
manner. In place of the unit circle about O, he uses the unit
sphere. Applying the same method of representation he makes a
small portion dw of this sphere correspond to a small area do of
the surface; dw is equal to the solid angle formed by the normals

w
erected at the points of do. The ratio — for the limiting case

when do becomes vanishingly small is thg Gaussian measure of
curvature. Gauss made the important discovery that this curvature
is determined by the inner measure-relations of the surface alone,
and that it can be calculated from the co-efficients of the metrical
groundform as a differential expression of the second order. The
curvature accordingly remains unaltered if the surface be bent
without being distorted by stretching. By this geometrical means
a differential invariant of the quadratic differential forms
of two variables was discovered, that is to say, a quantity was
found, formed of the co-efficients of the differential form in such
a way that its value was the same for two differential forms that
arise from each other by a transformation (and also for parametric
pairs which correspond to one another in the transformation).
Riemann succeeded in extending the conception of curvature
to quadratic forms of three and more variables. He then found that
it was no longer a scalar but a tensor (we shall discuss this in § 15
of the present chapter). More precisely it may be stated that Rie-
mann’s space has a definite curvature at every point in the normal
direction of every surface. The characteristic of Euclidean space
is that its curvature is nil at every point and in every direction.
Both in the case of Bolyai-Lobatschefsky’s geometry and spherical
geometry the curvature has a value a independent of the place and
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of the surface passing through it: this value is positive in the case
of spherical geometry, negative in that of Bolyai-Lobatschefsky.
(It may therefore be put = %1 if a suitable unit of length be cho-
sen.) If an n-dimensional space has a constant curvature a, then
if we choose appropriate co-ordinates x;, its metrical groundform
must be of the form

(L+ay,ed) 3, de —a(¥,wide)’
(1+a), $?)2

It is thus completely defined in a single-valued manner. If space
is everywhere homogeneous in all directions, its curvature must
be constant, and consequently its metrical groundform must be
of the form just given. Such a space is necessarily either Eu-
clidean, spherical, or Lobatschefskyan. Under these circumstances
not only have the line elements an existence which is independent
of place and direction, but any arbitrary finitely extended figure
may be transferred to any arbitrary place and put in any arbitrary
direction without altering its metrical conditions, i.e. its displace-
ments are congruent. This brings us back to congruent transfor-
mations which we used as a starting-point for our reflections on
space in §1. Of these three possible cases the Euclidean one is
characterised by the circumstance that the group of translations
having the special properties set out in § 1 are unique in the group
of congruent transformations. The facts which are summarised in
this paragraph are mentioned briefly in Riemann’s essay; they
have been discussed in greater detail by Christoffel, Lipschitz,
Helmholtz, and Sophus Lie (vide note 7).

Space is a form of phenomena, and, by being so, is necessar-
ily homogeneous. It would appear from this that out of the rich
abundance of possible geometries included in Riemann’s concep-
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tion only the three special cases mentioned come into consider-
ation from the outset, and that all the others must be rejected
without further examination as being of no account: parturiunt
montes, nascetur ridiculus mus! Riemann held a different opin-
ion, as is evidenced by the concluding remarks of his essay. Their
full purport was not grasped by his contemporaries, and his words
died away almost unheard (with the exception of a solitary echo
in the writings of W. K. Clifford). Only now that Einstein has
removed the scales from our eyes by the magic light of his theory
of gravitation do we see what these words actually mean. To make
them quite clear I must begin by remarking that Riemann con-
trasts discrete manifolds, i.e. those composed of single isolated
elements, with continuous manifolds. The measure of every part
of such a discrete manifold is determined by the number of ele-
ments belonging to it. Hence, as Riemann expresses it, a discrete
manifold has the principle of its metrical relations in itself, a pri-
ori, as a consequence of the concept of number. In Riemann’s own
words:—

“The question of the validity of the hypotheses of geometry in
the infinitely small is bound up with the question of the ground
of the metrical relations of space. In this question, which we may
still regard as belonging to the doctrine of space, is found the ap-
plication of the remark made above; that in a discrete manifold,
the principle or character of its metric relations is already given in
the notion of the manifold, whereas in a continuous manifold this
ground has to be found elsewhere, i.e. has to come from outside.
Either, therefore, the reality which underlies space must form a
discrete manifold, or we must seek the ground of its metric rela-
tions (measure-conditions) outside it, in binding forces which act
upon it.
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“A decisive answer to these questions can be obtained only by
starting from the conception of phenomena which has hitherto
been justified by experience, to which Newton laid the founda-
tion, and then making in this conception the successive changes
required by facts which admit of no explanation on the old the-
ory; researches of this kind, which commence with general notions,
cannot be other than useful in preventing the work from being
hampered by too narrow views, and in keeping progress in the
knowledge of the inter-connections of things from being checked
by traditional prejudices.

“This carries us over into the sphere of another science, that
of physics, into which the character and purpose of the present
discussion will not allow us to enter.”

If we discard the first possibility, “that the reality which under-
lies space forms a discrete manifold”—although we do not by this
in any way mean to deny finally, particularly nowadays in view of
the results of the quantum-theory, that the ultimate solution of the
problem of space may after all be found in just this possibility—
we see that Riemann rejects the opinion that had prevailed up
to his own time, namely, that the metrical structure of space is
fixed and inherently independent of the physical phenomena for
which it serves as a background, and that the real content takes
possession of it as of residential flats. He asserts, on the contrary,
that space in itself is nothing more than a three-dimensional man-
ifold devoid of all form; it acquires a definite form only through
the advent of the material content filling it and determining its
metric relations. There remains the problem of ascertaining the
laws in accordance with which this is brought about. In any case,
however, the metrical groundform will alter in the course of time
just as the disposition of matter in the world changes. We recover
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the possibility of displacing a body without altering its metric re-
lations by making the body carry along with it the “metrical field”
which it has produced (and which is represented by the metrical
groundform); just as a mass, having assumed a definite shape in
equilibrium under the influence of the field of force which it has
itself produced, would become deformed if one could keep the field
of force fixed while displacing the mass to another position in it;
whereas, in reality, it retains its shape during motion (supposed to
be sufficiently slow), since it carries the field of force, which it has
produced, along with itself. We shall illustrate in greater detail
this bold idea of Riemann concerning the metrical field produced
by matter, and we shall show that if his opinion is correct, any two
portions of space which can be transformed into one another by
a continuous deformation, must be recognised as being congruent
in the sense we have adopted, and that the same material content
can fill one portion of space just as well as the other.

To simplify this examination of the underlying principles we
assume that the material content can be described fully by scalar
phase quantities such as mass-density, density of charge, and so
forth. We fix our attention on a definite moment of time. Dur-
ing this moment the density p of charge, for example, will, if we
choose a certain co-ordinate system in space, be a definite func-
tion f(z1,xs,x3) of the co-ordinates x; but will be represented
by a different function f*(z73, x5, z%) if we use another co-ordinate
system in x}. A parenthetical note. Beginners are often confused
by failing to notice that in mathematical literature symbols are
used throughout to designate functions, whereas in physical lit-
erature (including the mathematical treatment of physics) they
are used exclusively to denote “magnitudes” (quantities). For
example, in thermodynamics the energy of a gas is denoted by a
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definite letter, say F, irrespective of whether it is a function of the
pressure p and the temperature 6 or a function of the volume v
and the temperature . The mathematician, however, uses two
different symbols to express this:—

E= ¢(pa ‘9) = ¢(U’ 9)

9¢ 9y
96" 90’

meaning, consequently occur in physics books under the common

The partial derivatives which are totally different in

expression —. A suffix must be added (as was done by Boltz-

mann), or it must be made clear in the text that in one case p, in
the other case v, is kept constant. The symbolism of the mathe-
matician is clear without any such addition.*

Although the true state of things is really more complex we
shall assume the most simple system of geometrical optics, the fun-
damental law of which states that the ray of light from a point M
emitting light to an observer at P is a “geodetic” line, which is the
shortest of all the lines connecting M with P: we take no account
of the finite velocity with which light is propagated. We ascribe
to the receiving consciousness merely an optical faculty of percep-
tion and simplify this to a “point-eye” that immediately observes
the differences of direction of the impinging rays, these directions
being the values of 6 given by (15); the “point-eye” thus obtains
a picture of the directions in which the surrounding objects lie
(colour factors are ignored). The Law of Continuity governs not
only the action of physical things on one another but also psycho-
physical interactions. The direction in which we observe objects

*This is not to be taken as a criticism of the physicist’s nomenclature
which is fully adequate to the purposes of physics, which deals with magni-
tudes.
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is determined not by their places of occupation alone, but also by
the direction of the ray from them that strikes the retina, that
is, by the state of the optical field directly in contact with that
elusive body of reality whose essence it is to have an objective
world presented to it in the form of experiences of consciousness.
To say that a material content GG is the same as the material con-
tent G’ can obviously mean no more than saying that to every
point of view P with respect to GG there corresponds a point of
view P’ with respect to G’ (and conversely) in such a way that
an observer at P’ in G’ receives the same “direction-picture” as an
observer in GG receives at P.

Let us take as a basis a definite co-ordinate system x;. The
scalar phase-quantities, such as density of electrification p, are
then represented by definite functions

p — f(mlaanx?))'

Let the metrical groundform be

3
Z gik dxy dxy,

ik=1

in which the g;;’s likewise (in “mathematical” terminology) denote
definite functions of x1, x5, r3. Furthermore, suppose any contin-
uous transformation of space into itself to be given, by which a
point P’ corresponds to each point P respectively. Using this
co-ordinate system and the modes of expression

P = <$1,$2,$3)7 Pl: (17,1,1'/2,{53),
suppose the transformation to be represented by

93'; = ¢($1,$2,ZL’3). (16)
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Suppose this transformation convert the portion S of space into ',
I shall show that if Riemann’s view is correct S’ is congruent
with S in the sense defined.

I make use of a second co-ordinate system by taking as co-
ordinates of the point P the values of 2/ given by (16); the ex-
pressions (16) then become the formulee of transformation. The
mathematical region in three variables represented by S in the
co-ordinates x’ is identical with that represented by S’ in the co-
ordinates x. An arbitrary point P has the same co-ordinates in z’
as P’ has in x. I now imagine space to be filled by matter in some
other way, namely, that represented by the formulae

p = [fx1, 75, 73)

at the point P, with similar formulse for the other scalar quanti-
ties. If the metric relations of space are taken to be independent
of the contained matter, the metrical groundform will, as in the
case of the first content, be of the form

S gwdridry = gi(al, ab, b) dal da,

the right-hand member of which denotes the expression after
transformation to the new co-ordinate system. If, however, the
metric relations of space are determined by the matter filling
it—we assume, with Riemann, that this is actually so—then,
since the second occupation by matter expresses itself in the
co-ordinates z’ in exactly the same way as does the first in z, the
metrical groundform for the second occupation will be

/ ! ! / /
g gix (2, x5, x5) d, dx.
ik
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In consequence of our underlying principle of geometrical optics
assumed above, the content in the portion S’ of space during the
first occupation will present exactly the same appearance to an
observer at P’ as the material content in S during the second
occupation presents to an observer at P. If the older view of
“residential flats” is correct, this would of course not be the case.

The simple fact that I can squeeze a ball of modelling clay with
my hands into any irregular shape totally different from a sphere
would seem to reduce Riemann’s view to an absurdity. This, how-
ever, proves nothing. For if Riemann is right, a deformation of the
inner atomic structure of the clay is entirely different from that
which I can effect with my hands, and a rearrangement of the
masses in the universe, would be necessary to make the distorted
ball of clay appear spherical to an observer from all points of view.
The essential point is that a piece of space has no visual form at
all, but that this form depends on the material content occupying
the world, and, indeed, occupying it in such a way that by means
of an appropriate rearrangement of the mode of occupation I can
give it any visual form. By this I can also metamorphose any
two different pieces of space into the same visual form by choos-
ing an appropriate disposition of the matter. Einstein helped to
lead Riemann’s ideas to victory (although he was not directly in-
fluenced by Riemann). Looking back from the stage to which
Einstein has brought us, we now recognise that these ideas could
give rise to a valid theory only after time had been added as a
fourth dimension to the three-space dimensions in the manner set
forth in the so-called special theory of relativity. As, according to
Riemann, the conception “congruence” leads to no metrical sys-
tem at all, not even to the general metrical system of Riemann,
which is governed by a quadratic differential form, we see that
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“the inner ground of the metric relations” must indeed be sought
elsewhere. Einstein affirms that it is to be found in the “binding
forces” of Gravitation. In Einstein’s theory (Chapter IV) the
co-efficients g;. of the metrical groundform play the same part
as does gravitational potential in Newton’s theory of gravitation.
The laws according to which space-filling matter determines the
metrical structure are the laws of gravitation. The gravitational
field affects light rays and “rigid” bodies used as measuring rods in
such a way that when we use these rods and rays in the usual man-
ner to take measurements of objects, a geometry of measurement
is found to hold which deviates very little from that of Euclid in
the regions accessible to observation. These metric relations are
not the outcome of space being a form of phenomena, but of the
physical behaviour of measuring rods and light rays as determined
by the gravitational field.

After Riemann had made known his discoveries, mathemati-
cians busied themselves with working out his system of geometri-
cal ideas formally; chief among these were Christoffel, Ricci, and
Levi-Civita (vide note 8). Riemann, in the last words of the above
quotation, clearly left the real development of his ideas in the
hands of some subsequent scientist whose genius as a physicist
could rise to equal flights with his own as a mathematician. After
a lapse of seventy years this mission has been fulfilled by Einstein.

Inspired by the weighty inferences of Einstein’s theory to exam-
ine the mathematical foundations anew the present writer made
the discovery that Riemann’s geometry goes only half-way towards
attaining the ideal of a pure infinitesimal geometry. It still remains
to eradicate the last element of geometry “at a distance,” a rem-
nant of its Euclidean past. Riemann assumes that it is possible
to compare the lengths of two line elements at different points
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of space, too; it is not permissible to use comparisons at
a distance in an “infinitely near” geometry. One principle
alone is allowable; by this a division of length is transferable from
one point to that infinitely adjacent to it.

After these introductory remarks we now pass on to the sys-
tematic development of pure infinitesimal geometry (vide note 9),
which will be traced through three stages; from the continuum,
which eludes closer definition, by way of affinely connected
manifolds, to metrical space. This theory which, in my opin-
ion, is the climax of a wonderful sequence of logically-connected
ideas, and in which the result of these ideas has found its ultimate
shape, is a true geometry, a doctrine of space itself and not merely
like Euclid, and almost everything else that has been done under
the name of geometry, a doctrine of the configurations that are
possible in space.

§ 13. Tensors and Tensor-densities in any Arbitrary
Manifold

An n-dimensional Manifold.—Following the scheme out-
lined above we shall make the sole assumption about space that it
is an n-dimensional continuum. It may accordingly be referred to
n-co-ordinates xq, xs, ..., T,, of which each has a definite numeri-
cal value at each point of the manifold; different value-systems of
the co-ordinates correspond to different points. If z1,Zs,...%, is
a second system of co-ordinates, then there are certain relations

x; = fi(T1,Ta, ... Ty) where (i =1,2,...,n) (17)

between the z-co-ordinates and the Z-co-ordinates; these relations
are conveyed by certain functions f;. We do not only assume that
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they are continuous, but also that they have continuous derivatives

Ofi

0y,

o =

whose determinant is non-vanishing. The latter condition is neces-
sary and sufficient to make affine geometry hold in infinitely small
regions, that is, so that reversible linear relations exist between
the differentials of the co-ordinates in both systems, i.e.

dr; = Z ok dzy,. (18)
k

We assume the existence and continuity of higher derivatives wher-
ever we find it necessary to use them in the course of our inves-
tigation. In every case, then, a meaning which is invariant and
independent of the co-ordinate system has been assigned to the
conception of continuous functions of a point which have contin-
uous first, second, third, or higher derivatives as required; the
co-ordinates themselves are such functions.

Conception of a Tensor.—The relative co-ordinates dx of a
point P’ = (x; + dx;) infinitely near to the point P = (z;) are the
components ﬁ line element at P or of an infinitesimal dis-
placement PP’ of P. The transformation to another co-ordinate
system is effected for these components by formulee (18), in which
o} denote the values of the respective derivatives at the point P.
The infinitesimal displacements play the same part in the devel-
opment of Tensor Calculus as do displacements in Chapter 1. It
must, however, be noticed that, here, a displacement is essen-
tially bound to a point, and that there is no meaning in saying
that the infinitesimal displacements of two different points are the
equal or unequal. It might occur to us to adopt the convention
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of calling the infinitesimal displacements of two points equal if
they have the same components; but it is obvious from the fact
that the o}’s in (18) are not constants, that if this were the case
for one co-ordinate system it need in no wise be true for another.
Consequently we may only speak of the infinitesimal displacement
of a point and not, as in Chapter I, of the whole of space; hence
we cannot talk of a vector or tensor simply, but must talk of a
vector or tensor as being at a point P. A tensor at a point P
is a linear form, in several series of variables, which is dependent
on a co-ordinate system to which the immediate neighbourhood
of P is referred in the following way: the expressions of the lin-
ear form in any two co-ordinate systems x and Z pass into one
another if certain of the series of variables (with upper indices)
are transformed co-grediently, the remainder (with lower indices)
contra-grediently, to the differentials dz;, according to the scheme

£ = Z aif¥ and & = Z o, respectively. (19)
k k

By af we mean the values of these derivatives at the point P.
The co-efficients of the linear form are called the components of
the tensor in the co-ordinate system under consideration; they are
co-variant in those indices that belong to the variables with an up-
per index, contra-variant in the remaining ones. The conception
of tensors is possible owing to the circumstance that the transition
from one co-ordinate system to another expresses itself as a lin-
ear transformation in the differentials. One here uses the exceed-
ingly fruitful mathematical device of making a problem “linear”
by reverting to infinitely small quantities. The whole of Tensor
Algebra, by whose operations only tensors at the same point
are associated, can now be taken over from Chapter I. Here,
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again, we shall call tensors of the first order vectors. There are
contra-variant and co-variant vectors. Whenever the word vector
is used without being defined more exactly we shall understand
it as meaning a contra-variant vector. Infinitesimal quantities of
this type are the line elements in P. Associated with every co-
ordinate system there are n “unit vectors” e; at P, namely, those
which have components

e 1, O, 0, O
e |0, 1, O, 0
e, |0, 0, O, 1

in the co-ordinate system. Every vector x at P may be expressed
in linear terms of these unit vectors. For if £ are its components,
then

x =¢le; + ey + -+ - + e, holds.

The unit vectors e; of another co-ordinate system Z are derived
from the e;’s according to the equations

€ = E afek.
k

The possibility of passing from co-variant to contra-variant com-
ponents of a tensor does not, of course, come into question here.
Each two linearly independent line elements having components
dz;, 0x; map out a surface element whose components are

dx; 0y, — dxy, 0x; = Axyy,.

Each three such line elements map out a three-dimensional space
element and so forth. Invariant differential forms that assign



THE METRICAL CONTINUUM 155

a number linearly to each arbitrary line element, surface ele-
ment, etc., respectively are linear tensors (= co-variant skew-
symmetrical tensors, wvide §7). The above convention about
omitting signs of summation will be retained.
Conception of a Curve.—If to every value of a parameter s
a point P = P(s) is assigned in a continuous manner, then if we
interpret s as time, a “motion” is given. In default of a better
expression we shall apply this name in a purely mathematical
sense, even when we do not interpret s in this way. If we use a
definite co-ordinate system we may represent the motion in the
form
x; = x4(8) (20)

by means of n continuous functions z;(s), which we assume not
only to be continuous, but also continuously differentiable.” In
passing from the parametric value s to s + ds, the correspond-
ing point P suffers an infinitesimal displacement having compo-
nents dx;. If we divide this vector at P by ds, we get the “ve-

locity,” a vector at P having components d—l = u'. The for-
s

mulee (20) is at the same time a parametric representation of the
trajectory of the motion. Two motions describe the same curve
if, and only if, the one motion arises from the other when the pa-
rameter s is subjected to a transformation s = w($), in which w is
a continuous and continuously differentiable uniform function w.
Not the components of velocity at a point are determinate for a
curve, but only their ratios (which characterise the direction of
the curve).

Tensor Analysis.—A tensor field of a certain kind is de-
fined in a region of space if to every point P of this region a tensor

*I.e. have continuous differential co-efficients.
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of this kind at P is assigned. Relatively to a co-ordinate system
the components of the tensor field appear as definite functions of
the co-ordinates of the variable “point of emergence” P: we as-
sume them to be continuous and to have continuous derivatives.
The Tensor Analysis worked out in Chapter I, § 8, cannot, without
alteration, be applied to any arbitrary continuum. For in defin-
ing the general process of differentiation we earlier used arbitrary
co-variant and contra-variant vectors, whose components were in-
dependent of the point in question. This condition is indeed
invariable for linear transformations, but not for any arbitrary
ones since, in these, the a}’s are not constants. For an arbitrary
manifold we may, therefore, set up only the analysis of linear
tensor fields: this we proceed to show. Here, too, there is derived
from a scalar field f by means of differentiation, independently
of the co-ordinate system, a linear tensor field of the first order
having components
_9f

fi= .
From a linear tensor field f; of the first order we get one of the
second order

_Ofi  Of

Jir = Ox,  Ox;
From one of the second order, f;;, we get a linear tensor field of

the third order of of of
Kl Ii ik
ox; + 0xy, * ox;’

(21)

(22)

fir = (23)

and so forth.
If ¢ is a given scalar field in space and if x;, Z; denote any two
co-ordinate systems, then the scalar field will be expressed in each



THE METRICAL CONTINUUM 157

in turn as a function of the x;’s or Z;’s respectively, i.e.

¢ = f(l‘l,l'g, e ,l‘n) = f(i’l,ii‘z, e ,j?n).

If we form the increase of ¢ for an infinitesimal displacement of
the current point, we get

9 of
dop = Z a—;:dxi / dz;.

— 0Z;
K2

0
From this we see that the —f’s are components of a co-variant

tensor field of the first ordef,Z which is derived from the scalar
field ¢ in a manner independent of all co-ordinate systems. We
have here a simple illustration of the conception of vector fields.
At the same time we see that the operation “grad” is invariant
not only for linear transformations, but also for any arbitrary
transformations of the co-ordinates whatsoever, and this is what
we enunciated.

To arrive at (22) we perform the following construction. From
the point P = Py, we draw the two line elements with compo-
nents dx; and dx;, which lead to the two infinitely near points Pjq
and Py;. We displace (by “variation”) the line element dz in some
way so that its point of emergence describes the distance PyoFy1;

. =57 .
suppose it to have got to Py P; finally. We shall call this pro-
cess the displacement §. Let the components dz; have increased
by ddx;, so that

ddr; = {%‘(Pu) - xi(POI)} - {%‘(Plo) - xz‘(Poo)}-

We now interchange d and §. By an analogous displacement d of
the line element dx along PyyPio, by which it finally takes up the
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position PTP{; , its components are increased by
dox; = {:(Py) — (Pro) } — {@i(Por) — zi(Poo) }-
Hence it follows that
ddw; — dox; = x;(Pry) — xi(Pyy). (24)

If, and only if, the two points P;; and Pj]; coincide, i.e. if the
two line elements dx and dx sweep out the same infinitesimal
“parallelogram” during their displacements ¢ and d respectively—
that is how we shall view it—then we shall have

If, now, a co-variant vector field with components f; is given,
then we form the change in the invariant df = f; dr; owing to the
displacement ¢§ thus:

Interchanging d and 9, and then subtracting, we get

and if both displacements pass over the same infinitesimal paral-
lelogram we get, in particular,

fi 0k

Ox,  Ox;

If one is inclined to distrust these perhaps too venturesome
operations with infinitesimal quantities the differentials may be
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replaced by differential co-efficients. Since an infinitesimal element
of surface is only a part (or more correctly, the limiting value of
the part) of an arbitrarily small but finitely extended surface, the
argument will run as follows. Let a point (s,t) of our manifold be
assigned to every pair of values of two parameters s, t (in a certain
region encircling s = 0, t = 0). Let the functions x; = z;(s, 1),
which represents this “two-dimensional motion” (extending over a
surface) in any co-ordinate system x;, have continuous first and

second differential co-efficients. For every point (s, t) there are two

X dx;
velocity vectors with components — and ——. We may assign our

parameters so that a prescribed point P = (0,0) corresponds to
s =0, t =0, and that the two velocity vectors at it coincide with
two arbitrarily given vectors u’, v* (for this it is merely necessary
to make the z;’s linear functions of s and t). Let d denote the

differentiation i, and 0 denote —. Then
ds dt

Sdf = 0T
s’ I= o as @t " liaras

df = fi
By interchanging d and §, and then subtracting, we get

Ofi  Ofx\ dx; dxy,
_ A 2

Af—&ﬁ—wf—( PR

By setting s = 0 and ¢ = 0, we get the invariant at the point P

— u'v
which depends on two arbitrary vectors u, v at that point. The
connection between this view and that which uses infinitesimals
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consists in the fact that the latter is applied in rigorous form to the
infinitesimal parallelograms into which the surface x; = x;(s,t) is
divided by the co-ordinate lines s = const. and ¢ = const.

Stokes’ Theorem may be recalled in this connection. The
invariant linear differential f; dz; is called integrable if its integral
along every closed curve (its “curl”) = 0. (This is true, as we know,
only for a total differential.) Let any arbitrary surface given in
a parametric form x; = x;(s,t) be spread out within the closed
curve, and be divided into infinitesimal parallelograms by the co-
ordinate lines. The curl taken around the perimeter of the whole
surface may then be traced back to the single curls around these
little surface meshes, and their values are given for every mesh
by our expression (27), after it has been multiplied by dsdt. A
differential division of the curl is produced in this way, and the
tensor (22) is a measure of the “intensity of the curl” at every
point.

In the same way we pass on to the next higher stage (23).
In place of the infinitesimal parallelogram we now use the three-
dimensional parallelepiped mapped out by the three line elements
d, 6, and 9. We shall just indicate the steps of the argument
briefly.

O(fir dz; dzy,) = %J;k dx; 6z 0x;+ fir(0dx; - x4+ 00z - dx;). (28)
!
Since fr; = — fir, the second term on the right is
= fir(Odx; - dx), — Oz - dxy). (29)

If we interchange d, ¢, and 0 cyclically, and then sum up, the six
members arising out of (29) will destroy each other in pairs on
account of the conditions of symmetry (25).
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Conception of Tensor-density.—If [Wdz, in which
dx represents briefly the element of integration dx; dx, ... dx,, is
an invariant integral, then W is a quantity dependent on the co-
ordinate system in such a way that, when transformed to another
co-ordinate system, its value become multiplied by the absolute
(numerical) value of the functional determinant. If we regard this
integral as a measure of the quantity of substance occupying the
region of integration, then W is its density. We may, therefore,
call a quantity of the kind described a scalar-density.

This is an important conception, equally as valuable as the
conception of scalars; it cannot be reduced to the latter. In an
analogous sense we may speak of tensor-densities as well as
scalar-densities. A linear form of several series of variables which
is dependent on the co-ordinate system, some of the variables car-
rying upper indices, others lower ones, is a tensor-density at a
point P, if, when the expression for this linear form is known for
a given co-ordinate system, its expression for any other arbitrary
co-ordinate system, distinguished by bars, is obtained by multi-
plying it with the absolute or numerical value of the functional
determinant

A = abs.|a¥| i.e. the absolute value of |,

and by transforming the variable according to the old scheme (19).
The words, components, co-variant, contra-variant, symmetrical,
skew-symmetrical, field, and so forth, are used exactly as in the
case of tensors. By contrasting tensors and tensor-densities, it
seems to me that we have grasped rigorously the difference be-
tween quantity and intensity, so far as this difference has a
physical meaning: tensors are the magnitudes of intensity,
tensor-densities those of quantity. The same unique part that
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co-variant skew-symmetrical tensors play among tensors is taken
among tensor-densities by contra-variant symmetrical tensor-
densities, which we shall term briefly linear tensor-densities.

Algebra of Tensor-densities.—As in the realm of tensors
so have here the following operations:—

1. Addition of tensor-densities of the same type; multiplication
of a tensor-density by a number.

2. Contraction.

3. Multiplication of a tensor by a tensor-density (not multi-
plication of two tensor-densities by each other). For, if two scalar-
densities, for example, were to be multiplied together, the result
would not again be a scalar-density but a quantity which, to be
transformed to another co-ordinate system, would have to be mul-
tiplied by the square of the functional determinant. Multiplying
a tensor by a tensor-density, however, always leads to a tensor-
density (whose order is equal to the sum of the orders of both
factors). Thus, for example, if a contra-variant vector with com-
ponents f¢ and a co-variant tensor-density with components wi
be multiplied together, we get a mixed tensor-density of the third
order with components fwy; produced in a manner independent
of the co-ordinate system.

The analysis of tensor-densities can be established only
for linear fields in the case of an arbitrary manifold. It leads
to the following processes resembling the operation of
divergence:—

. =w, (30)
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=w, (31)

As aresult of (30) a linear tensor-density field w’ of the first order
gives rise to a scalar-density field w, whereas (31) produces from
a linear field of the second order (w* = —w') a linear field of
the first order, and so forth. These operations are independent of
the co-ordinate system. The divergence (30) of a field w* of the
first order which has been produced from one, w*, of the second
order by means of (31) is = 0; an analogous result holds for the
higher orders. To prove that (30) is invariant, we use the following
known result of the theory of the motion of continuously extended
masses.
If £ is a given vector field, then

expresses an infinitesimal displacement of the points of the
continuum, by which the point with the co-ordinates x; is trans-
ferred to the point with the co-ordinates Z;. Let the constant in-
finitesimal factor 0t be defined as the element of time during which
the deformation takes place. The determinant of transformation
oz’ ¢

A=

Lk
portion G of the continuum, to which, if 2%’s are used to denote
its co-ordinates, the mathematical region X in the variables x;
corresponds, to pass into the region G, from which G differs by
an infinitesimal amount. If s is a scalar-density field, which we
regard as the density of a substance occupying the medium, then

0
differs from unity by 6t 65 . The displacement causes

)
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the quantity of substance present in G

= /xs(x) dx

whereas that which occupies G

:/s(x) d:n:/xS(:B)Adﬂf,

whereby the values (32) are to be inserted in the last expression
for the arguments z; of s. (I am here displacing the volume with
respect to the substance; instead of this, we can of course make
the substance flow through the volume; s&* then represents the
intensity of the current.) The increase in the amount of substance
that the region G gains by the displacement is given by the inte-
gral s(Z)A — s(z) taken with respect to the variables x; over X.
We, however, get for the integrand

s(2)(A— 1) + {s(z) — s(x)} = ot <s gi 5_;8) G

Consequently the formula

o(s€') _
85Ei N

establishes an invariant connection between the two scalar-density
fields s and w and the contra-variant vector field with the com-
ponents £. Now, since every vector-density w* is representable
in the form s¢*—for if in a definite co-ordinate system a scalar-
density s and a vector field £ be defined by s = 1, £ = w', then
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the equation w' = s&' holds for every co-ordinate system—the
required proof is complete.

In connection with this discussion we shall enunciate the Prin-
ciple of Partial Integration which will be of frequent use below.
If the functions w* vanish at the boundary of a region G, then
the integral '

ow’
c 0,
For this integral, multiplied by §t, signifies the change that the

dzr = 0.

“volume” [ dx of this region suffers through an infinitesimal de-

formation whose components = §t - w'.

The invariance of the process of divergence (30) enables us
easily to advance to further stages, the next being (31). We enlist
the help of a co-variant vector field f;, which has been derived
from a potential f; i.e.

_ 9/

fi= e
We then form the linear tensor-density w* f; of the first order and
also its divergence

8xk e 8xk ’

The observation that the f;’s may assume any arbitrarily assigned
values at a point P concludes the proof. In a similar way we
proceed to the third and higher orders.

§ 14. Affinely Related Manifolds

The Conception of Affine Relationship.—We shall call a
point P of a manifold affinely related to its neighbourhood if we
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are given the vector P’ into which every vector at P is transformed
by a parallel displacement from P to P’; P’ is here an arbitrary
point infinitely near P (vide note 10). No more and no less is
required of this conception than that it is endowed with all the
properties that were ascribed to it in the affine geometry of Chap-
ter . That is, we postulate: There is a co-ordinate system (for the
immediate neighbourhood of P) such that, in it, the components
of any vector at P are not altered by an infinitesimal parallel dis-
placement. This postulate characterises parallel displacements as
being such that they may rightly be regarded as leaving vectors
unchanged. Such co-ordinate systems are called geodetic at P.
What is the effect of this in an arbitrary co-ordinate system x;7
Let us suppose that, in it, the point P has the co-ordinate z9,
P’ the co-ordinates z¥ + dz;; let £ be the components of an arbi-
trary vector at P, £' 4+ d€' the components of the vector resulting
from it by parallel displacement towards P’. Firstly, since the par-
allel displacement from P to P’ causes all the vectors at P to be
mapped out linearly or affinely by all the vectors at P’, d¢* must
be linearly dependent on £, i.e.

d¢' = —dy " (33)

Secondly, as a consequence of the postulate with which we started,
the dv'’s must be linear forms of the differentials dz;, i.e.

in which the number co-efficients I, the “components of the affine
relationship,” satisfy the condition of symmetry

Mo = (33")
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To prove this, let z; be a geodetic co-ordinate system at P; the
formulae of transformation (17) and (18) then hold. It follows
from the geodetic character of the co-ordinate system z; that, for
a parallel displacement,

d§' = d(a;€") = dojg”.

If we regard the £¥s as components dz; of a line element at P we
must have
0* i

0%, 0T
(in the case of the second derivatives we must of course insert their

values at P). The statement contained in our enunciation follows
directly from this. Moreover, the symmetrical bilinear form

—d’yf; ox, = 0T, dx,

0% f;

Xy 0%

—Tt. 0%, dz, is derived from 0, dZg (34)
by transformation according to (18). This exhausts all the aspects
of the question. Now, if I are arbitrarily given numbers that
satisfy the condition of symmetry (33”), and if we define the affine
relationship by (33) and (33’'), the transformation formulee lead to

0 = lri =

Ti —X; =T — 5l ,4TrTs,

that is, to a geodetic co-ordinate system Z; at P, since the equa-
tions (34) are fulfilled for them at P. In fact this transformation
at P gives us

0 f;
0%, 0T

=0, di;=dz; (of =3d),

_ i
=—I..
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The formule according to which the components ., of the
affine relationship are transformed in passing from one co-ordinate
system to another may easily be obtained from the above discus-
sion; we do not, however, require them for subsequent work. The
s are certainly not components of a tensor (contra-variant in i,
co-variant in r and s) at the point P; they have this character
with regard to linear transformations, but lose it when subjected
to arbitrary transformations. For they all vanish in a geodetic
co-ordinate system. Yet every virtual change of the affine rela-
tionship [I",], whether it be finite or “infinitesimal,” is a tensor.
For

[d€'] = [ ]¢" dar
is the difference of the two vectors that arise as a result of the two
parallel displacements of the vector £ from P to P’.

The meaning of the parallel displacement of a co-variant
vector & at the point P to the infinitely near point P’ is de-
fined uniquely by the postulate that the invariant product &n° of
the vector & and any arbitrary contra-variant vector 7' remain
unchanged after the simultaneous parallel displacements, i.e.

d(&mn') = (d& -n') + (& dn") = (d& — dvj &) = 0,
whence

dgi =Y dvi . (35)

We shall call a contra-variant vector field & stationary at the
point P, if the vectors at the points P’ infinitely near P arise
from the vector at P by parallel displacement, that is, if the total
differential equations

(2

d& +dy & =0 (or 0

e =0
axs + 7‘85 )
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are satisfied at P. A vector field can obviously always be found
such that it has arbitrary given components at a point P (this
remark will be used in a construction which is to be carried out in
the sequel). The same conception may be set up for a co-variant
vector field.

From now onwards we shall occupy ourselves with affine man-
ifolds; they are such that every point of them is affinely
related to its neighbourhood. For a definite co-ordinate sys-
tem the components I of the affine relationship are continuous
functions of the co-ordinates x;. By selecting the appropriate co-
ordinate system the . ’s may, of course, be made to vanish at a
single point P, but it is, in general, not possible to achieve this si-
multaneously for all points of the manifold. There is no difference
in the nature of any of the affine relationships holding between
the various points of the manifold and their immediate neigh-
bourhood. The manifold is homogeneous in this sense. There are
not various types of manifolds capable of being distinguished by
the nature of the affine relationships governing each kind. The
postulate with which we set out admits of only one definite kind
of affine relationship.

Geodetic Lines.—If a point which is in motion carries a vec-
tor (which is arbitrarily variable) with it, we get for every value
of the time parameter s not only a point

P=(s): z=uxs)

of the manifold, but also a vector at this point with components
v' = v'(s) dependent on s. The vector remains stationary at the
moment s if

+Tzv* =2 =0. (36)
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(This will relieve the minds of those who disapprove of operations
with differentials; they have here been converted into differential
co-efficients.) In the case of a vector being carried along according
to any arbitrary rule, the left-hand side V* of (36) consists of
the components of a vector in (s) connected invariantly with the
motion and indicating how much the vector v* changes per unit
of time at this point. For in passing from the point P = (s) to
P’ = (s + ds), the vector v at P becomes the vector

,U’L
7 ds
at P'. If, however, we displace v’ from P to P’ leaving it un-
changed, we there get

v+

v 460t = 0" =T g0 dug.

Accordingly, the difference between these two vectors at P’, the
change in v during the time ds has components
dv’
ds
In analytical language the invariant character of the vector V' may
be recognised most readily as follows. Let us take an arbitrary
auxiliary co-variant vector §; = (s) at P, and let us form the
change in the invariant £v® in its passage from (s) to (s + ds),
whereby the vector &; is taken along unchanged. We get
d(€’) i
A &V
If V vanishes for every value of s, the vector v glides with the
point P along the trajectory during the motion without becoming
changed.

ds — v = Vids.
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A dx;
Every motion is accompanied by the vector u* = d—l of its
s

velocity; for this particular case, V' is the vector

= duz—i—l_i uauﬂde—x-i—l_i d&dﬁ

ds op ds? *F ds ds

namely, the acceleration, which is a measure of the change of
velocity per unit of time. A motion, in the course of which the
velocity remains unchanged throughout, is called a translation.
The trajectory of a translation, being a curve which preserves its
direction unchanged, is a straight or geodetic line. According
to the translational view (cf. Chapter I, §1) this is the inherent
property of the straight line.

The analysis of tensors and tensor-densities may be de-
veloped for an affine manifold just as simply and completely as
for the linear geometry of Chapter I. For example, if f¥ are the
components (co-variant in 7, contra-variant in k) of a tensor field
of the second order, we take two auxiliary arbitrary vectors at the
point P, of which the one, &, is contra-variant and the other, 7, is
co-variant, and form the invariant

fz‘kfink

and its change for an infinitesimal displacement d of the current
point P, by which ¢ and 7 are displaced parallel to themselves.
Now

Ui

7 8fzk 7 ) Tl
d(ffen) = 0—3”5 M day — e dy) &+ f1E vyl .,

hence .
r Of;

k — [k kg
il 8131 zlfr rlfz
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are the components of a tensor field of the third order, co-variant
in 7,/ and contra-variant in k: this tensor field is derived from
the given one of the second order by a process independent of the
co-ordinate system. The additional terms, which the components
of the affine relationship contain, are characteristic quantities in
which, following Einstein, we shall later recognise the influence of
the gravitational field. The method outlined enables us to differ-
entiate a tensor in every conceivable case.

Just as the operation “grad” plays the fundamental part in
tensor analysis and all other operations are derivable from it, so
the operation “div” defined by (30) is the basis of the analysis of
tensor-densities. The latter leads to processes of a similar charac-
ter for tensor-densities of any order. For instance, if we wish to
find an expression for the divergence of a mixed tensor-density w¥
of the second order, we make use of an auxiliary stationary vector
field £&'w¥ at P and find the divergence of the tensor-density £w:

oxy, oxy, oxy, Owy,

This quantity is a scalar-density, and since the components of a
vector field which is stationary at P may assume any values at
this point (P), namely,

ow*

8_3511 — wy, (37)
it is a co-variant tensor-density of the first order which has been
derived from w¥ in a manner independent of every co-ordinate
system.

Moreover, not only can we reduce a tensor-density to one of
the next lower order by carrying out the process of divergence,
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but we can also transpose a tensor-density into one of the next
higher order by differentiation. Let s denote a scalar-density,
and let us again use a stationary vector field ¢ at P: we then
form the divergence of current-density, s¢:

8(561) a 7 agz 05 _rr 7
or; f 8@ Ox; Firs ) &

We thus get
Js

ox;
as the components of a co-variant vector-density. To extend dif-
ferentiation beyond scalar tensor-densities to any tensor-densities
whatsoever, for example, to the mixed tensor-density w¥ of
the second order, we again proceed, as has been done repeat-
edly above, to make use of two stationary vector fields at P,
namely, & and 7’, the latter being co-variant and the former
contra-variant. We differentiate the scalar-density w¥&in,. If
the tensor-density that has been derived by differentiation be
contracted with respect to the symbol of differentiation and one
of the contra-variant indices, the divergence is again obtained.

.
- rirs

§ 15. Curvature

If P and P* are two points connected by a curve, and if a vector
is given at P, then this vector may be moved parallel to itself along
the curve from P to P*. Equations (36), giving the unknown com-
ponents v of the vector which is being subjected to a continuous
parallel displacement, have, for given initial values of v¢, one and
only one solution. The vector transference that comes about in
this way is in general non-integrable, that is, the vector which
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we get at P* is dependent on the path of the displacement along
which the transference is effected. Only in the particular case,
in which integrability occurs, is it allowable to speak of the same
vector at two different points P and P*; this comprises those vec-
tors that are generated from one another by parallel displacement.
Let such a manifold be called Euclidean-affine. If we subject all
points of such a manifold to an infinitesimal displacement, which
is in each case representable by an “equal”’ infinitesimal vector,
then the space is said to have undergone an infinitesimal total
translation. With the help of this conception, and following the
line of reasoning of Chapter I. (without entering on a rigorous
proof), we may construct “linear” co-ordinate systems which are
characterised by the fact that, in them, the same vectors have the
same components at different points of the systems. In a linear
co-ordinate system the components of the affine relationship van-
ish identically. Any two such systems are connected by linear
formulee of transformation. The manifold is then an affine space
in the sense of Chapter 1.: The integrability of the vector transfer-
ence is the infinitesimal geometrical property which distinguishes
“linear” spaces among affinely related spaces.

We must now turn our attention to the general case; it must
not be expected in this that a vector that has been taken round a
closed curve by parallel displacement finally returns to its initial
position. Just as in the proof of Stokes’s Theorem, so here we
stretch a surface over the closed curve and divide it into infinitely
small parallelograms by parametric lines. The change in any ar-
bitrary vector after it has traversed the periphery of the surface
is reduced to the change effected after it has traversed each of the
infinitesimal parallelograms marked out by two line elements dx;
and dx; at a point P. This change has now to be determined.
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We shall adopt the convention that the amount Ax = (A£*), by
which a vector x = & increases, is derived from x by a linear
transformation, a matrix AF, i.e.

Ax = AF(x); ALY = AFg - €°. (38)

If AF = 0, then the manifold is “plane” at the point P in the
surface direction assumed by the surface element; if this is true for
all elements of a finitely extended portion of surface, then every
vector that is subjected to parallel displacement along the edge
of the surface returns finally to its initial position. AF is linearly
dependent on the element of surface:

AF = F,,. dx; 6x), = %FikA:pik (Azy = dx; dxy — dy Oy,

and
Fri = —Fu). (39)

The differential form that occurs here characterises the curva-
ture, that is, the deviation of the manifold from plane-ness at
the point P for all possible directions of the surface; since its
co-efficients are not numbers, but matrices, we might well speak
of a “linear matrix-tensor of the second order,” and this would
undoubtedly best characterise the quantitative nature of curva-
ture. If, however, we revert from the matrices back to their
components—supposing Fg; to be the components of Fy or else
the co-efficients of the form

AFg = Fgy dx; oy, (40)
—+then we arrive at the formula

Ax Fg‘ikeafﬁ dx; dxy. (41)
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From this we see that the Fg;;’s are the components of a tensor
of the fourth order which is contra-variant in o and co-variant in
3,1 and k. Expressed in terms of the components I’ of the affine
relationship, it is

arg are.
[ Bk 7 arr o rr
Fgip = <_8xi - 8xk) + (Ml — Tl 5s)- (42)

According to this they fulfil the conditions of “skew” and “cyclical”
symmetry, namely:—

The vanishing of the curvature is the invariant differential law
which distinguishes Euclidean spaces among affine spaces in terms
of general infinitesimal geometry.

To prove the statements above enunciated we use the same
process of sweeping twice over an infinitesimal parallelogram as
we used on page 157 to derive the curl tensor; we use the same
notation as on that occasion. Let a vector x = x(Pyg) with com-
ponents £ be given at the point Py. The vector x(Pjg) that is
derived from x(Pyo) by parallel displacement along the line ele-
ment dx is attached to the end point Pj of the same line element.
If the components of x(Pyg) are £ + d¢* then

de® = —dn € = —T5, ¢ da.

Throughout the displacement § to which the line element dx is
to be subjected (and which need by no means be a parallel dis-
placement) let the vector at the end point be bound always by the
specified condition to the vector at the initial point. The d¢*’s are
then increased, owing to the displacement, by an amount

§de* = —0Tg; du; €7 —T§; 0dx; €7 — dy 6¢7
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If, in particular, the vector at the initial point of the line element
remains parallel to itself during the displacement, then 6§ must
be replaced in this formula by —dvjs €. In the final position

P
Py1 P11 of the line element we then get, at the point Fy;, the vec-
tor x(Fy;), which is derived from x(FPpyy) by parallel displacement

along Py FPo1; at Pyp we get the vector x(Pyy), into which x(Py) is
converted by parallel displacement along Py P;1, and we have

6de™ = {&%(Pi1) — &% (Po1) } — {€%(Pro) — €*(Poo) }-

If the vector that is derived from x(Pjo) by parallel displacement

s
along PyoPy; is denoted by x, Pi1, then, by interchanging d and 4,
we get an analogous expression for

o€ = {€(P1) = € (Pro) } — {€"(Por) — €%(Poo) }-
By subtraction we get
ALY = 0dE™ — dog”
B { — 0TS, dw; + dy 55 — T4, 6da; } 5
+dl gy 0z — dvt dyg + T3, dox;

Since ddx; = ddx; the two last terms on the right destroy one
another, and we are left with

A = AFg - &°

in which the A¢®’s are the components of a vector Ax at Py,
which is the difference of the two vectors x and x, at the same
point, i.e.

—Afa = fa(Pll) - 53(1311)-
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Since, when we proceed to the limit, Py coincides with P = Py,
this proves the statements enunciated above.
The foregoing argument, based on infinitesimals, become rigor-

ous as soon as we interpret d and 0 in terms of the differentiations

d d
75 and a7 as was done earlier. To trace the various stages of the
s

vector x during the sequence of infinitesimal displacements, we
may well adopt the following plan. Let us ascribe to every pair of
values s, t, not only a point P = (s, t), but also a co-variant vector
at P with components f;(s,t). If £ is an arbitrary vector at P,

. d(f€l
then d(f;£") signifies the value that <§§ )

along unchanged from the point (s, t) tosthe point (s+ds,t). And
d(f;£") is itself again an expression of the form f;£' excepting that
instead of f; there are now other functions f/ of s and . We may,
therefore, again subject it to the same process, or to the analogous
one 0. If we do the latter, and repeat the whole operation in the
reverse order, and then subtract, we get

Sd(fi€") = 8df; € + df; 66" + 0 f; dE' + f; 6dE,

assumes if £ is taken

and then, since

’f; _ d*f;

0 = Grds = dsdi

dé i,

we have . . '

A(fi€") = (6d = do)(f:£") = [ AL
In the last expression A is precisely the expression found above.
The invariant obtained is, for the point P = (0,0),

Fgip fal ulv”.
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It depends on an arbitrary co-variant vector with components f;
at this point, and on three contra-variant vectors &, u, v; the Fg,;’s
are accordingly the components of a tensor of the fourth order.

§ 16. Metrical Space

The Conception of Metrical Manifolds.—A manifold has
a measure-determination at the point P, if the line ele-
ments at P may be compared with respect to length; we herein
assume that the Pythagorean law (of Euclidean geometry) is valid
for infinitesimal regions. Fwvery vector x then defines a distance
at P; and there is a non-degenerate quadratic form x2, such that
x and vy define the same distance if, and only if, x*> = y?. This
postulate determines the quadratic form fully, if a factor of pro-
portionality differing from zero be prefixed. The fixing of the
latter serves to calibrate the manifold at the point P. We shall
then call x? the measure of the vector x, or since it depends only
on the distance defined by x, we may call it the measure [ of
this distance. Unequal distances have different measures; the
distances at a point P therefore constitute a one-dimensional to-
tality. If we replace this calibration by another, the new measure [
is derived from the old one [ by multiplying it by a constant fac-
tor A\ # 0, independent of the distance; that is, [ = M. The
relations between the measures of the distances are independent
of the calibration. So we see that just as the characterisation of
a vector at P by a system of numbers (its components) depends
on the choice of the co-ordinate system, so the fixing of a distance
by a number depends on the calibration; and just as the compo-
nents of a vector undergo a homogeneous linear transformation in
passing to another co-ordinate system, so also the measure of an
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arbitrary distance when the calibration is altered. We shall call
two vectors x and y (at P), for which the symmetrical bilinear
form x -y corresponding to x? vanishes, perpendicular to one
another; this reciprocal relation is not affected by the calibration
factor. The fact that the form x? is definite is of no account in our
subsequent mathematical propositions, but, nevertheless, we wish
to keep this case uppermost in our minds in the sequel. If this
form has p positive and ¢ negative dimensions (p+ ¢ = n), we say
that the manifold is (p + ¢)-dimensional at the point in question.
If p # q we fix the sign of the metrical fundamental form x? once
and for all by the postulate that p > ¢; the calibration ratio A is
then always positive. After choosing a definite co-ordinate system
and a certain calibration factor, suppose that, for every vector x
with components £, we have

X = Zgikfifk (gki = gik)' (44)
ik

We now assume that our manifold has a measure-
determination at every point. Let us calibrate it everywhere,
and insert in the manifold a system of n co-ordinates x;—we must
do this so as to be able to express in numbers all quantities that
occur—then the g;;’s in (44) are perfectly definite functions of the
co-ordinates x;; we assume that these functions are continuous
and differentiable. Since the determinant of the g;.’s vanishes at
no point, the integral numbers p and ¢ will remain the same in
the whole domain of the manifold; we assume that p > ¢.

For a manifold to be a metrical space, it is not sufficient for it
to have a measure-determination at every point; in addition, every
point must be metrically related to the domain surrounding it.
The conception of metrical relationship is analogous to that of
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affine relationship; just as the latter treats of vectors, so the
former deals with distances. A point is thus metrically related
to the domain in its immediate neighbourhood, if the distance is
known to which every distance at P gives rise when it passes by a
congruent displacement from P to any point P’ infinitely near P.
The immediate vicinity of P may be calibrated in such a way
that the measure of any distance at P has undergone no change
after congruent displacements to infinitely near points. Such a
calibration is called geodetic at P. If, however, the manifold is
calibrated in any way, and if [ is the measure of any arbitrary
distance at P, and [+dl the measure of the distance at P’ resulting
from a congruent displacement to the infinitely near point P’,
there is necessarily an equation

dl = —1dg (45)

in which the infinitesimal factor d¢ is independent of the displaced
distance, for the displacement effects a representation of the dis-
tances at P similar to that at P’. In (45), d¢ corresponds to
the dv!’s in the formula for vector displacements (33). If the cal-
ibration is altered at P and its neighbouring points according to
the formula [ = I\ (the calibration ratio \ is a positive function
of the position), we get in place of (45)

L : d\
dl = ~1dé in which d¢ = d¢ — =. (46)

The necessary and sufficient condition that an appropriate value
of A\ make d¢ vanish identically at P with respect to the infinites-
imal displacement PP’ = (dz;) is clearly that d¢ must be a dif-
ferential form, that is,
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The inferences that may be drawn from the postulate enunciated
at the outset are exhausted in (45) and (45"). (In short, the ¢;’s
are definite numbers at the point P. If P has co-ordinates x; = 0,
we need only assume log A equal to the linear function »_ ¢;x;
to get d¢ = 0 there.) All points of the manifold are identical
as regards the measure-determinations governing each and as re-
gards their metrical relationship with their neighbouring points.

Yet, according as n is even or odd, there are respectively 5 +1
n+1

or different types of metrical manifolds which are distin-

guishable from one another by the inertial index of the metrical
groundform. One kind, with which we shall occupy ourselves par-
ticularly, is given by the case in which p = n, ¢ = 0 (or p = 0,
g =n); other casesare p=n—1,g=1(orp=1,¢g=n—1), or
p=n—2,¢g=2(orp=2,g=n—2), and so forth.

We may summarise our results thus. The metrical character
of a manifold is characterised relatively to a system of reference
(= co-ordinate system + calibration) by two fundamental forms,
namely, a quadratic differential form Q) = sz gir dx; dxy, and a
linear one dp =y . ¢; dz;. They remain invariant during transfor-
mations to new co-ordinate systems. If the calibration is changed,
the first form receives a factor \, which is a positive function of
position with continuous derivatives, whereas the second function
becomes diminished by the differential of log A.  Accordingly all
quantities or relations that represent metrical conditions analyti-
cally must contain the functions g;;¢; in such a way that invari-
ance holds (1) for any transformation of co-ordinate (co-ordinate
invariance), (2) for the substitution which replaces g;x and ¢; re-



THE METRICAL CONTINUUM 183

spectively by
1 0\
Nogn and g— -

no matter, in (2), what function of the co-ordinates A may be.
(This may be termed calibration invariance.)

In the same way as in § 15, in which we determined the change
in a vector which, remaining parallel to itself, traverses the pe-
riphery of an infinitesimal parallelogram bounded by dz;, dz;, so
here we calculate the change Al in the measure [ of a distance

subjected to an analogous process. Making use of dl = —l d¢ we
get
odl = —6ldep — 1odep =10pdp — 1 ddo,
i.e.
Al =4§dl — dél = -1 Ao
where
op; 0
A¢ = (6d — dd)p = fi dw; 6z, and  fi, = afk - a‘i’:. (47)

Hence we may call the linear tensor of the second order with com-
ponents f;r the distance curvature of metrical space as an analogy
to the wvector curvature of affine space, which was derived in § 15.
Equation (46) confirms analytically that the distance curvature is
independent of the calibration; it satisfies the equations of invari-

ance 5

Ji n 0 fu N O fi

81’2‘ 8Ik 8!El
Its vanishing is the necessary and sufficient condition that every
distance may be transferred from its initial position, in a manner
independent of the path, to all points of the space. This is the

=0.
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only case that Riemann considered. If metrical space is a Rie-
mann space, there is meaning in speaking of the same distance
at different points of space; the manifold may then be calibrated
(normal calibration) so that d¢ vanishes identically. (Indeed, it
follows from f;;, = 0, that d¢ is a total differential, namely, the
differential of a function log \; by re-calibrating in the calibration
ratio A, d¢ may then be made equal to zero everywhere.) In nor-
mal calibration the metrical groundform () of Riemann’s space is
determined except for an arbitrary constant factor, which may
be fixed by choosing once and for all a unit distance (no matter at
which point; the normal meter may be transported to any place).

The Affine Relationship of a Metrical Space.—We now
arrive at a fact, which may almost be called the key-note of in-
finitesimal geometry, inasmuch as it leads the logic of geometry
to a wonderfully harmonious conclusion. In a metrical space the
conception of infinitesimal parallel displacements may be given in
only one way if, in addition to our previous postulate, it is also to
satisfy the almost self-evident one: parallel displacement of a vec-
tor must leave unchanged the distance which it determines. Thus,
the principle of transference of distances or lengths which is the
basis of metrical geometry, carries with it a principle of trans-
ference of direction; in other words, an affine relationship is
inherent in metrical space.

Proof—We take a definite system of reference. In the case
of all quantities @’ which carry an upper index i (not necessarily
excluding others) we shall define the lowering of the index by

equations
_ J
a; = § gija
J

and the reverse process of raising the index by the corresponding
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inverse equations. If the vector £ at the point P = (z;) is to be
transformed into the vector & + d¢* at P’ = (x; + dx;) by the
parallel displacement to P’ which we are about to explain, then

d¢t = —dvi ¥, dyp =Ti da,,
and the equation
dl = —ld¢

must hold for the measure
I = ga'e*
according to the postulate enunciated, and this gives
26, d¢' + ¢ dga, = —(gun'€") do.
The first term on the left

= —2§z‘fk d%i = —25i§k dryii, = —fifk(d%k + dYgi).

Hence we get
ik, + dyki = dgix + gir do,

or
9gir
Cikr + Thir = —— + GipOy. 48
kr g axr‘i‘gm (48)

By interchanging the indices i, k, r cyclically, then adding the last
two and subtracting the first from the resultant sum, we get, bear-
ing in mind that the ['s must be symmetrical in their last two
indices,

99ir | Ogkr  Ogik
=1 + — Lo 0 bi — Gir®
rr,zk 2 (9[Ek 91'1 91}) 2(9’”‘ k Gkr Pi ik 'r)' (49)
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From this the '}, are determined according to the equation
Mrik = grsl 5, or, explicitly, T}, = ¢"T . (50)

These components of the affine relationship fulfil all the postulates
that have been enunciated. It is in the nature of metrical space to
be furnished with this affine relationship; in virtue of it the whole
analysis of tensors and tensor-densities with all the conceptions
worked out above, such as geodetic line, curvature, etc., may be
applied to metrical space. If the curvature vanishes identically,
the space is metrical and Euclidean in the sense of Chapter 1.

In the case of vector curvature we have still to derive an
important decomposition into components, by means of which we
prove that distance curvature is an inherent constituent of the
former. This is quite to be expected since vector transference is
automatically accompanied by distance transference. If we use the
symbol A = dd — do relating to parallel displacement as before,
then the measure [ of a vector £ satisfies

Al=—1A¢,  ALE = —(&&) Ad. (47)

Just as we found for the case in which f; are any functions of
position that

A(fi€)) = fi A€
so we see that
A(&E) = A(gan€'€") = g AL - €5 + ganl’ - AF = 26 AL,

and equation (47) then leads to the following result. If for the
vector x = (£') we set

Ax = *AX—X~%A¢,
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then Ax appears split up into a component at right angles to x
and another parallel to x, namely, *Ax and —x- %Agb respectively.
This is accompanied by an analogous resolution of the curvature
tensor, i.e.

The first component *F" will be called “direction curvature”; it
is defined by
*AX = *ngkeafﬁ dx; dxy,.

The perpendicularity of *Ax to x is expressed by the formula
*Fékﬁafﬁ dz; Sy, = *Fopiné™EP da; 6y = 0.

The system of numbers *F,z;; is skew-symmetrical not only with
respect to ¢ and k but also with respect to the index pair o and 3.
In consequence we have also, in particular,

70 = 0.

Corollaries.—If the co-ordinate system and calibration
around a point P is chosen so that they are geodetic at P, then
we have, at P, ¢; = 0, [, = 0, or, according to (48) and (49), the
equivalent
IGix
ox,
The linear form d¢ vanishes at P and the co-efficients of the
quadratic groundform become stationary; in other words, those
conditions come about at P, which are obtained in Euclidean
space simultaneously for all points by a single system of reference.
This results in the following explicit definition of the parallel dis-
placement of a vector in metrical space. A geodetic system of

=0.
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reference at P may be recognised by the property that the ¢;’s
at P vanish relatively to it and the g;.’s assume stationary values.
A vector is displaced from P parallel to itself to the infinitely near
point P’ by leaving its components in a system of reference be-
longing to P unaltered. (There are always geodetic systems of
reference; the choice of them does not affect the conception of
parallel displacements.)

. : dx;
Since, in a translation z; = z;(s), the velocity vector u; = g .
s
moves so that it remains parallel to itself, it satisfies
d(u;u’ , ,
<dl ) + (uu')(p;u') =0 in metrical geometry. (52)
s

If at a certain moment the u'’s have such values that uu’ = 0 (a
case that may occur if the quadratic groundform @ is indefinite),
then this equation persists throughout the whole translation: we
shall call the trajectory of such a translation a geodetic null-
line. An easy calculation shows that the geodetic null-lines do
not alter if the metric relationship of the manifold is changed in
any way, as long as the measure-determination is kept fixed at
every point.

Tensor Calculus.—It is an essential characteristic of a tensor
that its components depend only on the co-ordinate system and
not on the calibration. In a generalised sense we shall, however,
also call a linear form which depends on the co-ordinate system
and the calibration a tensor, if it is transformed in the usual way
when the co-ordinate system is changed, but becomes multiplied
by the factor A® (where A = the calibration ratio) when the cali-
bration is changed; we say that it is of weight e. Thus the g;;’s are
components of a symmetrical co-variant tensor of the second order
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and of weight 1. Whenever tensors are mentioned without their
weight being specified, we shall take this to mean that those of
weight 0 are being considered. The relations which were discussed
in tensor analysis are relations, which are independent of calibra-
tion and co-ordinate system, between tensors and tensor-densities
in this special sense. We regard the extended conception of a
tensor, and also the analogous one of tensor-density of weight e,
merely as an auxiliary conception, which is introduced to sim-
plify calculations. They are convenient for two reasons: (1) They
make it possible to “juggle with indices” in this extended region.
By lowering a contra-variant index in the components of a tensor
of weight e we get the components of a tensor of weight e + 1,
the components being co-variant with respect to this index. The
process may also be carried out in the reverse direction. (2) Let
g denote the determinant of the g;;’s, furnished with a plus or
minus sign according as the number g of the negative dimensions
is even or uneven, and let /g be the positive root of this posi-
tive number g. Then, by multiplying any tensor by ,/g we

get a tensor-density whose weight is g more than that

n
of the tensor; from a tensor of weight —3 we get, in partic-
ular, a tensor-density in the true sense. The proof is based on

n
the evident fact that /g is itself a scalar-density of weight 3

We shall always indicate when a quantity is multiplied by /g by
changing the ordinary letter which designates the quantity into
the corresponding one printed in Clarendon type. Since, in Rie-
mann’s geometry, the quadratic groundform @) is fully determined
by normal calibration (we need not consider the arbitrary con-
stant factor), the difference in the weights of tensors disappears
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here: since, in this case, every quantity that may be represented
by a tensor may also be represented by the tensor-density that is
derived from it by multiplying it by /g, the difference between
tensors and tensor-densities (as well as between co-variant and
contra-variant) is effaced. This makes it clear why for a long time
tensor-densities did not come into their right as compared with
tensors. The main use of tensor calculus in geometry is an inter-
nal one, that is, to construct fields that are derived invariantly
from the metrical structures. We shall give two examples that are
of importance for later work. Let the metrical manifold be (3+1)-
dimensional, so that —¢g will be the determinant of the g;;’s. In
this space, as in every other, the distance curvature with compo-
nents f;, is a true linear tensor field of the second order. From it is
derived the contra-variant tensor f** of weight —2, which, on ac-
count of its weight differing from zero, is of no actual importance;
multiplication by /g leads to f* a true linear tensor-density of
the second order.

1=1f7,f" (53)

4
is the simplest scalar-density that can be formed; consequently

ldx is the simplest invariant integral associated with the met-
rical basis of a (3 + 1)-dimensional manifold. On the other hand,
the integral [ /g dz, which occurs in Riemann’s geometry as “vol-

ume,” is meaningless in general geometry. We can derive the inten-
sity of current (vector-density) from f** by means of the operation
divergence thus:
afik;
ox k N

In physics, however, we use the tensor calculus not to describe the

s,
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metrical condition but to describe fields expressing physical states
in metrical space—as, for example, the electromagnetic field—and
to set up the laws that hold in them. Now, we shall find at the
close of our investigations that this distinction between physics
and geometry is false, and that physics does not extend beyond
geometry. The world is a (3 + 1)-dimensional metrical manifold,
and all physical phenomena that occur in it are only modes of
expression of the metrical field. In particular, the affine relation-
ship of the world is nothing more than the gravitational field, but
its metrical character is an expression of the state of the “aether”
that fills the world; even matter itself is reduced to this kind of
geometry and loses its character as a permanent substance. Clif-
ford’s prediction, in an article of the Fortnightly Review of 1875,
becomes confirmed here with remarkable accuracy; in this he says
that “the theory of space curvature hints at a possibility of de-
scribing matter and motion in terms of extension only”.

These are, however, as yet dreams of the future. For the
present, we shall maintain our view that physical states are foreign
states in space. Now that the principles of infinitesimal geometry
have been worked out to their conclusion, we shall set out, in the
next paragraph, a number of observations about the special case
of Riemann’s space and shall give a number of formulae which will
be of use later.

§ 17. Observations about Riemann’s Geometry as a
Special Case

General tensor analysis is of great utility even for Euclidean
geometry whenever one is obliged to make calculations, not in a
Cartesian or affine co-ordinate system, but in a curvilinear co-
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ordinate system, as often happens in mathematical physics. To
illustrate this application of the tensor calculus we shall here write
out the fundamental equations of the electrostatic and the mag-
netic field due to stationary currents in terms of general curvilinear
co-ordinates.

Firstly, let E; be the components of the electric intensity of
field in a Cartesian co-ordinate system. By transforming the
quadratic and the linear differential forms

ds® = da? 4 das +da3  Eydry + Eydry + Esdrs

respectively, into terms of arbitrary curvilinear co-ordinates (again
denoted by z;), each form being independent of the Cartesian co-
ordinate system, suppose we get

ds? = gir dx; dxy, and E;dx;.

Then the E;’s are in every co-ordinate system the components of
the same co-variant vector field. From them we form a vector-
density with components

E' =5 9*E. (9= o)

We transform the potential —¢ as a scalar into terms of the new
co-ordinates, but we define the density p of electricity as being the

electric charge given by / pdxy dxy drs contained in any portion

of space; p is not then a scalar but a scalar density. The laws are
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expressed by

_9¢ OB, 0E; )
- Oxy Oox,  0x;

OE' _ (54)

SF = E;EF — 168,

E;

J

in which S, = E;E‘, are the components of a mixed tensor-density
of the second order, namely, the potential difference. The proof is
sufficiently indicated by the remark that these equations, in the
form we have written them, are absolutely invariant in character,
but pass into the fundamental equations, which were set up earlier,
for a Cartesian co-ordinate system.

The magnetic field produced by stationary currents was char-
acterised in Cartesian co-ordinate systems by an invariant skew-
symmetrical bilinear form H;, dx; dx;. By transforming the latter
into terms of arbitrary curvilinear co-ordinates, we get Hj, the
components of a linear tensor of the second order, namely, of the
magnetic field, these components being co-variant with respect to
arbitrary transformations of the co-ordinates. Similarly, we may
deduce the components ¢; of the vector potential as components
of a co-variant vector field in any curvilinear co-ordinate system.
We now introduce a linear tensor-density of the second order by
means of the equations

Hik _ \/g . giangHaﬁ'
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The laws are then expressed by

09y Oy or aHkl+aHli+aHik )

ik = - =0
respectively,
=s
(%k ’
SF = H,H" - 16FS, S=1H,H"

/

The s'’s are the components of a vector-density, the electric in-
tensity of current; the potential differences S¥ have the same in-
variant character as in the electric field. These formulse may be
specialised for the case of, for example, spherical and cylindrical
co-ordinates. No further calculations are required to do this, if
we have an expression for ds?, the distance between two adjacent
points, expressed in these co-ordinates; this expression is easily
obtained from considerations of infinitesimal geometry.

It is a matter of greater fundamental importance that (54) and
(55) furnish us with the underlying laws of stationary electromag-
netic fields if unforeseen reasons should compel us to give up the
use of Euclidean geometry for physical space and replace it by
Riemann’s geometry with a new groundform. For even in the
case of such generalised geometric conditions our equations, in
virtue of their invariant character, represent statements that are
independent of all co-ordinate systems, and that express formal
relationships between charge, current, and field. In no wise can
it be doubted that they are the direct transcription of the laws
of the stationary electric field that hold in Euclidean space; it is
indeed astonishing how simply and naturally this transcription is
effected by means of the tensor calculus. The question whether
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space is Euclidean or not is quite irrelevant for the laws of the elec-
tromagnetic field. The property of being Fuclidean is expressed
in a universally invariant form by differential equations of the sec-
ond order in the g;’s (denoting the vanishing of the curvature)
but only the g;;’s and their first derivatives appear in these laws.
It must be emphasised that a transcription of such a simple kind
is possible only for laws dealing with action at infinitesimal
distances. To derive the laws of action at a distance correspond-
ing to Coulomb’s, and Biot and Savart’s Law from these laws of
contiguous action is a purely mathematical problem that amounts
in essence to the following. In place of the usual potential equa-
tion A¢ = 0 we get as its invariant generalisation (vide (54)) in
Riemann’s geometry the equation

0

that is, a linear differential equation of the second order whose
co-efficients are, however, no longer constants. From this we are
to get the “standard solution,” tending to infinity, at any arbitrary

given point; this solution corresponds to the “standard solution” —

of the potential equation. It presents a difficult mathematicaﬁ
problem that is treated in the theory of linear partial differential
equations of the second order. The same problem is presented
when we are limited to Euclidean space if, instead of investigat-
ing events in empty space, we have to consider those taking place
in a non-homogeneous medium (for example, in a medium whose
dielectric constant varies at different places with the time). Con-
ditions are not so favourable for transcribing electromagnetic laws,
if real space should become disclosed as a metrical space of a still
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more general character than Riemann assumed. In that case it
would be just as inadmissible to assume the possibility of a cali-
bration that is independent of position in the case of currents and
charges as in the case of distances. Nothing is gained by pursuing
this idea. The true solution of the problem lies, as was indicated in
the concluding words of the previous paragraph, in quite another
direction.

Let us rather add a few observations about Riemann’s space
as a special case. Let the unit measure (1 centimetre) be chosen
once and for all; it must, of course, be the same at all points. The
metrical structure of the Riemann space is then described by an
invariant quadratic differential form g;; dz; dz) or, what amounts
to the same thing, by a co-variant symmetrical tensor field of
the second order. The quantities ¢;, that are now equal to zero,
must be struck out everywhere in the formulee of general metrical
geometry. Thus, the components of the affine relationship, which
here bear the name “Christoffel three-indices symbols” and are

usually denoted by {Zk}, are determined from
r

ik 1 8gzr agkr (9g@k ik s ik
L‘] _2(8xk+ or; Oz, )’ rf T s (56)

(We give way to the usual nomenclature—although it disagrees
flagrantly with our own convention regarding rules about the po-
sition of indices—so as to conform to the usage of the text-books.)

The following formulse are now tabulated for future reference:—
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TR 1 R 1

These equations hold because /g is a scalar and /g - ¢"* is a tensor-
density; hence, according to the rules given by the analysis of tensor-
densities, the left-hand members of these equations, multiplied by /g,
are likewise tensor-densities. If, however, we use a co-ordinate system

o ik
( 89 > = 0, which is geodetic at P, then all terms vanish. Hence,
Ly

in virtue of the invariant nature of these equations, they also hold in
every other co-ordinate system. Moreover,

d . d./g i
&= g* dgy, \/\g = 59" dgi. (58)

For the total differential of a determinant with n? (independent and
variable) elements g;;, is equal to G dg;;., where G** denotes the minor
of gir. If t** (= t*) is any symmetrical system of numbers, then we
always have

tik dgl-k = _tik dgik. (59)
From A
gig"" = o}

it follows that ‘ ‘
gij dg’* = —g’* dgij.
If these equations are multiplied by tfC (this symbol cannot be misin-

terpreted since ti: = gt = gth = t}c) the required result follows. In
particular, in place of (58) we may also write

— = —gir.dg™. (58)

The co-variant components R,g;; of curvature in Riemann’s
space, which we denote by R instead of F', satisfy the conditions of
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symmetry

Ra,ﬁki = _Raﬁikv Rﬁaki = _Raﬁika
Roz,Bki + Raik,@ + Rakﬁi = 07

(for the “distance curvature” vanishes). It is easy to show that, from
them, it follows that (vide note 11)

Rikap = Ragik-

As the result of an observation on page 83, it follows that all those
conditions taken together enable us to characterise the curvature ten-
sor completely by means of a quadratic form that is dependent on an
arbitrary element of surface, namely,

iRaﬁik Azap Az, (Axy, = dx; dxy, — dxy 0x;).

If this quadratic form is divided by the square of the magnitude of the
surface element, the quotient depends only on the ratio of the Ax;’s,
i.e. on the position of the surface element; Riemann calls this number
the curvature of the space at the point P in the surface direction in
question. In two-dimensional Riemann space (on a surface) there is only
one surface direction and the tensor degenerates into a scalar (Gaussian
curvature). In Einstein’s theory of gravitation the contracted tensor of
the second order
?ak = R

which is symmetrical in Riemann’s space, becomes of importance: its
components are

e - E L)

Only in the case of the second term on the right, the symmetry with re-
spect to i and k is not immediately evident; according to (57), however,
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it is equal to

1 &*(log g)

2 81,‘1 axk ’
Finally, by applying contraction once more we may form the scalar of
curvature

R = ¢"*Ry.
In general metrical space the analogously formed scalar of curvature F
is expressed in the following way (as is easily shown) by the Riemann
expression R, which is dependent only on the g;;’s and which has no
distinct meaning in that space:—

1 0(ygd)  (n—1)n-2)
\/g 8331 4

F is a scalar of weight —1. Hence, in a region in which F' # 0 we may
define a unit of length by means of the equation F' = constant. This
is a remarkable result inasmuch as it contradicts in a certain sense the
original view concerning the transference of lengths in general metrical
space, according to which a direct comparison of lengths at a distance
is not possible; it must be noticed, however, that the unit of length
which arises in this way is dependent on the conditions of curvature of
the manifold. (The existence of a unique uniform calibration of this
kind is no more extraordinary than the possibility of introducing into
Riemann’s space certain unique co-ordinate systems arising out of the
metrical structure.) The “volume” that is measured by using this unit
of length is represented by the invariant integral

/ Vg - Frd. (62)

F=R—-(n-1) (¢ig').  (61)

For two vectors &%, ' that undergo parallel displacement we
have, in metrical space,

d(&m') + (&m') do = 0.
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In Riemann’s space, the second term is absent. From this it follows
that in Riemann’s space the parallel displacement of a contra-
variant vector £ is expressed in exactly the same way in terms
of the quantities & = gix&* as the parallel displacement of a co-
variant vector is expressed in terms of its components &;:

16’

ﬁ]dxagﬂ:o.

d&; — {ig}dfb’a =0 or d§ — [

Accordingly, for a translation we have

d i 0 o ; d %
dqi‘ — % ai;f uu? =0 (u’ = i, U; = gikuk) (63)

for, by equation (48),

. . Da
i) 115, _ 99as
15} Q@ ox;
and hence for any symmetrical system of numbers t*%:—
dg e i
1 Y5ap _ af _ a
1 g = t*f = t3. 4
e fle

Since the numerical value of the velocity vector remains unchanged
during translations, we get

dz; dxp

Gik I ds = w;u’ = const. (65)

If, for the sake of simplicity, we assume the metrical groundform
to be definitely positive, then every curve x; = x;(s) [a < s < b
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has a length, which is independent of the mode of parametric
representation. This length is

b dz; dxp
[ vae (e=m ).

If we use the length of arc itself as the parameter, () becomes
equal to 1. Equation (65) states that a body in translation tra-
verses its path, the geodetic line, with constant speed, namely,
that the time-parameter is proportional to s, the length of arc. In
Riemann’s space the geodetic line possesses not only the differ-
ential property of preserving its direction unaltered, but also the
integral property that every portion of it is the shortest
line connecting its initial and its final point. This statement
must not, however, be taken literally, but must be understood in
the same sense as the statement in mechanics that, in a position
of equilibrium, the potential energy is a minimum, or when it is
said of a function f(x,y) in two variables that it has a minimum
at points where its differential

f of

0
df = 5

d + =
vanishes identically in dxr and dy; whereas the true expression is
that it assumes a “stationary” value at that point, which may be a
minimum, a maximum, or a “point of inflexion”. The geodetic line
is not necessarily a curve of least length but is a curve of stationary
length. On the surface of a sphere, for instance, the great circles
are geodetic lines. If we take any two points, A and B, on such a
great circle, the shorter of the two arcs AB is indeed the shortest
line connecting A and B, but the other arc AB is also a geodetic
line connecting A and B; it is not of least but of stationary length.
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We shall seize this opportunity of expressing in a rigorous form
the principle of infinitesimal variation.
Let any arbitrary curve be represented parametrically by

x; = x;(8), (a <s<b).

We shall call it the “initial” curve. To compare it with neighbour-
ing curves we consider an arbitrary family of curves involving one
parameter:
x; = (85 €), (a <s<b).

The parameter € varies within an interval about € = 0; z;(s; €) are
to denote functions that resolve into x;(s) when ¢ = 0. Since all
curves of the family are to connect the same initial point with the
same final point, z;(a;€) and z;(b;€) are independent of €. The
length of such a curve is given by

L(e) = /ab VQds.

Further, we assume that s denotes the length of an arc of the initial
dz;

curve, so that () =1 for ¢ = 0. Let the direction components d_l
s

of the initial curve € = 0 be denoted by u!. We also set

These are the components of the “infinitesimal” displacement
which makes the initial curve change into the neighbouring curve
due to the “variation” corresponding to an infinitely small value
of €; they vanish at the ends.

dL
€ <—> =4§L
de o
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is the corresponding variation in the length. 0L = 0 is the con-
dition that the initial curve has a stationary length as compared
with the other members of the family. If we use the symbol 6@ in
the same sense, we get

b 6 b
5L:/a %ds:g/a 5Q ds (66)

since () = 1 in the case of the initial curve. Now

@ _ 0gap dx; dry drg 49 % d?z;
de Oz de ds ds | T*ds deds

and hence (if we interchange “variation” and “differentiation,” that
is the differentiations with respect to € and s) we get
i

. 4 d
0Q = % uuPEl + 2g;u” £ .
ox; ds

If we substitute this in (66) and rewrite the second term by apply-
ing partial integration, and note that the £’s vanish at the ends
of the interval of integration, then

b
dg du; \
— 1 aB o B ? 7
oL /a <2 oz, u®u ds)§ ds.

Hence the condition 6L = 0 is fulfilled for any family of curves
if, and only if, (63) holds. Indeed, if, for a value s = sy between
a and b, one of these expressions, for example the first, namely,
i = 1, differed from zero (were greater than zero), say, it would be
possible to mark off a little interval around sy so small that, within
it, the above expression would be always > 0. If we choose a non-
negative function for €' such that it vanishes for points beyond
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this interval, all remaining £%’s, however, being = 0, we find the
equation 6L = 0 contradicted.

Moreover, it is evident from this proof that, of all the motions
that lead from the same initial point to the same final point within
the same interval of time a < s < b, a translation is distinguished
by the property that fab () ds has a stationary value.

Although the author has aimed at lucidity of expression many
a reader will have viewed with abhorrence the flood of formulae
and indices that encumber the fundamental ideas of infinitesimal
geometry. It is certainly regrettable that we have to enter into the
purely formal aspect in such detail and to give it so much space
but, nevertheless, it cannot be avoided. Just as anyone who wishes
to give expressions to his thoughts with ease must spend laborious
hours learning language and writing, so here too the only way that
we can lessen the burden of formulee is to master the technique
of tensor analysis to such a degree that we can turn to the real
problems that concern us without feeling any encumbrance, our
object being to get an insight into the nature of space, time, and
matter so far as they participate in the structure of the external
world. Whoever sets out in quest of this goal must possess a
perfect mathematical equipment from the outset. Before we pass
on after these wearisome preparations and enter into the sphere
of physical knowledge along the route illumined by the genius
of Einstein, we shall seek to obtain a clearer and deeper vision
of metrical space. Our goal is to grasp the inner necessity and
uniqueness of its metrical structure as expressed in Pythagoras’
Law.
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§ 18. Metrical Space from the Point of View of the
Theory of Groups

Whereas the character of affine relationship presents no further
difficulties—the postulate on page 184 to which we subjected the
conception of parallel displacement, and which characterises it as
a kind of unaltered transference, defines its character uniquely—
we have not yet gained a view of metrical structure that takes us
beyond experience. It was long accepted as a fact that a metrical
character could be described by means of a quadratic differential
form, but this fact was not clearly understood. Riemann many
years ago pointed out that the metrical groundform might, with
equal right essentially, be a homogeneous function of the fourth
order in the differentials, or even a function built up in some other
way, and that it need not even depend rationally on the differen-
tials. But we dare not stop even at this point. The underlying
general feature that determines the metrical structure at a point P
is the group of rotations. The metrical constitution of the man-
ifold at the point P is known if, among the linear transformations
of the vector body (i.e. the totality of vectors), those are known
that are congruent transformations of themselves. There are just
as many different kinds of measure-determinations as there are
essentially different groups of linear transformations (whereby es-
sentially different groups are such as are distinguished not merely
by the choice of co-ordinate system). In the case of Pythagorean
metrical space, which we have alone investigated hitherto, the
group of rotations consists of all linear transformations that con-
vert the quadratic groundform into itself. But the group of rota-
tions need not have an invariant at all in itself (that is, a function
which is dependent on a single arbitrary vector and which remains
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unaltered after any rotations).

Let us reflect upon the natural requirements that may be im-
posed on the conception of rotation. At a single point, as long
as the manifold has not yet a measure-determination, only the
n-dimensional parallelepipeds can be compared with one another
in respect to size. If a; (1 = 1,2,...,n) are arbitrary vectors that
are defined in terms of the initial unit vectors e; according to the
equations

a; = afek

then the determinant of the af’s which, following Grassmann, we
may conveniently denote by

[al, ag, ... ,an]

[el, €9, ... ,en]

is, according to definition, the volume of the parallelopiped
mapped out by the n vectors a;. If we choose another system of
unit vectors €; all the volumes become multiplied by a common
constant factor, as we see from the “multiplication theorem of
determinants,” namely

[alaaQJ"‘7an] _ [a17a27"'7an] [élaéQJ"'7én]
[81,62,...,en] [él,ég,...,én] [el,eg,...,en]

The volumes are thus determined uniquely and independently of
the co-ordinate system once the unit measure has been chosen.
Since a rotation is “not to alter” the vector body, it must obuvi-
ously be a transformation that leaves the infinitesimal elements of
volume unaffected. Let the rotation that transforms the vector
x = (&%) into X = (') be represented by the equations

k

& =afe, or & =ai"
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The determinant of the rotation matrix (af) then becomes equal
to 1. This being the postulate that applies to a single rotation,
we must demand of the rotations as a whole that they form a
group in the sense of the definition given on page 13. Moreover,
this group has to be a continuous one, that is the rotations are
to be elements of a one-dimensional continuous manifold.

If a linear vector transformation be given by its matrix A =
(a}) in passing from one co-ordinate system (e;) to another (&;)
according to the equations

U:e; =uley, (67)

then A becomes changed into UAU™!' (where U™! denotes the
inverse of U; UU~! and U~'U are equal to identity F). Hence
every group that is derived from a given matrix group G by ap-
plying the operation UGU ™! on every matrix G of G (U being the
same for all G’s) may be transformed into the given matrix group
by an appropriate change of co-ordinate system. Such a group
UGU™! will be said to be of the same kind as G (or to differ
from G only in orientation). If G is the group of rotation matri-
ces at P and if UGU ! is identical with G (this does not mean
that G must again pass into G as a result of the operation UGU !,
but all that is required is that G and UGU ! belong to G simul-
taneously) then the expressions for the metrical structures of two
co-ordinate systems (67), that are transformed into one another
by U, are similar; U is a representation of the vector body on
itself, such that it leaves all the metrical relations unaltered. This
is the conception of similar representation. G is included in
the group G* of similar representations as a sub-group.

From the metrical structure at a single point we now pass on
to “metrical relationship”. The metrical relationship between
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the point F, and its immediate neighbourhood is given if a linear
representation at Py = x¥ of the vector body on itself at an in-
finitely near point P = (2 + dz;) is a congruent transference.
Together with A every representation (or transformation) AGy, in
which A is followed by a rotation Gy at Fy, is likewise a congru-
ent transference; thus, from one congruent transference A of the
vector body from F, to P, we get all possible ones by making Gg
traverse the group of rotations belonging to F,. If we consider the
vector body belonging to the centre F, for two positions congruent
to one another, they will resolve into two congruent positions at P
if subjected to the same congruent transference A; for this reason,
the group of rotations G at P is equal to AGyA~!. The metrical
relationship thus tells us that the group of rotations at P differs
from that at P, only in orientation. If we pass continuously from
the point P, to any point of the manifold, we see that the groups
of rotation are of a similar kind at all points of the manifold; thus
there is homogeneity in this respect.

The only congruent transferences that we take into consid-
eration are those in which the vector components &' undergo
changes d¢' that are infinitesimal and of the same order as the
displacement of the centre P,

det = d\ - €F.
If L and M are two such transferences from F, to P, with co-

efficients d\. and dui respectively, then the rotation ML™! is
likewise infinitesimal: it is represented by the formula

d¢' = daj - €8 where dal = dul — d\.. (68)

The following will also be true. If an infinitesimal congruent
transference consisting in the displacement (dz;) of the centre Py



THE METRICAL CONTINUUM 209

is succeeded by one in which the centre is displaced by (dz;),
we get a congruent transference that is effected by the resultant
displacement dz; + dx; of the centre (plus an error which is in-
finitesimal compared with the magnitude of the displacements).
Hence, if for the transition from Py = (29,29, ..., 2%) to the point
(2% + €, 29,...,2°%), this being an infinitesimal change ¢ in the
direction of the first co-ordinate axis,

de = - Ng*

is a congruent transference, and if AL,, ..., AL have a correspond-
ing meaning for the displacements of Fj in the direction of the 2nd
up to the nth co-ordinate in turn; then the equation

d¢' = N. dw, - £F (69)

gives a congruent transference for an arbitrary displacement hav-
ing components dx;.

Among the various kinds of metrical spaces we shall now des-
ignate by simple intrinsic relations the category to which, accord-
ing to Pythagoras’ and Riemann’s ideas, real space belongs. The
group of rotations that does not vary with position exhibits a
property that belongs to space as a form of phenomena; it char-
acterises the metrical nature of space. The metrical relationship,*
from point to point, however, is not determined by the nature of
space, nor by the mutual orientation of the groups of rotation at
the various points of the manifold. The metrical relationship is
dependent rather on the disposition of the material content, and
is thus in itself free and capable of any “virtual” changes. We shall
formulate the fact that it is subject to no limitation as our first
axiom.

*Although, as will be shown later, it is everywhere of the same kind.
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I. The Nature of Space Imposes no Restriction on the
Metrical Relationship

It is possible to find a metrical relationship in space between
the point F, and the points in its neighbourhood such that the
formula (69) represents a system of congruent transferences to
these neighbouring points for arbitrarily given numbers A .

Corresponding to every co-ordinate system z; at P there is a
possible conception of parallel displacement, namely, the displace-
ment of the vectors from Fy to the infinitely near points without
the components undergoing a change in this co-ordinate system.
Such a system of parallel displacements of the vector body from Py
to all the infinitely near points is expressed, as we know, in terms
of a definite co-ordinate system, selected once and for all by the
formula

in which the differential forms dv}, = I} dz, satisfy the condition
of symmetry

And, indeed, a possible conception of parallel displacement corre-
sponds to every system of symmetrical co-efficients I'. For a given
metrical relationship the further restriction that the “parallel dis-
placements” shall simultaneously be congruent transferences must
be imposed. The second postulate is the one enunciated above as
the fundamental theorem of infinitesimal geometry; for a given
metrical relationship there is always a single system of parallel
displacements among the transferences of the vector body. We
treated affine relationship in § 15 only provisionally as a rudimen-
tary characteristic of space; the truth is, however, that parallel
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displacements, in virtue of their inherent properties, must be ex-
cluded from congruent transferences, and that the conception of
parallel displacement is determined by the metrical relationship.
This postulate may be enunciated thus:—

II. The Affine Relationship is Uniquely Determined by
the Metrical Relationship

Before we can formulate it analytically we must deal with in-
finitesimal rotations. A continuous group G of r members is a
continuous r-dimensional manifold of matrices. If s, s9, ..., s, are
co-ordinates in this manifold, then, corresponding to every value
system of the co-ordinates there is a matrix A(sy, sa,...,s,) of the
group which depends on the value-system continuously. There is
a definite value-system—we may assume for it that s; = 0—to
which identity, E, corresponds. The matrices of the group that
are infinitely near E differ from E by

Aidsy +Asxdsy + ...+ A ds,,

0A
0s;
eration of the group if the group contains a transformation (in-
dependent of €) that coincides with E and €A to within an error
that converges more rapidly towards zero than €, for decreasing
small values of €. The infinitesimal operations of the group form
the linear family

in which A; = ( ) . We call a matrix A an infinitesimal op-
0

g: MAT+HMA+ -+ A A (X being arbitrary numbers) (71)

g is exactly r-dimensional and the A’s are linearly independent
of one another. For if A is an arbitrary matrix of the group, the
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group property expresses the transformations of the group which
are infinitely near A in the formula A(E + €A), in which € is an
infinitesimal factor and A traverses the group g. If g were of less
dimensions than r, the same would hold at each point of the man-
ifold; for all values of s; there would be linear relations between

0A
the derivatives —, and A would in reality depend on less than r

0s;

parameters. The infinitesimal operations generate and determine
the whole group. If we carry out the infinitesimal transformation

E + —A (n being an infinitely great number) n-times successively,
n

we get a matrix (of the group) that is finite and different from £,
namely,

1 \" A A2 A3
A—nll_glolo (E—FEA) —E—l-ﬁ—i-g—f‘g—l-...,
and thus we get every matrix of the group (or at least every one
that may be reached continuously in the group, by starting from
identity) if we make A traverse the whole family g. Not every
arbitrarily given linear family(71) gives a group in this way, but
only those in which the A’s satisfy a certain condition of inte-
grability. The latter is obtained by a method quite analogous to
that by which, for example, the condition of integrability is ob-
tained for parallel displacement in Euclidean space. If we pass
from Identity, E(s; = 0), by an infinitesimal change ds; of the
parameters, to the neighbouring matrix A; = E' 4+ dA, and thence
by a second infinitesimal change ds;, from As to AsA, and then
reverse these two operations whilst preserving the same order, we
get AT AT AsAg, a matrix (of the group) differing by an infinitely
small amount from E. Let d be the change in the direction of the
first co-ordinate, and 0 that in the direction of the second, then
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we are dealing with the matrix
Ast . At_lAs_lAtAs

formed from

As = A(s,0,0,...,0) and A, = A(0,¢,0,. ..

Now, A, = Ay = F, hence

. Ast - E <82Ast)
lim — = .

s—0t—0 §-t 0s Ot

t—0

213

Since A belongs to the group, this limit is an infinitesimal oper-

ation of the group. We find, however, that

A
aa;t — Mgt ATVAGA, for £ =0;
leading to
O?A,

Accordingly A;A; — AsAq, or, more generally, A;Ar — AxA; must
be an infinitesimal operation of the group: or, what amounts
to the same thing, if A and B are two infinitesimal operations
of the group, then AB — BA must also always be one. Sophus
Lie, to whom we are indebted for the fundamental conceptions
and facts of the theory of continuous transformation groups
(vide note 12), has shown that this condition of integrability
is not only necessary but also sufficient. Hence we may define
an r-dimensional linear family of matrices as an infinitesimal
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group having r members if, whenever any two matrices A and B
belong to the family, AB — BA also belongs to the family. By
introducing the infinitesimal operations of the group, the problem
of continuous transformation groups becomes a linear question.

If all the transformations of the group leave the elements of
volume unaltered, the “traces” of the infinitesimal operations =
0. For the development of the determinant of F + €A in powers
of € begins with the members 1 + € - trace(A). U is a similar
transformation, if, for every G of the group of rotations, UGU ~*
or, what comes to the same thing, UGU'G~!, belongs to the
group of rotations G. Accordingly, A{ is an infinitesimal operation
of the group of similar transformations if, and only if, AjA — AA]
also belongs to g, no matter which of the matrices A of the group
of infinitesimal rotations is used.

The infinitesimal Euclidean rotations

det = viek,

that is, the infinitesimal linear transformations that leave the unit
quadratic form

Qo= ("2 + (€2 +-+ (&)

invariant, were determined on page 69. The condition which char-
acterises them, namely,

%d@g =¢'d¢' =0, implies that of = —vi.

Thus it is seen that we are dealing with the infinitesimal group
n(n—1
of all skew-symmetrical matrices; it obviously has Q mem-

bers. It may be left to the reader to verify by direct calculation
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that it possesses the group property. If () is any quadratic form
that remains invariant during the infinitesimal Euclidean rota-
tions, i.e. d@) = 0, then () necessarily coincides with g except for
a constant factor. Indeed, if

Q= aikfifk (ari = a)
then for all skew-symmetrical number systems v}, the equation
a0 4 apvp =0 (72)

must hold. If we assume k = i and notice that the numbers
v}, v?, ..., v" may be chosen arbitrarily for each particular i, ex-
cepting the case v! = 0, we get a,; = 0 for r # 4. If we write ay
for a;, equation (72) becomes

v (a; —ap) =0

from which we immediately deduce that all a;’s are equal. The
corresponding group 0* of similar transformations is derived from o
by “associating” the single matrix E; this here signifies d¢® = e'.
For if the matrix C' = (cF) belongs to §*, that is, if for every skew-
symmetrical vF, civl — vic) is also a skew-symmetrical number
system, then the quantities ¢i + cf = a; satisfy equation (72);
whence it follows that a;, = 2a - 6F; that is, C is equal to aE plus
a skew-symmetrical matrix.

More generally, let dp denote the infinitesimal group of lin-
ear transformations that transform an arbitrary non-degenerate
quadratic form () into itself. dg and ¢ are distinguished only by
their orientation, if @)’ is generated from @) by a linear transfor-
mation. Hence there are only a finite number of different kinds of
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infinitesimal groups d¢ that differ from one another in the iner-
tial index attached to the form ). But even these differences are
eliminated if, instead of confining ourselves to the realm of real
quantities, we use that of complex members; in that case, every dg
is of the same type as 9.

These preliminary remarks enable us to formulate analytically
the two postulates I and II. Let g be the group of infinitesimal
rotations at P. We take AL to denote every system of n® num-
bers, Al to denote every system that is composed of matrices
(AL, (AL,), ..., (AL ) belonging to g and I to denote an ar-
bitrary system of numbers that satisfies the condition of sym-
metry (70). If the group of infinitesimal rotations has N mem-

bers, these member systems form linear manifolds of n3, nN and
n(n+1

n- w dimensions respectively. Since, according to I, if
the metrical relationship runs through all possible values, any
arbitrary number systems AL, A%, ... A% may occur as the co-
efficients of n infinitesimal congruent transferences in the n co-
ordinate directions (cf. (69)), then, by II (cf. (68)) each A must
be capable of resolution in one and only one way according to the
formula . ' .

;cr = i:r - 27“'
This entails two results ) )

n(n n(n —

1. n3:nN+n-% or N=¥;

2. Al —T¢ is never equal to zero, unless all the A’s and s
vanish; or, a non-vanishing system A can never fulfil the condition
of symmetry, Al = A’ . To enable us to formulate this con-
dition invariantly let us define a symmetrical double matrix (an

infinitesimal double rotation) belonging to g as a law expressed
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by
C=A (A=A,

which produces from two arbitrary vectors, £ and 7, a vector ( as a
bilinear symmetrical form, provided that for every fixed vector n,
the transition £ — ¢ (and hence also for every fixed vector £ the
transition 7 — () is an operation of g. We may then summarise
our results thus:—

The group of infinitesimal rotations has the following proper-
ties according to our axrioms:

(a) The trace of every matriz = 0;

(b) No symmetrical double matriz belongs to g except zero;

(¢) The dimensional number of g is the highest that is still in
agreement with postulate (b), namely, N = M

These properties retain their meaning for complex quantities
as well as for real ones. We shall just verify that they are true
of the infinitesimal Euclidean group of rotations J, that is, that
n® numbers v}, cannot simultaneously satisfy the conditions of
symmetry

Ul = Ul Vi =~V
without all of them vanishing. This is evident from the calcula-
tion which was undertaken on page 184 to determine the affine
relationship. For if we write down the three equations that we get
from v}, +v¥ = 0 by interchanging the indices i, k, [ cyclically, and
then subtract the second from the sum of the first and the third,
we get, as a result of the first condition of symmetry, v, = 0.

It seems highly probable to the author that ¢ is the only in-
finitesimal group that satisfies the postulates (a), (), and (¢);
or, more exactly, in the case of complex quantities every such in-
finitesimal group may be made to coincide with ¢ by choosing the
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appropriate co-ordinate system. If this is true, then the group of
infinitesimal rotations must be identical with a certain group dq,
in which @) is a non-degenerate quadratic form. @) itself is deter-
mined by g except for a constant of proportionality. It is real if
g is real. For if we split @) (in which the variables are taken as
real) into a real and an imaginary part Q1 + iQ2, then g leaves
both these forms (); and () invariant. Hence we must have

Q1 =cQ  Qr=cQ.

One of these two constants is certainly different from zero, since
c1+1ico = 1, and hence () must be a real form excepting for a con-
stant factor. This would link up with the line of argument followed
in the preceding paragraph and would complete the Analysis of
Space; we should then be able to claim to have made intelligible
the nature of space and the source of the validity of Pythagoras’
Theorem, by having explored the ultimate grounds accessible to
mathematical reasoning (vide note 13). If the supposed mathe-
matical proposition is not true, definite characteristics and essen-
tials of space will yet have escaped us. The author has proved that
the proposition holds actually for the lowest dimensional numbers
n = 2 and n = 3. It would lead too far to present these purely
mathematical considerations here.

In conclusion, it will be advisable to call attention to two
points. Firstly, axiom I is in no wise contradicted by the re-
sult of axiom II which states that not only the metrical structure,
but also the metrical relationship is of the same kind at every
point, namely, of the simplest type imaginable. For every point
there is a geodetic co-ordinate system such that the shifting of
all vectors at that point, which leaves its components unaltered,
to a neighbouring point is always a congruent transference. Sec-
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ondly, the possibility of grasping the unique significance of the
metrical structure of Pythagorean space in the way here outlined
depends solely on the circumstance that the quantitative metrical
conditions admit of considerable virtual changes. This possibility
stands or falls with the dynamical view of Riemann. It is this
view, the truth of which can scarcely be doubted after the success
that has attended Einstein’s Theory of Gravitation (Chapter IV),
that opens up the road leading to the discovery of the “Rationality
of Space”.

The investigations about space that have been conducted in
Chapter II seemed to the author to offer a good example of the
kind of analysis of the modes of existence ( Wesensanalyse) which
is the object of Husserl’s phenomenological philosophy, an exam-
ple that is typical of cases in which we are concerned with non-
immanent modes. The historical development of the problem of
space teaches how difficult it is for us human beings entangled
in external reality to reach a definite conclusion. A prolonged
phase of mathematical development, the great expansion of geom-
etry dating from Euclid to Riemann, the discovery of the physical
facts of nature and their underlying laws from the time of Galilei,
together with the incessant impulses imparted by new empiri-
cal data, finally the genius of individual great minds—Newton,
Gauss, Riemann, Einstein—all these factors were necessary to set
us free from the external, accidental, non-essential characteris-
tics which would otherwise have held us captive. Certainly, once
the true point of view has been adopted reason becomes flooded
with light, and it recognises and appreciates what is of itself in-
telligible to it. Nevertheless, although reason was, so to speak,
always conscious of this point of view in the whole development
of the problem, it had not the power to penetrate into it with one



CHAPTER II 220

flash. This reproach must be directed at the impatience of those
philosophers who believe it possible to describe adequately the
mode of existence on the basis of a single act of typical presen-
tation (ezemplarischer Vergegenwdrtigung): in principle they are
right: yet from the point of view of human nature, how utterly
they are wrong! The problem of space is at the same time a very
instructive example of that question of phenomenology that seems
to the author to be of greatest consequence, namely, in how far
the delimitation of the essentialities perceptible in consciousness
expresses the structure peculiar to the realm of presented objects,
and in how far mere convention participates in this delimitation.



CHAPTER III

RELATIVITY OF SPACE AND TIME
§ 19. Galilei’s Principle of Relativity

WE have already discussed in the introduction how it is pos-
sible to measure time by means of a clock and how, after an ar-
bitrary initial point of time and a time-unit has been chosen, it is
possible to characterise every point of time by a number t. But
the union of space and time gives rise to difficult further prob-
lems that are treated in the theory of relativity. The solution of
these problems, which is one of the greatest feats in the history
of the human intellect, is associated above all with the names of
Copernicus and Einstein (vide note 1).

By means of a clock we fix directly the time-conditions of only
such events as occur just at the locality at which the clock hap-
pens to be situated. Inasmuch as I, as an unenlightened being,
fix, without hesitation, the things that I see into the moment of
their perception, I extend my time over the whole world. I believe
that there is an objective meaning in saying of an event which is
happening somewhere that it is happening “now” (at the moment
at which I pronounce the word!); and that there is an objective
meaning in asking which of two events that have happened at
different places has occurred earlier or later than the other. We
shall for the present accept the point of view implied
in these assumptions. Every space-time event that is strictly
localised, such as the flash of a spark that is instantaneously ex-
tinguished, occurs at a definite space-time-point or world-point,
“here-now”. As a result of the point of view enunciated above, to
every world-point there corresponds a definite time-co-ordinate ¢.

221
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We are next concerned with fixing the position of such a point-
event in space. For example, we ascribe to two point-masses a dis-
tance separating them at a definite moment. We assume that the
world-points corresponding to a definite moment ¢ form a three-
dimensional point-manifold for which Euclidean geometry holds.
(In the present chapter we adopt the view of space set forth in
Chapter 1.) We choose a definite unit of length and a rectangu-
lar co-ordinate system at the moment ¢ (such as the corner of a
room). Every world-point whose time-co-ordinate is ¢ then has
three definite space-co-ordinates x1, xa, x3.

Let us now fix our attention on another moment ¢'. We assume
that there is a definite objective meaning in stating that measure-
ments are carried out at the moment ¢’ with the same unit length
as that used at the moment ¢ (by means of a “rigid” measuring
staff that exists both at the time ¢ and at the time ¢'). In ad-
dition to the unit of time we shall adopt a unit of length fixed
once and for all (centimetre, second). We are then still free to
choose the position of the Cartesian co-ordinate system indepen-
dently of the choice of time ¢. Only when we believe that there
is objective meaning in stating that two point-events happening
at arbitrary moments take place at the same point of space, and
in saying that a body is at rest, are we able to fix the position
of the co-ordinate system for all times on the basis of the posi-
tion chosen arbitrarily at a certain moment, without having to
specify additional “individual objects”; that is, we accept the pos-
tulate that the co-ordinate system remains permanently at rest.
After choosing an initial point in the time-scale and a definite co-
ordinate system at this initial moment we then get four definite
co-ordinates for every world-point. To be able to represent con-
ditions graphically we suppress one space-co-ordinate, assuming
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space to be only two-dimensional, a Euclidean plane.

We construct a graphical picture by representing in a space
carrying the rectangular set of axes (z1,x2,t) the world-point by
a “picture”™point with co-ordinates (z1,zs,t). We can then trace
out graphically the “time-table” of all moving point-masses; the
motion of each is represented by a “world-line,” whose direction
has always a positive component in the direction of the t-axis.
The world-lines of point-masses that are at rest are parallels to
the t-axis. The world-line of a point-mass which is in uniform
translation is a straight line. On a section ¢ = constant we may
read off the position of all the point-masses at the same time ¢. If
we choose an initial point in the time-scale and also some other
Cartesian co-ordinate system, and if (z1, z9,t), (2, 25,t") are the
co-ordinates of an arbitrary world-point in the first and second
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co-ordinate system respectively, the transformation formulee

/ /
T = 0112 + 12T + oy
. / / I
XTo = Q2124 + (€ DYES)) + Qo ( )
t= t'+a

hold; in them, the «o;’s and the a denote constants, the a;;’s, in
particular, are the co-efficients of an orthogonal transformation.
The world-co-ordinates are thus fixed except for an arbitrary
transformation of this kind in an objective manner without
individual objects or events being specified. In this we have not
yet taken into consideration the arbitrary choice of both units of
measure. If the initial point remains unchanged both in space
and in time, so that a; = ay = a = 0, then (2, z),t’) are the co-
ordinates with respect to a rectilinear system of axes whose t’ axis
coincides with the t-axis, whereas the axes '), /, are derived from
x1, T2 by a rotation in their plane ¢t = 0.

A moment’s reflection suffices to show that one of the assump-
tions adopted is not true, namely, the one which states that the
conception of rest has an objective content.* When I arrange to
meet some one at the same place to-morrow as that at which we
met to-day, this means in the same material surroundings, at the
same building in the same street (which, according to Coperni-
cus, may be in a totally different part of stellar space to-morrow).
All this acquires meaning as a result of the fortunate circum-
stance that at birth we are introduced into an essentially stable
world, in which changes occur in conjunction with a comparatively
much more comprehensive set of permanent factors that preserve

*Even Aristotle was clear on this point, for he denotes “place” (ténoc) as
the relation of a body to the bodies in its neighbourhood.
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their constitution (which is partly perceived directly and partly
deduced) unchanged or almost unchanged. The houses stand still;
ships travel at so and so many knots: these things are always un-
derstood in ordinary life as referring to the firm ground on which
we stand. Only the motions of bodies (point-masses) rel-
ative to one another have an objective meaning, that is,
the distances and angles that are determined from simultaneous
positions of the point-masses and their functional relation to the
time-co-ordinate. The connection between the co-ordinates of the
same world-point expressed in two different systems of this kind
is given by formulae

T = &11(t/>$/1 + ()512(t/)l’/2 + Oél(t/)
To = agl(t,)l'll “+ 99 (t,)l'IQ + ag(t/) (II)
t=t+a

in which the «;’s and «;;,’s may be any continuous functions of ¢/,
and the a;;’s are the co-efficients of an orthogonal transformation
for all values of ¢'. If we map out the surfaces ¢ = const., as also
x) = const. and zf, = const. by our graphical method, then the
surfaces of the first family are again planes that coincide with the
planes ¢t = const.; on the other hand, the other two families of
surfaces are curved surfaces. The transformation formulae are no
longer linear.

Under these circumstances we achieve an important aim, when
investigating the motion of systems of point-masses, such as plan-
ets, by choosing the co-ordinate system so that the functions
x1(t), z2(t) that express how the space-co-ordinates of the point-
masses depend on the time become as simple as possible or at
least satisfy laws of the greatest possible simplicity. This is the
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substance of the discovery of Copernicus that was afterwards elab-
orated to such an extraordinary degree by Kepler, namely, that
there is in fact a co-ordinate system for which the laws of planetary
motion assume a much simpler and more expressive form than if
they are referred to a motionless earth. The work of Copernicus
produced a revolution in the philosophic ideas about the world
inasmuch as he shattered the belief in the absolute impor-
tance of the earth. His reflections as well as those of Kepler are
purely kinematical in character. Newton crowned their work by
discovering the true ground of the kinematical laws of Kepler to lie
in the fundamental dynamical law of mechanics and in the law
of attraction. Every one knows how brilliantly the mechanics of
Newton has been confirmed both for celestial as well as for earthly
phenomena. As we are convinced that it is valid universally and
not only for planetary systems, and as its laws are by no means
invariant with respect to the transformations (II), it enables us to
fix the co-ordinate system in a manner independent of all individ-
ual specification and much more definitely than is possible on the
kinematical view to which the principle of relativity (II) leads.
Galilei’s Principle of Inertia (Newton’s First Law of Mo-
tion) forms the foundation of mechanics. It states that a point-
mass which is subject to no forces from without executes a uniform
translation. Its world-line is consequently a straight line, and the
space-co-ordinates 1, x9 of the point-mass are linear functions of
the time t. If this principle holds for the two co-ordinate systems
connected by (II), then x; and x must become linear functions
of ¢, when linear functions of ¢ are substituted for z} and xi,.
It straightway follows from this that the «;;’s must be constants,
and that oy and ay must be linear functions of ¢; that is, the one
Cartesian co-ordinate system (in space) must be moving uniformly
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in a straight line relatively to the other co-ordinate system. Con-
versely, it is easily shown that if C;, Cy are two such co-ordinate
systems, then if the principle of inertia and Newtonian mechanics
holds for C it will also hold for C’. Thus, in mechanics, any two
“allowable” co-ordinate systems are connected by formulee

T = 0411.77/1 + 04121'/2 -+ ")/1t/ +
Ty = Q&) + ool + Yot + Qo (III)
t = ' +a

in which the «;;’s are constant co-efficients of an orthogonal trans-
formation, and a, «; and ~; are arbitrary constants. Every trans-
formation of this kind represents a transition from one allowable
co-ordinate system to another. (This is the Principle of Rel-
ativity of Galilei and Newton.) The essential feature of this
transition is that, if we disregard the naturally arbitrary direc-
tions of the axis in space and the arbitrary initial point, there is
invariance with respect to the transformations

r = 1)+t Ty = Ty + Yot t=1t. (1)

In our graphical representation (vide Fig. 7) x|, x4, ¢’ would be the
co-ordinates taken with respect to a rectilinear set of axes in which
the z!-, z4-axes coincide with the x;-, xo-axes, whereas the new
t’-axis has some new direction. The following considerations show
that the laws of Newtonian mechanics are not altered in passing
from one co-ordinate system C to another C’. According to the
law of attraction the gravitational force with which one point-mass
acts on another at a certain moment is a vector, in space, which is
independent of the co-ordinate system (as is also the vector that
connects the simultaneous positions of both point-masses with one
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another). Every force, no matter what its physical origin, must be
the same kind of magnitude; this is entailed in the assumptions of
Newtonian mechanics, which demands a physics that satisfies this
assumption in order to be able to give a content to its conception of
force. We may prove, for example, in the theory of elasticity that
the stresses (as a consequence of their relationship to deformation
quantities) are of the required kind.

Mass is a scalar that is independent of the co-ordinate sys-
tem. Finally, on account of the transformation formulse that result
from (1) for the motion of a point-mass,

dr, dz} dry  dal d*r, A7) Pz, P

TR T T am ae T ae

o a T e T W

not the velocity, but the acceleration is a vector (in space) inde-
pendent of the co-ordinate system. Accordingly, the fundamental
law: mass times acceleration = force, has the required invari-
ant property.

According to Newtonian mechanics the centre of inertia of ev-
ery isolated mass-system not subject to external forces moves in
a straight line. If we regard the sun and his planets as such a sys-
tem, there is no meaning in asking whether the centre of inertia of
the solar system is at rest or is moving with uniform translation.
The fact that astronomers, nevertheless, assert that the sun is
moving towards a point in the constellation of Hercules, is based
on the statistical observation that the stars in that region seem
on the average to diverge from a certain centre—just as a cluster
of trees appears to diverge as we approach them. If it is certain
that the stars are on the average at rest, that is, that the centre
of inertia of the stellar firmament is at rest, the statement about
the sun’s motion follows. It is thus merely an assertion about the
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relative motion of the centre of inertia and of that of the stellar
firmament.

To grasp the true meaning of the principle of relativity, one
must get accustomed to thinking not in “space,” nor in “time,” but
“in the world,” that is in space-time. Only the coincidence (or
the immediate succession) of two events in space-time has a mean-
ing that is directly evident, it is just the fact that in these cases
space and time cannot be dissociated from one another absolutely
that is asserted by the principle of relativity. Following the mech-
anistic view, according to which all physical happening can be
traced back to mechanics, we shall assume that not only mechan-
ics but the whole of the physical uniformity of Nature is subject to
the principle of relativity laid down by Galilei and Newton, which
states that it is impossible to single out from the systems of refer-
ence that are equivalent for mechanics and of which each two are
correlated by the formula of transformation (I111) special systems
without specifying individual objects. These formulae condition
the geometry of the four-dimensional world in exactly the
same way as the group of transformation substitutions connecting
two Cartesian co-ordinate systems condition the Euclidean geom-
etry of three-dimensional space. A relation between world-points
has an objective meaning if, and only if, it is defined by such
arithmetical relations between the co-ordinates of the points as
are invariant with respect to the transformations (III). Space is
said to be homogeneous at all points and homogeneous in all di-
rections at every point. These assertions are, however, only parts
of the complete statement of homogeneity that all Cartesian
co-ordinate systems are equivalent. In the same way the princi-
ple of relativity determines exactly the sense in which the world
(= space-time as the “form” of phenomena, not its “accidental”
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non-homogeneous material content) is homogeneous.

It is indeed remarkable that two mechanical events that are
fully alike kinematically, may be different dynamically, as a com-
parison of the dynamical principle of relativity (III) with the much
more general kinematical principle of relativity (II) teaches us. A
rotating spherical mass of fluid existing all alone, or a rotating fly-
wheel, cannot in itself be distinguished from a spherical fluid mass
or a fly-wheel at rest; in spite of this the “rotating” sphere becomes
flattened, whereas the one at rest does not change its shape, and
stresses are called up in the rotating fly-wheel that cause it to
burst asunder, if the rate of rotation be sufficiently great, whereas
no such effect occurs in the case of a fly-wheel which is at rest.
The cause of this varying behaviour can be found only in the “met-
rical structure of the world,” that reveals itself in the centrifugal
forces as an active agent. This sheds light on the idea quoted from
Riemann above; if there corresponds to metrical structure (in this
case that of the world and not the fundamental metrical tensor
of space) something just as real, which acts on matter by means
of forces, as the something which corresponds to Maxwell’s stress
tensor, then we must assume that, conversely, matter also reacts
on this real something. We shall revert to this idea again later in
Chapter IV.

For the present we shall call attention only to the linear char-
acter of the transformation formulee (III); this signifies that the
world is a four-dimensional affine space. To give a system-
atic account of its geometry we accordingly use world-vectors
or displacements in addition to world-points. A displacement of
the world is a transformation that assigns to every world-point P
a world-point P’, and is characterised by being expressible in an
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allowable co-ordinate system by means of equations of the form
T =1 + (1=0,1,2,3)

in which the z;’s denote the four space-time-co-ordinates of P
(t being represented by ), and the z}’s are those of P’ in this co-
ordinate system, whereas the «;’s are constants. This conception
is independent of the allowable co-ordinate system selected. The
displacement that transforms P into P’ (or transfers P to P’)

is denoted by ﬁ . The world-points and displacements satisfy
all the axioms of the affine geometry whose dimensional number
is n = 4. Galilei’s Principle of Inertia (Newton’s First Law of
Motion) is an affine law; it states what motions realise the straight
lines of our four-dimensional affine space (“world”), namely, those
executed by point-masses moving under no forces.

From the affine point of view we pass on to the metrical
one. From the graphical picture, which gave us an affine view
of the world (one co-ordinate being suppressed), we can read off
its essential metrical structure; this is quite different from that of
Euclidean space. The world is “stratified”; the planes, ¢ = const.,
in it have an absolute meaning. After a unit of time has been cho-
sen, each two world-points A and B have a definite time-difference,
the time-component of the vector E = X; as is generally the case
with vector-components in an affine co-ordinate system, the time-
component is a linear form #(x) of the arbitrary vector x. The
vector x points into the past or the future according as t(x) is
negative or positive. Of two world-points A and B, A is earlier
than, simultaneous with, or later than B, according as

HAB) >0, =0, or <0,
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Euclidean geometry, however, holds in each “stratum”; it is based
on a definite quadratic form, which is in this case defined only
for those world-vectors x that lie in one and the same stratum,
that is, that satisfy the equation ¢(x) = 0 (for there is sense only
in speaking of the distance between simultaneous positions of
two point-masses). Whereas, then, the metrical structure of
Euclidean geometry is based on a definitely positive quadratic
form, that of Galilean geometry is based on

1. A linear form t(x) of the arbitrary vector x (the “duration”
of the displacement x).

2. A definitely positive quadratic form (x,x) (the square of
the “length” of x), which is defined only for the three-dimensional
linear manifold of all the wvectors x that satisfy the equation
t(x) = 0.

We cannot do without a definite space of reference, if we wish
to form a picture of physical conditions. Such a space depends
on the choice of an arbitrary displacement e in the world (within
which the time-axis falls in the picture), and is then defined by
the convention that all world-points that lie on a straight line of
direction e, meet at the same point of space. In geometrical
language, we are merely dealing with the process of parallel pro-
jection. To arrive at an appropriate formulation we shall begin
with some geometrical considerations that relate to an arbitrary
n-dimensional affine space. To enable us to form a picture of the
processes we shall confine ourselves to the case n = 3. Let us take
a family of straight lines in space all drawn parallel to the vector e
(£ 0). If we look into space along these rays, all the space-points
that lie behind one another in the direction of such a straight line
would coincide; it is in no wise necessary to specify a plane on to
which the points are projected. Hence our definition assumes the
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following form.
Let e, a vector differing from 0, be given. If A and A’ are

two points such that AA" is a multiple of e, we shall say that
they pass into one and the same point A of the minor space
defined by e. We may represent A by the straight line parallel
to e, on which all these coincident points A, A’, ... in the minor
space lie. Since every displacement x of the space transforms a
straight line parallel to e again into one parallel to e, x brings
about a definite displacement x of the minor space; but each two
displacements x and x’ become coincident in the minor space, if
their difference is a multiple of e. We shall denote the transition to
the minor space, “the projection in the direction of e,” by printing
the symbols for points and displacements in heavy oblique type.
Projection converts

AX, X +y, and 1@ into \x, x + v, /@

that is, the projection has a true affine character; this means that
in the minor space affine geometry holds, of which the dimensions
are less by one than those of the original “complete” space.

If the space is metrical in the Euclidean sense, that is, if it
is based on a non-degenerate quadratic form which is its metrical
groundform, Q(x) = (x, x),—to simplify the picture of the process
we shall keep the case for which () is definitely positive in view, but
the line of proof is applicable generally,—then we shall obviously
ascribe to the two points of the minor space, which two straight
lines parallel to e appear to be, when we look into the space in
the direction of e, a distance equal to the perpendicular distance
between the two straight lines. Let us formulate this analytically.
The assumption is that (e,e) = e # 0. Every displacement x may
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be split up uniquely into two summands
x = e+ x", (2)

of which the first is proportional to e and the second is perpen-
dicular to it, viz.:—

() =0 £=-(xe) (3)

We shall call £ the height of the displacement x (it is the differ-
ence of height between A and B, if x = B ). We have

(x,%) = €€ + (x",x"). (4)

x is characterised fully, if its height £ and the displacement x of
the minor space produced by x are given; we write

x=¢ | x.

The “complete” space is “split up” into height and minor space,
the “position-difference” x of two points in the complete space
is split up into the difference of height &, and the difference of
position x in the minor space. There is a meaning not only in
saying that two points in space coincide, but also in saying that
two points in the minor space coincide or have the same height,
respectively. Every displacement x of the minor space is produced
by one and only one displacement x* of the complete space,
this displacement being orthogonal to e. The relation between x*
and x is singly reversible and affine. The defining equation

(x,x) = (x*,x")
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endows the minor space with a metrical structure that is based
on the quadratic groundform (x,x). This converts (4) into the
fundamental equation of Pythagoras

(x,%) = e&” + (x,x) (5)
which, for two displacements, may be generalised in the form

(x,y) = eén+ (x,y). (5)

Its symbolic form is clear.

These considerations, in so far as they concern affine space,
may be applied directly. The complete space is the four-
dimensional world: e is any vector pointing in the direction
of the future: the minor space is what we generally call space.
Each two world-points that lie on a world-line parallel to e project
into the same space-point. This space-point may be represented
graphically by the straight line parallel to e and may be indicated
permanently by a point-mass at rest, that is, one whose world-
line is just that straight line. The metrical structure, however, is,
according to the Galilean principle of relativity, of a kind different
from that we assumed just above. This necessitates the following
modifications. Every world-displacement x has a definite dura-
tion ¢(x) = ¢ (this takes the place of “height” in our geometrical
argument) and produces a displacement x in the minor space; it
splits up according to the formula

x=1t]|x

corresponding to the resolution into space and time. In particular
every space-displacement x may be produced by one and only one
world-displacement x*, which satisfies the equation ¢(x*) = 0.
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The quadratic form (x*,x*) as defined for such vectors x*,
impresses on space its Fuclidean metrical structure

(x,x) = (x*,x%).

The space is dependent on the direction of projection. In actual
cases the direction of projection may be fixed by any point-mass
moving with uniform translation (or by the centre of mass of a
closed isolated mass-system).

We have set forth these details with pedantic accuracy so as to
be armed at least with a set of mathematical conceptions which
have been sifted into a form that makes them immediately appli-
cable to Einstein’s principle of relativity for which our powers of
intuition are much more inadequate than for that of Galilei.

To return to the realm of physics. The discovery that light is
propagated with a finite velocity gave the death-blow to the
natural view that things exist simultaneously with their percep-
tion. As we possess no means of transmitting time-signals more
rapid than light itself (or wireless telegraphy) it is of course impos-
sible to measure the velocity of light by measuring the time that
elapses whilst a light-signal emitted from a station A travels to a
station B. In 1675 Romer calculated this velocity from the appar-
ent irregularity of the time of revolution of Jupiter’s moons, which
took place in a period which lasted exactly one year: he argued
that it would be absurd to assume a mutual action between the
earth and Jupiter’s satellites such that the period of the earth’s
revolution caused a disturbance of so considerable an amount in
the satellites. Fizeau confirmed the discovery by measurements
carried out on the earth’s surface. His method is based on the
simple idea of making the transmitting station A and the receiv-
ing station B coincide by reflecting the ray, when it reaches B,
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back to A. According to these measurements we have to assume
that the centre of the disturbances is propagated in concentric
spheres with a constant velocity ¢. In our graphical picture (one
space-co-ordinate again being suppressed) the propagation of a
light-signal emitted at the world-point O is represented by the
circular cone depicted, which has the equation

At? — (22 +23) = 0. (6)

Every plane given by ¢t = const. cuts the cone in a circle composed
of those points which the light-signal has reached at the moment ¢.
The equation (6) is satisfied by all and only by all those world-
points reached by the light-signal (provided that ¢ > 0). The
question again arises on what space of reference this description
of the event is based. The aberration of the stars shows that,
relatively to this reference space, the earth moves in agreement
with Newton’s theory, that is, that it is identical with an allowable
reference space as defined by Newtonian mechanics. The propa-
gation in concentric spheres is, however, certainly not invariant
with respect to the Galilei transformations (III); for a t’-axis that
is drawn obliquely intersects the planes ¢t = const. at points that
are excentric to the circles of propagation. Nevertheless, this can-
not be regarded as an objection to Galilei’s principle of relativity,
if, accepting the ideas that have long held sway in physics, we as-
sume that light is transmitted by a material medium, the sether,
whose particles are movable with regard to one another. The con-
ditions that obtain in the case of light are exactly similar to those
that bring about concentric circles of waves on a surface of water
on to which a stone has been dropped. The latter phenomenon
certainly does not justify the conclusion that the equations of hy-
drodynamics are contrary to Galilei’s principle of relativity. For



CHAPTER III 238

the medium itself, the water or the sether respectively, whose par-
ticles are at rest with respect to one another, if we neglect the
relatively small oscillations, furnishes us with the same system of
reference as that to which the statement concerning the concentric
transmission is referred.

To bring us into closer touch with this question we shall here
insert an account of optics in the theoretical guise that it has
preserved since the time of Maxwell under the name of the theory
of moving electromagnetic fields.

§ 20. The Electrodynamics of Moving Fields Lorentz’s
Theorem of Relativity

In passing from stationary electromagnetic fields to moving
electromagnetic fields (that is, to those that vary with the time)
we have learned the following:—

1. The so-called electric current is actually composed of mov-
ing electricity: a charged coil of wire in rotation produces a mag-
netic field according to the law of Biot and Savart. If p is the
density of charge, v the velocity, then clearly the density s of this
convection current = pv; yet, if the Biot-Savart Law is to remain
valid in the old form, s must be measured in other units. Thus

pv . . . . .
we must set s = —, in which c is a universal constant having the

dimensions of a Vcelocity. The experiment carried out by Weber
and Kohlrausch, repeated later by Rowland and Eichenwald, gave
a value of ¢ that was coincident with that obtained for the velocity
of light, within the limits of errors of observation (vide note 2).

We call p_ P’ the electromagnetic measure of the charge-density

c
and, so as to make the density of electric force = p'E’ in electro-
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magnetic units, too, we call E' = cE the electromagnetic measure
of the field-intensity.

2. A moving magnetic field induces a current in a homogeneous
wire. It may be determined from the physical law s = ¢E and
Faraday’s Law of Induction; the latter asserts that the induced
electromotive force is equal to the time-decrement of the magnetic
flux through the conductor; hence we have

d
E'dr = —— [ B, do.
/ r dt/ 1 do (7)

On the left there is the line-integral along a closed curve, on the
right the surface-integral of the normal components of the mag-
netic induction B, taken over a surface which fills the curve. The
flux of induction through the conducting curve is uniquely deter-
mined because

divB = 0; (8)
that is, there is no real magnetism. By Stokes’ Theorem we get
from (7) the differential law

1 0B

lIE+ - —=0.
cur +c8t (8)

The equation curl E = 0, which holds for statistical cases, is hence

1 0B
increased by the term — 57 0 the left, which is a derivative of
c

the time. All our electro-technical sciences are based on it; thus
the necessity for introducing it is justified excellently by actual
experience.

3. On the other hand, in Maxwell’s time, the term which was
added to the fundamental equation of magnetism

curlH =s 9)
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was purely hypothetical. In a moving field, such as in the discharge
of a condenser, we cannot have divs = 0, but in place of it the
“equation of continuity”

1 0p

- — +divs =0 10

c Ot (10)
must hold. This gives expression to the fact that the current
consists of moving electricity. Since p = div D, we find that not s,

10
but s+ — a5 must be irrotational, and this immediately suggests

c
that instead of equation (9) we must write for moving fields

curlH— - — =s. (11)

Besides this, we have just as before
divD = p. (11)

From (11) and (11") we arrive conversely at the equation of conti-

nuity (10). It is owing to the additional member — v (Maxwell’s
c

displacement current), a differential co-efficient with respect
to the time, that electromagnetic disturbances are propagated in
the sether with the finite velocity c. It is the basis of the electro-
magnetic theory of light, which interprets optical phenomena with
such wonderful success, and which is experimentally verified in the
well-known experiments of Hertz and in wireless telegraphy, one
of its technical applications. This also makes it clear that these
laws are referred to the same reference-space as that for which the
concentric propagation of light holds, namely, the “fixed” sether.
The laws involving the specific characteristics of the matter under
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consideration have yet to be added to Maxwell’s field-equations
(8) and (&), (11) and (11').
We shall, however, here consider only the conditions in the
aether; in it
D=E and H =B,

and Maxwell’s equations are

1 0B
IE4+ - — = ivB = 12
curl E 4+ - 0, div 0, (12)
1 OE
IB—-— = ivE =p. 12/
cur phr bl div p (12"

According to the atomic theory of electrons these are generally
valid exact physical laws. This theory furthermore sets s = p—,

in which v denotes the velocity of the matter with which t(ile
electric charge is associated.

The force which acts on the masses consists of components
arising from the electrical and the magnetic field: its density is

p =pE + [s,B]. (13)

Since s is parallel to v, the work performed on the electrons per
unit of time and of volume is

p-v=pE-v=c(s,E)=s E.

It is used in increasing the kinetic energy of the electrons, which
is partly transferred to the neutral molecules as a result of col-
lisions. This augmented molecular motion in the interior of the
conductor expresses itself physically as the heat arising during this
phenomenon, as was pointed out by Joule. We find, in fact, ex-
perimentally that s - E’ is the quantity of heat produced per unit
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of time and per unit of volume by the current. The energy used
up in this way must be furnished by the instrument providing the
current. If we multiply equation (12) by —B, equation (12’) by E
and add, we get

—c - div[E, B] — %(%Ez +1B?) =c(s,E).

If we set
[E,B]=s, iE*+iB*’=W

and integrate over any volume V', this equation becomes

d
——/WdV—i—c/Sndc):/c(s,E)dV.
dt Jy Q v

The second member on the left is the integral, taken over the
outer surface of Vj, of the component s, of s along the inward
normal. On the right-hand side we have the work performed on
the volume V' per unit of time. It is compensated by the decrease

of energy / W dV contained in V' and by the energy that flows

into the portion of space V from without. Our equation is thus
an expression of the energy theorem. It confirms the as-
sumption which we made initially about the density W
of the field-energy, and we furthermore see that cs, familiarly
known as Poynting’s vector, represents the energy stream or
energy-flux.

The field-equations (12), (12") have been integrated by Lorentz
in the following way, on the assumption that the distribution of
charges and currents are known. The equation div B = 0 is satis-
fied by setting

—B = curlf (14)
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in which —f is the vector potential. By substituting this in the

first equation above we get that E — — % is irrotational, so that
&
we can set | of
E—- - — =grad 15
L0 = rado, (15)

in which —¢ is the scalar potential. We may make use of the arbi-
trary character yet possessed by f by making it fulfil the subsidiary
condition

9¢

1
- = ivf =0.
c@t+dlv 0

This is found to be expedient for our purpose (whereas for a sta-
tionary field we assumed div f = 0). If we introduce the potentials
in the two latter equations, we find by an easy calculation

1 9%
—EW‘FAﬁbIP, (16)
1 0°f ,
—6—2@+Afzs. (16)

An equation of the form (16) denotes a wave disturbance travelling
with the velocity c. In fact, just as Poisson’s equation A¢ = p has

the solution
—M¢:/Bﬂf
r
so (16) has the solution
’
p(t=2)
—drp = / — 2 qv;
T

on the left-hand side of which ¢ is the value at a point O at
time ¢; r is the distance of the source P, with respect to which we
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integrate, from the point of emergence O; and within the integral
. . . T ..
the value of p is that at the point P at time ¢ — —. Similarly
c

(16’) has the solution

r
—47rf:/ﬂdv.

r

The field at a point does not depend on the distribution of charges
and currents at the same moment, but the determining factor for

T
every point is the moment that lies back just as many (—) ’s as the
c
disturbance propagating itself with the velocity ¢ takes to travel
from the source to the point of emergence.
Just as the expression for the potential (in Cartesian co-
ordinates), namely,

0% P9 0%

T 5.2 2 2
Oxy Ox;  Ouxj

A¢

is invariant with respect to linear transformations of the variables
x1, To, T3, which are such that they convert the quadratic form

2 2 2
r]+ x5 + x5

into itself, so the expression which takes the place of this expres-
sion for the potential when we pass from statical to moving fields,
namely,

L3P Po Po P
2 ot 0x?  Oxi  0x3

(retarded potentials)

is an invariant for those linear transformations of the four co-
ordinates, t, x1, T2, x3, the so-called Lorentz transformations, that
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transform the indefinite form
—*t? + 23 4 13 + 1 (17)

into itself. Lorentz and Einstein recognised that not only equa-
tion (16) but also the whole system of electromagnetic laws for the
ether has this property of invariance, namely, that these laws are
the expression of invariant relations between tensors which exist in
a four-dimensional affine space whose co-ordinates aret, x1, x9, T3
and upon which a non-definite metrical structure is impressed by
the form (17). This is the Lorentz-Einstein Theorem of Rel-
ativity.

To prove the theorem we shall choose a new unit of time by
putting ct = xy. The co-efficients of the metrical groundform are
then

gik =0 (Z # k)? Jii = €,
in which ¢ = —1, ¢ = €5 = €3 = +1; so that in passing from
components of a tensor that are co-variant with respect to an
index ¢ to the contra-variant components of that tensor we have
only to multiply the ith component by the sign of ¢;. The question
of continuity for electricity (10) assumes the desired invariant form

if we introduce s° = p, and s!, s%, s, which are equal to the com-

ponents of s, as the four contra-variant components of a vector
in the above four-dimensional space, namely, of the “4-vector cur-
rent”. Parallel with this—as we see from (16) and (16")—we must
combine

$o = ¢ and the components of £, namely, ¢*, ¢?, ¢°,
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to make up the contra-variant components of a four-dimensional

vector, which we call the electromagnetic potential; of its co-

variant components, the Oth, i.e. ¢9 = —¢, whereas the three

others ¢1, ¢9, ¢3 are equal to the components of f. The equations

(14) and (15), by which the field-quantities B and E are derived

from the potentials, may then be written in the invariant form
Op; Oy

in which we set
E = (Fio, Fao, F3o), B = (Fys, F31, F12).

This is then how we may combine electric and magnetic intensity
of field to make up a single linear tensor of the second order F,
the “field”. From (18) we get the invariant equations

OFy n OFy; N OFy,
8[Ei 8[)3k @J]l

and this is Maxwell’s first system of equations (12). We took a
circuitous route in using Lorentz’s solution and the potentials only
so as to be led naturally to the proper combination of the three-
dimensional quantities, which converts them into four-dimensional
vectors and tensors. By passing over to contra-variant components
we get

— 0, (19)

E = (FOl,FOQ,FO?)), B= <F23,F31,F12).

Maxwell’s second system, expressed invariantly in terms of four-
dimensional tensors, is now

ik
> OF7 _ g (20)
k
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If we now introduce the four-dimensional vector with the co-
variant components

pi = Fys* (21)
(and the contra-variant components p! = F*s;)—following our
previous practice of omitting the signs of summation—then pY is
the “work-density,” that is, the work per unit of time and per unit
of volume: p' = (s, E) [the unit of time is to be adapted to the
new measure of time xy = ct|, and p', p?, p* are the components
of the density of force.

This fully proves the Lorentz Theorem of Relativity. We no-
tice here that the laws that have been obtained are exactly the same
as those which hold in the stationary magnetic field (§9 (62)) ex-
cept that they have been transposed from three-dimensional to four-
dimensional space. There is no doubt that the real mathematical
harmony underlying these laws finds as complete an expression as
is possible in this formulation in terms of four-dimensional tensors.

Further, we learn from the above that, exactly as in the case
of three-dimensions, we may derive the “4-force” = p; from a sym-
metrical four-dimensional “stress-tensor” S, thus

oSk . OS*
_p = 22 — = , 22
Pi=g. Of =g (22)
SF = F, F* — 16F|F|*. (22')

The square of the numerical value of the field (which is not nec-
essarily positive here) is

|F|* = LF P
We shall verify formula (22) by direct calculation. We have

oSk OF*kr OF; OF,
i Er il Fkr o _""
oxy, oxy, + oxy, Ox;

1 kr
5
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The first term on the right gives us
_Ersr = —Di-
If we write the co-efficient of F* skew-symmetrically we get for

the second term
2 8xk (91;
which, combined with the third, gives

OF; OF OF,;
_ler ik kr i '
2 (8957« + ox; + Oxy,

The expression consisting of three terms in the brackets = 0,
by (19).

Now |F|> = B? — E%. Let us examine what the individual
components of ;. signify, by separating the index 0 from the
others 1, 2, 3, in conformity with the partition into space and
time.

S% = the energy-density W = %(E2 + B?),

SY% = the components of S = [E,B] i,k = (1,2,3),

S = the components of the Maxwell stress-tensor, which is
composed of the electrical and magnetic parts given in §9. Ac-
cordingly the Oth equation of (22) expresses the law of energy. The
1st, 2nd, and 3rd have a fully analogous form. If, for a moment,

we denote the components of the vector =S by G, G2, G3 and
c

take t to stand for the vector with the components S*, Si2, §%
we get '
.

o +divt®,  (i=1,2,3). (23)

—Pi
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The force which acts on the electrons enclosed in a portion of
space V' produces an increase in time of momentum equal to it-
self numerically. This increase is balanced, according to (23), by
a corresponding decrease of the field-momentum distributed in

S
the field with a density —, and the addition of field-momentum

from without. The curre%t of the ¢th component of momentum
is given by t®, and thus the momentum-flux is nothing more
than the Maxwell stress-tensor. The Theorem of the Conservation
of Energy is only one component, the time-component, of a law
which is invariant for Lorentz transformations, the other compo-
nents being the space-components which express the conservation
of momentum. The total energy as well as the total momen-
tum remains unchanged: they merely stream from one part of
the field to another, and become transformed from field-energy
and field-momentum into kinetic-energy and kinetic-momentum
of matter, and vice versa. That is the simple physical meaning of
the formulee (22). In accordance with it we shall in future refer
to the tensor S of the four-dimensional world as the energy-
momentum-tensor or, more briefly, as the energy-tensor. Its

symmetry tells us that the density of momentum = — #imes

the energy-flux. The field-momentum is thus very Wgak, but,
nevertheless, it has been possible to prove its existence by demon-
strating the pressure of light on a reflecting surface.

A Lorentz transformation is linear. Hence (again suppressing
one space co-ordinate in our graphical picture) we see that it is
tantamount to introducing a new affine co-ordinate system. Let
us consider how the fundamental vectors e, €], €} of the new co-
ordinate system lie relatively to the original fundamental vectors
€y, €1, €y, that is to the unit vectors in the direction of the xzg
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(or t), w1, xo axes. Since, for
!/ !/ !/
X = o€y + T1€1 + Toey = Tye, + T1€e] + T,€,,
we must have
2,2 2 22 2
—x5 4+ af + x5 = —af + 2 + 25 [= Q(x)]

we get Q(ef) = —1. Accordingly, the vector e[ starting from O
(i.e. the t'-axis) lies within the cone of light-propagation; the par-
allel planes ¢ = const. lie so that they cut ellipses from the cone,
the middle points of which lie on the t’-axis (see Fig. 7); the /-,
xh-axis are in the direction of conjugate diameters of these ellip-
tical sections, so that the equation of each is

o2 + 2%} = const.

As long as we retain the picture of a material sether, capable of
executing vibrations, we can see in Lorentz’s Theorem of Relativ-
ity only a remarkable property of mathematical transformations;
the relativity theorem of Galilei and Newton remains the truly
valid one. We are, however, confronted with the task of inter-
preting not only optical phenomena but all electrodynamics and
its laws as the result of a mechanics of the sether which satisfies
Galilei’s Theorem of Relativity. To achieve this we must bring the
field-quantities into definite relationship with the density and ve-
locity of the sether. Before the time of Maxwell’s electromagnetic
theory of light, attempts were made to do this for optical phe-
nomena; these efforts were partly, but never wholly, crowned with
success. This attempt was not carried on (vide note 3) in the case
of the more comprehensive domain into which Maxwell relegated
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optical phenomena. On the contrary, the idea of a field exist-
ing in empty space and not requiring a medium to sustain
it gradually began to win ground. Indeed, even Faraday had ex-
pressed in unmistakable language that not the field should derive
its meaning through its association with matter, but, conversely,
rather that particles of matter are nothing more than singularities

of the field.

§ 21. Einstein’s Principle of Relativity

Let us for the present retain our conception of the sether. It
should be possible to determine the motion of a body, for example,
the earth, relative to the fixed or motionless sther. We are not
helped by aberration, for this only shows that this relative motion
changes in the course of a year. Let A;, O, Ay be three fixed
points on the earth that share in its motion. Suppose them to
lie in a straight line along the direction of the earth’s motion and
to be equidistant, so that A,O = OAy = [, and let v be the

v
velocity of translation of the earth through the sether; let — = g,
c

which we shall assume to be a very small quantity. A light-signal

emitted at O will reach A, after a time has elapsed, and

cC—v

Ay after a time Unfortunately, this difference cannot be

c+v
demonstrated, as we have no signal that is more rapid than light

and that we could use to communicate the time to another place.*

*It might occur to us to transmit time from one world-point to another by
carrying a clock that is marking time from one place to the other. In practice,
this process is not sufficiently accurate for our purpose. Theoretically, it is
by no means certain that this transmission is independent of the traversed
path. In fact, the theory of relativity proves that, on the contrary, they are
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We have recourse to Fizeau’s idea, and set up little mirrors at
A; and A, which reflect the light-ray back to O. If the light-
signal is emitted at the moment O, then the ray reflected from A,
will reach A after a time

[ l 2lc

-2

+ 2
c—v c+v cc—v

whereas that reflected from A; reaches O after a time

l l 2lc

)

+ = 5
c+v c—w cc—v
There is now no longer a difference in the times. Let us, however,
now assume a third point A which participates in the translational
motion through the sther, such that OA = [, but that O A makes
an angle # with the direction of OA. In Fig. 8, O, O, O” are the
successive positions of the point O at the time 0 at which the signal
is emitted, at the time ¢ at which it is reflected from the mirror A
placed at A’, and finally at the time ¢’ + ¢” at which it again
reaches O, respectively. From the figure we get the proportion

OA":O"A'=00":0"0".

Consequently the two angles at A’ are equal to one another. The
reflecting mirror must be placed, just as when the system is at
rest, perpendicularly to the rigid connecting line OA, in order
that the light-ray may return to O. An elementary trigonometrical
calculation gives for the apparent rate of transmission in the

direction 0 l ) )
2 _
S — (24)

t+t" 2 —v2sin% 60

dependent on one another; cf. §22.
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A/

Ct/l

0
O vt o' ot" 0"
Fiag. 8.

It is thus dependent on the angle 6, which gives the direction of
transmission. Observations of the value of 6 should enable us to
determine the direction and magnitude of v.

These observations were attempted in the celebrated
Michelson-Morley experiment (vide note 4). In this, two
mirrors A, A’ are rigidly fixed to O at distances [, I’; the one
along the line of motion the other perpendicular to it. The whole
apparatus may be rotated about O. By means of a transparent
glass plate, one-half of which is silvered and which bisects the
right angle at O, a light-ray is split up into two halves, one of
which travels to A, the other to A’. They are reflected at these
two points; and at O, owing to the partly silvered mirror, they
are again combined to a single composite ray. We take [ and [’
approximately equal; then, owing to the difference in path given

by (24), namely,
21 2U

1—Q2_\/1—q2’

interference occurs. If the whole apparatus is now turned slowly
through 90° about O until A" comes into the direction of motion,
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this difference of path becomes

Consequently, there is a shortening of the path by an amount

/ 1 1 N 2
2(l+l)(1_q2— 1_q2> ~(+1)g.

This should express itself in a shift of the initial interference

A/

Observer.

V20

Source of Light.
F1G. 9.

fringes. Although conditions were such that, numerically, even
only 1 per cent. of the displacement of the fringes expected by
Michelson could not have escaped detection, no trace of it was to
be found when the experiment was performed.
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Lorentz (and Fitzgerald, independently) sought to explain this
strange result by the bold hypothesis that a rigid body in moving
relatively to the sether undergoes a contraction in the direction of
the line of motion in the ratio 1 : \/1 — ¢2. This would actually
account, for the null result of the Michelson-Morley experiment.
For there, OA has in the first position the true length (/1 — ¢,
and OA’ the length [’, whereas in the second position OA has the
true length [ but OA’ the length I’ - /1 — ¢?. The difference of
2(0=10)

YA

It was also found that, no matter into what direction a mirror
rigidly fixed to O was turned, the same apparent velocity of trans-
mission v/¢? — v? was obtained for all directions; that is, that this
velocity did not depend on the direction 6, in the manner given
by (24). Nevertheless, theoretically, it still seemed possible to
demonstrate the decrease of the velocity of transmission from c
to v/¢2 — v2. But if the @ether shortens the measuring rods in the
direction of motion in the ratio 1 : /1 — ¢2, it need only retard
clocks in the same ratio to hide this effect, too. In fact, not only
the Michelson-Morley experiment but a whole series of further ex-
periments designed to demonstrate that the earth’s motion has an
influence on combined mechanical and electromagnetic phenom-
ena, have led to a null result (vide note 5). Ather mechanics has
thus to account not only for Maxwell’s laws but also for this re-
markable interaction between matter and aether. It seems that
the sether has betaken itself to the land of the shades in a final
effort to elude the inquisitive search of the physicist!

The only reasonable answer that was given to the question as
to why a translation in the sether cannot be distinguished from
rest was that of Einstein, namely, that there is no ether! (The

path would, in each case, be
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aether has since the very beginning remained a vague hypothe-
sis and one, moreover, that has acted very poorly in the face of
facts.) The position is then this: for mechanics we get Galilei’s
Theorem of Relativity, for electrodynamics, Lorentz’s Theorem.
If this is really the case, they neutralise one another and thereby
define an absolute space of reference in which mechanical laws
have the Newtonian form, electrodynamical laws that given by
Maxwell. The difficulty of explaining the null result of the exper-
iments whose purpose was to distinguish translation from rest, is
overcome only by regarding one or other of these two principles
of relativity as being valid for all physical phenomena. That of
Galilei does not come into question for electrodynamics as this
would mean that, in Maxwell’s theory, those terms by which we
distinguish moving fields from stationary ones would not occur:
there would be no induction, no light, and no wireless telegra-
phy. On the other hand, even the contraction theory of Lorentz-
Fitzgerald suggests that Newton’s mechanics may be modified so
that it satisfies the Lorentz-Einstein Theorem of Relativity, the

U 2
deviations that occur being only of the order (—> ; they are then

easily within reach of observation for all velocities v of planets or
on the earth. The solution of Einstein (vide note 6), which at one
stroke overcomes all difficulties, is then this: the world is a four-
dimensional affine space whose metrical structure is determined
by a non-definite quadratic form

Qx) = (x,%)

which has one negative and three positive dimensions. All physical
quantities are scalars and tensors of this four-dimensional world,
and all physical laws express invariant relations between them.
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The simple concrete meaning of the form (x) is that a light-
signal which has been emitted at the world-point O arrives at all
those and only those world-points A for which x = O—1>4 belongs to
the one of the two conical sheets defined by the equation Q(x) = 0
(cf. §4). Hence that sheet (of the two cones) which “opens into
the future” namely, Q(x) < 0 is distinguished objectively from
that which opens into the past. By introducing an appropriate
“normal” co-ordinate system consisting of the zero point O and
the fundamental vectors e;, we may bring ()(x) into the normal
form

s
(OA,0A) = —xp + 23 + 25 + 23,

in which the x;’s are the co-ordinates of A; in addition, the funda-
mental vector e is to belong to the cone opening into the future.
It is impossible to narrow down the selection from these
normal co-ordinate systems any farther: that is, none are
specially favoured; they are all equivalent. If we make use of a
particular one, then xy must be regarded as the time; x1, x9, x3
as the Cartesian space co-ordinates; and all the ordinary expres-
sions referring to space and time are to be used in this system
of reference as usual. The adequate mathematical formulation of
Einstein’s discovery was first given by Minkowski (vide note 7):
to him we are indebted for the idea of four-dimensional world-
geometry, on which we based our argument from the outset.
How the null result of the Michelson-Morley experiment comes
about is now clear. For if the interactions of the cohesive forces of
matter as well as the transmission of light takes place according
to Einstein’s Principle of Relativity, measuring rods must behave
so that no difference between rest and translation can be discov-
ered by means of objective determinations. Seeing that Maxwell’s
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equations satisfy Einstein’s Principle of Relativity, as was recog-
nised even by Lorentz, we must indeed regard the Michelson-
Morley experiment as a proof that the mechanics of rigid bodies
must, strictly speaking, be in accordance not with that of Galilei’s
Principle of Relativity, but with that of Finstein.

It is clear that this is mathematically much simpler and more
intelligible than the former: world-geometry has been brought into
closer touch with Euclidean space-geometry through Einstein and
Minkowski. Moreover, as may easily be shown, Galilei’s princi-
ple is found to be a limiting case of Einstein’s world-geometry by
making ¢ converge to co. The physical purport of this is that we
are to discard our belief in the objective meaning of simultaneity;
it was the great achievement of Finstein in the field of the theory
of knowledge that he banished this dogma from our minds, and this
is what leads us to rank his name with that of Copernicus. The
graphical picture given at the end of the preceding paragraph dis-
closes immediately that the planes x{, = const. no longer coincide
with the planes xy = const. In consequence of the metrical struc-
ture of the world, which is based on Q(x), each plane xj, = const.
has a measure-determination such that the ellipse in which it in-
tersects the “light-cone,” is a circle, and that Euclidean geometry
holds for it. The point at which it is punctured by the z{-axis is
the mid-point of the elliptical section. So the propagation of light
takes place in the “accented” system of reference, too, in concentric
circles.

We shall next endeavour to eradicate the difficulties that seem
to our intuition, our inner knowledge of space and time, to be
involved in the revolution caused by Einstein in the conception
of time. According to the ordinary view the following is true.
If T shoot bullets out with all possible velocities in all directions
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from a point O, they will all reach world-points that are later
than O; I cannot shoot back into the past. Similarly, an event
which happens at O has an influence only on what happens at
later world-points, whereas “one can no longer undo” the past:
the extreme limit is reached by gravitation, acting according to
Newton’s law of attraction, as a result of which, for example, by
extending my arm, I at the identical moment produce an effect
on the planets, modifying their orbits ever so slightly. If we again
suppress a space-co-ordinate and use our graphical mode of rep-
resentation, then the absolute meaning of the plane ¢ = 0 which
passes through O consists in the fact that it separates the “future”
world-points, which can be influenced by actions at O, from the
“past” world-points from which an effect may be conveyed to or
conferred on O. According to Einstein’s Principle of Relativity,
we get in place of the plane of separation ¢ = 0 the light cone

2]+ 15— At =0

(which degenerates to the above double plane when ¢ = 0o0). This
makes the position clear in this way. The direction of all bodies
projected from O must point into the forward-cone, opening into
the future (so also the direction of the world-line of my own body,
my “life-curve” if I happen to be at O). Events at O can influence
only happenings that occur at world-points that lie within this
forward-cone: the limits are marked out by the resulting propa-
gation of light into empty space.* If I happen to be at O, then

*The propagation of gravitational force must, of course, likewise take place
with the speed of light, according to Einstein’s Theory of Relativity. The law
for the gravitational potential must be modified in a manner analogous to
that by which electrostatic potential was modified in passing from statical to
moving fields.
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O divides my life-curve into past and future; no change is thereby
caused. As far as my relationship to the world is concerned, how-
ever, the forward-cone comprises all the world-points which are af-
fected by my active or passive doings at O, whereas all events that
are complete in the past, that can no longer be altered, lie exter-
nally to this cone. The sheet of the forward-cone separates
my active future from my active past. On the other hand,
the interior of the backward-cone includes all events in which I

Active future.

Passive past.

Fic. 10.

have participated (either actively or as an observer) or of which
I have received knowledge of some kind or other, for only such
events may have had an influence on me; outside this cone are
all occurrences that I may yet experience or would yet experience
if my life were everlasting and nothing were shrouded from my
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gaze. The sheet of the backward-cone separates my pas-
sive past from my passive future. The sheet itself contains
everything on its surface that I see at this moment, or can see;
it is thus properly the picture of my external surroundings. In
the fact that we must in this way distinguish between active and
passive, present, and future, there lies the fundamental impor-
tance of Romer’s discovery of the finite velocity of light to which
Einstein’s Principle of Relativity first gave full expression. The
plane t = 0 passing through O in an allowable co-ordinate system
may be placed so that it cuts the light-cone @Q(x) = 0 only at O
and thereby separates the cone of the active future from the cone
of the passive past.

For a body moving with uniform translation it is always pos-
sible to choose an allowable co-ordinate system (= normal co-
ordinate system) such that the body is at rest in it. The indi-
vidual parts of the body are then separated by definite distances
from one another, the straight lines connecting them make definite
angles with one another, and so forth, all of which may be cal-
culated by means of the formule of ordinary analytical geometry
from the space-co-ordinates x1, x, x3 of the points under consid-
eration in the allowable co-ordinate system chosen. I shall term
them the static measures of the body (this defines, in particu-
lar, the static length of a measuring rod). If this body is a clock,
in which a periodical event occurs, there will be associated with
this period in the system of reference, in which the clock is at rest,
a definite time, determined by the increase of the co-ordinate xg
during a period; we shall call this the “proper time” of the clock.
If we push the body at one and the same moment at different
points, these points will begin to move, but as the effect can at
most be propagated with the velocity of light, the motion will only
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gradually be communicated to the whole body. As long as the ex-
panding spheres encircling each point of attack and travelling with
the velocity of light do not overlap, the parts surrounding these
points that are dragged along move independently of one another.
It is evident from this that, according to the theory of relativity,
there cannot be rigid bodies in the old sense; that is, no body ex-
ists which remains objectively always the same no matter to what
influences it has been subjected. How is it that in spite of this
we can use our measuring rods for carrying out measurements in
space? We shall use an analogy. If a gas that is in equilibrium in
a closed vessel is heated at various points by small flames and is
then removed adiabatically, it will at first pass through a series of
complicated stages, which will not satisfy the equilibrium laws of
thermodynamics. Finally, however, it will attain a new state of
equilibrium corresponding to the new quantity of energy it con-
tains, which is now greater owing to the heating. We require
of a rigid body that is to be used for purposes of measurement
(in particular, a linear measuring rod) that, after coming to
rest in an allowable system of reference, it shall always re-
main exactly the same as before, that is, that it shall have the
same static measures (or static length); and we require of a
clock that goes correctly that it shall always have the same
proper-time when it has come to rest (as a whole) in an
allowable system of reference. We may assume that the mea-
suring rods and clocks which we shall use satisfy this condition
to a sufficient degree of approximation. It is only when, in our
analogy, the gas is warmed sufficiently slowly (strictly speaking,
infinitely slowly) that it will pass through a series of thermody-
namic states of equilibrium; only when we move the measuring
rods and clocks steadily, without jerks, will they preserve their
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static lengths and proper-times. The limits of acceleration within
which this assumption may be made without appreciable errors
arising are certainly very wide. Definite and exact statements
about this point can be made only when we have built up a dy-
namics based on physical and mechanical laws.

To get a clear picture of the Lorentz-Fitzgerald contraction
from the point of view of Einstein’s Theory of Relativity, we shall
imagine the following to take place in a plane. In an allowable
system of reference (co-ordinates ¢, x1, x5, one space-co-ordinate
being suppressed), to which the following space-time expressions
will be referred, there is at rest a plane sheet of paper (carrying
rectangular co-ordinates 1, x5 marked on it), on which a closed
curve c¢ is drawn. We have, besides, a circular plate carrying a
rigid clock-hand that rotates around its centre, so that its point
traces out the edge of the plate if it is rotated slowly, thus proving
that the edge is actually a circle. Let the plate now move along the
sheet of paper with uniform translation. If, at the same time, the
index rotates slowly, its point runs unceasingly along the edge of
the plate: in this sense the disc is circular during translation too.
Suppose the edge of the disc to coincide exactly with the curve c
at a definite moment. If we measure ¢ by means of measuring rods
that are at rest, we find that c is not a circle but an ellipse. This
phenomenon is shown graphically in Fig. 11. We have added the
system of reference t', x), , with respect to which the disc is at
rest. Any plane ¢’ = const. intersects the light cone in this system
of reference in a circle “that exists for a single moment”. The
cylinder above it erected in the direction of the t’-axis represents
a circle that is at rest in the accented system, and hence marks
off that part of the world which is passed over by our disc. The
section of this cylinder and the plane ¢ = 0 is not a circle but an
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ellipse. The right-angled cylinder constructed on it in the direction
of the t-axis represents the constantly present curve traced on the
paper.

If we now inquire what physical laws are necessary to distin-
guish normal co-ordinate systems from all other co-ordinate sys-
tems (in Riemann’s sense), we learn that we require only Galilei’s
Principle of Relativity and the law of the propagation of light; by
means of light-signals and point-masses moving under no forces—
even if we have only small limits of velocity within which the
latter may move—we are in a position to fix a co-ordinate system
of this kind. To see this we shall next add a corollary to Galilei’s
Principle of Inertia. If a clock shares in the motion of the point-
mass moving under no forces, then its time-data are a measure of
the “proper-time” s of the motion. Galilei’s principle states that
the world-line of the point is a straight line; we elaborate this by
stating further that the moments of the motion characterised by

t ft,

s=0,1,2,3,... (or by any arithmetical series of values of s) rep-
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resent equidistant points along the straight line. By introducing
the parameter of proper-time to distinguish the various stages of
the motion we get not only a line in the four-dimensional world
but also a “motion” in it (cf. the definition on page 155) and ac-
cording to Galilei this motion is a translation.

The world-points constitute a four-dimensional manifold; this
is perhaps the most certain fact of our empirical knowledge. We
shall call a system of four co-ordinates z; (1 = 0,1, 2, 3), which are
used to fix these points in a certain portion of the world, a lin-
ear co-ordinate system, if the motion of point-mass under no
forces and expressed in terms of the parameter s of the proper-time
be represented by formulee in which the x;’s are linear functions
of s. The fact that there are such co-ordinate systems is what
the law of inertia really asserts. After this condition of linearity,
all that is necessary to define the co-ordinate system fully is a
linear transformation. That is, if z;, x are the co-ordinates re-
spectively of one and the same world-point in two different linear
co-ordinate systems, then the z/’s a must be linear functions of
the 2’s. By simultaneously interpreting the z;’s as Cartesian co-
ordinates in a four-dimensional Euclidean space, the co-ordinate
system furnishes us with a representation of the world (or of the
portion of world in which the z;’s exist) on a Euclidean space
of representation. We may, therefore, formulate our proposition
thus. A representation of two Euclidean spaces by one another
(or in other words a transformation from one Euclidean space to
another), such that straight lines become straight lines and a se-
ries of equidistant points become a series of equidistant points
is necessarily an affine transformation. Fig. 12 which represents
Mébius’ mesh-construction (vide note 8) may suffice to indicate
the proof to the reader. It is obvious that this mesh-system may
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be arranged so that the three directions of the straight lines com-
posing it may be derived from a given, arbitrarily thin, cone carry-
ing these directions on it; the above geometrical theorem remains

FiG. 12.

valid even if we only know that the straight lines whose directions
belong to this cone become straight lines again as a result of the
transformation.

Galilei’s Principle of Inertia is sufficient in itself to prove con-
clusively that the world is affine in character: it will not, how-
ever, allow us deduce any further result. The metrical ground-
form (x,x) of the world is now accounted for by the process of
light-propagation. A light-signal emitt_e;i from O arrives at the
world-point A if, and only if, x = OA belongs to one of the
two conical sheets defined by (x,x) = 0. This determines the
quadratic form except for a constant factor; to fix the latter we
must choose an arbitrary unit-measure (cf. Appendix I).
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§ 22. Relativistic Geometry, Kinematics, and Optics

We shall call a world-vector x space-like or time-like, accord-
ing as (x,x) is positive or negative. Time-like vectors are divided
into those that point into the future and those that point into
the past. We shall call the invariant

As = /—(x,x) (25)

of a time-like vector x which points into the future its proper-
time. If we set
x=As-e

then e, the direction of the time-like displacement, is a vector that
points into the future, and that satisfies the condition of normality
(e,e) = —1.

As in Galilean geometry, so in Einstein’s world-geometry we
must resolve the world into space and time by projection
in the direction of a time-like vector e pointing into the future
and normalised by the condition (e,e) = —1. The process of pro-
jection was discussed in detail in §19. The fundamental formulee
(3), (5), (5’) that are set up must here be applied with e = —1.*
World-points for which the vector connecting them is proportional
to e coincide at a space-point which we may mark by means of a
point-mass at rest, and which we may represent graphically by a
world-line (straight) parallel to e. The three-dimensional space R
that is generated by the projection has a metrical character that
is Euclidean since, for every vector x* which is orthogonal to e,

*Here the units of space and time are chosen so that the velocity of
light in vacuo becomes equal to 1. To arrive at the ordinary units of the
c.g.s. systems, the equation of normality (e,e) = —1 must be replaced by

(e,e) = —c?, and e must be taken equal to —c?.
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that is, every vector x* that satisfies the condition (x*,e) = 0,
(x*,x*) is a positive quantity (except in the case in which x* = 0;
cf. §4). Every displacement x of the world may be split up ac-
cording to the formula

x=At]|x:

At is its duration (called “height” in §19): x is the displacement
it produces in the space Re.

If eq, €9, e3 form a co-ordinate system in R, then the world-
displacements e;, ey, es that are orthogonal to e = e(, and that
produce the three given space-displacements, form in conjunction
with ey a co-ordinate system, which belongs to R., for the
world-points. It is normal if the three vectors e; in R, form a
Cartesian co-ordinate system. In every case the system of co-
efficients of the metrical groundform has, in it, the form

-1 0 0 0
0 911 912 13
0 g21 go2 Go3|
0 931 932 933

The proper time As of a time-like vector x pointing into the
future (and for which x = As - e) is equal to the duration of x
in the space of reference R, in which x calls forth no spatial dis-
placement. In the sequel we shall have to contrast several ways of
splitting up quantities into terms of the vectors e, €', ...; e (with
or without an index) is always to denote a time-like world-vector
pointing into the future and satisfying the condition of normality
(e,e) = —1.

Let K be a body at rest in R,, K’ a body at rest in R..
K’ moves with uniform translation in R.. If, by splitting up €’
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into terms of e, we get in R,
e =h|hv (26)

then K’ undergoes the space-displacement hv during the time (i.e.
with the duration) h in R.. Accordingly, v is the velocity of K’
in R, or the relative velocity of K’ with respect to K. Its
magnitude is determined by v? = (v, v). By (3) we have

h=—(¢ e); (27)
on the other hand, by (5)
1=—(e,€)=h*—h*(v,v) = h*(1 — v?),

thus we get
1

h=——. 28

T (28)
If, between two moments of K’’s motion, it undergoes the world-
displacement As-€’, (26) shows that h-As = At is the duration of
this displacement in R.. The proper time As and the duration At
of the displacement in R, are related by

As = Atv1 — 02 (29)

Since (27) is symmetrical in e and €, (28) teaches us that the
magnitude of the relative velocity of K’ with respect to K
is equal to that of K with respect to K’. The vectorial
relative velocities cannot be compared with one another since
the one exists in the space Re, the other in the space R..
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Let us consider a partition into three quantities e, e, es. Let
K, K5 be two bodies at rest in Re,, Re, respectively. Suppose we
have in R,

1
e =h ‘ hiv hy = ——,
V1—v}

1
€y = h2 ‘ hQVQ h,g = ﬁ

Then
—(el,eg) = hlhg{l — ('U1U2>}.

Hence, if K7 and K5 have velocities vy, v, respectively in R, with
numerical values vy, vy, then if these velocities vi, v, make an
angle # with each other, and if v15 = vy is the magnitude of the
velocity of Ky relatively to K; (or wice versa), we find that the

formula
1 — vyvy cos 1

V1=viy/1 -0 \/1 vt

holds: it shows how the relative velocity of two bodies is
determined from their given velocities. If, using hyperbolic
functions, we set v = tanh v for each of the values v of the velocity
(v being < 1), we get

(30)

cosh u; cosh uy — sinh u; sinh us cos @ = cosh u;s.

This formula becomes the cosine theorem of spherical geome-
try if we replace the hyperbolic functions by their corresponding
trigonometrical functions; thus w5 is the side opposite the angle 0
in a triangle on the Bolyai-Lobatschefsky plane, the two remaining
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sides being u; and us.

Analogous to the relationship (29) between time and proper-
time, there is one between length and statical-length. We shall
use R, as our space of reference. Let the individual point-masses
of the body at a definite moment be at the world-points O, A, . ...
The space-points O, A, ... at R, at which they are situated form
a figure in R,, on which we can confer duration, by making the
body leave behind it a copy of itself at the moment under consid-
eration in the space R.; an example of this was presented in the
illustration given at the close of the preceding paragraph. If, on
the other hand, the world-points O, A, ... are at the space-points
O’, A, ... in the space R, in which K’ is at rest, then O', A’, ...
constitute the statical shape of the body K’ (cf. Fig. 13, in which
orthogonal world-distances are drawn perpendicularly). There is
a transformation that connects the part of R, which receives the
imprint or copy, and the statical shape of the body in R.. This
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transformation transforms the points A, A’ into one another. It
is obviously affine (in fact, it is nothing more than an orthogonal
projection). Since the world-points O, A are simultaneous for
the partition into e, we have

wl:x:0|xin Re, and x = OA.
By formula (5)
O = (%) = (x.%),
2
O'A = (x,x)+ (x,€)2

If, however, we determine (x,€’) in R, by (5’) we get

(x,€') = h(x,v),
and hence , ( )2
- X,V
O/A/ :(X,X)—i—l_UQ.

If we use a Cartesian co-ordinate system x1, 2, 3 in R, with O as
origin, and having its x1-axis in the direction of the velocity v, then
if 1, x9, x3 are the co-ordinates of A, we have

2
OA =23 + a5 + 73,
N 2
O/A/2 — 5
1—02

2 2 _ 2 12 2
+xy+x3 =27 + x5 + 273,

in the last term of which we have set

I ’

—_—, Ty = X2, Th = T3. 31
m 2 2 3 3 ()

e
xl_
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By assigning to every point in R, with co-ordinates (1, x2, r3) the
point with co-ordinates (), 25, x%) as given by (31), we effect a
dilatation of the imprinted copy in the ratio 1 : /1 — v? along the
direction of the body’s motion. Our formulae assert that the copy
thereby assumes a shape congruent to that of the body when at
rest; this is the Lorentz-Fitzgerald contraction. In particular,
the volume V' that the body K’ occupies at a definite moment in
the space R, is connected to its statical volume V[ by the relation

V=110

Whenever we measure angles by optical means we determine
the angles formed by the light-rays for the system of reference in
which the (rigid) measuring instrument is at rest. Again, when our
eyes take the place of these instruments it is these angles that de-
termine the visual form of objects that lie within the field of vision.
To establish the relationship between geometry and the observa-
tion of geometrical magnitudes, we must therefore take optical
considerations into account. The solution of Maxwell’s equations
for light-rays in the sether as well as in a homogeneous medium,
which is at rest in an allowable reference system, is of a form
such that the component of the “phase” quantities (in complex
notation) are all

= const. ¢*OF)

in which © = ©(P) is, with the omission of an additive constant,
the phase determined by the conditions set down; it is a function
of the world-point which here occurs as the argument. If the world
co-ordinates are transformed linearly in any way, the components
in the new co-ordinate system will again have the same form with
the same phase-function ©. The phase is accordingly an invariant.
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For a plane wave it is a linear and (if we exclude absorbing media)
real function of the world-co-ordinates of P; hence the phase-
difference at two arbitrary points ©(B) — ©(A) is a linear form of
the arbitrary displacement x = AB, that is, a co-variant world-
vector. If we represent this by the corresponding displacement 1
(we shall allude to it briefly as the light-ray 1) then

O(B) — 6(A) = (1,x).

If we split it up by means of the time-like vector e into space and
time and set y
l=v|-a (32)
q

so that the space-vector a in R, is of unit length
x = At | x,

then the phase-difference is

v { (a;]X) — At} :

From this we see that v signifies the frequency, ¢ the velocity of
transmission, and a the direction of the light-ray in the space Re.
Maxwell’s equations tell us that in the sether the velocity of trans-
mission ¢ = 1, or that

(L) =0.

If we split the world up into space and time in two ways,
firstly by means of e, secondly by means of €', and distinguish
the magnitudes derived from the second process by accents we
immediately find as a result of the invariance of (1,1) the law

2 <qi2 _ 1) - <q—12 - 1) | (33)
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If we fix our attention on two light-rays 1y, 15 with frequencies
11, vy and velocities of transmission ¢, ¢o then

(11712) = 19 {@ — 1} .

q192

If they make an angle w to with one another, then

Cosw ., [cosw
V1V -1, =vv — 1} . 34
{QICD } ' 2{ ¢ (39

For the @ether, these equations become

/
q=4¢ (=1), V11, sin? % = V| v} sin’ % (35)

Finally, to get the relationship between the frequencies v and 1/
we assume a body that is at rest in R.; let it have the velocity v
in the space R., then, as before, we must set

e =h|hvinR,. (26)

From (26) and (32) it follows that

V= (&) = Vh{1 _ V)}.

q

Accordingly, if the direction of the light-ray in R, makes an angle ¢
with the velocity of the body, then

v cosd

. d (36)
v V10
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(36) is Doppler’s Principle. For example, since a sodium-molecule
which is at rest in an allowable system remains objectively the
same, this relationship (36) will exist between the frequency v/
of a sodium-molecule which is at rest and v the frequency of a
sodium-molecule moving with a velocity v, both frequencies be-
ing observed in a spectroscope which is at rest; 6 is the angle
between the direction of motion of the molecule and the light-ray
which enters the spectroscope. If we substitute (36) in (33) we get
an equation between ¢ and ¢ which enables us to calculate the
velocity of propagation ¢ in a moving medium from the velocity of
propagation ¢’ in the same medium at rest; for example, in water,
v now represents the rate of flow of the water; 6 represents the
angle that the direction of flow of the water makes with the light-
rays. If we suppose these two directions to coincide, and then
neglect powers of v higher than the first (since v is in practice
very small compared with the velocity of light), we get

¢=q +v(l-q"%);
that is, not the whole of the velocity v of the medium is added

1
to the velocity of propagation, but only the fraction 1 — — (in
n

1
which n = — is the index of refraction of the medium). Fresnel’s

1
“convection-co-efficient” 1 — — was determined experimentally by

Fizeau long before the adver?t of the theory of relativity by mak-
ing two light-rays from the same source interfere, after one had
travelled through water which was at rest whilst the other had
travelled through water which was in motion (vide note 9). The
fact that the theory of relativity accounts for this remarkable re-
sult shows that it is valid for the optics and electrodynamics of
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moving media (and also that in such cases the relativity princi-
ple, which is derived from that of Lorentz and Einstein by putting
q for ¢, does not hold; one might be tempted to believe this er-
roneously from the equation of wave-motion that holds in such
cases). We shall find the special form of (34) for the wther, in
which ¢ = ¢ =1 (cf. (35)), to be

a2 — (1 —vcosb)(1 — vcosby) <in? W'
2 1 —v?

If the reference-space R, happens to be the one on which the the-
ory of planets is commonly founded (and in which the centre of
mass of the solar system is at rest), and if the body in question is
the earth (on which an observing instrument is situated), v its ve-
locity in R, w the angle in R, that two rays which reach the solar
system from two infinitely distant stars make with one another,
01, 0> the angles which these rays make with the direction of mo-
tion of the earth in Re, then the angle w’, at which the stars are
observed from the earth, is determined by the preceding equation.
We cannot, of course, measure w, but we note the changes in w’
(the aberration) by taking account of the changes in 6, and 6,
in the course of a year.

The formulze which give the relationship between time, proper-
time, volume and statical volume are also valid in the case of non-
uniform motion. If dx is the infinitesimal displacement that a
moving point-mass experiences during an infinitesimal length of
time in the world, then

dx = ds - u, (u,u) = —1, ds >0

give the proper-time ds and the world-direction u of this displace-
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ment. The integral

[as= [ v=iaxax

taken over a portion of the world-line is the proper-time that
elapses during this part of the motion: it is independent of the
manner in which the world has been split up into space and time
and, provided the motion is not too rapid, will be indicated by
a clock that is rigidly attached to the point-mass. If we use any
linear co-ordinates x; whatsoever in the world, and the proper-
time s as our parameters to represent our world-line analytically
(just as we use length of arc in three-dimensional geometry), then

ds
are the (contra-variant) components of u, and we get >, u;u’ = —1.

If we split up the world into space and time by means of e, we
find

u

1 v .
V1= | VT2 o Re
in which v is the velocity of the mass-point; and we find that the
time dt that elapses during the displacement dx in R, and the
proper-time ds are connected by

ds = dtv'1 — 2. (37)

If two world-points A, B are so placed with respect to one an-
other that AB is a time-like vector pointing into the future, then
A and B may be connected by world-lines, whose directions all
likewise satisfy this condition: in other words, point-masses that
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leave A may reach B. The proper-time necessary for them to do
this is dependent on the world-line; it is longest for a point-mass
that passes from A to B by uniform translation. For if we split
up the world into space and time in such a way that A and B
occupy the same point in space, this motion degenerates simply
to rest, and we derive the proposition (37) which states that the
proper-time lags behind the time ¢. The life-processes of mankind
may well be compared to a clock. Suppose we have two twin-
brothers who take leave from one another at a world-point A, and
suppose one remains at home (that is, permanently at rest in an
allowable reference-space), whilst the other sets out on voyages,
during which he moves with velocities (relative to “home”) that
approximate to that of light. When the wanderer returns home in
later years he will appear appreciably younger than the one who
stayed at home.

An element of mass dm (of a continuously extended body)
that moves with a velocity whose numerical value is v occupies
at a particular moment a volume dV which is connected with its
statical volume dV} by the formula

dV =dVpyv'1 — v

Accordingly, we have the relation between the density ﬁ = U

d
and the statical density an _ ho:
dVo

o = pvV1—v2

Lo is an invariant, and jou with components pgu! is thus a contra-
variant vector, the “flux of matter,” which is determined by the
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motion of the mass independently of the co-ordinate system. It
satisfies the equation of continuity

a(/~Loui) o
Zi: 5o, = 0.

The same remarks apply to electricity. If it is associated with
matter so that de is the electric charge of the element of mass dm,

then the statical density pg = % is connected to the density
0
de
=—h
p v y

p(]:p\/l_v27

then
gt = pouz

are the contra-variant components of the electric current (4-
vector); this corresponds exactly to the results of §20. In
Maxwell’s phenomenological theory of electricity, the concealed
motions of the electrons are not taken into account as motions
of matter, consequently electricity is not supposed attached to
matter in his theory. The only way to explain how it is that a
piece of matter carries a certain charge is to say this charge is that
which is simultaneously in the portion of space that is occupied
by the matter at the moment under consideration. From this
we see that the charge is not, as in the theory of electrons, an
invariant determined by the portion of matter, but is dependent
on the way the world has been split up into space and time.
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§ 23. The Electrodynamics of Moving Bodies

By splitting up the world into space and time we split up all
tensors. We shall first of all investigate purely mathematically
how this comes about, and shall then apply the results to derive
the fundamental equations of electrodynamics for moving bodies.
Let us take an n-dimensional metrical space, which we shall call
“world,” based on the metrical groundform (x,x). Let e be a
vector in it, for which (e,e) = e # 0. We split up the world
in the usual way into space R, and time in terms of e. Let ey,

€, ..., €,_1 be any co-ordinate system in the space R,, and let ey,
€y, ..., e, 1 be the displacements of the world that are orthogonal
to e = ey and that are produced in R, by ey, €, ..., €,_1. In the
co-ordinate system e; (1 = 0,1,2,...,n—1) “belonging to R.” and

representing the world, the scheme of the co-variant components
of the metrical ground-tensor has the form

e 0 0
0 g1 912 (n = 3)-
0 921 922

As an example, we shall consider a tensor of the second order
and suppose it to have components 7}, in this co-ordinate system.
Now, we assert that it splits up, in a manner dependent only on e,
according to the following scheme:

To ‘ Tor  Tog
T | Ty The
Too | Tor T2

that is, into a scalar, two vectors and a tensor of the second order
existing in R, which are here characterised by their components



CHAPTER III 282

in the co-ordinate system e; (i =1,2,...,n—1).
For if the arbitrary world-displacement x splits up in terms
of e thus
x=¢ | x

and if, when we divide x into two factors, one of which is propor-
tional to e and the other orthogonal to e, we have

x=fe+x"

then, if x has components £, we get

n—1

n—1 n—1
X = Zfleh 5 = 507 X* = Zgleia X = Zgzei'
=0 i=1

i=1

Thus, without using a co-ordinate system we may represent the
splitting up of a tensor in the following manner. If x, y are any
two arbitrary displacements of the world, and if we set

x = {e+x", y=ne+y", (38)

so that x* and y* are orthogonal to e, then the bilinear form
belonging to the tensor of the second order is

T(x,y) =¢&nT (e e) +nT'(x",e) + T (e, y") + T(x",y").

Hence, if we interpret x*, y* as the displacements of the world
orthogonal to e, which produce the two arbitrary displacements
x, y of the space, we get

1. a scalar T'(e,e) = J = J,

2. two linear forms (vectors) in the space R., defined by

L(x) = T(x*,e), L'(x) =T(e,x*),
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3. a bilinear form (tensor) in the space Re, defined by

T(x,y) =T(x"y").

If x, y are arbitrary world-displacements that produce x, y, re-
spectively in R, we must replace x*, y* in this definition by x—¢e,
y — ne in accordance with (38); in these,

L) = L) — L), L) = L'(x) — L(x,0),
1 1 I (39)
T(x,y)=T(x,y) - S(v.e)L(x) - ;(x, e)L(y) + g(& e)(y,e).

The linear and bilinear forms (vectors and tensors) of R, on the
left may be represented by the world-vectors and world-tensors
on the right which are derived uniquely from them. In the above
representation by means of components, this amounts to the fol-
lowing: that, for example,

.o 0 0 0
T = TH le is represented by |0 Ty; Tiaf.
21 192 0 Ty Th

It is immediately clear that in all calculations the tensors of space
may be replaced by the representative world-tensors. We shall,
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however, use this device only in the case when, if one space-tensor
is A times another, the same is true of the representative world-
tensors.

If we base our calculations of components on an arbitrary
co-ordinate system, in which

then the invariant is
J = Tieled and e = éle;.

But the two vectors and the tensor in R, have as their represen-
tatives in the world, according to (39), the two vectors and the
tensor with components:

J

L:L;— —e L; = Tik6k7
e
J

L': L, — —e; L, = Tie¥;
e

6kLi + ele J

T : Ty — + ;eiek.

e
In the case of a skew-symmetrical tensor, J becomes = 0 and
L' = —L; our formule degenerate into
L: L’L = Ekeka
eiLk — 6kLi
. .

T Ty +

A linear world-tensor of the second order splits up in space into a
vector and a linear space-tensor of the second order.
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Maxwell’s field-equations for bodies at rest have been set out
in §20. H. Hertz was the first to attempt to extend them so that
they might apply generally for moving bodies. Faraday’s Law of
Induction states that the time-decrement of the flux of induction
enclosed in a conductor is equal to the induced electromotive force,

that is 14
-——— | B = [ Edr. 4
T 1, dO / dr (40)

The surface-integral on the left, if the conductor be in motion,
must be taken over a surface stretched out inside the conductor
and moving with it. Since Faraday’s Law of Induction has been
proved for just those cases in which the time-change of the flux of
induction within the conductor is brought about by the motion of
the conductor, Hertz did not doubt that this law was equally valid
for the case, too, when the conductor was in motion. The equation
div B = 0 remains unaffected. From vector analysis we know that,
taking this equation into consideration, the law of induction (40)
may be expressed in the differential form:

10B 1
curl E = T curl[v, B] (41)

0B
in which — denotes the differential co-efficient of B with respect

to the time for a fixed point in space, and v denotes the velocity
of the matter.

Remarkable inferences may be drawn from (41). Asin Wilson’s
experiment (vide note 10), we suppose a homogeneous dielectric
between the two plates of a condenser, and assume that this di-
electric moves with a constant velocity of magnitude v between
these plates, which we shall take to be connected by means of a



CHAPTER III 286

conducting wire. Suppose, further, that there is a homogeneous
magnetic field H parallel to the plates and perpendicular to v. We
shall imagine the dielectric separated from the plates of the con-
denser by a narrow empty space, whose thickness we shall assume
— 0 in the limit. It then follows from (41) that, in the space be-

tween the plates, E — —[v, B] is derivable from a potential; since
the latter must be zero at the plates which are connected by a

1

—[v,B].

“[v.B

Hence a homogeneous electric field of intensity £ = ol (in
c

conducting wire it is easily seen that we must have E =

which p denotes permeability) arises which acts perpendicularly
to the plates. Consequently, a statical charge of surface-density

€
ol (e = dielectric constant) must be called up on the plates.

Ifc the dielectric is a gas, this effect should man-
ifest itself, no matter to what degree the gas
has been rarefied, since eu converges, not to-
wards 0, but towards 1, at infinite rarefaction.
This can have only one meaning if we are to
retain our belief in the @ether, namely, that
the effect must occur if the sether between the
plates is moving relatively to the plates and to TV

the sether outside them. To explain induction

we should, however, be compelled to assume

that the ather is dragged along by the con-

necting wire.* General observations, Fizeau’s FiG. 14.
experiment dealing with the propagation of

light in flowing water, and Wilson’s experiment itself, prove that

*In (41) v signified the velocity of the sther, not relative to the matter
but relative to what?
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this assumption is incorrect. Just as in Fizeau’s experiment the

: : 1 : .
convection-co-efficient 1 — — appears, so In the present experi-

ment we observe only a change of magnitude

i 1UH

C

which vanishes when e = 1. This seems to be an inexplicable
contradiction to the phenomenon of induction in the moving con-
ductor.

The theory of relativity offers a full explanation of this. If, as
in §20, we again set ct = x¢, and if we again build up a field F
out of E and B, and a skew-symmetrical tensor H of the second
order out of D and H, we have the field-equations

OF, 0F; OF,
o Ot Ot

8% &vk 8xl - 07
Z 8xk =0

These hold if we regard the Fj;,’s as co-variant, the H%*’s as contra-
variant components, in each case, of a tensor of the second order,
but the s'’s as the contra-variant components of a vector in the
four-dimensional world, since the latter are invariant in any arbi-
trary linear co-ordinate system. The laws of matter

D = ¢E, B = uH, s =0cE

signify, however, that if we split up the world into space and time
in such a way that matter is at rest, and if F' splits up into E | B,
H into D | H, and s into p | s, then the above relations hold. If
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we now use any arbitrary co-ordinate system, and if the world-
direction of the matter has the components v’ in it then, after our
explanations above, these facts assume the form

(a) H} = €eFy} (43)
in which

Ff = Fyu®  and H = Huk:

(2

(b)  Fu — (uFy —u F) = ,Uz{Hik — (u; Hy, — UkH:)}Q (44)

and (c) si + ui(spuf) = o F. (45)

This is the invariant form of these laws. For purposes of calcula-
tion it is convenient to replace (44) by the equations

Fuu; + Fuu, + Fou = p{ Hgu; + Hyug + Hgwg } (46)

which are derived directly from them. Our manner of deriving
them makes it clear that they hold only for matter which is in
uniform translation. We may, however, consider them as being
valid also for a single body in uniform translation, if it is separated
by empty space from bodies moving with velocities differing from
its own.” Finally, they may also be considered to hold for matter
moving in any manner whatsoever, provided that its velocity does

*This is the essential point in most applications. By applying Maxwell’s
statical laws to a region composed, in each case, of a body K and the empty
space surrounding it and referred to the system of reference in which K is
at rest, we find no discrepancies occurring in empty space when we derive
results from different bodies moving relatively to one another, because the
principle of relativity holds for empty space.
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not fluctuate too rapidly. After having obtained the invariant
form in this way, we may now split up the world in terms of any
arbitrary e. Suppose the measuring instruments that are used to
determine the ponderomotive effects of field to be at rest in Re.
We shall use a co-ordinate system belonging to R, and thus set

(F107 F207 F30)
(Fos, Fiy, F12)
(H107 H207 )

Ho)

(E, E, E)=E
(8237 B31> 812) B
(D), D,, D3)=D
( H

(Hos, Hs, = (Ha3, Hs1, Hi2)=H,
D= p (3", 5%) = (s, 2 8%) = s,
ud = 1 (u', v u?) = (v, v4 ) v

V1—o2 - V1—02’

we hereby again arrive at Maxwell’s field-equations, which
are thus valid in a totally unchanged form, not only for
static, but also for moving matter. Does this not, however,
conflict violently with the observations of induction, which appear
to require the addition of a term as in (41)7 No; for these observa-
tions do not really determine the intensity of field E, but only the
current which flows in the conductor; for moving bodies, however,
the connection between the two is given by a different equation,
namely, by (45).

If we write down those equations of (43), (45), which corre-
spond to the components with indices ¢ = 1, 2, 3, and those of (46),
which correspond to

(1,k, 1) =(2,3,0), (3,1,0), (1,2,0)

(the others are superfluous), the following results, as is easily seen,
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come about. If we set
E + [v,B] = E7, D+[v,H]= D",
B - [v,E] = B, H-[v,D]=H",
then
D* = ¢cE*, B* = uH".

If, in addition, we resolve s into the “convection-current” ¢ and
the “conduction-current” s*, that is,

s=c+s",
* * p—(V,S) *
c=p'v =——==p—(v,s
PV, P Tz =P (Vs
then
. oE*
S =

Vi-e®

Everything now becomes clear: the current is composed partly
of a convection-current which is due to the motion of charged
matter, and partly of a conduction-current, which is determined
by the conductivity o of the substance. The conduction-current is
calculated from Ohm’s Law, if the electromotive force is defined
by the line-integral, not of E, but of E*. An equation exactly
analogous to (41) holds for E*, namely:

curlE* = ——— + curl[v,B]| (we now always take ¢ = 1)

ot

or expressed in integrals, as in (40),

—i BndO:/E*dI‘.
dt
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This explains fully Faraday’s phenomenon of induction in moving
conductors. For Wilson’s experiment, according to the present
theory, curl E = 0, that is, E will be zero between the plates. This
gives us the constant values of the individual vectors (of which the
electrical ones are perpendicular to the plates, whilst the magnetic
ones are directed parallel to the plates and perpendicular to the
velocity): these values are:

E*=uvB* =vuH" = pw(H 4 vD),
D =D"—vH =eE" —vH.

If we substitute the expression for £* in the first equation, we get

D =v{(ep—1)H + epvD},

en—1

D = vH

1—euv?

This is the value of the superficial density of charge that is called
up on the condenser plates: it agrees with our observations since,
on account of v being very small, the denominator in our formula
differs very little from unity.

The boundary conditions at the boundary between the matter
and the aether are obtained from the consideration that the field-
magnitudes F' and H must not suffer any sudden (discontinuous)
changes in moving along with the matter; but, in general, they
will undergo a sudden change, at some fixed space-point imagined
in the @ether for the sake of clearness, at the instant at which
the matter passes over this point. If s is the proper-time of an
elementary particle of matter then

dFy,  OFy y
ds O
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must remain finite everywhere. If we set

OFy _ (aFm . aFH)
oz, ox; oxy,
we see that this expression
)
Ox,  Ox;

Consequently, E* cannot have a surface-curl (and B cannot have
a surface-divergence).

The fundamental equations for moving bodies were deduced by
Lorentz from the theory of electrons in a form equivalent to the
above before the discovery of the principle of relativity. This is not
surprising, seeing that Maxwell’s fundamental laws for the sether
satisfy the principle of relativity, and that the theory of electrons
derives those governing the behaviour of matter by building up
mean values from these laws. Fizeau’s and Wilson’s experiments
and another analogous one, that of Rontgen and Eichwald (vide
note 11), prove that the electromagnetic behaviour of matter is
in accordance with the principle of relativity; the problems of the
electrodynamics of moving bodies first led Einstein to enunciate
it. We are indebted to Minkowski for recognising clearly that the
fundamental equations for moving bodies are determined uniquely
by the principle of relativity if Maxwell’s theory for matter at rest
is taken for granted. He it was, also, who formulated it in its final
form (vide note 12).

Our next aim will be to subjugate mechanics, which does
not obey the principle in its classical form, to the principle of
relativity of Einstein, and to inquire whether the modifications
that the latter demands can be made to harmonise with the facts
of experiment.
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§ 24. Mechanics according to the Principle of Relativity

On the theory of electrons we found the mechanical effect of
the electromagnetic field to depend on a vector p whose contra-
variant components are

pi — Fiksk — pOFZkU'k
It therefore satisfies the equation

in which u is the world-direction of the matter. If we split up p
and u in any way into space and time thus

u=nh| hv,} (48)

P=Alp
we get p as the force-density and, as we see from (47) or from

h{X=(p,v)} =0

that A is the work-density.

We arrive at the fundamental law of the mechanics which
agrees with Einstein’s Principle of Relativity by the same method
as that by which we obtain the fundamental equations of elec-
tromagnetics. We assume that Newton’s Law remains valid in
the system of reference in which the matter is at rest. We fix
our attention on the point-mass m, which is situated at a definite
world-point O and split up our quantities in terms of its world-
direction u into space and time. m is momentarily at rest in R,.
Let o be the density in R, of the matter at the point O. Sup-
pose that, after an infinitesimal element of time ds has elapsed,



CHAPTER III 294

m has the world-direction u + du. It follows from (u,u) = —1
that (u-du) = 0. Hence, splitting up with respect to u, we get

u=1|0, du=0|dv, p=0]p.
It follows from
u+du=1|dv

that dv is the relative velocity acquired by m (in R,) during the
time ds. Thus there can be no doubt that the fundamental law of
mechanics is

dv B
Ho ds p.
From this we derive at once the invariant form
du
— = 49
Ho dS P, ( )

which is quite independent of the manner of splitting up. In it,
1o is the statical density, that is, the density of the mass when at
rest; ds is the proper-time that elapses during the infinitesimal
displacement of the particle of matter, during which its world-
direction increases by du.

Resolution into terms of u is a partition which would alter
during the motion of the particle of matter. If we now split up
our quantities, however, into space and time by means of some
fixed time-like vector e that points into the future and satisfies
the condition of normality (e, e) = —1, then, by (48), (49) resolves
into

i (7) =+
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If, in this partition or resolution, ¢ denotes the time, dV the vol-
ume, and dVj the static volume of the particle of matter at a
definite moment, its mass, however, being m = uo dVjy, and if

pdv=P, \dV =1L

denotes the force acting on the particle and its work, respectively,
then if we multiply our equations by dV and take into account

that p p p
[ — _ 2. = .
o dV Is mv1—v 7 m o

and that the mass m remains constant during the motion, we get
finally

) e
% (%) = P. (52)

These are the equations for the mechanics of the point-mass. The
equation of momentum (52) differs from that of Newton only in

that the (kinetic) momentum of the point-mass is not mv but
mv
= ———. The equation of energy (51) seems strange at first: if

V1—10?

we expand it into powers of v, we get

= + : +
—=m+—+ ...,
V1— 2 2
so that if we neglect higher powers of v and also the constant m
we find that the expression for the kinetic energy degenerates into
the one given by classical mechanics.
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This shows that the deviations from the mechanics of Newton
are, as we suspected, of only the second order of magnitude in
the velocity of the point-masses as compared with the velocity of
light. Consequently, in the case of the small velocities with which
we usually deal in mechanics, no difference can be demonstrated
experimentally. It will become perceptible only for velocities that
approximate to that of light; in such cases the inertial resistance
of matter against the accelerating force will increase to such an
extent that the possibility of actually reaching the velocity of light
is excluded. Cathode rays and the S-radiations emitted by ra-
dioactive substances have made us familiar with free negative elec-
trons whose velocity is comparable to that of light. Experiments
by Kaufmann, Bucherer, Ratnowsky, Hupka, and others, have
shown in actual fact that the longitudinal acceleration caused in
the electrons by an electric field or the transverse acceleration
caused by a magnetic field is just that which is demanded by the
theory of relativity. A further confirmation based on the motion
of the electrons circulating in the atom has been found recently in
the fine structure of the spectral lines emitted by the atom (vide
note 13). Only when we have added to the fundamental equa-
tions of the electron theory, which, in §20, was brought into an
invariant form agreeing with the principle of relativity, the equa-
tion s' = pou’, namely, the assertion that electricity is associated
with matter, and also the fundamental equations of mechanics,
do we get a complete cycle of connected laws, in which a state-
ment of the actual unfolding of natural phenomena is contained,
independent of all conventions of notation. Now that this final
stage has been carried out, we may at last claim to have proved
the validity of the principle of relativity for a certain region, that
of electromagnetic phenomena.
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In the electromagnetic field the ponderomotive vector p; is
derived from a tensor S;;, dependent only on the local values of
the phase-quantities, by the formulee:

oSt
(%vk '

%

p:

In accordance with the universal meaning ascribed to the con-
ception energy in physics, we must assume that this holds not
only for the electromagnetic field but for every region of physical
phenomena, and that it is expedient to regard this tensor instead
of the ponderomotive force as the primary quantity. Our pur-
pose is to discover for every region of phenomena in what manner
the energy-momentum-tensor (whose components S;; must always
satisfy the condition of symmetry) depends on the characteristic
field- or phase-quantities. The left-hand side of the mechanical
equations

du’
ds
may be reduced directly to terms of a “kinetic” energy-momentum-
tensor thus:

2 Di

Uik = pouiuy.
For
ouF y O(pou) L O,
8xk o al’k .

The first term on the right = 0, on account of the equation of
i

ds
p Oui  Ouy Oxy dug

Or,  Orp Os  ds’

because

continuity for matter; the second = py

u
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Accordingly, the equations of mechanics assert that the complete
energy-momentum-tensor 7Tj, = U, + Si composed of the kinetic
tensor U and the potential tensor S satisfies the theorems of con-
servation

orr

8xk n
The Principle of the Conservation of Energy is here expressed in
its clearest form. But, according to the theory of relativity, it
is indissolubly connected with the principle of the conservation
of momentum and the conception momentum (or impulse)
must claim just as universal a significance as that of en-
ergy. If we express the kinetic tensor at a world-point in terms of
a normal co-ordinate system such that, relatively to it, the matter
itself is momentarily at rest, its components assume a particularly
simple form, namely, Uy = pg (or = c*pug, if we use the c.g.s. sys-
tem, in which ¢ is not = 1), and all the remaining components
vanish. This suggests the idea that mass is to be regarded as
concentrated potential energy that moves on through space.

0.

§ 25. Mass and Energy

To interpret the idea expressed in the preceding sentence we
shall take up the thread by returning to the consideration of the
motion of the electron. So far, we have imagined that we have to
write for the force P in its equation of motion (52) the following:

P =¢(E+[v,H]) (e=charge of the electron)

that is, that P is composed of the impressed electric and magnetic
fields E and H. Actually, however, the electron is subject not
only to the influence of these external fields during its motion
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but also to the accompanying field which it itself generates. A
difficulty arises, however, in the circumstance that we do not know
the constitution of the electron, and that we do not know the
nature and laws of the cohesive pressure that keeps the electron
together against the enormous centrifugal forces of the negative
charge compressed in it. In any case the electron at rest and
its electric field (which we consider as part of it) is a physical
system, which is in a state of statical equilibrium—and that is
the essential point. Let us choose a normal co-ordinate system in
which the electron is at rest. Suppose its energy-tensor to have
components t;,. The fact that the electron is at rest is expressed
by the vanishing of the energy-flux of whose components are tg;
(¢ =1,2,3). The 0th condition of equilibrium

ot
ain N

then tells us that the energy-density toy is independent of the
time zo. On account of symmetry the components t; (i = 1,2, 3)
of the momentum-density each also vanish. If t(!) is the vec-
tor whose components are ty;, t2, t13, the condition for equilib-
rium (53), (i = 1), gives

0 (53)

divt® = 0.
Hence we have, for example,
diV(IQt(l)) = X9 div t(l) + t12 = t12

and since the integral of a divergence is zero (we may assume that
the ¢’s vanish at infinity at least as far as to the fourth order) we
get

/tlg dl‘l deQ d!lfg =0.
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In the same way we find that, although the t;.’s (for i,k = 1,2, 3)
do not vanish, their volume integrals [ t;z dVy do so. We may

regard these circumstances as existing for every system in statical
equilibrium. The result obtained may be expressed by invariant
formulee for the case of any arbitrary co-ordinate system thus:

Ejy is the energy-content (measured in the space of reference for
which the electron is at rest), u; are the co-variant components
of the world-direction of the electron, and dVj the statical volume
of an element of space (calculated on the supposition that the
whole of space participates in the motion of the electron). (54) is
rigorously true for uniform translation. We may also apply the
formula in the case of non-uniform motion if u does not change
too suddenly in space or in time. The components

ot
8l‘k

—

of the ponderomotive effect, exerted on the electron by itself, are
however, then no longer = 0.

If we assume the electron to be entirely without mass, and if
p! is the “4-force” acting from without, then equilibrium demands
that

p+p =0. (55)
We split up u and p into space and time in terms of a fixed e,
getting
u=hlhv, p=(@)=A[p



RELATIVITY OF SPACE AND TIME 301

and we integrate (55) with respect to the volume dV=dV;v/1 — v
Since, if we use a normal co-ordinate system corresponding to R,
we have

4 ) d .
/pz dV = /]31 d.ﬁL’l dl’g d$3 = _d_ tlo d.ﬁL’l dJIQ d&?g

Zo

d ) d )
:——E 0,1 1_ 2:__E 7
Jg Bov V1 — ) = = (Eou')

(in which 2o = ¢, the time), we get
d Ey
———= | =L (= [ AdV
i () = (=)

i) =r (= [rm)

These equations hold if the force P acting from without is not too

E
great compared with —0, a being the radius of the electron, and

if its density in the neighbourhood of the electron is practically
constant. They agree exactly with the fundamental equations of
mechanics if the mass m is replaced by E. In other words, iner-
tia is a property of energy. In mechanics we ascribe to every
material body an invariable mass m which, in consequence of the
manner in which it occurs in the fundamental law of mechanics,
represents the inertia of matter, that is, its resistance to the ac-
celerating forces. Mechanics accepts this inertial mass as given
and as requiring no further explanation. We now recognise that
the potential energy contained in material bodies is the cause of
this inertia, and that the value of the mass corresponding to the
energy Fjy expressed in the c.g.s. system, in which the velocity of
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light is not unity, is
_ Ey
m=-—

(56)

We have thus attained a new, purely dynamical view of mat-
ter.* Just as the theory of relativity has taught us to reject the
belief that we can recognise one and the same point in space at dif-
ferent times, so now we see that there is no longer a mean-
ing in speaking of the same position of matter at different
times. The electron, which was formerly regarded as a body of
foreign substance in the non-material electromagnetic field, now
no longer seems to us a very small region marked off distinctly
from the field, but to be such that, for it, the field-quantities
and the electrical densities assume enormously high values. An
“energy-knot” of this type propagates itself in empty space in a
manner no different from that in which a water-wave advances over
the surface of the sea; there is no “one and the same substance” of
which the electron is composed at all times. There is only a po-
tential; and no kinetic energy-momentum-tensor becomes added
to it. The resolution into these two, which occurs in mechanics,
is only the separation of the thinly distributed energy in the field
from that concentrated in the energy-knots, electrons and atoms;
the boundary between the two is quite indeterminate. The theory
of fields has to explain why the field is granular in structure and
why these energy-knots preserve themselves permanently from en-
ergy and momentum in their passage to and fro (although they
do not remain fully unchanged, they retain their identity to an
extraordinary degree of accuracy); therein lies the problem of

*Even Kant in his Metaphysischen Anfangsgrinden der Naturwis-
senschaft, teaches the doctrine that matter fills space not by its mere existence
but in virtue of the repulsive forces of all its parts.
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matter. The theory of Maxwell and Lorentz is incapable of solv-
ing it for the primary reason that the force of cohesion holding the
electron together is wanting in it. What is commonly called
matter is by its very nature atomic; for we do not usually
call diffusely distributed energy matter. Atoms and electrons
are not, of course, ultimate invariable elements, which natu-
ral forces attack from without, pushing them hither and thither,
but they are themselves distributed continuously and subject to
minute changes of a fluid character in their smallest parts. It
is not the field that requires matter as its carrier in order to be
able to exist itself, but matter is, on the contrary, an offspring
of the field. The formule that express the components of the
energy-tensor Tj; in terms of phase-quantities of the field tell us
the laws according to which the field is associated with energy
and momentum, that is, with matter. Since there is no sharp line
of demarcation between diffuse field-energy and that of electrons
and atoms, we must broaden our conception of matter, if it is still
to retain an eract meaning. In future we shall assign the term
matter to that real thing, which is represented by the energy-
momentum-tensor. In this sense, the optical field, for example, is
also associated with matter. Just as in this way matter is merged
into the field, so mechanics is expanded into physics. For the law
of conservation of matter, the fundamental law of mechanics

T
8xk N

0, (57)

in which the Tj.’s are expressed in terms of the field-quantities,
represents a differential relationship between these quantities, and
must therefore follow from the field-equations. In the wide sense,
in which we now use the word, matter is that of which we take
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cognisance directly through our senses. If I seize hold of a piece of
ice, I experience the energy-flux flowing between the ice and my
body as warmth, and the momentum-flux as pressure. The energy-
flux of light on the surface of the epithelium of my eye determines
the optical sensations that I experience. Hidden behind the matter
thus revealed directly to our organs of sense there is, however, the
field. To discover the laws governing the latter itself and also
the laws by which it determines matter we have a first brilliant
beginning in Maxwell’s Theory, but this is not our final destination
in the quest of knowledge.*

To account for the inertia of matter we must, according to for-
mula (56), ascribe a very considerable amount of energy-content
to it: one kilogram of water is to contain 9-10%% ergs. A small por-
tion of this energy is energy of cohesion, that keeps the molecules
or atoms associated together in the body. Another portion is the
chemical energy that binds the atoms together in the molecule and
the sudden liberation of which we observe in an explosion (in solid
bodies this chemical energy cannot be distinguished from the en-
ergy of cohesion). Changes in the chemical constitution of bodies
or in the grouping of atoms or electrons involve the energies due
to the electric forces that bind together the negatively charged
electrons and the positive nucleus; all ionisation phenomena are
included in this category. The energy of the composite atomic
nucleus, of which a part is set free during radioactive disinte-
gration, far exceeds the amounts mentioned above. The greater
part of this, again, consists of the intrinsic energy of the elements
of the atomic nucleus and of the electrons. We know of it only
through inertial effects as we have hitherto—owing to a merciful

*Later we shall once again modify our views of matter; the idea of the
existence of substance has, however, been finally quashed.
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Providence—not discovered a means of bringing it to “explosion”.
Inertial mass varies with the contained energy. If a body
is heated, its inertial mass increases; if it is cooled, it decreases;
this effect is, of course, too small to be observed directly.

The