
F
O

U
N

D
A

T
IO

N
S

T
H

E
 G

R
A

SS
H

O
P

P
E

R
 P

R
IM

E
R

 T
H

IR
D

 E
D

IT
IO

N

 2 Introduction

I.0
Preface
WELCOME
You have just opened the third edition of the Grasshopper Primer. This primer
was originally written by Andrew O. Payne of Lift Architects for Rhino4 and
Grasshopper version 0.6.0007 which, at the time of its release, was a giant
upgrade to the already robust Grasshopper platform. We now find ourselves at
another critical shift in Grasshopper development, so a much needed update to
the existing primer was in order. We are thrilled to add this updated primer to
the many amazing contributions put forth by Grasshopper community members.
With an already excellent foundation from which to build, our team at Mode Lab
went to work designing and developing the look and feel of the third edition.
This revision provides a comprehensive guide to the most current Grasshopper
build, version 0.90076, highlighting what we feel are some of the most exciting
feature updates. The revised text, graphics, and working examples are intended
to teach visual programming to the absolute beginner, as well as provide a quick
introduction to Generative Design workflows for the seasoned veteran. It is our
goal that this primer will serve as a field guide to new and existing users looking
to navigate the ins and outs of using Grasshopper in their creative practice.

FOUNDATIONS
This primer, titled Foundations, introduces you to the fundamental concepts and
essential skill-building workflows to effectively use Grasshopper. Foundations
is the first volume in a forthcoming collection of Grasshopper primers (to be
released in the coming months). This first volume tracks through an introduction
to the Grasshopper user interface, the anatomy of a Grasshopper definition,
and three chapters dealing with parametric concepts and case study examples.
An appendix closes out this volume, providing you with resources for continued
exploration.

We hope that at the very least this primer will inspire you to begin exploring the
many opportunities of programming with Grasshopper. We wish you the best of
luck as you embark on this journey.

Gil Akos
Mode Lab
http://modelab.is/

Ronnie Parsons
Mode Lab
http://modelab.is/

A special thanks to David Rutten for the endless inspiration and invaluable
work pioneering Grasshopper. We would also like to thank Andrew O. Payne
for providing the assets from which this work initiated. Lastly, many thanks to
Bob McNeel and everyone at Robert McNeel & Associates for their generous
support over the years.

3

REQUIRED SOFTWARE
Rhino5
Rhino 5.0 is the market leader in industrial design modeling software. Highly
complicated shapes can be directly modeled or acquired through 3D digitizers.
With its powerful NURBS based engine Rhino 5.0 can create, edit, analyze, and
translate curves, surfaces, and solids. There are no limits on complexity, degree,
or size.
http://www.rhino3d.com/download/rhino/5/latest

Grasshopper
For designers who are exploring new shapes using generative algorithms,
Grasshopper is a graphical algorithm editor tightly integrated with Rhino’s
3D modeling tools. Unlike RhinoScript or Python, Grasshopper requires no
knowledge of the abstract syntax of scripting, but still allows designers to build
form generators from the simple to the awe inspiring.
http://www.grasshopper3d.com/page/download-1

FORUMS
The Grasshopper forum is very active and offers a wonderful resource for
posting questions/answers and finding help on just about anything.
The forum has categories for general discussion, errors & bugs, samples &
examples, and FAQ.
http://www.grasshopper3d.com/forum

The Common Questions section of the Grasshopper site contains answers to
many questions you may have, as well as helpful links:
http://www.grasshopper3d.com/notes/index/allNotes

McNeel Forums
For more general questions pertaining to Rhino3D be sure to check out the
McNeel Forum powered by Discourse.
http://discourse.mcneel.com/

GENERAL REFERENCES
Essential Mathematics
Essential Mathematics uses Grasshopper to introduce design professionals to
foundation mathematical concepts that are necessary for effective development
of computational methods for 3D modeling and computer graphics. Written by
Rajaa Issa.
http://www.rhino3d.com/download/rhino/5.0/EssentialMathematicsThirdEdition/

Wolfram MathWorld
MathWorld is an online mathematics resource., assembled by Eric W. Weisstein
with assistance from thousands of contributors. Since its contents first
appeared online in 1995, MathWorld has emerged as a nexus of mathematical
information in both the mathematics and educational communities. Its entries
are extensively referenced in journals and books spanning all educational levels.
http://mathworld.wolfram.com/

THINGS TO REMEMBER
- Grasshopper is a graphical algorithm editor that is integrated with

Rhino3D’s modeling tools.
- Algorithms are step by step procedures designed to perform an operation
- You use Grasshopper to design algorithms that then automate tasks in

Rhino3D.
- An easy way to get started if you are unclear how to perform a specific

operation in Grasshopper would be to try manually and incrementally
creating an algorithm using Rhino commands.

 4 Introduction

http://www.grasshopper3d.com/
page/download-1

http://www.grasshopper3d.com

[I.] Introduction
I.0 Preface 2

I.1 Contents 4

I.2 Grasshopper - an Overview 8

I.3 Grasshopper in Action 10

[F.] Foundations
F.0 Hello Grasshopper 14

F.0.0 Installing & Launching Grasshopper 16

F.0.0.0 Downloading 16

F.0.0.1 Installing 16

F.0.0.2 Launching 17

F.0.1 The Grasshopper UI 18

F.0.1.0 The Windows Title BAr 18

F.0.1.1 Main Menu Bar 19

F.0.1.2 File Browser Control 19

F.0.1.3 Component Palettes 21

F.0.1.4 The Canvas 22

F.0.1.5 Grouping 22

F.0.1.6 Widgets 23

F.0.1.7 Using the Search Feature 24

F.0.1.8 The Find Feature 24

F.0.1.9 Using The Radial Menu 25

F.0.1.10 The Canvas Toolbar 26

F.0.2 Talking to Rhino 28

F.0.2.0 Viewport Feedback 28

F.0.2.1 Live Wires 29

F.0.2.2 Gumball Widget 29

F.0.2.3 Baking Geometry 30

F.0.2.4 Units & Tolerances 30

F.0.2.5 Remote Control Panel 31

F.0.2.6 File Management 32

F.0.2.7 Templates 32

F.1 Anatomy of a Grasshopper Definition 34

F.1.0 Grasshopper Object Types 36

F.1.0.0 Parameters 36

F.1.0.1 Components 36

F.1.0.2 Object Colors 37

I.1
Contents

5

f.1.4_the grasshopper definition.gh

f.2.1.0_attractor definition.gh

f.2.3_domains and color.gh

f.2.2.3_trigonometry components.gh

f.2.2_operators and conditionals.gh

f.2.2.4_expressions.gh

f.2.4_booleans and logical operators.gh

f.3.0.1_grasshopper spline
components.gh

F.1.1 Grasshopper Component Parts 38

F.1.1.0 Label vs Icon Display 38

F.1.1.1 Component Help 40

F.1.1.2 Tool Tips 40

F.1.1.3 Context Popup Menus 41

F.1.1.4 Zoomable User Interface 42

F.1.2 Data Types 43

F.1.2.0 Persistent Data 43

F.1.2.1 Volatile Data 44

F.1.2.2 Input Parameters 45

F.1.3 Wiring Components 48

F.1.3.0 Connection Management 48

F.1.3.1 Fancy Wires 49

F.1.3.2 Wire Display 49

F.1.4 The Grasshopper Definition 50

F.1.4.0 Program Flow 50

F.1.4.1 The Logical Graph 50

F.2 Building Blocks of Algorithms 52

F.2.0 Points, Planes & Vectors 54

F.2.0.0 Points 55

F.2.0.1 Vectors 55

F.2.0.2 Planes 55

F.2.1 Working with Attractors 56

F.2.1.0 Attractor definition 57

F.2.2 Mathematics, Expressions & Conditionals 60

F.2.2.0 The Math Tab 60

F.2.2.1 Operators 61

F.2.2.2 Conditional Operators 61

F.2.2.3 Trigonometry Components 62

F.2.2.4 Expressions 65

F.2.3 Domains & Color 68

F.2.4 Booleans and Logical Operators 72

F.2.4.0 Booleans 72

F.2.4.1 Logical Operators 72

F.3 Designing with Lists 74

F.3.0 Curve Geometry 76

F.3.0.0 NURBS Curves 76

F.3.0.1 Grasshopper Spline Components 77

6 Introduction

f.3.2_data matching.gh

f.3.3_list creation.gh

f.3.4_list visualization.gh

f.3.5_list management.gh

f.3.6_working with lists.gh

f.4.0.2_morphing definition.gh

f.4.1.0_data tree visualization.gh

f.4.3_working with data trees.gh

f.4.3.5_weaving definition.gh

f.4.3.6_rail intersect definition.gh

F.3.1 What is a List? 79

F.3.2 Data Stream Matching 80

F.3.3 Creating Lists 84

F.3.3.0 Manual List Creation 84

F.3.3.1 Range 84

F.3.3.2 Series 86

F.3.3.3 Random 86

F.3.4 List Visualization 87

F.3.4.0 The Point List component 87

F.3.4.1 Text Tags 87

F.3.4.2 Color 88

F.3.5 List Management 89

F.3.5.0 List Length 89

F.3.5.1 List Item 89

F.3.5.2 Reverse List 89

F.3.5.3 Shift List 90

F.3.5.4 Insert Items 90

F.3.5.5 Weave 91

F.3.5.6 Cull Pattern 91

F.3.6 Working with Lists 92

F.4 Designing with Data Trees 96

F.4.0 Surface Geometry 98

F.4.0.0 NURBS Surfaces 98

F.4.0.1 Projecting, Mapping & Morphing 100

F.4.0.2 Morphing Definition 101

F.4.1 What is a Data Tree? 104

F.4.1.0 Data Tree Visualization 105

F.4.3 Working with Data Trees 107

F.4.3.0 Flatten Tree 107

F.4.3.1 Graft Tree 107

F.4.3.2 Simplify Tree 108

F.4.3.3 Flip Matrix 108

F.4.3.4 The Path Mapper 109

F.4.3.5 Weaving Definition 110

F.4.3.6 Rail Intersect Definition 116

[A.] Appendix
A.0 Index 124

7

A.1 Resources 136

A.2 Notes 140

A.3 About this Primer 142

 8 Introduction

I.2
Grasshopper - an Overview

The origins of Grasshopper can be traced to the functionality of Rhino3d
Version 4’s “Record History” button. This built-in feature enabled users to
store modeling procedures implicitly in the background as you go. If you lofted
four curves with the recording on and then edited the control points of one of
these curves, the surface geometry would update. Back in 2008, David posed
the question: “what if you could have more explicit control over this history?”
and the precursor to Grasshopper, Explicit History, was born. This exposed
the history tree to editing in detail and empowered the user to develop logical
sequences beyond the existing capabilities of Rhino3D’s built in features. Six
years later, Grasshopper is now a robust visual programming editor that can
be extended by suites of externally developed add-ons. Furthermore, it has
fundamentally altered the workflows of professionals across multiple industries
and fostered an active global community of users.

This primer focuses on Foundations, offering the core knowledge you need
to dive into regular use of Grasshopper and several on-ramps to how you
might go further within your own creative practice. Before diving into the
descriptions, diagrams, and examples supplied hereafter, let’s discuss what visual
programming is, the basics of the Grasshopper interface and terminology, as well
as the “live” characteristics of the viewport feedback and user experience.

Visual Programming is a paradigm of computer programming within which
the user manipulates logic elements graphically instead of textually. Some of
the most well-known textual programming languages such as C#, Visual Basic,
Processing – and more close to home for Rhino – Python and Rhinoscript require
us to write code that is bound by language-specific syntax. In contrast, visual
programming allows us to connect functional blocks into a sequence of actions
where the only “syntax” required is that the inputs of the blocks receive the data
of the appropriate type, and ideally, that is organized according to the desired
result – see the sections on Data Stream Matching and Designing with Data
Trees. This characteristic of visual programming avoids the barrier to entry
commonly found in trying to learn a new language, even a spoken one, as well as
foregrounds the interface, which for designers locates Grasshopper within more
familiar territory.

Grasshopper is a visual programming editor developed by David Rutten at Robert
McNeel & Associates. As a plug-in for Rhino3D, Grasshopper is integrated with the robust
and versatile modeling environment used by creative professionals across a diverse
range of fields, including architecture, engineering, product design, and more. In tandem,
Grasshopper and Rhino offer us the opportunity to define precise parametric control over
models, the capability to explore generative design workflows, and a platform to develop
higher-level programming logic – all within an intuitive, graphical interface.

This image show the process for drawing
a sine curve in python and in Grashopper.

9

To access Grasshopper and its visual programming capabilities, we need to
download and install the program from the Grasshopper3D.com website.
Once installed, we can open the plug-in by typing “Grasshopper” into the Rhino
Command Line. The first time we do so in a new session of Rhino, we will be
presented with the Grasshopper loading prompt followed by the Grasshopper
editor window. We can now add functional blocks called “components” to the
“canvas,” connect them with “wires,” and save the entire “definition” in the .ghx
file format.

Once we’ve started to develop a Grasshopper definition and created “slider”
objects within our canvas to control geometry, we may naturally intuit the
connection we’ve made between this input object to what we see in Rhino’s
viewports. This connection is essentially live – if we adjust the grip on the slider,
we will see the consequences in that, within our definition an input somewhere
has changed and the program must be solved again to recompute a solution and
display the update. To our benefit when getting started with using Grasshopper,
the geometry preview we see is a lightweight representation of the solution
and it automatically updates. It is important to take note this connection now
as when your definitions become more complex, adeptly managing the flow of
data, the status of the “solver,” and what is previewed in the Rhino viewport will
prevent many unwanted headaches.

As you begin first exploring Grasshopper or further building your skills, you have
joined the global Grasshopper community, one that is full of active members
from many fields, with diverse experience levels. The forum at Grasshopper3D.
com is a useful resource for posing questions, sharing findings, and gaining
knowledge. This is a community that we have held dear as we’ve written this
primer and watched Grasshopper develop over the years. Welcome!

Program Flow

Upstream Downstream

A Grasshopper definition, made up of
components connected with wires on the
canvas

 10 Introduction

I.3
Grasshopper in Action

Generative Jewelry
http://cargocollective.com/rafaelmorais

Plis/Replis
http://livecomponents-ny.com/

Chrysalis III
 http://matsysdesign.com/

The Cloud
grasshopper3d.com/profile/0etxzrn0mi4mb

King Rack
grasshopper3d.com/profile/BobThe

Flat Hex
 http://www.gt2p.com

Parametric Bracelet
grasshopper3d.com/profile/Alex289

Voironoi Tree
grasshopper3d.com/profile/KirillBrosalin

Stalasso Table
http://patharc.com/

cloud[S]cape
www.dfabstudio.com

Masisa Lab
 http://www.gt2p.com

Exhibition Wall
grasshopper3d.com/profile/leocao

tesselated floorscape
http://www.isssstudio.com/

Performative Foliage
http://livecomponents-ny.com/

Shellstar Pavilion
http://matsysdesign.com/

Random Ornament
http://patharc.com/

lamellae lamp
http://patharc.com/

n_lamp
grasshopper3d.com/profile/NathanScheidt981

http://cargocollective.com/rafaelmorais
http://livecomponents-ny.com/
 http://matsysdesign.com/
http://grasshopper3d.com/profile/0etxzrn0mi4mb
http://grasshopper3d.com/profile/BobThe
 http://www.gt2p.com
http://grasshopper3d.com/profile/Alex289
http://grasshopper3d.com/profile/KirillBrosalin
http://patharc.com/
http://www.dfabstudio.com
 http://www.gt2p.com
http://grasshopper3d.com/profile/leocao
http://www.isssstudio.com/
http://livecomponents-ny.com/
http://matsysdesign.com/
http://patharc.com/
http://patharc.com/
http://grasshopper3d.com/profile/NathanScheidt981

11

Exhibition Wall
grasshopper3d.com/profile/leocao

tesselated floorscape
http://www.isssstudio.com/

bend lamp
http://patharc.com

Tarrugao Collection
http://www.gt2p.com/

minima(maxima)
www.grasshopper3d.com/profile/JohnBrockway

bayou-luminescence
http://patharc.com/

Shhh the hope keeper
http://www.gt2p.com/

Bartop
grasshopper3d.com/profile/MattHutchinson

Co Ceiling
http://www.gt2p.com/

Vilu Light
http://www.gt2p.com/

Image credit
www.creditlink.com

Catalyst Hexshell
http://matsysdesign.com/

Divider
http://www.arturotedeschi.com/

Jewelry Lightbox
www.grasshopper3d.com/profile/jovanoviczmilos

Opening Chronometry
livecomponents-ny.com/

ZigZag
http://www.isssstudio.com/

NU:S 3D Printed Shoes
http://www.arturotedeschi.com/

clove lamp
http://patharc.com

Parametric Bar
http://urdirlab.blogspot.com/

Soft Voronoi Shelf
http://www.gt2p.com/

http://grasshopper3d.com/profile/leocao
http://www.isssstudio.com/
http://patharc.com
http://www.gt2p.com/
http://www.grasshopper3d.com/profile/JohnBrockway
http://patharc.com/
http://www.gt2p.com/
http://grasshopper3d.com/profile/MattHutchinson
http://www.gt2p.com/
http://www.gt2p.com/
http://www.creditlink.com
http://matsysdesign.com/
http://www.arturotedeschi.com/
http://www.grasshopper3d.com/profile/jovanoviczmilos
http://livecomponents-ny.com/
http://www.isssstudio.com/
http://www.arturotedeschi.com/
http://patharc.com
http://urdirlab.blogspot.com/
http://www.gt2p.com/

A strong foundation is built to last. This volume
of the Primer introduces the key concepts
and features of parametric modeling with
Grasshopper.

[F.] FOUNDATIONS

Grasshopper is a graphical algorithm editor that
is integrated with Rhino3D’s modeling tools. You
use Grasshopper to design algorithms that then
automate tasks in Rhino3D.

F.0 HELLO GRASSHOPPER

 16 F.0 Hello Grasshopper

F.0.0
Installing & Launching Grasshopper

F.0.0.0 DOWNLOADING
To download the Grasshopper plug-in, visit the Grasshopper web site. Click on
the Download tab at the top of the page, and when prompted on the next screen,
enter your email address. Now, right click on the download link, and choose
Save Target As from the menu. Select a location on your hard drive (note: the file
cannot be loaded over a network connection, so the file must be saved locally to
your computer’s hard drive) and save the executable file to that address.

F.0.0.1 INSTALLING
Select Run from the download dialog box follow the installer instructions. (note:
you must have Rhino 5 already installed on your computer for the plug-in to
install properly).

http://www.grasshopper3d.com/page/
download-1

Follow the steps in the Installation
wizard

The Grasshopper plugin is updated frequently so be sure to update to the latest build.
Note that there is currently no version of Grasshopper for Mac.

17

F.0.0.2 LAUNCHING
To Launch Grasshopper, type Grasshopper into the Rhino Command line. When
you launch Grasshopper, the first thing you will see is a new window floating
in front of Rhino. Within this window you can create node-based programs to
automate various types of functionality in Rhino. Best practice is to arrange the
windows so that they do not overlap and Grasshopper does not obstruct the
Rhino viewports.

The Grasshopper window floats on top
of the Rhino viewports

Grasshopper displays the version
number at the bottom of the window.

Type “Grasshopper” into the Rhino
command line to launch the Grasshopper
plugin

Split the screen so that Grasshopper
does not obstruct the Rhino Viewports.
You can do this by dragging each window
to opposite sides of the screen, or by
holding the Wondows key and pressing
the left or right arrows.

18 F.0 Hello Grasshopper

Let’s start by exploring Grasshopper’s user interface UI. Grasshopper is a
visual programming application where you are able to create programs, called
definitions or documents, by dragging components onto the main editing
window (called the canvas). The outputs to these components are connected to
the inputs of subsequent components — creating a graph of information which
can be read from left to right. Let’s get started with the basics.

Assuming you’ve already installed the Grasshopper plugin (see F.0.0), type the
word “Grasshopper” in the Rhino command prompt to display the Grasshopper
Editor. The Grasshopper interface contains a number of elements, most of which
will be very familiar to Rhino users. Let’s look at a few features of the interface.

Windows title bar

File browser control

component palettes

Canvas

Main menu bar

Canvas toolbar

This area, indicated by a grid of rectangular
boxes, provides an interface with which to open
recently accessed file. The 3x3 menu shows the
files most recently accessed (chronologically)
and will display a red rectangular box if the file
cannot be found (which can occur if you move a
file to a new folder or delete it).

The status bar tells you what version of
Grasshopper is currently installed on your
machine. If a newer version is available, a
pop-up menu will appear in your tray providing
instructions on how to download the latest
version.

F.0.1.0 THE WINDOWS TITLE BAR
The Editor Window title bar behaves differently from most other dialogs in
Microsoft Windows. If the window is not minimized or maximized, double
clicking the title bar will collapse the dialog into a minimized bar on your
screen. This is a great way to switch between the plug-in and Rhino because it
minimizes the Editor without moving it to the bottom of the screen or behind
other windows. Note that if you close the Editor, the Grasshopper geometry
preview in the Rhino viewport will disappear, but the file won’t actually be
closed. The next time you run the “Grasshopper” command in the Rhino dialog
box, the window will come back in the same state with the same files loaded.
This is because once it is launched from the command prompt, your session of
Grasshopper stays active until that instance of Rhino is closed.

F.0.1
The Grasshopper UI
Grasshopper’s visual “plug-and-play” style gives designers the ability to combine
creative problem solving with novel rule systems through the use of a fluid graphical
interface.

19 F.0 Hello Grasshopper

F.0.1.1 MAIN MENU BAR
The title bar is similar to typical Windows menus, except for the file browser
control on the right (see next section). The File menu provides typical functions
(eg. New File, Open, Save, etc.) in addition to a few utility tools which let you
export images of your current Grasshopper document (see Export Quick Image
and Export Hi-Res Image). You can control different aspects of the user interface
using the View and Display menus, while the Solution menu lets you manage
different attributes about how the solver computes the graph solution.

It is worth noting that many application settings can be controlled through the
Preferences dialog box found under the File menu. The Author section allows
you to set personal metadata which will be stored with each Grasshopper
document while the Display section gives you fine grain control over the look
and feel of the interface. The Files section lets you specify things like how
often and where to store automatically saved file (in case the application is
inadvertently closed or crashes). Finally, the Solver section lets you manage core
and third-party plugins which can extend functionality.

The Preferences dialog allows you to set many
of Grasshopper’s application settings.

Note: Be careful when using shortcuts since
they are handled by the active window which
could either be Rhino, the Grasshopper canvas
or any other window inside Rhino. It is quite
easy to use a shortcut command, only to realize
that you had the wrong active window selected
and accidentally invoked the wrong command.

Grasshopper is a plug-in that works “on-top”
of Rhino and as such has its own file types.
The default file type is a binary data file, saved
with an extension of .gh. The other file type
is known as a Grasshopper XML file, which
uses the extension .ghx. The XML (Extensible
Markup Language) file type uses tags to define
objects and object attributes (much like an
.HTML document) but uses custom tags to
define objects and the data within each object.
Because XML files are formatted as text
documents, you could open up any Grasshopper
XML file in a text editor like NotePad to see the
coding that is going on behind the scenes.

F.0.1.2 FILE BROWSER CONTROL
The File Browser allows you to quickly switch between different loaded files by
selecting them through this drop-down list. Accessing your open files through
the File Browser drop-down list enables you to quickly copy and paste items
from open definitions. Just click on the active file name in the browser control
window and a cascading list of all open files will be displayed (along with a small
thumbnail picture of each open definition) for easy access. You can also hit
Alt+Tab to quickly switch between any open Grasshopper documents.

Of course, you can go through the standard Open File dialog to load any
Grasshopper document, although you can also drag and drop any Grasshopper
file onto the canvas to load a particular definition.

20 F.0 Hello Grasshopper

Grasshopper has several different methods by which it can open a file, and you
will need to specify which option you would like to use when using this method.

Open File: As the name suggests, this file option will simply open any
definition that you drag and drop onto the canvas.

Insert File: You can use this option to insert an existing file into the current
document as loose components.

Group File: This method will insert a file into an existing document, but will
group all of the objects together.

Cluster File: Similar to the group function, this method will insert a file into
an existing document, but will create a cluster object for the entire group
of objects.

Examine File: Allows you to open a file in a locked state, meaning you
can look around a particular file but you can’t make any changes to the
definition.

Grasshopper also has an Autosave feature which will be triggered periodically
based on specific user actions. A list of Autosave preferences can be found
under the File menu on the Main Menu Bar. When the active instance of Rhino is
closed, a pop-up dialog box will appear asking whether or not you want to save
any Grasshopper files that were open when Rhino was shut down.

Drag and Drop Files onto the Canvas

Note: Autosave only works if the file has already
been saved at least once

21

F.0.1.3 COMPONENT PALETTES
This area organizes components into categories and sub-categories. Categories
are displayed as tabs, and subcategories are displayed as drop-down panels. All
components belong to a certain category. These categories have been labeled
to help you find the specific component that you are looking for (e.g. “Params”
for all primitive data types or “Curves” for all curve related tools). To add a
component to the canvas, you can either click on the objects in the drop-down
menu or you can drag the component directly from the menu onto the canvas.

Since there can be many more components in each sub-category than will fit into
the palette, a limited number of icons are displayed on each panel. The height
of the component palette and the width of the Grasshopper window can be
adjusted to display more or fewer components per sub-category. To see a menu
of all of the components in a given sub-category, simply click on the black bar at
the bottom of each sub-category panel. This will open a dropdown menu which
provides access to all components in that sub-category.

Drag + Drop a component from the palette to
add a component to the canvas.

Hover your mouse over a component for a
short description

Catgory tab - click the black bar to open the
sub-category panel menu

Sub-category panel

Drop-down menu

22 F.0 Hello Grasshopper

F.0.1.4 THE CANVAS
The canvas is the primary workspace for creating Grasshopper definitions. It is
here where you interact with the elements of your visual program. You can start
working in the canvas by placing components and connecting wires.

F.0.1.5 GROUPING
Grouping components together on the canvas can be especially useful for
readability and comprehensibility. Grouping allows you the ability to quickly
select and move multiple components around the canvas. You can create a group
by typing Ctrl+G with the desired components selected. An alternate method
can be found by using the “Group Selection” button under the Edit Menu on the
Main Menu Bar. Custom parameters for group color, transparency, name, and
outline type can be defined by right-clicking on any group object.

A group of components delineated by the Box
Outline profile.

Right-click anywhere on the
group to edit the name and ap-
pearance of the group.

Two groups are nested inside one another.
The color (light blue) has been changed on the
outer group to help visually identify one group
from the other. Groups are drawn “behind” the
components within them and, in cases such as
this, there is a depth order to the two groups.
To change this, go to Edit > Arrange in the main
menu bar.

You can also define a group using a meta-ball
algorithm by using the Blob Outline profile.

23

Align right

Distribute vertically

The Profiler widget gives you visual feedback as
to which components in your definition could
be causing longer computational times.

F.0.1.6 WIDGETS
There are a few widgets that are available in Grasshopper that can help you
perform useful actions. You can toggle any of these widgets on/off under the
Display menu of the Main Menu bar. Below we’ll look at a few of the most
frequently used widgets.

The Align Widget
One useful UI widget which can help you keep your canvas clean is the Align
widget. You can access the Align widget by selecting multiple components at the
same time and clicking on one of the options found in the dashed outline that
surrounds your selected components. You can align left, vertical center, right, or
top, horizontal center, bottom, or distribute components equally through this
interface. When first starting out, you may find that these tools sometimes get in
the way (it is possible to make the mistake of collapsing several components on
top of each other). However, with a little practice these tools can be invaluable as
you begin to structure graphs which are readable and comprehensible.

The Profiler Widget
The profiler lists worst-case runtimes for parameters and components,
allowing you to track down bottlenecks in networks and to compare different
components in terms of performance. Note that this widget is turned off by
default.

The Markov Widget
This widget uses Markov chains to ‘predict’ which component you may want to
use next based on your behavior in the past. A Markov chain is a process that
consists of a finite number of states (or levels) and some known probabilities. It
can take some time for this widget to become accustomed to a particular user,
but over time you should begin to notice that this widget will begin to suggest
components that you may want to use next.
The Markov Widget can suggest up to five possible components depending
on your recent activity. You can right-click on the Markov widget (the default
location is the bottom left-hand corner of the canvas) to dock it into one of the
other corners of the canvas or to hide it completely.

24 F.0 Hello Grasshopper

F.0.1.8 THE FIND FEATURE
There are literally hundreds (if not thousands) of Grasshopper components
which are available to you and it can be daunting as a beginner to know where
to look to find a specific component within the Component Palettes. The quick
solution is to double-click anywhere on the canvas to launch a search query for
the component you are looking for. However, what if we need to find a particular
component already placed on our canvas? No need to worry. By right-clicking
anywhere on the canvas or pressing the F3 key, you can invoke the Find feature.
Start by typing in the name of the component that you are looking for.

The Find feature employs the use of some very sophisticated algorithms which
search not only for any instances of a component’s name within a definition (a
component’s name is the title of the component found under the Component
Panel which we as users cannot change), but also any unique signatures which
we may have designated for a particular component (known as nicknames).
The Find feature can also search for any component type on the canvas or
search through text panel, scribble, and group content. Once the Find feature
has found a match, it will automatically grey out the rest of the definition and
draw a dashed line around the highlighted component. If multiple matches are
found, a list of components matching your search query will be displayed in the
Find dialog box and hovering over an item in the list will turn that particular
component on the canvas green.

A search for “divide” lists a variety of
components.

Division operator component

Divide Surface component

Divide Domain2 component

Double-click anywhere on the canvas to
invoke a key word search for a particular
component found in the Component Panels.

F.0.1.7 USING THE SEARCH FEATURE
Although a lot of thought has gone into the placement of each component on
the component panel to make it intuitive for new users, people sometimes find
it difficult to locate a specific component that might be buried deep inside one
of the category panels. Fortunately, you can also find components by name, by
double-clicking on any empty space on the canvas. This will invoke a pop-up
search box. Simply type in the name of the component you are looking for and
you will see a list of parameters or components that match your request.

25

F.0.1.9 USING THE RADIAL MENU
As you become more proficient in using the Grasshopper interface, you’ll
begin to find ways to expedite your workflow. Using shortcuts is one way to do
this, however there is another feature which can allow you to quickly access
a number of useful tools – the radial UI menu. You can invoke the radial menu
by hitting the space bar (while your mouse is over the canvas or a component)
or by clicking your middle mouse button. The radial menu will enable different
tools depending on whether you invoke the menu by clicking directly on top
of a component, or just anywhere on the canvas. In the image below, you see
the radial menu has more features available when clicking on top of a selected
component versus just clicking anywhere else on the canvas. This menu can
dramatically increase the speed at which you create Grasshopper documents.

The Find feature can be quite helpful to locate a
particular component on the canvas. Right-click
anywhere on the canvas to launch the Find
dialog box.

The Radial UI menu allows you to quickly access
frequently used menu items.

A small arrow will also be displayed next to each item in the list which points
to its corresponding component on the canvas. Try moving the Find dialog box
around on the canvas and watch the arrows rotate in to keep track of their
components. Clicking on the Find result will try to place the component (on the
canvas) next to the Find dialog box.

26

The sketch tool allows changes to the line weight, line type, and color. By right-clicking on the
selected sketch object you can choose to simplify your line to create a smoother effect. Right-click on
your sketch object and select “Load from Rhino”. When prompted, select any 2D shape in your Rhino
scene. Once you have selected your referenced shape, hit Enter, and your previous sketch line will be
reconfigured to your Rhino reference shape.

Note: Your sketch object may have moved from
its original location once you have loaded a
shape from Rhino. Grasshopper places your
sketch object relative to the origin of the canvas
(upper left hand corner) and the world xy plane
origin in Rhino.

Open File: A shortcut to open a Grasshopper
File.

Save File: A shortcut to save the current
Grasshopper File.

Zoom Defaults: Default zoom settings that allow
you to zoom in or out of your canvas at pre-
defined intervals.

Zoom Extents: Zoom to the extents of your definition. Click
on the arrow next to the Zoom Extents icon to select one of
the sub-menu items to zoom to a particular region within your
definition.

Named Views: This feature exposes a menu allowing you to
store or recall any view area in your definition.

The Sketch Tool: The sketch tool works similarly to the pencil
tool set found in Adobe Photoshop with a few added features.

F.0.1.10 THE CANVAS TOOLBAR
The canvas toolbar provides quick access to a number of frequently used
Grasshopper features. All of the tools are available through the menu as well,
and you can hide the toolbar if you like. The toolbar can be re-enabled from the
View tab on the Main Menu Bar.

27

Preview Settings: If a Grasshopper component
generates some form of geometry, then a preview
of this geometry will be visible in the viewport
by default. You can disable the preview on a per-
object basis by right-clicking each component
and de-activating the preview feature, or globally
change the preview state by using one of these
three buttons.

Shaded preview (default)

Preview Selected Objects: With this button toggled,
Grasshopper will only display geometry that is part of
selected components, even if those components have a
preview=off state.

Document Preview Settings: Grasshopper has a default
color scheme for selected (semi-transparent green) and
unselected (semi-transparent red) geometry. It is possible
to override this color scheme with the Document Preview
Settings dialog.

Preview Mesh Quality: For optimization
purposes, these settings allow you to control
the quality of the mesh/surface display of the
geometry rendered in Rhino. Higher quality
settings will cause longer calculation times,
whereas lower settings will display less accurate
preview geometry.

It should be noted that the geometry still
maintains a high-degree of resolution when baked
into the Rhino document – these settings merely
effect the display performance and quality.

Wire-frame preview

Turn off preview

28 F.0 Hello Grasshopper

F.0.2.0 VIEWPORT FEEDBACK
All geometry that is generated using the various Grasshopper components will
show up (by default) in the Rhino viewport. This preview is just an Open GL
approximation of the actual geometry, and as such you will not be able to select
the geometry in the Rhino viewport (you must first bake it into the scene). You
can turn the geometry preview on/off by right-clicking on a component and
selecting the Preview toggle. The geometry in the viewport is color coded to
provide visual feedback. The image below outlines the default color scheme.

Blue feedback means you are currently making
a selection in the Rhino Viewport.

Grasshopper Application window

Rhino viewports

Grasshopper preview geometry

Green geometry in the viewport belongs to a
component which is currently selected.

Red geometry in the viewport belongs to a
component which is currently unselected.

Point geometry is drawn as a cross rather than
a rectangle to distinguish it from other Rhino
point objects.

Note: This is the default color scheme, which
can be modified using the Document Preview
Settings tool on the canvas toolbar.

F.0.2
Talking to Rhino
Unlike a Rhino document, a Grasshopper definition does not contain any actual objects
or geometry. Instead, a Grasshopper definition represents a set of rules & instructions
for how Rhino can automate tasks.

29

F.0.2.1 LIVE WIRES
Grasshopper is a dynamic environment. Changes that are made are live and their
preview display is updated in the Rhino viewport.

F.0.2.2 GUMBALL WIDGET
When storing geometry as internalized in a Grasshopper parameter, the gumball
allows you to interface with that geometry in the Rhino viewport. This update is
live and updates will occur as you manipulate the gumball. In contrast, gometry
referenced from Rhino directly will continue to exist in the Rhino document and
updates from Grasshopper will happen only after any changes occur (as opposed
to during).

30 F.0 Hello Grasshopper

F.0.2.3 BAKING GEOMETRY
In order to work with (select, edit, transform, etc.) geometry in Rhino that was
created in Grasshopper, you must “bake” it. Baking instantiates new geometry
into the Rhino document based on the current state of the Grasshopper graph. It
will no longer be responsive to the changes in your definition.

F.0.2.4 UNITS & TOLERANCES
Grasshopper inherits units and tolerances from Rhino. To change the units,
type Document Properties in the Rhino command line to access the Document
Properties menu. Select Units to change the units and tolerances.

Change the units and tolerances in the Rhino
Document Properties menu

Bake by right-clicking a component and
selecting Bake.

Press the INSERT key to bake all selected
components into the currently active Rhino
layer

A dialog will appear that allows you to select
onto which Rhino layer the geometry will
bake.
Grouping your baked geometry is a convenient
way to manage the instantiated Rhino
geometry, particularly if you are creating many
objects with Grasshopper.

31

In order to get a UI element (eg. slider, toggle,
button, etc.) to show up in the Remote Control
Panel, we have to first publish it.

Note: The RCP will inherit the UI elements
name and use it as the label. It is good practice
to update your sliders and toggles with com-
prehensible and meaningful names. This will
translate directly to your RCP making it easier
to use.

F.0.2.5 REMOTE CONTROL PANEL
Once you get the hang of it, Grasshopper is an incredibly powerful and flexible
tool which allows you to explore design iterations using a graphic interface.
However, if you’re working with a single screen then you may have already
noticed that the Grasshopper editor takes up a lot of screen real-estate. Other
than constantly zooming in and out and moving windows around your screen,
there really isn’t an elegant solution to this problem. That is…until the release of
the Remote Control Panel!

The Remote Control Panel (RCP) provides a minimal interface to control your
definition without taking up a substantial portion of your screen. The RCP can
be instantiated by clicking on the toggle under the View menu of the Main Menu
bar. By default, the RCP is blank — meaning it doesn’t contain any information
about your current Grasshopper document. To populate the RCP with UI
elements like sliders, toggles, and buttons, simply right click on the element
and click Publish To Remote Panel. This will create a new group and create a
synchronized UI element in the RCP. Changing the value of the element in the
RCP will also update the value in the graph, as well as modify any geometry
in the viewport which might be dependant on this parameter. You can publish
multiple elements and populate a complete interface which can be used to
control your file without having the clutter of the visual graph showing up on top
of the Rhino viewport.

The RCP UI can also be customized – allowing you to control where objects
appear in the interface, the names and colors of different groups. To modify the
layout of the RCP you first have to switch from Working Mode (the default RCP
view) to Edit Mode. You can enter the Editing Mode by clicking on the green
pencil in the upper right hand corner of the RCP. Once in Editing Mode, you can
create new UI groups, rearrange elements within groups, add labels, change
colors and more. To delete a UI element, simply drag the element outside the
border of the RCP. You cannot change the individual values of the parameters if
you are in Editing Mode. Instead, you will have to click on the green pencil icon to
switch back to the standard Working Mode.

The Remote Control Panel in Edit Mode has an
orange background.

The Remote Control Panel has two modes: Edit
Mode (left) which allows you to reorganize the
look and feel of the RCP, and Working Mode
where you can modify the actual values of the
UI elements.

32 F.0 Hello Grasshopper

F.0.2.6 FILE MANAGEMENT
If your Grasshopper file references geometry from Rhino, you must open that
same file for the definition to work. Keep your files organized by storing the
Grasshopper and Rhino files in the same folder, and giving them related names.

Rhino file

Project Folder

Grasshopper file

F.0.2.7 TEMPLATES
Creating and specifiying a template file in your Grasshopper preferences is
convenient way to set up every new Grasshopper definition you create. The
template can include Grasshopper components as well as panels and sketch
objects for labeling.

Create a template file and save it

33

In File/Preferences, load the file you just creat-
ed under Template File. Your template will now
be used each time you create a new file.

Grasshopper allows you to create visual programs
called definitions. These definitions are made up of
nodes connected by wires. The following chapter
introduces Grasshopper objects and how to interact
with them to start building definitions.

F.1 ANATOMY OF A
GRASSHOPPER DEFINITION

36 F.1 Anatomy of a Grasshopper Definition

F.1.0
Grasshopper Object Types

F.1.0.0 PARAMETERS
Parameters store the data - numbers, colors, geometry, and more - that we send
through the graph in our definition. Parameters are container objects which are
usually shown as small rectangular boxes with a single input and single output.
We also know that these are parameters because of the shape of their icon. All
parameter objects have a hexagonal border around their icon.

Geometry parameters can reference geometry from Rhino, or inherit geometry
from other components. The point and curve objects are both geometry
parameters.

Input parameters are dynamic interface objects that allow you to interact
with your definition. The number slider and the graph mapper are both input
parameters.

F.1.0.1 COMPONENTS
Components perform actions based on the inputs they receive. There are many
types of components for different tasks.

The multiplication component is an operator that calculates the product of two
numbers.

The Divide component operates on geometry, dividing a curve into equal
segments.

The Circle CNR component constructs a circle geometry from input data; a
center point, normal vector, and radius.

The Loft component constructs a surface by lofting curves.

Grasshopper consists of two primary types of user objects: parameters and
components. Parameters store data, whereas components perform actions that result
in data. The most basic way to understand Grasshopper is to remember that we will
use data to define the inputs of actions (which will result in new data that we can
continue to use).

A parameter with no warnings or
errors

A parameter with warnings A component with warnings A component with no warnings or
errors

37

F.1.0.2 OBJECT COLORS
We can glean some information about the state of each object based on their
color. Let’s take a look at Grasshopper’s default color coding system.

A parameter which contains neither warnings nor errors is shown in light
gray. This color object indicates that everything is working properly with this
parameter.

A parameter which contains warnings is displayed as an orange box. Any object
which fails to collect data is considered suspect in a Grasshopper definition since
it is not contributing to the solution.. Therefore, all parameters (when freshly
added) are orange, to indicate they do not contain any data and have thus no
functional effect on the outcome of the solution. By default, parameters and
components that are orange also have a small balloon at the upper right hand
corner of the object. If you hover your mouse over this balloon, it will reveal
information about why the component is giving you a warning. Once a parameter
inherits or defines data, it will become grey and the baloon will disappear.

A component is always a more involved object, since we have to understand and
then coordinate what its inputs and outputs are. Like parameters, a component
with warnings is displayed as orange. Remember, warnings aren’t necessarily
bad, it usually just means that Grasshopper is alerting you to a potential problem
in your definition.

A component which contains neither warnings nor errors is shown in light gray.

A component whose preview has been disabled is shown in a slightly darker
gray. There are two ways to disable a component’s preview. First, simply right-
click on the component and toggle the preview button. To disable the preview
for multiple components at the same time, first select the desired components
and then toggle the disable preview icon (blindfolded man) by right clicking
anywhere on the canvas.

A component that has been disabled is shown in a dull gray. To disable a
component you may right-click on the component and toggle the disable button,
or you may select the desired components, right click anywhere on the canvas
and select Disable. Disabled components stop sending data to downstream
components.

A component which has been selected will be shown in a light green color. If the
selected component has generated some geometry within the Rhino scene, this
will also turn green to give you some visual feedback.

A component which contains at least 1 error is displayed in red. The error can
come either from the component itself or from one of its inputs or outputs.

A component with preview disabled A component that has been disabled A selected component A component with an error

This component contains a warning because it
does not have enough information to create a
circle.

If you hover your mouse over the balloon in the
upper right hand corner of the parameter, a tool
tip with explain the warning.

38 F.1 Anatomy of a Grasshopper Definition

The three input parameters of the Circle
CNR component.

The Circle CNR component area

Components without inputs or outputs have
a jagged edge.

Switch between Icon and Label
display.

Display the full name of the
component and its inputs and
outputs

The output parameter of the Circle CNR
component.

A component requires data in order to perform its actions, and it usually comes
up with a result. That is why most components have a set of nested parameters,
referred to as Inputs and Outputs, respectively. Input parameters are positioned
along the left side, output parameters along the right side.

There are a few Grasshopper components that have inputs but no outputs, or
vice versa. When a component doesn’t have inputs or outputs, it will have a
jagged edge.

F.1.1
Grasshopper Component Parts

F.1.1.0 LABEL VS ICON DISPLAY
Every Grasshopper object has a unique icon. These icons are displayed in
the center area of the object and correspond to the icons displayed in the
component palettes. Objects can also be displayed with text labels. To switch
between icon and label display, Select “Draw Icons” from the display menu. You
can also select “Draw Full Names” to display the full name of each object as well
as its inputs and outputs.

Components are the objects you place on the canvas and connect together with Wires
to form a visual program. Components can represent Rhino Geometry or operations
like Math Functions. Components have inputs and outputs.

39

The Circle CNR component in Icon DisplayThe Circle CNR component in Label Display The Circle CNR component with full names
displayed

Circle CNR and Circle 3pt have the same
label, but different icons.

Hold Cntrl + Alt and click on a component
on the canvas to reveal its location in the
palettes

We reccommend using icon display to familiarize yourself with the component
icons so you can quickly locate them in the palettes. This will also enable you to
understand definitions at a glance. Text labels can be confusing because different
components may share the same label.

One feature that can help you familiarize yourself with the location of
components in the palettes is holding down Ctrl + Alt and clicking on an existing
component on the canvas. This will reveal its location in the palette.

40 F.1 Anatomy of a Grasshopper Definition

F.1.1.1 COMPONENT HELP
Right clicking an object and selecting “Help” from the drop-down menu will
open a Grasshopper help window. The help window contains a more detailled
description of the object, a list of inputs and outputs, as well as remarks.

Header of the tooltip shows the icon for the
input type, the Name of the Component, the
label for the input, and the input type again in
text format.

Grasshopper help window for the Point
parameter

The remarks in the help window give additional
insight about the point parameter

“The Header of the output tooltip provides
the same detail as for inputs but for the
corresponding ouptut.

The plain language description of what the
input is for the Component

Any values defined for the input - either locally
or from its connected wire

The result of the component’s action.

F.1.1.2 TOOL TIPS
Component inputs are expecting to receive certain types of data, for example a
Component might indicate that you should connect a point or plane to its input.
When you hover your mouse over the individual parts of a Component object,
you’ll see different tooltips that indicate the particular type of the sub-object
currently under the mouse. Tooltips are quite informative since they tell you
both the type and the data of individual parameters.

41

Editable text field that lists the name of the object.

Component context menu

C input context menu

Runtime warnings - lists warnings that are
hindering the functioning of the component

Manage Point collection - opens a dialog that
allows you to add or remove points from the point
collection and view information about each point

Set one or multiple points - allows you to select
reference geometry in the Rhino viewport

Add item to collection

Delete selection

Preview flag - indicates whether or not the
geometry produced by this object will be visible
in the Rhino viewports. Switching off preview will
speed up both the Rhino viewport frame-rate and
the time taken for a solution

F.1.1.3 CONTEXT POPUP MENUS
All objects on the Canvas have their own context menus that expose their
settings and details. You can access this context menu by right-clicking on the
center area of each component. Inputs and outputs each have their own context
menus which can be accessed by right-clicking them.

42 F.1 Anatomy of a Grasshopper Definition

F.1.1.4 ZOOMABLE USER INTERFACE
Some components can be modified to increase the number of inputs or outputs
through the Zoomable User Interface (ZUI). By zooming in on the component
on the canvas, an additional set of options will appear which allows you add or
remove Inputs or Outputs to that component. The Addition component allows
you to add inputs, representing additional items for the addition operation.

Click the + sign to add an Input

Click the - sign to remove an Input

Drag grips to adjust panel margins

Increase or reduce the font size of the panel
content

Select a font for panel content

Change the alignment of panel content

Select a color for the panel background

Note: You can set a new default color for your
panels by right clicking the panel and selecting
“Set Default Color”

The panel component also has a zoomable user interface. A Panel is like a Post-
It™ sticker. It allows you to add little remarks or explanations to a Document. You
can change the text through the menu or by double-clicking the panel surface.
Panels can also receive and display data from elsewhere. If you plug an output
into a Panel, you can see the contents of that parameter in real-time. All data in
Grasshopper can be viewed in this way. When you zoom in on a panel, a menu
appears allowing you to change the background, font, and other attributes.
These options are also available when you right-click the panel

43 F.1 Anatomy of a Grasshopper Definition

The exception here are outputs, which can
neither store permanent records nor define
a set of sources. Outputs are explicitly
dependent upon the component of which the
are a part.

The parameter is orange, indicating it contains
no persistent records and it failed to collect
volatile data) and thus has no effect on the
outcome of the solution. Right click on any
parameter to set its persistent data.

Once the parameter contains some persistent
data, the component will turn from orange to
grey.

The tooltip for the point parameter shows
the persistent data (a collection of referenced
points) that is stored

F.1.2.0 PERSISTENT DATA
Persistent data is accessed through the menu, and depending on the kind of
parameter has a different manager. A Point parameter for example allows you to
set one or more points through its menu. But, let’s back up a few steps and see
how a Point Parameter behaves.

When you drag and drop a Point Parameter from the Params/Geometry Panel
onto the canvas, the Parameter is orange, indicating it generated a warning. It’s
nothing serious, the warning is simply there to inform you that the parameter
is empty (it contains no persistent records and it failed to collect volatile data)
and thus has no effect on the outcome of the solution. The context menu of the
Parameter offers two ways of setting persistent data: single and multiple. Right
click on the parameter to set Multiple Points. Once you click on either of these
menu items, the Grasshopper window will disappear and you will be asked to
pick a point in one of the Rhino viewports.

Once you have defined all the points you can press Enter and they will become
part of the Parameters persistent data record. This means the Parameter is now
no longer empty and it turns from orange to grey. (Notice that the information
balloon in the upper right corner also disappears as there are no more warnings).
At this point you can use the points stored in this Parameter for any subsequent
input in your definition.

F.1.2
Data Types
Most parameters can store two different kinds of data: Volatile and Persistent.
Volatile data is inherited from one or more sources and is destroyed (i.e. recollected)
whenever a new solution starts. Persistent data is data which has been specifically set
by the user.

44 F.1 Anatomy of a Grasshopper Definition

F.1.2.1 VOLATILE DATA
Volatile data, as the name suggests, is not permanent and will be destroyed
each time the solution is expired. However, this will often trigger an event to
rebuild the solution and update the scene. Generally speaking, most of the data
generated ‘on the fly’ is considered volatile.

As previously stated, Grasshopper data is stored in Parameters (either in Volatile
or Persistent form) and is used in various Components. When data is not stored
in the permanent record set of a Parameter, it must be inherited from elsewhere.
Every Parameter (except output parameters) defines where it gets its data from
and most Parameters are not very particular. You can plug a number Parameter
(which just means that it is a decimal number) into an integer source and it will
take care of the conversion.

You can change the way data is inherited and stored in the context menu of a
parameter or component input. To change store referenced Rhino geometry in
the grasshopper definition itself, right click a parameter and select Internalise
data from the menu. This is useful if you want your grasshopper definition to be
independent from a Rhino file.

You can also Internalise data in a component input. Once you select Internalise
data in the menu, any wires will disconnect from that input. The data has been
changed from volatile to persistent, and will no longer update.

If you want the data to become volatile again, simply reconnect the wires to
the input and the values will automatically be replaced. You can also right click
the input and select Extract parameter. Grasshopper will create a parameter
connected to the input with a wire that contains the data.

45

F.1.2.2 INPUT PARAMETERS
Grasshopper has a variety of Parameters that offer you the ability to interface
with the data that is begin supplied to Component inputs and thereby control
for changing the result of your definition. Because they Parameters that change
with our input, they generate Volatile Data.

Number Slider
The number slider is the most important and widely used Input Parameter. It
allows us to output a value between two given extremes by interacting with its
grip with our mouse. Sliders can be used to specify a value and see the change
to our deifnition that comes with adjusting the grip, but a slider should also be
thought of as the means to identify successful ranges of our definition.

Right click the slider component to change the
name, type, and values

Drag the slider grip to change the value - each
time you do this, Grasshopper will recompute
the solution

Select the type of number for the slider to use

Editable text field for the slider name

Edit the range of values

Double click the name portion of the slider
component to open the Slider Editor

46 F.1 Anatomy of a Grasshopper Definition

Graph mapper
The Graph Mapper is a two-dimensional interface with which we can modify
numerical values by plotting the input along the Graph’s X Axis and outputting
the corresponding value along the Y Axis at the X value intersection of the
Graph. It is extremely useful for modulating a set of values within an institutive,
grip-based interface.

Right click the graph mapper component to
select the graph type

Move the grips to edit the graph - each time
you do this, Grasshopper will recompute the
solution

Double click the graph mapper to open the
Graph Editor

Change the x and y domains

47

Value List
The Value List stores a collection of values with corresponding list of Labels
associated by way of an equal sign. It is particularly useful when you want to
have a few options, labeled with meaning, that can supply specific output values.

Right click the Value List component and
select an option from the menu

Double click the Value List component to open
the editor and add or change values

In Dropdown List mode, click the arrow to
select one of the values. The solution will
recompute each time you change the value.

In Check List mode, click next to each value
to check it. The component will output all the
values that are checked.

In Value Sequence and Value Cycle modes,
click the left and right facing arrows to cycle
through the values.

48 F.1 Anatomy of a Grasshopper Definition

Unconnected objects

Curve parameter - right click and select Set
One Curve to reference Rhino Geometry

The Divide Curve component - divides a curve
into equal length segments

Left click and drag the wire from the output of
one object to the input of another

By default, a new connection will erase
existing connections. Hold the SHIFT button
while dragging connection wires to define
multiple sources. The cursor will turn green to
indicate the addition behavior.

F.1.3.0 CONNECTION MANAGEMENT
To connect components, click and drag near the circle on the output side of an
object. A connecting wire will be attached to the mouse. Once the mouse hovers
over a potential target input, the wire will connect and become solid. This is not
a permanent connection until you release the mouse button. It doesn’t matter if
we make the connections in a ‘left to right’ or ‘right to left’ manner.

F.1.3
Wiring Components

If you hold down CONTROL, the cursor will
become red, and the targeted source will be
removed from the source list.

You can also disconnect wires through the
context popup menu - right click the grip of the
input or output and select disconnect

If there are multiple connections, select the
one you want to disconnect from the list.

When you hover over an item, the wire will be
highlighted in red

When data is not stored in the permanent record set of a parameter, it must be
inherited from elsewhere. Data is passed from one component to another through
wires. You can think of them literally as electrical wires that carry pulses of data from
one object to the next.

49

The Merge component is an alternative to
conecting more than one source to a single
input

F.1.3.1 FANCY WIRES
Wires represent the connections as well as the flow of data within the graph in
our definition. Grasshopper can also give us visual clues as to what is flowing
through the wires. The default setting for these so-called “fancy wires” is off, so
you have to enable them before you can view the different types of line types
for the connection wires. To do this, simply click on the View Tab on the Main
Menu Bar and select the button labeled “Draw Fancy Wires.” Fancy wires can
tell you a lot of information about what type of information is flowing from one
component to another.

List – If the information flowing out of a
component contains a list of information, the
wire type will be shown as a grey double line.

Single Item – The data flowing out of any
parameter that contains a single item will be
shown with a solid grey line.

Tree – Information transferred between
components which contain a data structure
will be shown in a grey double-line-dash wire
type.

Empty Item – An orange wire type indicates
that no information has been transferred. This
parameter has generated a warning message
because it contains no data, and thus no
information is being sent across the wire.

F.1.3.2 WIRE DISPLAY
If you have spent any great deal of time working on a single Grasshopper
definition, you may have realized that the canvas can get cluttered with a nest of
wires quite quickly. Fortunately, we have the ability to manage the wire displays
for each input of a component.

There are three wire displays: Default Display, Faint Display, and Hidden Display.
To change the wire display, simply right-click on any input on a component and
select one of the views available under the Wire Display pop out menu.

Hidden Display – When hidden display is
selected, the wire will be completely ‘invisible’.
The data is transferred ‘wirelessly’ from the
source to the input parameter. If you select
the source or target component, a green wire
will appear to show you which components are
connected to each other. Once you deselect
the component, the wire will disappear.

Faint Display – The faint wire display will
draw the wire connection as a very thin,
semi-transparent line. Faint and Hidden wire
displays can be very helpful if you have many
source wires coming into a single input.

Default Display – The default wire display will
draw all connections (if fancy wires is turned
on).

50 F.1 Anatomy of a Grasshopper Definition

F.1.4
The Grasshopper Definition

F.1.4.0 PROGRAM FLOW
Grasshopper visual programs are executed from left to right. Reading the graph
relative to the wired connections from upstream to downstream provides
understanding about the Program Flow.

F.1.4.1 THE LOGICAL GRAPH
All of the objects and the wires connecting the objects represent the logical
graph of our program. This graph reveals the flow of data, dependencies of any
input to its wiired output. Any time our graph changes, sometimes referrred to
as being “dirtied,” every downstream connection and object will be updated.

Grasshopper Definitions have a Program Flow that represents where to start program
execution, what to do in the middle and how to know when program execution is
complete.

Directionality of data

Upstream Downstream

Reference a curve from Rhino

Reparametrize the curve domain
between 0.0 and 1.0

Divide the curve into 13 equal
segments

Run the parameter values
at each curve division point
through the graph

51

Variable circle radius

Loft between circles

Multiply each value by 27

Draw a circle at each division
point along the curve, normal to
the tangent vector at each point,
with a radius defined by the
parameter values (t) modified by
the graph mapper and multiplied
by 27.

Loft a surface between the
circles

This chapter will introduce you to basic geometric
and mathematical concepts and how they are
implemented and manipulated in Grasshopper.

F.2 BUILDING BLOCKS OF
ALGORITHMS

54 F.2 Building Blocks of Algorithms

F.2.0
Points, Planes & Vectors
Everything begins with points. A point is nothing more than one or more values called
coordinates. The number of coordinate values corresponds with the number of
dimensions of the space in which it resides. Points, planes, and vectors are the base for
creating and transforming geometry in Grasshopper.

55

F.2.0.0 POINTS
Points in 3D space have three coordinates, usually referred to as [x,y,z]. Points
in 2D space have only two coordinates which are either called [x,y] or [u,v]
depending on what kind of two dimensional space we’re talking about.
2D parameter space is bound to a finite surface. It is still continuous, I.e.
hypothetically there are an infinite amount of points on the surface, but the
maximum distance between any of these points is very much limited. 2D
parameter coordinates are only valid if they do not exceed a certain range. In the
example drawing, the range has been set between 0.0 and 1.0 for both [u] and [v]
directions, but it could be any finite domain. A point with coordinates [1.5, 0.6]
would be somewhere outside the surface and thus invalid.
Since the surface which defines this particular parameter space resides in
regular 3D world space, we can always translate a parametric coordinate into a
3D world coordinate. The point [0.2, 0.5] on the surface for example is the same
as point [1.8, 2.0, 4.1] in world coordinates. Once we transform or deform the
surface, the 3D coordinates which correspond with [0.2, 0.5] will change.

If this is a hard concept to grasp, it might
help to think of yourself and your position
in space. We tend to use local coordinate
systems to describe our whereabouts; “I’m
sitting in the third seat on the seventh row in
the movie theatre”, “I’m in the back seat”. If
the car you’re in is on the road, your position
in global coordinates is changing all the time,
even though you remain in the same back seat
‘coordinate’.

F.2.0.1 VECTORS
A vector is a geometric quantity describing Direction and Magnitude.
Vectors are abstract; ie. they represent a quantity, not a geometrical element.
Vectors are indistinguishable from points. That is, they are both lists of three
numbers so there’s absolutely no way of telling whether a certain list represents
a point or a vector. There is a practical difference though; points are absolute,
vectors are relative. When we treat a list of three doubles as a point it represents
a certain coordinate in space, when we treat it as a vector it represents a certain
direction. A vector is an arrow in space which always starts at the world origin
(0.0, 0.0, 0.0) and ends at the specified coordinate.

F.2.0.2 PLANES
Planes are “Flat” and extend infinitely in two directions, defining a local
coordinate system. Planes are not genuine objects in Rhino, they are used to
define a coordinate system in 3D world space. In fact, it’s best to think of planes
as vectors, they are merely mathematical constructs.

 56 F.2 Building Blocks of Algorithms

F.2.1
Working with Attractors
Attractors are points that act like virtual magnets - either attracting or repelling other
objects. In Grasshopper, any geometry referenced from Rhino or created within
Grasshopper can be used as an attractor. Attractors can influence any number of
parameters of surrounding objects including scale, rotation, color, and position. These
parameters are changed based on their relationship to the attractor geometry.

In the image above, vectors are drawn between an attractor point and the center
point of each circle. These vectors are used to define the orientation of the
circles so they are always facing the attractor point.

This same attractor could be used to change other parameters of the circles. For
example, circles that are closest to the attractor could be scaled larger by using
the length of each vector to scale the radius of each circle.

Attractor point

Vectors

Circles orient towards attractor based on
their normals

57 F.2 Building Blocks of Algorithms

01. Type Ctrl+N in Grasshopper to start a new definition

02. Vector/Grid/Hexagonal - Drag and drop the Hexagonal Grid component

onto the canvas

03. Params/Input/Slider - Drag and drop two Numeric Sliders on the canvas

04. Double-click on the first slider and set the following:

05. Name: Cell Radius

06. Rounding: Floating Point

07. Lower Limit: 0.000

08. Upper Limit: 1.000

09. Value: 0.500

10. Double-click on the second slider and set the following:

11. Name: # of Cells

12. Rounding: Integers

13. Lower Limit: 0

14. Upper Limit: 10

15. Value: 10

16. Connect the Number Slider (Cell Radius) to the Size (S) input of the

Hexagon Grid component

17. Connect the Number Slider (# of Cells) to the Extent X (Ex) input and the

Extent Y (Ey) input of the Hexagon Grid component

18. Curve/Primitive/Circle CNR - Drag and drop a Circle CNR component

onto the canvas

19. Connect the Points (P) output of the Hexagon Grid to the Center (C)

input of the Circle CNR component

20. Connect the Number Slider (Cell Radius) to the Radius (R) input of the

Circle CNR component.

21. Vector/Vector/Vector 2Pt - Drag and Drop the component Vector 2Pt

22. Connect the Points output (P) of the Hexagonal Grid component to the

Base Point (A) input of the Vector 2Pt component.

23. Params/Geometry/Point – Drag and Drop the Point component onto the

canvas

24. Right-Click the Point component and select set one point. In the model

space select where you would like the attractor point to be

25. Connect the Point component to the Tip Point (B) input of the Vector 2Pt

component

26. Connect the Vector (V) output of the Vector 2Pt to the Normal (N) input

of the Circle CNR component.

27. Curve/Util/Offset – Drag and Drop the Offset Component onto the

canvas.

28. Params/Input/Slider - Drag and drop a Numeric Slider on the canvas

29. Double-click on the slider and set the following:

30. Name: Offset Distance

31. Rounding: Floating Point

F.2.1.0 ATTRACTOR DEFINITION
In this example, we will use an attractor point to orient a grid of circles, based on
the vectors between the center points of the circles and the attractor point. Each
circle will orient such that it is normal to (facing) the attractor point.

58 F.2 Building Blocks of Algorithms

32. Lower Limit: - 0.500

33. Upper Limit: 0.500

34. Value: -0.250

35. Connect the Number Slider (Offset Distance) to the Distance (D) input of

the offset component

36. Surface/Freeform/Boundary Surfaces – Drag and drop Boundary Surfaces

on to the canvas

37. Connect the Curves (C) output of the offset component to the Edges (E)

input of the Boundary Surfaces.

38. Params/Geometry/Surface – Drag and Drop the Surface Component onto

the canvas

39. Connect the Surfaces (S) output from the Boundary Surfaces to the

Surfaces Parameter

59

60 F.2 Building Blocks of Algorithms

In mathematics, numbers are organized by sets and there are two that you are
probably familiar with:

Integer Numbers: […, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, …]
Real Numbers: [∞, …, -4.8, -3.6, -2.4, -1.2, 0.0, 1.234, e, 3.0, 4.0, …, ∞]

While there are other types of number sets, these two interest us the most
because Grasshopper uses these extensively. Although there are limitations in
representing these sets exactly in a digital environment, we can approximate
them to a high level of precision. In addition, it should be understood that the
distinction between Integral types (integers) and Floating types (real numbers)
corresponds to the distinction between discrete and continuous domains. In
this chapter, we’re going to explore different methods for working with and
evaluating various sets of numbers.

F.2.2.0 THE MATH TAB
Most of the components that deal with mathematical operations and functions
can be found under the following sub-categories of the Math tab:

F.2.2
Mathematics, Expressions & Conditionals
Knowing how to work with numeric information is an essential skill to master as
you learn to use Grasshopper. Grasshopper contains many components to perform
mathematical operations, evaluate conditions and manipulate sets of numbers.

Domains are used to define a range of values
(formerly known as intervals) between two
numbers. The components under the Domain
tab allow you to create or decompose
different domain types.

In mathematics, a matrix is an array of
numbers organized in rows and columns. This
subcategory contains a series of utility tools
to construct and modify matrices.

Operators are used to perform mathematical
operations such as Addition, Subtraction,
Multiplication, etc. Conditional operators
allow you to determine whether a set of
numbers are larger than, less than, or similar
to another set of numbers.

Polynomials are one of the most important
concepts in algebra and throughout
mathematics and science. You can use the
components found in this subcategory to
compute factorials, logarithms, or to raise a
number to the nth power.

The utility subcategory is a ‘grab bag’ of
useful components that canbe used in various
mathematical equations. Check here if you’re
trying find the maximum or minimum values
between two lists of numbers; or average a
group of numbers.

The script subcategory contains single and
multi-variable expressions as well as the
VB.NET and C# scripting components.

The time subcategory has a number of
components which allow you to construct
instances of dates and times.

 These components allow you to solve
trigonometric functions such as Sine,Cosine,
Tangent, etc.

61

F.2.2.1 OPERATORS
As was previously mentioned, Operators are a set of components that use
algebraic functions with two numeric input values, which result in one output
value.

Most of the time, you will use the Math Operators to perform arithmetical
actions on a set of numbers. However, these operators can also be used on
various data types, including points and vectors.

F.2.2.2 CONDITIONAL OPERATORS
Almost every programming language has a method for evaluating conditional
statements. In most cases the programmer creates a piece of code to ask a
simple question of “what if.” What if the area of a floor outline exceeds the
programmatic requirements? Or, what if the curvature of my roof exceeds a
realistic amount? These are important questions that represent a higher level
of abstract thought. Computer programs have the ability to analyze “what if”
questions and take actions depending on the answer to that question. Let’s take
a look at a very simple conditional statement that a program might interpret:
If the object is a curve, delete it. The piece of code first looks at an object and
determines a single boolean value for whether or not it is a curve. There is
no middle ground. The boolean value is True if the object is a curve, or False
if the object is not a curve. The second part of the statement performs an
action dependent on the outcome of the conditional statement; in this case,
if the object is a curve then delete it. This conditional statement is called an
If statement. There are four conditional operators (found under the Math/
Operators subcategory) that evaluate a condition and return a boolean value.

The Equality component takes two lists and compares the first item of List A and
compares it to the first item of List B. If the two values are the same, then a True
boolean value is created; conversely if the two values are not equal, then a False
boolean value is created. The component cycles through the lists according to
the set data matching algorithm (default is set to Longest List). There are two
outputs for this component. The first returns a list of boolean values that shows
which of the values in the list were equal to one another. The second output
returns a list that shows which values were not equal to one another - or a list
that is inverted from the first output.

The Similarity component evaluates two lists of data and tests for similarity
between two numbers. It is almost identical to the way the Equality component
compares the two lists, with one exception: it has a percentage input that defines
the ratio of list A that list B is allowed to deviate before inequality is assumed.
The Similarity component also has an output that determines the absolute value
distance between the two input lists.

The Larger Than component will take two lists of data and determine if the first
item of List A is greater than the first item of List B. The two outputs allow you to
determine if you would like to evaluate the two lists according to a greater than
(>) or greater than and equal to (>=) condition.

The Smaller Than component performs the opposite action of the Larger Than
component. The Smaller Than component determines if list A is less than list B
and returns a list of boolean values. Similarly, the two outputs let you determine
if you would like to evaluate each list according to a less than (<) or less than and
equal to (<=) condition.

62 F.2 Building Blocks of Algorithms

F.2.2.3 TRIGONOMETRY COMPONENTS
We have already shown that we can use an Expression (or Evaluate) component
to evaluate conditional statements as well as compute algebraic equations.
However, there other ways to calculate simple expressions using a few of the
built in Trigonometry functions. We can use these functions to define periodic
phenomena like sinusoidal wave forms such as ocean waves, sound waves, and
light waves.

In this example, we will use Grasshopper to cunstruct various trigonometric
curves using trigonometry function components found in the Math tab:

01. Type Ctrl+N (in Grasshopper) to start a new definition

02. Params/Geometry/Point – Drag and drop a point parameter onto the

canvas

03. Right click the Point parameter and click Set One Point – select a point in

the Rhino viewport

04. Vector/Vector/Unit X – Drag and drop the Unit X component to the

canvas

05. Params/Input/Number Slider – Drag and drop the Number Slider

component onto the canvas

06. Double-click on the Number slider and set the following:

Rounding: Integer

Lower Limit: 10

Upper Limit: 40

Value: 20

07. Transform/Array/Linear Array – Drag and drop the Linear Array

component onto the canvas

Sine Curve
y(t) = sin(t)

Line
y(t) = 0

Helix
x(t) = cos(t)
y(t) = sin(t)
z(t) = b(t)

Spiral
x(t) = t*cos(t)
z(t) = t*sin(t)

63

08. Connect the output of the Point parameter to the Geometry (G) input of

the Linear Array component

09. Connect the Unit Vector (V) output of the Unit X component to the

Direction (D) input of the Linear Array component

10. Connect the Number Slider output to the Count (N) input of the Linear

Array Component

11. Curve/Spline/Interpolate – Drag and drop the Interpolate Curve

component to the canvas

12. Connect the Geometry (G) output of the Linear Array component to the

Vertices (V) input of the Interpolate Curve component

You should see a line of 20 points along the x
axis in Rhino. Adjust the slider to change the
number of points in the array.

We have now reconstructed our points with
the same X values, modifying the y values with
a sine curve

You should now see a sine wave curve along the
X axis in Rhino

We have just connected the array of points with
a curve

You can disconnect wires by holding down
control and dragging, or by right-clicking the
input and selecting Disconnect

We have just created a line by connecting an array of points with a curve. Let’s

try using some of Grasshopper’s Trigonometry components to alter this curve:

13. Vector/Point/Deconstruct – Drag and drop a Deconstruct component

onto the canvas

14. Vector/Point/Construct Point - Drag and drop a Construct Point

component onto the canvas

15. Maths/Trig/Sine - Drag and drop a sine component onto the canvas

16. Disconnect the wire from the Vertices (V) input of the Interpolate Curve

component

17. Connect the Geometry (G) output of the Linear Array component to the

Point (P) input of the Deconstruct component

18. Connect the Point X (X) output of the Deconstruct component to the X

coordinate (X) input of the Construct Point Component

19. Connect a second wire from the Point X (X) output of the Deconstruct

Component to the Value (x) input of the Sine component

20. Connect the Result (y) output of the Sine component to the Y coordinate

(Y) input of the Construct Point component

21. Connect the Point (Pt) output of the Construct Point component to the

Vertices (V) input of the Interpolate component

64 F.2 Building Blocks of Algorithms

22. Maths/Trig/Cosine – Drag and drop a Cosine component to the canvas

23. Connect a third wire from the Point X (X) output of the Deconstruct

Component to the Value (x) input of the Cosine component

24. Connect the Result (y) output of the Cosine component to the Z

coordinate (Z) input of the Construct Point component

25. Maths/Operators/Multiplication – Drag and drop two Multiplication

components onto the canvas

26. Connect wires from the Point X (X) output of the Deconstruct component

to the (A) input of each Multiplication component

27. Connect the Result (y) output of the Sine component to the (B) input of

the first Multiplication component

28. Connect the Result (y) output of the Cosine component to the (B) input of

the second Multiplication component

29. Disconnect the wire from the Y Coordinate (Y) input of the Construct

Point component

30. Connect the Result (R) output of the first Multiplication component to the

X Coordinate (X) input of the Construct Point component

31. Connect the Result (R) output of the second Multiplication component to

the Z Coordinate (Z) input of the Construct Point component

We have now created a 3D helix

You should now see a spiral curve

65

F.2.2.4 EXPRESSIONS
The Expression component (and its brother the Evaluate component) are
very flexible tools; that is to say that they can be used for a variety of different
applications. We can use an Expression (or Evaluate component) to solve
mathematical algorithms and return numeric data as the output.

In the following example, we will look at mathematical spirals found in nature
and how we can use a few Functions components to create similar patterns in
Grasshopper. We will build on our trigonometric curves definition as a starting
point.

01. Open your Trigonometric curves Grasshopper definition from the

previous example

02. Delete the Sine, Cosine, Multiplication, and Interpolate components

03. Params/Input/Number Slider – Drag and drop a Number Slider onto the

canvas

04. Double-click on the Number slider and set the following:

Rounding: Float

Lower Limit: 0.000

Upper Limit: 1.000

Value: 1.000

05. Connect the Number slider to the Factor (F) input of the Unit X

component

06. Maths/Script/Expression – Drag two Expression components onto the

canvas

07. Double-click the first Expression component to open the Expression

Editor and change the expression to:

x*sin(x)

08. Double-click the second Expression component to open the Expression

Editor and change the expression to:

This slider allows you to adjust the distance
between the points in the array

Double click the Expression component to open
the Grasshopper Expression Editor

66 F.2 Building Blocks of Algorithms

You can create different Voronoi patterns by manipulating the Factor, Count,
and Radius sliders. Below are three examples:

Factor = 1.000
Radius = 15

Factor = 0.400
Radius = 10

Factor = 0.200
Radius = 7

x*cos(x)

09. Connect two wires from the Point X (X) output of the Deconstruct

component to the Variable x (x) input of each Expression component

10. Connect the Result (R) output of the first Expression component to the X

coordinate (X) input of the Construct Point component

11. Connect the Result (R) output of the second Expression component to the

Y coordinate (Y) input of the Construct Point component

12. Mesh/Triangulation/Voronoi – Drag and drop the Voronoi component

onto the canvas

13. Params/Input/Number Slider – Drag and drop a Number Slider onto the

canvas

14. Double-click on the Number slider and set the following:

Rounding: Integer

Lower Limit: 1

Upper Limit: 30

Value: 30

15. Connect the Number slider to the Radius (R) input of the Voronoi

component

16. Connect the Point (Pt) output of the Construct Point component to the

Points (P) input of the Voronoi component

We have replaced the Trignometry functions
and multiplication operators with the
expression component for a more efficient
definition

67

00 1 0
1

 010



01
00



100
10010
0100

0



























0.0 0.25 0.5 0.75 1.0 0.0 1.00.0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0

68 F.2 Building Blocks of Algorithms

F.2.3
Domains & Color
The color wheel is a model for organizing colors based on their hue. In Grasshopper,
colors can be defined by their hue value in a range of 0.0 to 1.0. Domains are used to
define a range of all possible values between a set of numbers between a lower limit
(A) and an upper limit (B).

By dividing the Hue domain (0.0 to 1.0) by the number of segments desired, we
can assign a hue value to each segment to create a color wheel.

In the color wheel, hue corresponds to angle.
Grasshopper has taken this 0-360 domain and
remapped it between zero and one.

69

01. Type Ctrl+N (in Grasshopper) to start a new definition

02. Curve/Primitive/Polygon – Drag and drop a polygon component onto the

canvas

03. Params/Geometry/Point – Drag and drop a Point Parameter onto the

canvas

04. Right-Click on the Point Component and select set one point

05. Set a point in the model space.

06. Connect the Point Parameter (Base Point) to the Plane (P) input of the

polygon component

07. Params/Input/Number Sliders – Drag and drop two number sliders onto

the canvas

08. Double-click on the first slider and set the following:

Rounding: Integers

Lower Limit: 0

Upper Limit: 10

Value: 10

09. Double-click on the second slider and set the following:

Rounding: Integers

Lower Limit: 0

Upper Limit: 100

Value: 37

10. Connect the Number Slider (Radius) to the Radius (R) input of the

Polygon component

11. Connect the Number Slider (Segments) to the Segments (S) input of the

Polygon component

12. Curve/Util/Explode – Drag and drop an Explode component onto the

canvas.

13. Connect the Polygon (P) output of the Polygon component to the Curve

(C) input of the Explode component

14. Surface/Freeform/Extrude Point – Drag and drop the Extrude Point

component onto the canvas

15. Connect the Segments (S) output of the Explode component to the Base

(B) input of the Extrude Point

16. Connect the Point Parameter (Base Point) to the Extrusion Tip (P)

17. Surface/Analysis/Deconstruct Brep – Drag and drop the Deconstruct

Brep component on to the canvas

18. Connect the Extrusion (E) output of the Extrude Point component to the

Deconstruct Brep (B) component

19. Maths/Domain/Divide Domain – Drag and drop the Divide Domain

component

20. Connect the Number Slider (Segments) to the Count (C) input of the

Divide Domain component

21. Math/Domain/Deconstruct Domain – Drag and drop the Deconstruct

Domain component

Note: When you connect a number slider
to a component it will automatically change
its name to the name of input that it is
connecting to.

In this example, we will use Grasshopper’s domain and color components to
create a color wheel with a variable amount of segments.

70 F.2 Building Blocks of Algorithms

22. Connect the Segments (S) output of the Divide Domain component to the

Domain (I) input of the Deconstruct Domain component

23. Display/Colour/Colour HSL – Drag and drop the Colour HSL component

24. Connect the Start (S) output of the Deconstruct Domain component to

the Hue (H) input of the Colour HSL components

25. Display/Preview/Custom Preview – Drag and drop the Custom Preview

component

26. Right click on the Geometry (G) input of the Custom Preview component

and select Flatten

27. Connect the Faces (F) output of the Deconstruct Brep component to the

Geometry (G) input of the Custom Preview

28. Connect the Colour (C) output of the Colour HSL component to the Shade

(S) input of the Custom Preview Components Note: See F.4 Designing with Data Trees for
details about flattening

For different color effects, try connecting the Deconstruct Domain component to the saturation (S) or Luminance (L) inputs of the Colour HSL
component.

Note: The Base Domain (I) is automatically
set between 0.0 -1.0 which is what we need
for this exercise.

71

72 F.2 Building Blocks of Algorithms

F.2.4
Booleans and Logical Operators

F.2.4.1 LOGICAL OPERATORS
Logical operators mostly work on booleans and they are indeed very logical. As
you will remember, booleans can only have two values. Boolean mathematics
were developed by George Boole (1815-1864) and today they are at the very
core of the entire digital industry. Boolean algebra provides us with tools to
analyze, compare and describe sets of data. Although Boole originally defined six
boolean operators we will only discuss three of them:

1.Not
2.And
3.Or

The Not operator is a bit of an oddity among operators, because it doesn’t
require two values. Instead, it simply inverts the one on the right. Imagine we
have a script which checks for the existence of a bunch of Block definitions in
Rhino. If a block definition does not exist, we want to inform the user and abort
the script.

And and Or take two arguments on either side. The And operator requires both
of them to be True in order for it to evaluate to True. The Or operator is more
than happy with a single True value.
As you can see, the problem with Logical operators is not the theory, it’s what
happens when you need a lot of them to evaluate something. Stringing them
together quickly results in convoluted code; not to mention operator precedence
problems.

F.2.4.0 BOOLEANS
Numeric variables can store a whole range of different numbers. Boolean
variables can only store two values referred to as Yes or No, True or False, 1 or
0. Obviously we never use booleans to perform calculations because of their
limited range. We use booleans to evaluate conditions.
In Grasshopper, booleans can be used in several ways. The boolean parameter is
a container for one or multiple boolean values, while the Boolean Toggle allows
you to quickly change between single true and false values as inputs.
Grasshopper also has objects that test conditions and output boolean values. For
example, the Includes component allows you to test a numeric value to see if it is
included in a domain.

Boolean Parameter

Boolean Toggle - double click the boolean
value to toggle between true and false

The Includes component is testing wether
the number 6.8 is included in the domain
from 0 to 10. It returns a boolean value of
True.

The Grasshopper Not operator (gate)

The Grasshopper And operator (gate)

The Grasshopper Or operator (gate)

A B Result

True True True

True False False

False True False

False False False

A B Result

True True True

True False True

False True True

False False False

A

A Or B Or C

(A And B) Or
(B And C) Or (A And C) (A and Not B and Not C)

((B And C) and Not A) Or (B and Not C) Or A And B And C

(C and Not B)

(A Or B) and Not C C And Not A and Not B B Or (C And A)

Not A

B

B+A

A+B+C

A+C

B+C
C

A

A+B+C

Not B

Not A
Not B
Not C

Not A

Not B
Not C

Not C

Not C

Not A
Not B
Not A

A And B A Or B
A

A Or B Or C

(A And B) Or
(B And C) Or (A And C) (A and Not B and Not C)

((B And C) and Not A) Or (B and Not C) Or A And B And C

(C and Not B)

(A Or B) and Not C C And Not A and Not B B Or (C And A)

Not A

B

B+A

A+B+C

A+C

B+C
C

A

A+B+C

Not B

Not A
Not B
Not C

Not A

Not B
Not C

Not C

Not C

Not A
Not B
Not A

A And B A Or B

73

Every circular region contains all values that belong to a set; the top circle for
example marks off set {A}. Every value inside that circle evaluates True for {A}
and every value not in that circle evaluates False for {A}. By coloring the regions
we can mimic boolean evaluation in programming code:

A good way to exercise your own boolean logic is to use Venn diagrams. A Venn
diagram is a graphical representation of boolean sets, where every region
contains a (sub)set of values that share a common property. The most famous
one is the three-circle diagram:

One of the most powerful features of Grasshopper
is the ability to quickly build and manipulate lists
of data. This chapter will explain how to create,
manipulate, and visualize list data.

F.3 DESIGNING WITH LISTS

76 F.3 Designing With Lists

F.3.0
Curve Geometry
NURBS (non-uniform rational B-splines) are mathematical representations that
can accurately model any shape from a simple 2D line, circle, arc, or box to the
most complex 3D free-form organic surface or solid. Because of their flexibility and
accuracy, NURBS models can be used in any process from illustration and animation to
manufacturing.

Since curves are geometric objects, they possess a number of properties or
characteristics which can be used to describe or analyze them. For example,
every curve has a starting coordinate and every curve has an ending coordinate.
When the distance between these two coordinates is zero, the curve is closed.
Also, every curve has a number of control-points, if all these points are located
in the same plane, the curve as a whole is planar. Some properties apply to the
curve as a whole, while others only apply to specific points on the curve. For
example, planarity is a global property while tangent vectors are a local property.
Also, some properties only apply to some curve types. So far we’ve discussed
some of Grasshopper’s Primitive Curve Components such as: lines, circles,
ellipses, and arcs.

F.3.0.0 NURBS CURVES
A NURBS curve is defined by degree, control points, and knots.

Degree:The degree is a positive whole number. This number is usually 1, 2, 3 or
5, but can be any positive whole number. The degree of the curve determines
the range of influence the control points have on a curve; where the higher the
degree, the larger the range. NURBS lines and polylines are usually degree 1,
NURBS circles are degree 2, and most free-form curves are degree 3 or 5.

Control Points: The control points are a list of at least degree+1 points.One of
the easiest ways to change the shape of a NURBS curve is to move its control
points.

Weight: Control points have an associated number called a weight . Weights are
usually positive numbers. When a curve’s control points all have the same weight
(usually 1), the curve is called non-rational, otherwise the curve is called rational.
Most NURBS curves are non-rational. A few NURBS curves, such as circles and
ellipses, are always rational.

Line Polyline Circle Ellipse Arc NURBS curve Polycurve

77

Knots: Knots are a list of (degree+N-1) numbers, where N is the number of
control points.

Edit Points: Points on the curve evaluated at knot averages. Edit points are like
control points except they are always located on the curve and moving one edit
point generally changes the shape of the entire curve (moving one control point
only changes the shape of the curve locally). Edit points are useful when you
need a point on the interior of a curve to pass exactly through a certain location.

NURBS curve knots as a result of varying degree:

F.3.0.1 GRASSHOPPER SPLINE COMPONENTS
Grasshopper has a set of tools to express Rhino’s more advanced curve types like
nurbs curves and poly curves. These tools can be found in the Curve/Splines tab.

Nurbs Curve (Curve/Spline/Nurbs curve): The Nurbs Curve component
constructs a NURBS curve from control points. The V input defines these points,
which can be described implicitly by selecting points from within the Rhino
scene, or by inheriting volatile data from other components. The Nurbs Curve-D
input sets the degree of the curve.

A D1 NURBS curve behaves the same as a
polyline. A D1 curve has a knot for every
control point.

D2 NURBS curves are typically only used
to approximate arcs and circles. The spline
intersects with the control polygon halfway
each segment..

D3 is the most common type of NURBS curve
and is the default in Rhino. You are probably
very familiar with the visual progression of
the spline, even though the knots appear to
be in odd locations.

Interpolate Curve (Curve/Spline/Interpolate): Interpolated curves behave
slightly differently than NURBS curves. The V-input is for the component is
similar to the NURBS component, in that it asks for a specific set of points to
create the curve. However, with the Interpolated Curve method, the resultant
curve will actually pass through these points, regardless of the curve degree. In
the NURBS curve component, we could only achieve this when the curve degree
was set to one. Also, like the NURBS curve component, the D input defines the
degree of the resultant curve. However, with this method, it only takes odd

78 F.3 Designing With Lists

numbered values for the degree input. Again, the P-input determines if the curve
is Periodic. You will begin to see a bit of a pattern in the outputs for many of the
curve components, in that, the C, L, and D outputs generally specify the resultant
curve, the length, and the curve domain respectively.

Kinky Curve (Curve/Spline/Kinky Curve): The kinky curve component allows
you the ability to control a specific angle threshold, A, where the curve will
transition from a kinked line, to a smooth, interpolated curve. It should be noted
that the A-input requires an input in radians.

Polyline (Curve/Spline/Polyline): A polyline is a collection of line segments
connecting two or more points, the resultant line will always pass through its
control points; similar to an Interpolated Curve. Like the curve types mentioned
above, the V-input of the Polyline component specifies a set of points that will
define the boundaries of each line segment that make up the polyline. The
C-input of the component defines whether or not the polyline is an open or
closed curve. If the first point location does not coincide with the last point
location, a line segment will be created to close the loop. The output for the
Polyline component is different than that of the previous examples, in that the
only resultant is the curve itself.

79

F.3.1
What is a List?
It’s helpful to think of Grasshopper in terms of flow, since the graphical interface is
designed to have data flow into and out of specific types of components. However,
it is the data that define the information flowing in and out of the components.
Understanding how to manipulate list data is critical to understanding the
Grasshopper plug-in.

Grasshopper generally has two types of data: persistent and volatile. Even
though the data types have different characteristics, typically Grasshopper
stores this data in an array, a list of variables.

When storing data in a list, it’s helpful to know the position of each item in that
list so that we can begin to access or manipulate certain items. The position of an
item in the list is called its index number.

The only thing that might seem odd at first is that the first index number of a list
is always 0; not 1. So, when we talk about the first item of a list, we actually mean
the item that corresponds to index number 0.

For example, if we were to count the number of fingers we have on our right
hand, chances are that you would have counted from 1 to 5. However, if this
list had been stored in an array, then our list would have counted from 0 to 4.
Note, that we still have 5 items in the list; it’s just that the array is using a zero-
based counting system. The items being stored in the list don’t just have to be
numbers. They can be any data type that Grasshopper supports, such as points,
curves, surfaces, meshes, etc.

Often times the easiest way to take a look at the type of data stored in a list
is to connect a Text Panel (Params/Input/Panel) to the output of a particular
component. By default, the Text Panel automatically shows all index numbers
to the left side of the panel and displays the data items on the right side of the
panel. The index numbers will become a crucial element when we begin working
with our lists. You can turn the index numbers on and off by right-clicking on the
Text Panel and clicking on the “Draw Indices” item in the sub-menu. For now, let’s
leave the entry numbers turned on for all of our text panels.

Index List Item

80 F.3 Designing With Lists

F.3.2
Data Stream Matching

Imagine a component which creates line segments between points. It will have
two input parameters which both supply point coordinates (List A and List B):

As you can see there are different ways in which we can draw lines between
these sets of points. New to Grasshopper 0.9 are three components for data
matching, found under the Sets/List panel: Shortest List, Longest List, and Cross
Reference. These new components allow for greater flexibility within the three
basic data matching algorithms. Right clicking each component allows you to
select a data matching option from the menu.

The simplest way is to connect the inputs one-on-one until one of the streams
runs dry. This is called the “Shortest List” algorithm:

Select a matching algorithm option from
the compponent menu by right-clicking the
component

Shortest List

Data matching is a problem without a clean solution. It occurs when a component has
access to differently sized inputs. Changing the data matching algorithm can lead to
vastly different results.

81

The “Longest List” algorithm keeps connecting inputs until all streams run dry.
This is the default behavior for components:

Finally, the “Cross Reference” method makes all possible connections:

This is potentially dangerous since the amount of output can be humongous. The
problem becomes more intricate as more input parameters are involved and
when the volatile data inheritance starts to multiply data, but the logic remains
the same.

Let’s look more closely at the Shortest List component:

Longest List

Cross Reference

Here we have two input lists {A,B,C,D,E} and {X,Y,Z}. Using the Trim End option,
the last two items in the first list are disregarded., so that the lists are of equal
length.

82 F.3 Designing With Lists

Now let’s look at the Cross Reference component:

Here we have two input lists {A,B,C} and {X,Y,Z}. Normally Grasshopper would
iterate over these lists and only consider the combinations {A,X}, {B,Y} and {C,Z}.
There are however six more combinations that are not typically considered, to
wit: {A,Y}, {A,Z}, {B,X}, {B,Z}, {C,X} and {C,Y}. As you can see the output of the Cross
Reference component is such that all nine permutations are indeed present.

We can denote the behaviour of data cross referencing using a table. The
rows represent the first list of items, the columns the second. If we create all
possible permutations, the table will have a dot in every single cell, as every cell
represents a unique combination of two source list indices.

0 1 2 3

0 • • • •

1 • • • •

2 • • • •

3 • • • •

4 • • • •

5 • • • •

Using the Trim Start option, the first two items in the first list are disregarded., so
that the lists are of equal length.

The Interpolate option skips the second and fourth items in the first list.

83

The rule that is applied to ‘diagonal’ matching is: “Skip all permutations where all
items have the same list index”. ‘Coincident’ matching is the same as ‘diagonal’
matching in the case of two input lists, but the rule is subtly different: “Skip all
permutations where any two items have the same list index”.

Sometimes however you don’t want all possible permutations. Sometimes you
wish to exclude certain areas because they would result in meaningless or invalid
computations. A common exclusion principle is to ignore all cells that are on the
diagonal of the table. The image above shows a ‘holistic’ matching, whereas the
‘diagonal’ option (available from the Cross Reference]component menu has gaps
for {0,0}, {1,1}, {2,2} and {3,3}.
If we apply this to our {A,B,C}, {X,Y,Z} example, we should expect to not see the
combinations for {A,X}, {B,Y} and {C,Z}:

‘Lower triangle (strict)’ matching goes one step further and also eliminates the
items on the diagonal:

‘Upper Triangle’ and ‘Upper Triangle (strict)’ are mirror images of the previous
two algorithms, resulting in empty triangles on the other side of the diagonal
line.

The four remaining matching algorithms are all variations on the same theme.
‘Lower triangle’ matching applies the rule: “Skip all permutations where the
index of an item is less than the index of the item in the next list”, resulting in an
empty triangle but with items on the diagonal.

0 1 2 3

0 • • •

1 • • •

2 • • •

3 • • •

4 • • • •

5 • • • •

0 1 2 3

0

1 •

2 • •

3 • • •

4 • • • •

5 • • • •

0 1 2 3

0 •

1 • •

2 • • •

3 • • • •

4 • • • •

5 • • • •

84 F.3 Designing With Lists

F.3.3
Creating Lists
There are many different ways to generate lists in Grasshopper. Below, we’ll look at a
few different methods for generating lists and then look at how the data can be used
to convey information in the viewport via a visualization.

F.3.3.0 MANUAL LIST CREATION
Perhaps the easiest way to create a list (and one of the most over-looked
methods) is to manually type in a list of values into a parameter. Using this
method puts added responsibility on the user because this method relies on
direct user input (ie. persistent data) for the list creation. In order to change the
list values, the user has to manually type in each individual valuewhich can be
difficult if the list has many entries. There are several ways to manually create
a list. One way is to use a Number paramter. Right click the Number parameter
and select “Manage Number Collection.”

Another method is to manually enter the list items into a panel. Make sure that
“Multiline Data” is deselected.

Click the Add Item icon to add a number to
the list

Double click the number to change its value

Right click the number component to open
the Number Collection Manager

F.3.3.1 RANGE
The Range component, found under Sets/Sequence/Range, creates a list of
evenly spaced numbers between a low and a high value called the Domain. A
domain (also sometimes referred to as an interval) is every possible number
between two numeric extremes.
A Range component divides a numeric domain into even segments and returns a

85

You may have noticed something a little quirky about the setup we just made.
We know that a domain is always defined by two values (a high and low value).
Yet, in our definition we simply connected a single value to the domain input.
In order to avoid errors, Grasshopper makes an assumption that you are trying
to define a domain between zero and some other number (our slider value). In
order to create a range between two numbers that doesn’t start at zero, we must
use the Construct Domain component to specify the domain.

A Range component divides a numeric domain into even segments and returns a
list of values.

In the example below, the numeric domain has been defined as every possible
number between 0 and 20. The Range component takes that domain and
divides it up by the number of steps (in this case 10). So, we have 10 even spaced
segments. The Range component returns a list of values. Because it keeps the
first and the last values in the list, the output of a Range component is always
one more than the number of steps. In the example above, we created 10 steps,
so the Range component returns 11 values.

Create a list using the Range component by
specifying a Domain and number of steps

To create a Range from a domain that does
not start at zero, use the Construct Domain
component.

86 F.3 Designing With Lists

F.3.3.2 SERIES
The Series component is similar to the Range component, in that, it also creates a
list of numbers. However a Series component is different because it creates a set
of discreet numbers based on a start value, step size, and the number of values in
the series.

F.3.3.3 RANDOM
The Random Component (Sets/Sequence/Random) can be used to generate a list
of pseudo random numbers. They are referred to as “pseudo” random because
the number sequence is unique but stable for each seed value. Thus, you can
generate an entirely new set of random numbers by changing the seed value
(S-input). The domain, as in the previous example, is a defined interval between
two numeric extremes.

The Series component creates a list based on
a start value, step value, and the number of
values in the list.

The Random component creates a pseudo-
random list of values.

87

You can visualize the order of a set of points
using the Point List component.

You can visualize any string information in
the viewport using the Text Tag component.
In this setup, we have decided to display
the value of each point on top of each point
location. We could have assigned any text to
display,

F.3.4
List Visualization
Understanding lists in Grasshopper can be difficult without being able to see the data
flowing from one component to the next. There are several ways to visualize lists that
can help to understand and manipulate data.

There are many different ways to visualize a list of data. The most common way
is to create some geometry with the list of data. By connecting the R output of
the Range component to the Y input of the Construct Point component, we can
see an array of points in the Y direction.

Lets look at some components that can help us understand the data.

F.3.4.0 THE POINT LIST COMPONENT
The Point List component is an extremely useful tool for visualizing the order
of a set of points in a list. Essentially, the Point List component places the index
item number next to the point geometry in the viewport. You can also specify
whether or not you want to draw the number tags, the connection lines, or the
size of the text tags.

F.3.4.1 TEXT TAGS
The text tag component allows you to draw little strings (a string is a set of ASCII
characters) in the viewport as feedback items. Text and location are specified
as input parameters. When text tags are baked into the scene, they turn into
Text Dots. The other interesting thing about Text Tags is that they are viewport
independent - meaning the tags always face the camera (including perspective
views) and they always remain the same size on the screen regardless of your
zoom settings.

88 F.3 Designing With Lists

The Text Tag 3d component works very similarly to the Text Tag component.
They differ, in that, when Text Tag 3d objects are baked into the scene, they
become Text objects in Rhino. The scale of the Text Tag 3d font can also be
controlled via an input (which is inaccessible in the Text Tag component).

F.3.4.2 COLOR
One of the other things we can do to visualize the list data is to assign color
to the geometry. Grasshopper has limited ‘rendering’ capabilities, but we can
control simple Open GL settings like color, specular color, transparency, etc.
The L0 value represents the low end (left side) of the gradient, whereas the L1
value represents the upper end (right side). These values correspond to the start
and end of our domain. The t-values are the elements in the list that will get
mapped somewhere within the L0 and L1 range. The output of the gradient is
a list of RGB color values which correspond to each point in our list. Right-click
on the Gradient to set one of the gradient presets, or define your own using the
color node points.

Point list

Text Tag

Text Tag 3D

Custom color preview

Points

You can use a Text Tag 3d component to
visualize information much like a Text object
in Rhino.

The Custom Preview component can be
used to assign color values to any specific
geometry.

89

F.3.5
List Management
One of the most powerful features of Grasshopper is the ability to quickly build and
manipulate various lists of data. We can store many different types of data in a list
(numbers, points, vectors, curves, surfaces, breps, etc.) and there are a number of
useful tools found under the Sets/List subcategory.

F.3.5.1 LIST ITEM
Our List is fed into a List Item component (Sets/List/List Item) in order to
retrieve a specific data item from within a data set. When accessing individual
items in a list, we have to specify the i-input; which corresponds to the index
number we would like to retrieve. We can feed a single integer or a list of
integers into the i-input depending on how many items we would like to retrieve.
The L-input defines the base list which we will be analyzing. In this example,
we have set the i-input to 5.0 so the List Item component returns the data item
associated with the 5th entry number in our list.

F.3.5.0 LIST LENGTH
The List Length component (Sets/List/List Length) essentially measures the
length of the List. Because our lists always start at zero, the highest possible
index in a list equals the length of the list minus one. In this example, we have
connected our base List to the List Length-L input, showing that there are 6
values in the list.

F.3.5.2 REVERSE LIST
We can invert the order of our list by using a Reverse List component (Sets/
List/Reverse). If we input an ascending list of numbers from 0.0 to 9.0 into the
Reverse List component; the output returns a descending list from 9.0 to 0.0.

90 F.3 Designing With Lists

F.3.5.3 SHIFT LIST
The Shift List component (Sets/Sequence/Shift List) will either move the list up
or down a number of increments depending on the value of the shift offset. We
have connected the List output into the Shift-L input, while also connecting a
number to the Shift-S input. If we set the offset to -1, all values of the list will
move down by one entry number. Likewise, if we change the offset to +1, all
values of the list will move up by one entry number. If Wrap input equals True,
then items that fall off the ends are re-appended to the beginning or end of the
list. In this example, we have a shift offset value set to +1, so that our list moves
up by one entry number. Now, we have a decision to make on how we would like
to treat the first value. If we set the Wrap value to False, the first entry will be
shifted up and out of the list, essentially removing this value from the data set
(so, the list length is one less than it was before). However, if we set the wrap
value to True, the first entry will be moved to the bottom of the list

F.3.5.4 INSERT ITEMS
The Insert Items component (Sets/Lists/Insert Items) enables you to insert a
collection of items into a list. In order for this to work properly, you need to know
the items you want to insert and the index position for each new item. In the
example below, we will insert the letters A, B, and C into index position three.

91

F.3.5.5 WEAVE
The Weave component (Sets/Lists/Weave) merges two or more lists together
based on a specified weave pattern (P input).When the pattern and the streams
do not match perfectly, this component can either insert nulls into the output
streams or it can ignore streams which have already been depleted.

F.3.5.6 CULL PATTERN
The Cull component (Sets/Sequence/Cull Pattern) removes elements in a list
using a repeating bit mask. The bit mask is defined as a list of Boolean (true or
false) values. The bit mask is repeated until all elements in the data list have been
evaluated.

1 0 1 1 1

0 1 1 1 0

1 1 1 0 1

1 1 0 1 1

1 0 1 1 1

10010

01001

00100

10010

01001

1 1 0 1 1

0 1 1 0 1

1 0 1 1 0

1 1 0 1 1

0 1 1 0 1

A2,C1

B1,C2

C1,C2B1,B2A1,A2#

1,0,1,1...

1,0,0...

1,1,0...

HYBRID

A1,B2

1 0 1 1 1

0 1 1 1 0

1 1 1 0 1

1 1 0 1 1

1 0 1 1 1

10010

01001

00100

10010

01001

1 1 0 1 1

0 1 1 0 1

1 0 1 1 0

1 1 0 1 1

0 1 1 0 1

A2,C1

B1,C2

C1,C2B1,B2A1,A2#

1,0,1,1...

1,0,0...

1,1,0...

HYBRID

A1,B2

1 0 1 1 1

0 1 1 1 0

1 1 1 0 1

1 1 0 1 1

1 0 1 1 1

10010

01001

00100

10010

01001

1 1 0 1 1

0 1 1 0 1

1 0 1 1 0

1 1 0 1 1

0 1 1 0 1

A2,C1

B1,C2

C1,C2B1,B2A1,A2#

1,0,1,1...

1,0,0...

1,1,0...

HYBRID

A1,B2

92 F.3 Designing With Lists

F.3.6
Working with Lists
Lets take a look at an example using the components from the previous section.
In this example, we are creating a tile pattern by mapping geometry to a
rectangular grid. The pattern is created by using the List Item component to
retrieve the desired tile from a list of geometry.

01. Start a Rhinoceros File

02. Create two equally sized squares

03. Create different geometries in each square

04. Start a new definition, type Ctrl+N (in Grasshopper)

05. Params/Geometry/Geometry – Drag and drop two Geometry parameters

onto the canvas

06. Right-Click the first Geometry Parameter and select set one Geometry.

Set the first Geometry that you are referencing

07. Right-Click the second Geometry Parameter and select set one

Geometry. Set the second Geometry that you are referencing

08. Params/Geometry/Curve – Drag and drop two Curve parameters onto

the canvas

For this exercise we will be referencing
geometry in Rhino.

Rectangular grid

mapping pattern

mapped geometry

Geometry corresponding to index 1

Geometry corresponding to index 0

We created a simple surface with a tab. The
tab is filleted to demonstrate the orientation
and the base is filleted to distinguish the two
geometries.

You can reference more geometries, but for
simplicity we are using two.

93

09. Right-Click the first Curve Parameter and select set one Curve. Set the

first Square that you are referencing

10. Right-Click the second Curve Parameter and select set one Curve. Set the

second Square that you are referencing

11. Vector/Grid/Rectangular – Drag and drop a Rectangular Grid component

onto the canvas.

12. Params/Input/Slider - Drag and drop three Numeric Sliders on the canvas

13. Double-click on the first slider and set the following:

Rounding: Integers

Lower Limit: 0

Upper Limit: 10

Value: 10

14. Double-click on the second slider and set the following:

Rounding: Integers

Lower Limit: 0

Upper Limit: 10

Value: 10

15. Double-click on the third slider and set the following:

Name: Extents X & Y

Rounding: Integers

Lower Limit: 0

Upper Limit: 10

Value: 10

16. Connect the first Number Slider to the Size X (Sx) input of the

Rectangular Grid component

17. Connect the second Number Slider to the Size Y (Sy) input of the

Rectangular Grid component

18. Connect the third Number Slider to the Extent X (Ex) input and the Extent

Y (Ey) input of the Rectangular Grid component

19. Sets/Tree/Merge – Drag and drop two Merge components onto the

canvas

20. Connect the first Geometry parameter to Data Stream 1 (D1) input of the

first Merge component

21. Connect the second Geometry parameter to Data Stream 2 (D2) input of

the first Merge component

22. Connect the first curve parameter to Data Stream 1 (D1) input of the

second Merge component

23. Connect the second curve parameter to Data Stream 1 (D2) input of the

second Merge component

24. Right-click the Cells (C) output of the Rectangular Grid component and

select Flatten

25. Sets/List/List Length – Drag and drop a List Length component onto the

canvas

26. Connect the Cells (C) output of the Rectangular Grid component to the

List (L) input of the List Length component

27. Sets/Sequence/Repeat Data – Drag and drop a Repeat Data component

onto the canvas

28. Connect the Length (L) output of the List Length component to the Length

Be sure that the geometry and the square
that you are referencing correspond.

1 0 1 1 1

0 1 1 1 0

1 1 1 0 1

1 1 0 1 1

1 0 1 1 1

10010

01001

00100

10010

01001

1 1 0 1 1

0 1 1 0 1

1 0 1 1 0

1 1 0 1 1

0 1 1 0 1

A2,C1

B1,C2

C1,C2B1,B2A1,A2#

1,0,1,1...

1,0,0...

1,1,0...

HYBRID

A1,B2

94 F.3 Designing With Lists

This is the pattern in which the geometries
are being distributed. 0 is calling out the first
referenced Geometry and 1 is calling out the
second referenced Geometry. Changing the
number sequence will change the pattern, as
will changing the extents of the grid.

Chnging the input geometry and the pattern will change the final tile pattern.

(L) input of the Repeat Data component

29. Params/Input/Panel – Drag and drop a panel onto the canvas

30. Double-click the panel. Deselect multiline data, wrap items, and special

codes. Enter the following:

1

0

0

31. Connect the panel to the Data (D) input of the Repeat Data component

32. Sets/List/List Item – Drag and drop two List Item components

33. Connect the Result (R) output of the first merge component to the List (L)

input of the first List Item component.

34. Connect the Result (R) output of the second merge component to the List

(L) input of the second List Item component.

35. Connect the Data (D) output of the Repeat data component to the Index

(i) input of the first and second List Item components.

36. Transform/Affine/Rectangle Mapping – Drag and Drop the Rectangle

Mapping component onto the canvas

37. Connect the Cells (C) output of the Rectangular Grid component to the

Target (T) input of the Rectangular Mapping Component

38. Connect the items (I) output of the first List item component to the

Geometry (G) input of the Rectangular Mapping Component

39. Connect the items (I) output of the second List item component to the

Source (S) input of the Rectangular Mapping Component

95

As your definitions increase in complexity, the
amount of data flowing through also increases.
In order to effectively use Grasshopper, it is
important to understand how large quantities of
data are stored, accessed, and manipulated.

F.4 DESIGNING WITH DATA
TREES

Sphere Primitive
[plane; radius]

Cylinder Primitive
[plane; radius; height]

Plane Primitive
[plane; width; height]

Cone Primitive
[plane; radius; height]

98 F.4 Designing With Data Trees

F.4.0
Surface Geometry
NURBS (non-uniform rational B-splines) are mathematical representations that
can accurately model any shape from a simple 2D line, circle, arc, or box to the
most complex 3D free-form organic surface or solid. Because of their flexibility and
accuracy, NURBS models can be used in any process from illustration and animation to
manufacturing.

Apart from a few primitive surface types such as spheres, cones, planes and
cylinders, Rhino supports three kinds of freeform surface types, the most useful
of which is the NURBS surface. Similar to curves, all possible surface shapes can
be represented by a NURBS surface, and this is the default fall-back in Rhino. It is
also by far the most useful surface definition and the one we will be focusing on.

Surface Domain
A surface domain is defined as the range of (u,v) parameters that evaluate into a
3-D point on that surface. The domain in each dimension (u or v) is usually
described as two real numbers (u_min to u_max) and (v_min to v_max) Changing
a surface domain is referred to as reparameterizing the surface.

F.4.0.0 NURBS SURFACES
NURBS surfaces are very similar to NURBS curves. The same algorithms are
used to calculate shape, normals, tangents, curvatures and other properties, but
there are some distinct differences. For example, curves have tangent vectors
and normal planes, whereas surfaces have normal vectors and tangent planes.
This means that curves lack orientation while surfaces lack direction. In the case
of NURBS surfaces, there are in fact two directions implied by the geometry,
because NURBS surfaces are rectangular grids of {u} and {v} curves. And even
though these directions are often arbitrary, we end up using them anyway
because they make life so much easier for us.

You can think of NURBS surfaces as a grid of
NURBS curves that go in two directions.
The shape of a NURBS surface is defined by
a number of control points and the degree
of that surface in the u and v directions.
NURBS surfaces are efficient for storing and
representing free-form surfaces with a high
degree of accuracy.

In Grasshopper, it is often useful to
reparameterize NURBS surfaces so that the
u and v domains both range from 0 to 1. This
allows us to easily evaluate and operate on
the surface.

Sphere Primitive
[plane, radius]

Plane Primitive
[plane, width, height]

Cylinder Primitive
[plane, radius, height]

Cone Primitive
[plane, radius, height]

99

Normal Vectors and Tangent Planes
The tangent plane to a surface at a given point is the plane that touches the
surface at that point. The z-direction of the tangent plane represents the normal
direction of the surface at that point.

Grasshopper handles NURBS surfaces similarly to the way that Rhino does
because it is built on the same core of operations needed to generate the
surface. However, because Grasshopper is displaying the surface on top of the
Rhino viewport (which is why you can’t really select any of the geometry created
through Grasshopper in the viewport until you bake the results into the scene)
some of the mesh settings are slightly lower in order to keep the speed of the
Grasshopper results fairly high. You may notice some faceting in your surface
meshes, but this is to be expected and is only a result of Grasshopper’s drawing
settings. Any baked geometry will still use the higher mesh settings.

Surface evaluation
Evaluating a surface at a parameter that is within the surface domain results in a
point that is on the surface. Keep in mind that the middle of the domain (mid-u,
mid-v) might not necessarily evaluate to the middle point of the 3D surface. Also,
evaluating u- and v-values that are outside the surface domain will not give a
useful result.

Note: Evaluating parameters at equal
intervals in the 2-D parameter rectangle does
not necessarily translate into equal intervals
in 3-D space.

100 F.4 Designing With Data Trees

F.4.0.1 PROJECTING, MAPPING & MORPHING
In the previous section, we explained that NURBS surfaces contain their own
coordinate space desfined by u and v domains. This means that two dimensional
geometry that is defined by x and y coordinates can be mapped onto the uv
space of a surface. The geometry will stretch and change in response to the
curvature of the surface. This is different from simply projecting 2d geometry
onto a surface, where vectors are drawn from the 2d geometry in a specified
direction until they intersect with the surface.

Just as 2d geometry can be projected onto the uv space of a surface, 3d
geometry that is contained by a box can be mapped to a corresponding twisted
box on a surface patch. This operation is called box morphing and is useful for
populating curved surfaces with three dimensional geometric components.

To array twisted boxes on a surface, the surface domain must be divided to
create a grid of surface patches. The twisted boxes are created by drawing
normal vectors at the corners of each patch to the desired height and creating
a box defined by the end points of those vectors and the corner points of the
patch.

You can think of projection as geometry
casting a shadow onto a surface, and mapping
as geometry being stretched over a surface.

Mapped geometry defined by uv coordinates

Projecting geometry onto a surface

101

F.4.0.2 MORPHING DEFINITION
In this example, we will use the box morph component to populate a NURBS
surface with a geometric component.

01. Start a new definition, type Ctrl+N (in Grasshopper)

02. Params/Geometry/Surface – Drag and drop a Surface parameter onto the

canvas

03. Params/Geometry/Geometry – Drag a Geometry parameter to the

canvas

04. Right click the Surface Parameter and select “Set One Surface” – select a

surface to reference in the Rhino viewport

05. Right click the Geometry parameter and select “Set One Geometry” –

select the your Rhino geometry

06. Maths/Domain/Divide Domain2 – Drag and drop the Divide Domain2

component onto the canvas

07. Params/Input/Number Slider – Drag three Number sliders onto the

canvas

08. Double click the first slider and set the following:

Rounding: Integer

Lower Limit: 0

This is the surface that we will populate with
geometric components

This is the component that will be arrayed
over the surface

Original component in reference box

Surface divided into patches

Twisted boxes arrayed on surface

NURBS surface populated with component

102 F.4 Designing With Data Trees

Upper Limit: 10

Value: 5

09. Set the same values on the second and third sliders

10. Connect the output of the Surface parameter to the Domain (I) input of

the Divide Domain2 component

11. Connect the first Number Slider to the U Count (U) input of the Divide

Domain2 component

12. Connect the second Number Slider to the V Count (V) input of the Divide

Domain2 component

13. Transform/Morph/Surface Box – Drag the Surface Box component to the

canvas

14. Connect the output of the Surface parameter to the Surface (S) input of

the Surface Box component

15. Connect the Segements (S) output of the Divide Domain2 component to

the Domain (D) input of the Surface Box component

You should see a grid of twisted boxes
populating your referenced surface. Change
the U and V count sliders to change the
number of boxes, and use the height slider to
adjust their height.

You should now see your geometry
populating your surface.

16. Connect the third Number Slider to the Height (H) input of the Surface

Box component

17. Surface/Primitive/Bounding Box – Drag a Bounding Box component to

the canvas

18. Transform/Morph/Box Morph – Drag and drop the Box Morph

component onto the canvas

19. Connect the output of the Geometry parameter to the Content (C) input

of the Bounding Box component

20. Connect the output of the Geometry parameter to the Geometry (G)

input of the Box Morph component

21. Connect the Box (B) output of the Bounding Box component to the

Reference (R) input of the Box Morph component

22. Connect the Twisted Box (B) output of the Surface Box component to the

Target (T) input of the Box Morph component

103

104 F.4 Designing With Data Trees

F.4.1
What is a Data Tree?

In the image above, there is a single master branch (you could call this a trunk,
but since it’s possible to have multiple master branches, it might be a bit of a
misnomer) at path {0}. This path contains no data, but does have 6 sub-branches.
Each of these sub-branches inherit the index of the parent branch {0} and add
their own sub-index (0, 1, 2, 3, 4, and 5 respectively). It would be wrong to call
this an “index”, because that implies just a single number. It is probably better to
refer to this as a “path”, since it resembles a folder-structure on the disk. At each
of these sub-branches, we encounter some data. Each data item is thus part of
one (and only one) branch in the tree, and each item has an index that specifies
its location within the branch. Each branch has a path that specifies its location
within the tree.

It’s possible to have multiple lists of data inside a single parameter. Since
multiple lists are available, there needs to be a way to identify each individual
list. A Data Tree is essentially a list of lists, or sometimes a list of lists of lists (and
so on).

A Data Tree is a hierarchical structure for storing data in nested lists. Data trees are
created when a grasshopper component is structured to take in a data set and output
multiple sets of data. Grasshopper handles this new data by nesting it in the form of
sub-lists. These nested sub-lists work in the same way as folder structures on your
computer in that accessing indexed items require moving through paths that are
informed by their generation of parent lists and their own sub-index.

List container

Data items “leaves”

Path

Current “branch” level

105

F.4.1.0 DATA TREE VISUALIZATION
Due to their complexity, Data Trees can be difficult to understand. Grasshopper
has several tools to help visualize and understand the data stored in a tree.

The Param Viewer
The Param Viewer (Params/Util/Param Viewer) allows you to visualize data in
text form and as a tree. Connect any output containing data to the input of the
Param Viewer. To show the tree, right-click the Param Viewer and select “draw
tree.” In this example, the Param Viewer is connected to the Points (P) output of
a Divide Curve component that divided 10 curves into 10 segements each. The
ten branches correspond to the ten curves, each containing a list of 11 points
which are the division points of the curve.

Select “Draw Tree” to display the data tree

Path of each list

Number of items in each list

The image below illustrates the difference between a list and a data tree. On the
left, an array of four columns of six points each is all contained in one list. The
first column numbered 0-5, the second 6-11, and so on. On the right is the same
array of points contained in a data tree. The data tree is a list of four columns,
and each column is a list of six points. The index of each point is (column number,
row number). This is a much more useful way of organizing this data, because
you can easily access and operate on all the points in a given row or column,
delete every second row of points, connect alternating points, etc.

106 F.4 Designing With Data Trees

Tree Statistics
The Tree Statistics component (Sets/Tree/Tree Statistics) Returns some
statistics of the Data Tree including:
P - All the paths of the tree
L - The length of each branch in the tree
C - Number of paths and branches in the tree
If we connect the Points output of the same Divide Curve component, we can
display the paths, lengths, and the count in panels. This component is helpful
because it separates the statistics into three outputs, allowing you to view only
the one that is relevant.

If we connect a panel to the same output, it displays ten lists of 11 items each.
You can see that each item is a point defined by three coordinates. The path is
displayed at the top of each list, and corresponds to the paths listed in the Param
Viewer.

Both the Param Viewer and the Tree Statistics component are helpful for
visualizing changes in the structure of the Data Tree. In the next section, we will
look at some operations that can be performed to change this structure.

Path

List of 11 items

107

F.4.3
Working with Data Trees
Grasshopper contains tools for changing the structure of a data tree. Theese tools can
help you access specific data within a tree, and change the way it is stored, ordered,
and identified.

Let’s look at some data tree manipulations and visualize how they affect the tree.

F.4.3.0 FLATTEN TREE
Flattening removes all levels of a Data Tree, resulting in a single List. Using the
Flatten component (Sets/Tree/Flatten) on the P output of our Divide Curve
component, we can use the Param Viewer to visualize the new data structure.

In the Param Viewer, we can see that we now
only have 1 branch containing a list of 48
points.

F.4.3.1 GRAFT TREE
Grafting creates a new Branch for every Data Item. If we run the data through
the Graft Tree component (Sets/Tree/Graft Tree), each division point now has
its own individual branch, rather than sharing a branch with the other division
points on the same curve.

In the Param Viewer, we can see that what
was data with 8 branches of 6 items each, we
now have 8 branches with 6 sub-branches
containing 1 item each.

108 F.4 Designing With Data Trees

In the Param Viewer, we still have 8 branches
of 6 items each, but the first branch has been
removed.

In our Param Viewer, we can see that what
was data with 8 branches of 6 items each, we
now have 6 branches with 8 items each.

The Flatten, Graft, and Simplify operations can be applied to the component
input or output itself, rather than feeding the data through a separate
component. Just right-click the desired input or output and select Flatten, Graft,
or Simplify from the menu. The component will display an icon to indicate that
the tree is being modified. Keep in mind Grasshopper’s program flow. If you
flatten a component input, the data will be flattened before the component
operation is performed. If you flatten a component output, the data will be
flattened after the component performs its action.

Divide Curve component with a flattened P
output

Divide Curve component with grafted P
output

Divide Curve component with a simplified P
output

F.4.3.2 SIMPLIFY TREE
Simplify removes overlapping Branches in a Data Tree. If we run the data
through the Simplify Tree component (Sets/Tree/Simplify Tree), the first branch,
containing no data, has been removed.

F.4.3.3 FLIP MATRIX
The Flip Matrix component (Sets/Tree/Flip Matrix) Swaps the “Rows” and
“Columns” of a Data Tree with two Path Indices.

109

F.4.3.4 THE PATH MAPPER
The Path Mapper component (Sets/Tree/Path Mapper) allows you to perform
lexical operations on data trees. Lexical operations are logical mappings between
data paths and indices which are defined by textual (lexical) masks and patterns.

Right-click the Path Mapper component and
select a predefined mapping option from the
menu, or open the mapping editor.

You can modify a data tree by re-mapping the
path index and the desired branch.

The Mapping Editor

The Path Mapper component

0 1 2 3 4 5 6 7
{0;0}

{0;1}

{0;2}

{0;3}

{0;4}

{0;5}

{0;6}

{0;7} {0;7}

{0;6}

{0;5}

{0;4}

{0;3}

{0;2}

{0;1}

{0;0} {1;0}

{1;1}

{1;2}

{1;3}

{1;4}

{1;5}

{1;6}

{1;7}

{2;0}

{2;1}

{2;2}

{2;3}

{2;4}

{2;5}

{2;6}

{2;7}

{3;0}

{3;1}

{3;2}

{3;3}

{3;4}

{3;6}

{3;7} {3;7}

{3;3}

{3;2}

{3;1}

{3;0}

{2;7}

{2;5}

{2;4}

{2;3}

{2;2}

{2;1}

{2;0}

{1;7}

{1;6}

{1;5}

{1;4}

{1;3}

{1;2}

{1;1}

{1;0}

A 0 B 0 A 1 B 1 A 2 B 2 A 3 B 3

Array curves Dispatch and divide curves Cull, Weave, and Revolve

{3;5}

{3;6}

{3;5}

{3;4}

B 3A 3B 2A 2B 1A 1B 0A 0

{1;2}

{1;3}

{1;6}

{1;7}

{2;2}

{2;3}

{2;6}

{2;7}

{3;2}

{3;3}

{3;6}

{3;7}

{3;5}

{3;4}

{3;1}

{3;0}

{2;5}

{2;4}

{2;1}

{2;0}

{1;5}

{1;4}

{1;1}

{1;0}{0;0}

{0;1}

{0;4}

{0;5}

{0;7}

{0;6}

{0;3}

{0;2}

{2;6}

0 1 2 3 4 5 6 7
{0;0}

{0;1}

{0;2}

{0;3}

{0;4}

{0;5}

{0;6}

{0;7} {0;7}

{0;6}

{0;5}

{0;4}

{0;3}

{0;2}

{0;1}

{0;0} {1;0}

{1;1}

{1;2}

{1;3}

{1;4}

{1;5}

{1;6}

{1;7}

{2;0}

{2;1}

{2;2}

{2;3}

{2;4}

{2;5}

{2;6}

{2;7}

{3;0}

{3;1}

{3;2}

{3;3}

{3;4}

{3;6}

{3;7} {3;7}

{3;3}

{3;2}

{3;1}

{3;0}

{2;7}

{2;5}

{2;4}

{2;3}

{2;2}

{2;1}

{2;0}

{1;7}

{1;6}

{1;5}

{1;4}

{1;3}

{1;2}

{1;1}

{1;0}

A 0 B 0 A 1 B 1 A 2 B 2 A 3 B 3

Array curves Dispatch and divide curves Cull, Weave, and Revolve

{3;5}

{3;6}

{3;5}

{3;4}

B 3A 3B 2A 2B 1A 1B 0A 0

{1;2}

{1;3}

{1;6}

{1;7}

{2;2}

{2;3}

{2;6}

{2;7}

{3;2}

{3;3}

{3;6}

{3;7}

{3;5}

{3;4}

{3;1}

{3;0}

{2;5}

{2;4}

{2;1}

{2;0}

{1;5}

{1;4}

{1;1}

{1;0}{0;0}

{0;1}

{0;4}

{0;5}

{0;7}

{0;6}

{0;3}

{0;2}

{2;6}

0 1 2 3 4 5 6 7
{0;0}

{0;1}

{0;2}

{0;3}

{0;4}

{0;5}

{0;6}

{0;7} {0;7}

{0;6}

{0;5}

{0;4}

{0;3}

{0;2}

{0;1}

{0;0} {1;0}

{1;1}

{1;2}

{1;3}

{1;4}

{1;5}

{1;6}

{1;7}

{2;0}

{2;1}

{2;2}

{2;3}

{2;4}

{2;5}

{2;6}

{2;7}

{3;0}

{3;1}

{3;2}

{3;3}

{3;4}

{3;6}

{3;7} {3;7}

{3;3}

{3;2}

{3;1}

{3;0}

{2;7}

{2;5}

{2;4}

{2;3}

{2;2}

{2;1}

{2;0}

{1;7}

{1;6}

{1;5}

{1;4}

{1;3}

{1;2}

{1;1}

{1;0}

A 0 B 0 A 1 B 1 A 2 B 2 A 3 B 3

Array curves Dispatch and divide curves Cull, Weave, and Revolve

{3;5}

{3;6}

{3;5}

{3;4}

B 3A 3B 2A 2B 1A 1B 0A 0

{1;2}

{1;3}

{1;6}

{1;7}

{2;2}

{2;3}

{2;6}

{2;7}

{3;2}

{3;3}

{3;6}

{3;7}

{3;5}

{3;4}

{3;1}

{3;0}

{2;5}

{2;4}

{2;1}

{2;0}

{1;5}

{1;4}

{1;1}

{1;0}{0;0}

{0;1}

{0;4}

{0;5}

{0;7}

{0;6}

{0;3}

{0;2}

{2;6}

0 1 2 3 4 5 6 7
{0;0}

{0;1}

{0;2}

{0;3}

{0;4}

{0;5}

{0;6}

{0;7} {0;7}

{0;6}

{0;5}

{0;4}

{0;3}

{0;2}

{0;1}

{0;0} {1;0}

{1;1}

{1;2}

{1;3}

{1;4}

{1;5}

{1;6}

{1;7}

{2;0}

{2;1}

{2;2}

{2;3}

{2;4}

{2;5}

{2;6}

{2;7}

{3;0}

{3;1}

{3;2}

{3;3}

{3;4}

{3;6}

{3;7} {3;7}

{3;3}

{3;2}

{3;1}

{3;0}

{2;7}

{2;5}

{2;4}

{2;3}

{2;2}

{2;1}

{2;0}

{1;7}

{1;6}

{1;5}

{1;4}

{1;3}

{1;2}

{1;1}

{1;0}

A 0 B 0 A 1 B 1 A 2 B 2 A 3 B 3

Array curves Dispatch and divide curves Cull, Weave, and Revolve

{3;5}

{3;6}

{3;5}

{3;4}

B 3A 3B 2A 2B 1A 1B 0A 0

{1;2}

{1;3}

{1;6}

{1;7}

{2;2}

{2;3}

{2;6}

{2;7}

{3;2}

{3;3}

{3;6}

{3;7}

{3;5}

{3;4}

{3;1}

{3;0}

{2;5}

{2;4}

{2;1}

{2;0}

{1;5}

{1;4}

{1;1}

{1;0}{0;0}

{0;1}

{0;4}

{0;5}

{0;7}

{0;6}

{0;3}

{0;2}

{2;6}

110 F.4 Designing With Data Trees

F.4.3.5 WEAVING DEFINITION
In this example, we will manipulate lists and data trees to weave lists of points,
define a pattern, and create surface geometry.

01. Start a new definition, type Ctrl+N (in Grasshopper)

02. Curve/Primitive/Line SDL – Drag and drop the Line SDL component onto

the canvas

03. Vector/Point/Construct Point – Drag and drop the Construct Point

component onto the canvas

04. Connect the Point (Pt) output of the Construct Point component to the

Start (S) Input of the Line SDL component

05. Vector/Vector/Unit Y – Drag and drop the vector Unit Y component onto

the canvas

06. Connect the Unit Y component to the Direction (D) input of the Line SDL

component

07. Params/Input/Number Slider – Drag and drop the Number Slider

component onto the canvas

The factor of Unit Vector components is 1.0
by default

Paths (indices) of points

NURBS curve

Revolved NURBS surface

Curve array

Division points

Array curves Dispatch curves into lists A and B, divide
curves

Cull points, weave, and revolve

line_array dispatch A/B divide lines cull_weave

build curves revolve A revolve B combine

A
B

111

08. Double-click on the Number slider and set the following:

Name: Length

Rounding: Integer

Lower Limit: 0

Upper Limit: 96

Value: 96

09. Connect the Number slider to the Length (L) input of the Line SDL

component

10. Transform/Array/Linear Array – Drag and drop the Linear Array

component onto the canvas

11. Connect the Line (L) output of the Line SDL component to the Geometry

(G) input of the Linear Array component

12. Vector/Vector/Unit X – Drag and drop the Vector Unit X component onto

the canvas

13. Params/Input/Number Slider – Drag and drop two Number Slider

components onto the canvas

14. Double-click on the first slider and set the following:

Name: Offset Distance

Rounding: Integer

Lower Limit: 1

Upper Limit: 10

Value: 4

15. Double-click on the second slider and set the following:

Name: # of Offsets

Rounding: Even

Lower Limit: 2

Upper Limit: 20

Value: 20

16. Connect the Number Slider (Offset Distance) to the Factor (F) input of

the Unit X component

17. Connect the Vector (V) output of the Unit X component to the Direction

(D) input of the Linear Array component

18. Connect the Number Slider (# of Offsets) to the Count (N) input of the

Linear Array component

You should now see an array of lines in the
Rhino viewport. The three sliders allow
you to change the length of the lines, their
distance from each other, and the number of
lines in the array.

line_array dispatch A/B divide lines cull_weave

build curves revolve A revolve B combine

A
B

line_array dispatch A/B divide lines cull_weave

build curves revolve A revolve B combine

A
B

112 F.4 Designing With Data Trees

The Divide Curve component divides the
curves into the number of segments specified
by the slider. Adjust the slider to change the
number of points.

The dispatch component sends every second
curve in the array to a separate list.

19. Sets/Lists/Dispatch – Drag and drop the component onto the canvas

20. Connect the Geometry (G) output of the Linear Array component to the

List (L) input of the Dispatch component

21. Params/Input/Panel – Drag and drop the component onto the canvas

22. Double-click the panel and enter the following:

true

false

23. Connect the Panel to the Pattern (P) input of the Dispatch component

24. Curve/Division/Divide Curve – Drag and drop two Divide Curve

components onto the canvas

25. Connect the List A (A) output of the Dispatch component to the Curve (C)

input of the First Divide Curve component

26. Connect the List B (B) output of the Dispatch component to the Curve (C)

input of the Second Divide Curve component

27. Params/Input/Number Slider – Drag and drop the Number Slider

component onto the canvas

28. Double-click on the Number slider and set the following:

Name: Divisions

Rounding: Integer

Lower Limit: 0

Upper Limit: 20

Value: 20

29. Connect the Number Slider (Divisions) to the Count (N) input of both

Divide Curve components.

Be sure to select: Multiline Data, Wrap Items,
and Special Codes

113

30. Sets/Sequence/Cull Pattern – Drag and drop two Cull Pattern

components onto the canvas

31. Connect the Points (P) output of the First Divide Curve component to the

List (L) input of the First Cull Pattern component

32. Connect the Points (P) output of the Second Divide Curve component to

the List (L) input of the Second Cull Pattern component

33. Params/Input/Panel – Drag and drop a Second Panel component onto the

canvas

34. Double-click the Scond panel and deselect: Multiline Data, Wrap Items,

and Special Codes. Then enter the following:

1

1

0

0

35. Connect the Second Panel to the Pattern (P) input of the First Cull

Pattern component

36. Connect the Second Panel to the Pattern (P) input of the Second Cull

Pattern component

37. Right-click on the Pattern (P) input of the Second Cull Pattern component

and select Invert

38. Sets/List/Weave – Drag and drop the Weave component onto the canvas

39. Connect the Second Panel to the Pattern (P) input of the Weave

component

40. Right-click the Pattern (P) input of the Weave component and select

reverse

41. Connect the List (L) output of the First Cull Pattern component to the

Stream 0 (0) input of the Weave component

42. Connect the List (L) output of the Second Cull Pattern component to the

Stream 0 (0) input of the Weave component

43. Curve/Spline/Nurbs Curve – Drag and drop the Nurbs Curve component

onto the canvas

44. Connect the Weave (W) output of the Weave component to the Vertices

(V) input of the Nurbs Curve component.

We are using 1 and 0 in place of true and
false. These are the two syntaxes that
Grasshopper accepts for boolean values.

This will invert the Cull Pattern, a useful trick
to keep definitions short.

line_array dispatch A/B divide lines cull_weave

build curves revolve A revolve B combine

A
B

line_array dispatch A/B divide lines cull_weave

build curves revolve A revolve B combine

A
B

line_array dispatch A/B divide lines cull_weave

build curves revolve A revolve B combine

A
B

line_array dispatch A/B divide lines cull_weave

build curves revolve A revolve B combine

A
B

line_array dispatch A/B divide lines cull_weave

build curves revolve A revolve B combine

A
B

114 F.4 Designing With Data Trees

45. Surface/Freeform/Revolution – Drag and drop two Revolution

components onto the canvas

46. Connect the Curve output of the Nurbs Curve component to the Profile

Curve (P) input of both Revolution components.

47. Right Click on Axis (A) input of both Revolution components and select

Graft.

48. Connect the List A (A) output of the Dispatch component to the Axis (A)

input of the First Revolution component

49. Connect the List B (B) output of the Dispatch component to the Axis (A)

input of the Second Revolution component

Select all the components except the two
Revolution components and turn the preview
off - it is helpful to turn previews off as you
build the definition to focus on the most
recent geometry

The cull patterns remove alternating points
from each list.

The weave component collects data from the
point lists according to a custom pattern. This
data is fed into the interpolate component to
create curves.

115

{8;0}

{2;0}

{3;0}

{4;0}

{2;1}

{2;3}

{2;4}

{3;1}

{3;2}

{3;3}

{3;4}

{4;1}

{4;2}

{4;3}

{4;4}

{4;5}

{5;0}

{5;1}

{5;2}

{0;0}

{0;1}

{1;0}

{2;0}

{3;0}

{4;0}

{1;1}

{1;2}

{2;1}

{2;3}

{2;4}

{3;1}

{3;2}

{3;3}

{3;4}

{4;1}

{4;2}

{4;3}

{4;4}

{4;5}

{5;0}

{5;1}

{5;2}

{5;3}

{5;4}

{6;0}

{6;1}

{6;2}

{6;3}

{7;0}

{7;1}

{7;2}

{8;0}

{8;1} {5;3}

{5;4}

{6;0}

{6;1}

{6;2}

{6;3}

{3;1}
{3;0}

{8;1}

{3;3}
{3;2}

{8;3}
{8;2}

{13;0}

{13;1}

{13;3}

{13;2}

{18;0}

{18;3}{18;1}

{18;2}

{23;3}

{23;0}

{23;2}

{23;1}
{23;2}

{23;1}

{23;3}

{23;0}
{18;2}

{18;3}
{18;1}

{18;0}

{13;2}

{13;3}

{13;1}

{13;0}

{8;2}
{8;3}

{3;2}
{3;3}

{8;1}
{8;0}

{3;1}
{3;0}

{22;2}

{22;1}

{22;3}

{22;0}
{17;2}

{17;3}

{17;1}

{17;0}
{12;3}

{12;2}

{6;3}
{6;2}

{6;1}

{6;0}

{4;4}

{5;4}

{5;3}{5;2}

{5;1}

{5;0}

{4;5}

{4;3}{4;2}

{4;1}

{4;0}

{3;4}

{3;3}
{3;2}

{3;1}

{3;0}

{2;3}

{2;2}

{2;1}

{2;0}

{12;0}

{12;1}

{7;3}
{7;2}

{5;2}

{20;2}

{20;0}

{20;1}

{20;3}

{15;1} {15;2}

{15;0}
{10;1}

{10;0}
{5;1}

{0;0}{0;1} {0;2}
{0;3}

{15;3}
{10;2}

{10;3}

{5;3}{5;0}
{1;1}{1;0}

{1;2}
{1;3}

{6;1}
{6;0}

{6;2}
{6;3}

{11;0}

{11;1}

{11;2}

{11;3}

{16;0}

{16;1}

{16;3}

{16;2}{21;0}

{21;3}

{21;1}
{21;2}

{2;1}
{2;0}

{2;3}
{2;2}{7;1}

{7;0}

{8;0}

{2;0}

{3;0}

{4;0}

{2;1}

{2;3}

{2;4}

{3;1}

{3;2}

{3;3}

{3;4}

{4;1}

{4;2}

{4;3}

{4;4}

{4;5}

{5;0}

{5;1}

{5;2}

{0;0}

{0;1}

{1;0}

{2;0}

{3;0}

{4;0}

{1;1}

{1;2}

{2;1}

{2;3}

{2;4}

{3;1}

{3;2}

{3;3}

{3;4}

{4;1}

{4;2}

{4;3}

{4;4}

{4;5}

{5;0}

{5;1}

{5;2}

{5;3}

{5;4}

{6;0}

{6;1}

{6;2}

{6;3}

{7;0}

{7;1}

{7;2}

{8;0}

{8;1} {5;3}

{5;4}

{6;0}

{6;1}

{6;2}

{6;3}

{3;1}
{3;0}

{8;1}

{3;3}
{3;2}

{8;3}
{8;2}

{13;0}

{13;1}

{13;3}

{13;2}

{18;0}

{18;3}{18;1}

{18;2}

{23;3}

{23;0}

{23;2}

{23;1}
{23;2}

{23;1}

{23;3}

{23;0}
{18;2}

{18;3}
{18;1}

{18;0}

{13;2}

{13;3}

{13;1}

{13;0}

{8;2}
{8;3}

{3;2}
{3;3}

{8;1}
{8;0}

{3;1}
{3;0}

{22;2}

{22;1}

{22;3}

{22;0}
{17;2}

{17;3}

{17;1}

{17;0}
{12;3}

{12;2}

{6;3}
{6;2}

{6;1}

{6;0}

{4;4}

{5;4}

{5;3}{5;2}

{5;1}

{5;0}

{4;5}

{4;3}{4;2}

{4;1}

{4;0}

{3;4}

{3;3}
{3;2}

{3;1}

{3;0}

{2;3}

{2;2}

{2;1}

{2;0}

{12;0}

{12;1}

{7;3}
{7;2}

{5;2}

{20;2}

{20;0}

{20;1}

{20;3}

{15;1} {15;2}

{15;0}
{10;1}

{10;0}
{5;1}

{0;0}{0;1} {0;2}
{0;3}

{15;3}
{10;2}

{10;3}

{5;3}{5;0}
{1;1}{1;0}

{1;2}
{1;3}

{6;1}
{6;0}

{6;2}
{6;3}

{11;0}

{11;1}

{11;2}

{11;3}

{16;0}

{16;1}

{16;3}

{16;2}{21;0}

{21;3}

{21;1}
{21;2}

{2;1}
{2;0}

{2;3}
{2;2}{7;1}

{7;0}

{8;0}

{2;0}

{3;0}

{4;0}

{2;1}

{2;3}

{2;4}

{3;1}

{3;2}

{3;3}

{3;4}

{4;1}

{4;2}

{4;3}

{4;4}

{4;5}

{5;0}

{5;1}

{5;2}

{0;0}

{0;1}

{1;0}

{2;0}

{3;0}

{4;0}

{1;1}

{1;2}

{2;1}

{2;3}

{2;4}

{3;1}

{3;2}

{3;3}

{3;4}

{4;1}

{4;2}

{4;3}

{4;4}

{4;5}

{5;0}

{5;1}

{5;2}

{5;3}

{5;4}

{6;0}

{6;1}

{6;2}

{6;3}

{7;0}

{7;1}

{7;2}

{8;0}

{8;1} {5;3}

{5;4}

{6;0}

{6;1}

{6;2}

{6;3}

{3;1}
{3;0}

{8;1}

{3;3}
{3;2}

{8;3}
{8;2}

{13;0}

{13;1}

{13;3}

{13;2}

{18;0}

{18;3}{18;1}

{18;2}

{23;3}

{23;0}

{23;2}

{23;1}
{23;2}

{23;1}

{23;3}

{23;0}
{18;2}

{18;3}
{18;1}

{18;0}

{13;2}

{13;3}

{13;1}

{13;0}

{8;2}
{8;3}

{3;2}
{3;3}

{8;1}
{8;0}

{3;1}
{3;0}

{22;2}

{22;1}

{22;3}

{22;0}
{17;2}

{17;3}

{17;1}

{17;0}
{12;3}

{12;2}

{6;3}
{6;2}

{6;1}

{6;0}

{4;4}

{5;4}

{5;3}{5;2}

{5;1}

{5;0}

{4;5}

{4;3}{4;2}

{4;1}

{4;0}

{3;4}

{3;3}
{3;2}

{3;1}

{3;0}

{2;3}

{2;2}

{2;1}

{2;0}

{12;0}

{12;1}

{7;3}
{7;2}

{5;2}

{20;2}

{20;0}

{20;1}

{20;3}

{15;1} {15;2}

{15;0}
{10;1}

{10;0}
{5;1}

{0;0}{0;1} {0;2}
{0;3}

{15;3}
{10;2}

{10;3}

{5;3}{5;0}
{1;1}{1;0}

{1;2}
{1;3}

{6;1}
{6;0}

{6;2}
{6;3}

{11;0}

{11;1}

{11;2}

{11;3}

{16;0}

{16;1}

{16;3}

{16;2}{21;0}

{21;3}

{21;1}
{21;2}

{2;1}
{2;0}

{2;3}
{2;2}{7;1}

{7;0}

{8;0}

{2;0}

{3;0}

{4;0}

{2;1}

{2;3}

{2;4}

{3;1}

{3;2}

{3;3}

{3;4}

{4;1}

{4;2}

{4;3}

{4;4}

{4;5}

{5;0}

{5;1}

{5;2}

{0;0}

{0;1}

{1;0}

{2;0}

{3;0}

{4;0}

{1;1}

{1;2}

{2;1}

{2;3}

{2;4}

{3;1}

{3;2}

{3;3}

{3;4}

{4;1}

{4;2}

{4;3}

{4;4}

{4;5}

{5;0}

{5;1}

{5;2}

{5;3}

{5;4}

{6;0}

{6;1}

{6;2}

{6;3}

{7;0}

{7;1}

{7;2}

{8;0}

{8;1} {5;3}

{5;4}

{6;0}

{6;1}

{6;2}

{6;3}

{3;1}
{3;0}

{8;1}

{3;3}
{3;2}

{8;3}
{8;2}

{13;0}

{13;1}

{13;3}

{13;2}

{18;0}

{18;3}{18;1}

{18;2}

{23;3}

{23;0}

{23;2}

{23;1}
{23;2}

{23;1}

{23;3}

{23;0}
{18;2}

{18;3}
{18;1}

{18;0}

{13;2}

{13;3}

{13;1}

{13;0}

{8;2}
{8;3}

{3;2}
{3;3}

{8;1}
{8;0}

{3;1}
{3;0}

{22;2}

{22;1}

{22;3}

{22;0}
{17;2}

{17;3}

{17;1}

{17;0}
{12;3}

{12;2}

{6;3}
{6;2}

{6;1}

{6;0}

{4;4}

{5;4}

{5;3}{5;2}

{5;1}

{5;0}

{4;5}

{4;3}{4;2}

{4;1}

{4;0}

{3;4}

{3;3}
{3;2}

{3;1}

{3;0}

{2;3}

{2;2}

{2;1}

{2;0}

{12;0}

{12;1}

{7;3}
{7;2}

{5;2}

{20;2}

{20;0}

{20;1}

{20;3}

{15;1} {15;2}

{15;0}
{10;1}

{10;0}
{5;1}

{0;0}{0;1} {0;2}
{0;3}

{15;3}
{10;2}

{10;3}

{5;3}{5;0}
{1;1}{1;0}

{1;2}
{1;3}

{6;1}
{6;0}

{6;2}
{6;3}

{11;0}

{11;1}

{11;2}

{11;3}

{16;0}

{16;1}

{16;3}

{16;2}{21;0}

{21;3}

{21;1}
{21;2}

{2;1}
{2;0}

{2;3}
{2;2}{7;1}

{7;0}

{8;0}

{2;0}

{3;0}

{4;0}

{2;1}

{2;3}

{2;4}

{3;1}

{3;2}

{3;3}

{3;4}

{4;1}

{4;2}

{4;3}

{4;4}

{4;5}

{5;0}

{5;1}

{5;2}

{0;0}

{0;1}

{1;0}

{2;0}

{3;0}

{4;0}

{1;1}

{1;2}

{2;1}

{2;3}

{2;4}

{3;1}

{3;2}

{3;3}

{3;4}

{4;1}

{4;2}

{4;3}

{4;4}

{4;5}

{5;0}

{5;1}

{5;2}

{5;3}

{5;4}

{6;0}

{6;1}

{6;2}

{6;3}

{7;0}

{7;1}

{7;2}

{8;0}

{8;1} {5;3}

{5;4}

{6;0}

{6;1}

{6;2}

{6;3}

{3;1}
{3;0}

{8;1}

{3;3}
{3;2}

{8;3}
{8;2}

{13;0}

{13;1}

{13;3}

{13;2}

{18;0}

{18;3}{18;1}

{18;2}

{23;3}

{23;0}

{23;2}

{23;1}
{23;2}

{23;1}

{23;3}

{23;0}
{18;2}

{18;3}
{18;1}

{18;0}

{13;2}

{13;3}

{13;1}

{13;0}

{8;2}
{8;3}

{3;2}
{3;3}

{8;1}
{8;0}

{3;1}
{3;0}

{22;2}

{22;1}

{22;3}

{22;0}
{17;2}

{17;3}

{17;1}

{17;0}
{12;3}

{12;2}

{6;3}
{6;2}

{6;1}

{6;0}

{4;4}

{5;4}

{5;3}{5;2}

{5;1}

{5;0}

{4;5}

{4;3}{4;2}

{4;1}

{4;0}

{3;4}

{3;3}
{3;2}

{3;1}

{3;0}

{2;3}

{2;2}

{2;1}

{2;0}

{12;0}

{12;1}

{7;3}
{7;2}

{5;2}

{20;2}

{20;0}

{20;1}

{20;3}

{15;1} {15;2}

{15;0}
{10;1}

{10;0}
{5;1}

{0;0}{0;1} {0;2}
{0;3}

{15;3}
{10;2}

{10;3}

{5;3}{5;0}
{1;1}{1;0}

{1;2}
{1;3}

{6;1}
{6;0}

{6;2}
{6;3}

{11;0}

{11;1}

{11;2}

{11;3}

{16;0}

{16;1}

{16;3}

{16;2}{21;0}

{21;3}

{21;1}
{21;2}

{2;1}
{2;0}

{2;3}
{2;2}{7;1}

{7;0}

{8;0}

{2;0}

{3;0}

{4;0}

{2;1}

{2;3}

{2;4}

{3;1}

{3;2}

{3;3}

{3;4}

{4;1}

{4;2}

{4;3}

{4;4}

{4;5}

{5;0}

{5;1}

{5;2}

{0;0}

{0;1}

{1;0}

{2;0}

{3;0}

{4;0}

{1;1}

{1;2}

{2;1}

{2;3}

{2;4}

{3;1}

{3;2}

{3;3}

{3;4}

{4;1}

{4;2}

{4;3}

{4;4}

{4;5}

{5;0}

{5;1}

{5;2}

{5;3}

{5;4}

{6;0}

{6;1}

{6;2}

{6;3}

{7;0}

{7;1}

{7;2}

{8;0}

{8;1} {5;3}

{5;4}

{6;0}

{6;1}

{6;2}

{6;3}

{3;1}
{3;0}

{8;1}

{3;3}
{3;2}

{8;3}
{8;2}

{13;0}

{13;1}

{13;3}

{13;2}

{18;0}

{18;3}{18;1}

{18;2}

{23;3}

{23;0}

{23;2}

{23;1}
{23;2}

{23;1}

{23;3}

{23;0}
{18;2}

{18;3}
{18;1}

{18;0}

{13;2}

{13;3}

{13;1}

{13;0}

{8;2}
{8;3}

{3;2}
{3;3}

{8;1}
{8;0}

{3;1}
{3;0}

{22;2}

{22;1}

{22;3}

{22;0}
{17;2}

{17;3}

{17;1}

{17;0}
{12;3}

{12;2}

{6;3}
{6;2}

{6;1}

{6;0}

{4;4}

{5;4}

{5;3}{5;2}

{5;1}

{5;0}

{4;5}

{4;3}{4;2}

{4;1}

{4;0}

{3;4}

{3;3}
{3;2}

{3;1}

{3;0}

{2;3}

{2;2}

{2;1}

{2;0}

{12;0}

{12;1}

{7;3}
{7;2}

{5;2}

{20;2}

{20;0}

{20;1}

{20;3}

{15;1} {15;2}

{15;0}
{10;1}

{10;0}
{5;1}

{0;0}{0;1} {0;2}
{0;3}

{15;3}
{10;2}

{10;3}

{5;3}{5;0}
{1;1}{1;0}

{1;2}
{1;3}

{6;1}
{6;0}

{6;2}
{6;3}

{11;0}

{11;1}

{11;2}

{11;3}

{16;0}

{16;1}

{16;3}

{16;2}{21;0}

{21;3}

{21;1}
{21;2}

{2;1}
{2;0}

{2;3}
{2;2}{7;1}

{7;0}

116 F.4 Designing With Data Trees

F.4.3.6 RAIL INTERSECT DEFINITION
In this example, we will use some of Grasshopper’s tools for manipulating data
trees to retreive, reorganize, and interpolate the desired points contained in a
data tree and create a lattice of intersecting fins.

01. Start a new definition, type Ctrl+N (in Grasshopper)

02. Params/Geometry/Curve – Drag and drop three curve parameters onto

the canvas

03. Surface/Freeform/Sweep2 – Drag a Sweep2 component onto the canvas

04. Right-click the first curve parameter and select “Set one curve.” Select the

first rail curve in the Rhino viewport

05. Right-click the second curve parameter and select “Set one curve.” Select

the second rail curve in the Rhino viewport

06. Right-click the third curve parameter and select “Set one curve.” Select

the section curve in the Rhino viewport

07. Connect the outputs of the curve parameters to the Rail 1 (R1), Rail 2

(R2), and Sections (S) inputs respectively

08. Params/Geometry/Surface – drag a surface parameter to the canvas

09. Connect the Brep (S) output of the Sweep2 component to the input of the

surface parameter

We have just created a NURBS surface

Sweep with two rails to create a NURBS
surface

Divide the surface into variable sized
segments, extract vertices. Data comprised
of one list with four items for each segment.

Flip the Matrix to change the data structure.
Data comprised of four lists, each containing
a single corner point of each segment.

Explode the tree to connect corner points
and draw diagonal lines accross each
segment.

Prune the tree to cull branches containing
insufficient points to construct a degree 3
NURBS curve and interpolate points.

Extrude the curves to create intersecting fins.

117

10. Right-click the surface parameter and select “Reparameterize”

11. Maths/Domain/Divide Domain2 – drag and drop a Divide Domain2

component onto the canvas

12. Params/Input/Number Slider – drag two number sliders onto the canvas

13. Double click the first slider and set the following:

Rounding: Integer

Lower Limit: 1

Upper Limit: 40

Value: 20

14. Set the same values on the second slider

15. Connect the output of the reparameterized surface parameter to the

Domain (I) input of the Divide Domain2 component

16. Connect the first number slider to the U Count (U) input of the Divide

Domain2 component

17. Connect the second number slider to the V Count (V) input of the Divide

Domain2 component

18. Surface/Util/Isotrim – Drag and drop the Isotrim component onto the

canvas

19. Connect the Segments (S) output of the Divide Domain2 component to

the Domain (D) input of the Isotrim component

20. Connect the output of the surface parameter to the Surface (S) input of

the Isotrim component

In this step, we re-mapped the u and v
domains of the surface between 0 and 1. This
will make future operations possible.

We have now divided out surface into
smaller, equally sized, surfaces. Adjust the U
and V Count sliders to change the number of
divisions. Lets add a Graph Mapper to give
the segments variable size.

The Merge and Split components are used
here so that the same Graph Mapper could
be used for both the U min and U max values.

21. Maths/Domain/Deconstruct Domain2 – Drag a Deconstruct Domain2

component onto the canvas

22. Maths/Domain/Construct Domain2 – Drag a Construct Domain2

component to the canvas

23. Params/Input/Graph Mapper – Drag a Graph Mapper to the canvas

24. Sets/List/List Length – Drag a List Length component to the canvas

25. Sets/Tree/Merge – Drag a Merge component to the canvas

26. Sets/List/Split List – Drag a Split List component to the canvas

27. Connect the U min (U0) and U max (U1) outputs of the Deconstruct

Domain2 component to the Data 1 (D1) and Data 2 (D2) inputs of the

Merge component

28. Connect the Result (R) output of the Merge component to the input of

the Graph Mapper

29. Right-click the Graph Mapper and select “Bezier” under “Graph Types”

30. Connect a second wire from the U max (U1) output of the Deconstruct

Domain2 component to the List (L) input of the List Length component

31. Connect the Graph Mapper output to the List (L) input of the Split List

component

118 F.4 Designing With Data Trees

Each output of the Explode Tree component
contains a list of one vertex of each surface.
In other words, one list with all the top right
corners, one list with all the bottom right
corners, one list of top left corners, and one
list of bottom left corners.

The Deconstruct Brep component
deconstructs a Brep into Faces, Edges, and
Vertices. This is helpful if you want to operate
on a specific constituent of the surface.

We just changed the Data tree structure
from one list of four vertices that define each
surface, to four lists, each containing one
vertex of each surface.

32. Connect the Length (L) output of the List Length component to the Index

(i) input of the Split List component

33. Connect the List A (A) output of the Split List component to the U min

(U0) input of the Construct Domain2 component

34. Connect the List B (B) output of the Split List component to the U max

(U1) input of the Construct Domain2 component

35. Connect the V min (V0) output of the Deconstruct Domain2 component

to the V min (V1) input of the Construct Domain2 component

36. Connect the V max (V1) output of the Deconstruct Domain2 component

to the V max (V1) input of the Construct Domain2 component

37. Connect the 2D Domain (I2) output of the Construct Domain2

component to the Domain (D) input of the Isotrim component, replacing

the existing connection

38. Surface/Analysis/Deconstruct Brep – Drag the deconstruct Brep

component onto the canvas

39. Sets/Tree/Flip Matrix – Drag the Flip Matrix Component to the canvas

40. Sets/Tree/Explode Tree – Drag the Explode Tree component to the

canvas

41. Connect the Surface (S) output of the Isotrim component to the Brep (B)

input of the Deconstruct Brep component

42. Connect the Vertices (V) output of the Deconstruct Brep component to

the Data (D) input of the Flip Matrix component

43. Connect the Data (D) output of the Flip Matrix component to the Data

(D) input of the Explode Tree component

44. Right-click the Explode Tree component and select “Match Outputs”

45. Right-click the Data (D) input of the Explode Tree component and select

We have just deconstructed the domains
of each surface segment, remapped the
U values using a Graph Mapper, and
reconstructed the domains. Adjust the
grips of the Graph Mapper to change the
distribution of the surface segments. Let’s
use Data Trees to manipulate the surface
divisions.

119

We have now connected the corner points of
each surface diagonally with lines.

Hold down the Shift key to connect multiple
wires to a single input

We have now joined our lines into polylines
and reconstructed them as NURBS curves
by interpolating their control points. In the
Rhino viewport, you might notice that the
shorter curves are still straight lines. This
is because you cannot make a degree three
NURBS curve with fewer than four control
points. Let’s manipulate the data tree to
eliminate lists of control points with less than
four items.

simplify

46. Curve/Primitive/Line – Drag and drop two line components onto the

canvas

47. Connect the Branch 0 {0} output of the Explode Tree component to the

Start Point (A) input of the first Line component

48. Connect the Branch 1 {1} output of the Explode Tree component to the

Start Point (A) input of the Second Line component

49. Connect the Branch 2 {2} output of the Explode Tree component to the

End Point (B) input of the first Line component

50. Connect the Branch 3 {3} output of the Explode Tree component to the

End Point (B) input of the Second Line component

51. Curve/Until/Join Curves – Drag and drop the Join Curves component to

the canvas

52. Curve/Analysis/Control Points – Drag a Control Points component onto

the canvas

53. Curve/Spline/Interpolate – Drag and drop the Interpolate component

onto the canvas

54. Connect the Line (L) outputs of each Line component to the Curves (C)

input of the Join Curves component

55. Connect the Curves (C) output of the Join Curves component to the

Curve (C) input of the Control Points component

56. Connect the Points (P) output of the Control Points component to the

Vertices (V) input of the Interpolate component

57. Sets/Tree/Prune Tree – Drag and drop the Prune Tree component onto

the canvas

58. Params/Input/Panel – Drag a Panel onto the canvas

59. Connect the Points (P) output of the Control Points component to the

Tree (T) input of the Prune Tree component

60. Double click the Panel and enter 4.

61. Connect the output of the Panel to the Minimum (N0) input of the Prune

Tree component

62. Connect the Tree (T) output of the Prune Tree component to the Vertices

(V) input of the Interpolate component

If you connect one Param Viewer to the
Points (P) output of the Control Points
component, and another to the Tree (T)
output of the Prune Tree component, you can
see that the number of branches has been
reduced.

120 F.4 Designing With Data Trees

You may need to use a Unit X vector,
depending on the orientation of your
referenced geometry in Rhino

You should now see a diagonal grid of strips
or fins in the Rhino Viewport. Adjust the
Factor slider to chnage the depth of the fins

63. Surface/Freeform/Extrude – Drag and drop the Extrude component onto

the canvas

64. Vector/Vector/Unit Y – Drag a Unit Y component onto the canvas

65. Params/Input/Number Slider – Drag a number slider onto the canvas

66. Double click the Number Slider and set the following:

Rounding: Integer

Lower Limit: 1

Upper Limit: 5

Value: 3

67. Connect the Curve (C) output of the Interpolate component to the Base

(B) input of the Extrude component

68. Connect the Number Slider output to the Factor (F) input of the Unit Y

component

69. Connect the Unit Vector (V) output of the Unit Y component to the

Direction (D) input of the Extrude component

121

The following section contains useful references
including an index of all the components used in
this primer, as well as additional resources to learn
more about Grasshopper.

[A.] APPENDIX

 124 Appendix

A.0
Index

Parameters

GEOMETRY

P.G.Crv Curve Parameter
Represents a collection of Curve geometry. Curve geometry is the
common denominator of all curve types in Grasshopper.

P.G.
Circle

Circle parameter
Represents a collection of Circle primitives.

P.G.Geo Geometry Parameter
Represents a collection of 3D Geometry.

P.G.
Pipeline

Geometry Pipeline
Defines a geometry pipeline from Rhino to Grasshopper.

P.G.Pt Point Parameter
Point parameters are capable of storing persistent data. You can set
the persistent records through the parameter menu.

P.G.Srf Surface Parameter
Represents a collection of Surface geometry. Surface geometry is
the common denominator of all surface types in Grasshopper.

PRIMITIVE

P.P.Bool Boolean parameter
Represents a collection of Boolean (True/False) values.

P.P.D Domain Parameter
Represents a collection of one-dimensional Domains. Domains
are typically used to represent curve fragments and continuous
numeric ranges. A domain consists of two numbers that indicate the
limits of the domain, everything in between these numbers is part
of the domain.

P.P.D2 Domain2 Parameter
Contains a collection of two-dimensional domains. 2D Domains are
typically used to represent surface fragments. A two-dimensional
domain consists of two one-dimensional domains.

This index provides additional information on all the components used in this primer,
as well as other components you might find useful. This is just an introduction to over
500 components in the Grasshopper plugin.

125

P.P.ID Guid Parameter
Represents a collection of Globally Unique Identifiers. Guid
parameters are capable of storing persistent data. You can set the
persistent records through the parameter menu.

P.P.Int Integer Parameter
Represents a collection of Integer numeric values. Integer
parameters are capable of storing persistent data. You can set the
persistent records through the parameter menu.

P.P.Num Number Parameter
Represents a collection of floating point values. Number
parameters are capable of storing persistent data. You can set the
persistent records through the parameter menu.

P.P.Path File Path
Contains a collection of file paths.

INPUT

P.I.Toggle Boolean Toggle
Boolean (true/false) toggle.

P.I.Button Button
Button object with two values. When pressed, the button object
returns a true value and then resets to false.

P.I.Swatch Color Swatch
A swatch is a special interface object that allows for quick setting
of individual color values. You can change the color of a swatch
through the context menu.

P.I.Grad Gradient Control
Gradient controls allow you to define a color gradient within a
numeric domain. By default the unit domain (0.0 ~ 1.0) is used, but
this can be adjusted via the L0 and L1 input parameters. You can
add color grips to the gradient object by dragging from the color
wheel at the upper left and set color grips by right clicking them.

P.I.Graph Graph Mapper
Graph mapper objects allow you to remap a set of numbers.
By default the {x} and {y} domains of a graph function are unit
domains (0.0 ~ 1.0), but these can be adjusted via the Graph Editor.
Graph mappers can contain a single mapping function, which can
be picked through the context menu. Graphs typically have grips
(little circles), which can be used to modify the variables that
define the graph equation. By default, a graph mapper objects
contains no graph and performs a 1:1 mapping of values.

126 Appendix

Maths

DOMAIN

M.D.Bnd Bounds
Create a numeric domain which encompasses a list of numbers.

M.D.
Consec

Consecutive Domains
Create consecutive domains from a list of numbers.

P.I.Slider Number Slider
A slider is a special interface object that allows for quick setting
of individual numeric values. You can change the values and
properties through the menu, or by double-clicking a slider object.
Sliders can be made longer or shorter by dragging the rightmost
edge left or right. Note that sliders only have an output (ie. no
input).

P.I.Pannel Panel
A panel for custom notes and text values. It is typically an
inactive object that allows you to add remarks or explanations
to a Document. Panels can also receive their information from
elsewhere. If you plug an output parameter into a Panel, you
can see the contents of that parameter in real-time. All data in
Grasshopper can be viewed in this way. Panels can also stream
their content to a text file.

P.I.List Value List
Provides a list of preset values from which to choose.

UTILITIES

P.U.Cin Cluster Input
Represents a cluster input parameter.

P.U.COut Cluster Output
Represents a cluster input parameter.

P.U.Dam Data Dam
Delay data on its way through the document.

P.U.Jump Jump
Jump between different locations.

P.U.
Viewer

Param Viewer
A viewer for data structures.

P.U.Scrib-
ble

Scribble
A quick note.

127

M.D.Dom Construct Domain
Create a numeric domain from two numeric extremes.

M.D.
Dom2Num

Construct Domain²
Create a two-dimensinal domain from four numbers.

M.D.
DeDomain

Deconstruct Domain
Deconstruct a numeric domain into its component parts.

M.D.
DeDom2

Num

Deconstruct Domain²
Deconstruct a two-dimensional domain into four numbers.

M.D.
Divide

Divide Domain²
Divides a two-dimensional domain into equal segments.

M.D.Inc Includes
Test a numeric value to see if it is included in the domain.

M.D.
ReMap

Remap Numbers
Remap numbers into a new numeric domain.

OPERATORS

M.O.Add Addition
Mathematical addition.

M.O.Div Division
Mathematical division.

M.O.
Equals

Equality
Test for (in)equality of two numbers.

M.O.And Gate And
Perform boolean conjunction (AND gate). Both inputs need to be
True for the result to be True.

M.O.Not Gate Not
Perform boolean negation (NOT gate).

M.O.Or Gate Or
Perform boolean disjunction (OR gate). Only a single input has to
be True for the result to be True.

M.O.
Larger

Larger Than
Larger than (or equal to).

M.O.
Multiply

Multiplication
Mathematical multiplication.

128 Appendix

M.O.
Smaller

Smaller Than
Larger than (or equal to).

M.O.
Similar

Similarity
Test for similarity of two numbers.

M.O.Sub Subtraction
Mathematical subtraction.

SCRIPT

M.S.Eval Evaluate
Evaluate an expression with a flexible number of variables.

M.S.
Expression

Expression
Evaluate an expression.

TRIG

M.T.Cos Cosine
Compute the cosine of a value.

M.T.Deg Degrees
Convert an angle specified in radians to degrees.

M.T.Rad Radians
Convert an angle specified in degrees to radians.

M.T.Sim Sine
Compute the sine of a value.

UTILITIES

M.U.Avr Average
Solve the arithmetic average for a set of items.

M.U.Phi Golden Ratio
Returns a factor of the golden ratio (Phi).

M.U.Pi Pi
Returns a factor of Pi.

Sets

LIST

S.L.
Combine

Combine Data
Combine non-null items out of several inputs.

129

S.L.
CrossRef

Cross Reference
Cross Reference data from multiple lists.

S.L.
Dispatch

Dispatch
Dispatch the items in a list into two target lists. List dispatching is
very similar to the [Cull Pattern] component, with the exception
that both lists are provided as outputs.

S.L.Ins Insert Items
Insert a collection of items into a list.

S.L.Item List Item
Retrieve a specific item from a list.

S.L.Lng List Length
Measure the length of a list. Elements in a list are identified by
their index. The first element is stored at index zero, the second
element is stored at index one and so on and so forth. The highest
possible index in a list equals the length of the list minus one.

S.L.Long Longest List
Grow a collection of lists to the longest length amongst them.

S.L.
Replace

Replace Items
Replace certain items in a list.

S.L.Rev Reverse List
Reverse the order of a list. The new index of each element will be
N-i where N is the highest index in the list and i is the old index of
the element.

S.L.Shift Shift List
Offset all items in a list. Items in the list are offset (moved)
towards the end of the list if the shift offset is positive. If Wrap
equals True, then items that fall off the ends are re-appended.

S.L.Short Shortest List
Shrink a collection of lists to the shortest length amongst them.

S.L.Sift Sift Pattern
Sift elements in a list using a repeating index pattern.

S.L.Sort Sort List
Sort a list of numeric keys. In order for something to be sorted, it
must first be comparable. Most types of data are not comparable,
Numbers and Strings being basically the sole exceptions. If you
want to sort other types of data, such as curves, you’ll need to
create a list of keys first.

S.L.Weave Weave
Weave a set of input data using a custom pattern. The pattern is
specified as a list of index values (integers) that define the order in
which input data is collected.

130 Appendix

SETS

S.S.Culli Cull Index
Cull (remove) indexed elements from a list.

S.S.Cull Cull Pattern
Cull (remove) elements in a list using a repeating bit mask. The
bit mask is defined as a list of Boolean values. The bit mask is
repeated until all elements in the data list have been evaluated.

S.S.Dup Duplicate Data
Duplicate data a predefined number of times. Data can be
duplicated in two ways, either copies of the list are appended at
the end until the number of copies has been reached, or each item
is duplicated a number of times before moving on to the next item.

S.S.Jitter Jitter
Randomly shuffles a list of values. The input list is reordered
based on random noise. Jittering is a good way to get a random
set with a good distribution. The jitter parameter sets radius of
the random noise. If jitter equals 0.5, then each item is allowed to
reposition itself randomly to within half the span of the entire set.

S.S.
Random

Random
Generate a list of pseudo random numbers. The number sequence
is unique but stable for each seed value. If you do not like a
random distribution, try different seed values.

S.S.Range Range
Create a range of numbers. The numbers are spaced equally
inside a numeric domain. Use this component if you need to
create numbers between extremes. If you need control over the
interval between successive numbers, you should be using the
[Series] component.

S.S.Repeat Repeat Data
Repeat a pattern until it reaches a certain length.

S.S.Series Series
Create a series of numbers. The numbers are spaced according to
the {Step} value. If you need to distribute numbers inside a fixed
numeric range, consider using the [Range] component instead.

TREE

S.T.Explode Explode Tree
Extract all the branches from a tree.

S.T.Flatten Flatten Tree
Flatten a data tree by removing all branching information.

131

S.T.Flip Flip Matrix
Flip a matrix–like data tree by swapping rows and columns.

S.T.Graft Graft Tree
Typically, data items are stored in branches at specific index
values (0 for the first item, 1 for the second item, and so on and so
forth) and branches are stored in trees at specific branch paths,
for example: {0;1}, which indicates the second sub-branch of the
first main branch. Grafting creates a new branch for every single
data item.

S.T.Merge Merge
Merge a bunch of data streams.

S.T.Path Path Mapper
Perform lexical operations on data trees. Lexical operations
are logical mappings between data paths and indices which are
defined by textual (lexical) masks and patterns.

S.T.Prune Prune Tree
Removes all branches from a Tree that carry a special number of
Data items. You can supply both a lower and an upper limit for
branch pruning.

S.T.Simplify Simplify Tree
Simplify a tree by removing the overlap shared amongst all
branches.

S.T.TStat Tree Statistics
Get some statistics regarding a data tree.

S.T.
Unflatten

Unflatten Tree
Unflatten a data tree by moving items back into branches.

Vector

GRID

V.G.
HexGrid

Hexagonal
2D grid with hexagonal cells.

V.G.
RecGrid

Rectangular
2D grid with rectangular cells.

V.G.SqGrid Square
2D grid with square cells.

132 Appendix

POINT

V.P.Pt Construct Point
Construct a point from {xyz} coordinates.

V.P.
pDecon

Deconstruct
Deconstruct a point into its component parts.

V.P.Dist Distance
Compute Euclidean distance between two point coordinates.

VECTOR

V.V.X Unit X
Unit vector parallel to the world {x} axis.

V.V.Y Unit Y
Unit vector parallel to the world {y} axis.

V.V.Vec2Pt Vector 2Pt
Create a vector between two points.

Curve

DIVISION

C.D.Divide Divide Curve
Divide a curve into equal length segments.

PRIMITIVE

C.P.Cir Circle
Create a circle defined by base plane and radius.

C.P.Cir3Pt Circle 3Pt
Create a circle defined by three points.

C.P.
CirCNR

Circle CNR
Create a circle defined by center, normal and radius.

C.P.Line Line SDL
Create a line segment defined by start point, tangent and length.

C.P.
Polygon

Polygon
Create a polygon with optional round edges.

133

SPLINE

C.S.IntCrv Interpolate
Create an interpolated curve through a set of points.

C.S.
KinkCrv

Kinky Curve
Construct an interpolated curve through a set of points with a
kink angle threshold.

C.S.Nurbs Nurbs Curve
Construct a nurbs curve from control points.

C.S.PLine PolyLine
Create a polyline connecting a number of points.

UTIL

C.U.
Explode

Explode
Explode a curve into smaller segments.

C.U.Offset Offset
Offset a curve with a specified distance.

 Surface

ANALYSIS

S.A.
DeBrep

Deconstruct Brep
Deconstruct a brep into its constituent parts.

FREEFORM

S.F.
Boundary

Boundary Surfaces
Create planar surfaces from a collection of boundary edge curves.

S.F.Extr Extrude
Extrude curves and surfaces along a vector.

S.F.ExtrPt Extrude Point
Extrude curves and surfaces to a point.

S.F.Loft Loft
Create a lofted surface through a set of section curves.

S.F.RevSrf Revolution
Create a surface of revolution.

S.F.Swp2 Sweep2
Create a sweep surface with two rail curves.

134 Appendix

PRIMITIVE

S.P.BBox Bounding Box
Solve oriented geometry bounding boxes.

UTIL

S.U.
SDivide

Divide Surface
Generate a grid of {uv} points on a surface.

S.U.SubSrf Isotrim
Extract an isoparametric subset of a surface.

Mesh

TRIANGULATION

M.T.
Voronoi

Voronoi
Planar voronoi diagram for a collection of points.

Transform

AFFINE

T.A.
RecMap

Rectangle Mapping
Transform geometry from one rectangle into another.

ARRAY

T.A.
ArrLinear

Linear Array
Create a linear array of geometry.

MORPH

T.M.Morph Box Morph
Morph an object into a twisted box.

T.M.SBox Surface Box
Create a twisted box on a surface patch.

Display

COLOR

D.C.HSL Colour HSL
Create a colour from floating point {HSL} channels.

135

DIMENSIONS

D.D.Tag Text tags
A text tag component allows you to draw little Strings in the
viewport as feedback items. Text and location are specified as
input parameters. When text tags are baked they turn into Text
Dots.

D.D.Tag3D Text Tag 3D
Represents a list of 3D text tags in a Rhino viewport.

PREVIEW

D.P.
Preview

Custom Preview
Allows for customized geometry previews.

VECTOR

D.V.Points Point List
Displays details about lists of points.

 136 Appendix

A.1
Resources
There are many resources available to learn more about Grasshopper and parametric
design concepts. There are also over a hundred plugins and add-ons that extend
Grasshopper’s functionality. Below are some of our favorites.

ADD-ONS WE LOVE

PLUG-IN COMMUNITIES

LunchBox is a plug-in for Grasshopper for exploring
mathematical shapes, paneling, structures, and workflow.
http://www.food4rhino.com/project/lunchbox

Firefly offers a set of comprehensive software tools
dedicated to bridging the gap between Grasshopper and
the Arduino micro-controller.
http://fireflyexperiments.com

Meshedit is a set of components which extend
Grasshopper’s ability to work with meshes.
http://www.food4rhino.com/project/meshedittools

HAL is a Grasshopper plugin for industrial robots
programming supporting ABB, KUKA and Universal
Robots machines.
http://hal.thibaultschwartz.com/

 DIVA-for-Rhino allows users to carry out a series of
environmental performance evaluations of individual
buildings and urban landscapes.
http://diva4rhino.com/

food4Rhino (WIP) is the new Plug-in Community Service
by McNeel. As a user, find the newest Rhino Plug-ins,
Grasshopper Add-ons, Textures and Backgrounds, add
your comments, discuss about new tools, get in contact
with the developers of these applications, share your
scripts.
http://www.food4rhino.com/

Grasshopper add-ons page
http://www.grasshopper3d.com/page/addons-for-
grasshopper

Fold panels using curved folding and control panel
distribution on surfaces with a range of attractor systems.
http://www.food4rhino.com/project/robofoldkingkong

Platypus allows Grasshopper authors to stream geometry
to the web in real time. It works like a chatroom for
parametric geometry, and allows for on-the-fly 3D model
mashups in the web browser.
http://www.food4rhino.com/project/platypus

GhPython is the Python interpreter component for
Grasshopper that allows you to execute dynamic
scripts of any type. Unlike other scripting components,
GhPython allows the use of rhinoscriptsyntax to start
scripting without needing to be a programmer.
http://www.food4rhino.com/project/ghpython

Parametric tools to create and manipulate rectangular
grids, attractors and support creative morphing of
parametric patterns.
http://www.food4rhino.com/project/pt-gh

Extends Grasshopper’s ability to create and reference
geometry including lights, blocks, and text objects. Also
enables access to information about the active Rhino
document, pertaining to materials, layers, linetypes, and
other settings.
http://www.food4rhino.com/project/human

TT Toolbox features a range of different tools that we from
the Core Studio at Thornton Tomasetti use on a regular
basis, and we thought some of you might appreciate these.
http://www.food4rhino.com/project/tttoolbox

Karamba is an interactive, parametric finite element
program. It lets you analyze the response of
3-dimensional beam and shell structures under arbitrary
loads.
http://www.karamba3d.com/

Weaverbird is a topological modeler that contains many
of the known subdivision and transformation operators,
readily usable by designers. This plug-in reconstructs the
shape, subdivides any mesh, even made by polylines, and
helps preparing for fabrication.
http://www.giuliopiacentino.com/weaverbird/

Kangaroo is a Live Physics engine for interactive
simulation, optimization and form-finding directly within
Grasshopper.
http://www.food4rhino.com/project/kangaroo

137

ADDITIONAL PRIMERS
The Firefly Primer
This book is intended to teach the basics of electronics (using an Arduino) as well
as various digital/physical prototyping techniques to people new to the field. It
is not a comprehensive book on electronics (as there are already a number of
great resources already dedicated to this topic). Instead, this book focuses on
expediting the prototyping process. Written by Andrew Payne.
http://fireflyexperiments.com/resources/

Essential Mathematics
Essential Mathematics uses Grasshopper to introduce design professionals to
foundation mathematical concepts that are necessary for effective development
of computational methods for 3D modeling and computer graphics. Written by
Rajaa Issa.
http://www.rhino3d.com/download/rhino/5.0/EssentialMathematicsThirdEdition/

Generative Algorithms
A series of books which is aimed to develop different concepts in the field of
Generative Algorithms and Parametric Design. Written by Zubin Khabazi.
http://www.morphogenesism.com/media.html

Rhino Python Primer
This primer is intended to teach programming to absolute beginners, people who
have tinkered with programming a bit or expert programmers looking for a quick
introduction to the methods in Rhino. Written by Skylar Tibbits.
http://www.rhino3d.com/download/IronPython/5.0/RhinoPython101

FURTHER READING
Burry, Jane, and Mark Burry. The New Mathematics of Architecture. London:
Thames & Hudson, 2010.

Burry, Mark. Scripting Cultures: Architectural Design and Programming. Chichester,
UK: Wiley, 2011.

Hensel, Michael, Achim Menges, and Michael Weinstock. Emergent Technologies
and Design: Towards a Biological Paradigm for Architecture. Oxon: Routledge, 2010.

Jabi, Wassim. Parametric Design for Architecture. Laurence King, 2013.

Menges, Achim, and Sean Ahlquist. Computational Design Thinking. Chichester,
UK: John Wiley & Sons, 2011.

Menges, Achim. Material Computation: Higher Integration in Morphogenetic Design.
Hoboken, NJ: Wiley, 2012.

Peters, Brady, and Xavier De Kestelier. Computation Works: The Building of
Algorithmic Thought. Wiley, 2013.

Peters, Brady. Inside Smartgeometry: Expanding the Architectural Possibilities of
Computational Design. Chichester: Wiley, 2013.

Pottmann, Helmut, and Daril Bentley. Architectural Geometry. Exton, PA: Bentley
Institute, 2007.

Sakamoto, Tomoko, and Albert Ferré. From Control to Design: Parametric/
algorithmic Architecture. Barcelona: Actar-D, 2008.

Woodbury, Robert. Elements of Parametric Design. London: Routledge, 2010.

 138 Appendix

A.2
Notes

139

 140 Appendix

A.2
Notes

141

 142 Appendix

A.3
About this Primer

MODE LAB TEAM:
Sharon Jamison
Andrew Reitz
Armon Jahanshahi
Luis Quinones
Erick Katzenstein
Kimberly Parsons
Roberto Godinez

GIL AKOS, MODE LAB
Gil Akos is a founding partner and Director of Technology at Mode Lab, a
multidisciplinary design consultancy specializing in technology-driven process
innovation. He brings diverse professional experience, technical expertise in
digital platforms, and a passion for generative design to the service model of the
studio. His personal interests surround the relationship between simulation and
materialization and ways by which this connection can be made tangible.
http://modelab.is
http://modelab.is/education

AUTHORS

CONTRIBUTORS

RONNIE PARSONS, MODE LAB
Ronnie Parsons is a founding partner and Director of Education at Mode Lab, a
multidisciplinary design consultancy specializing in technology-driven process
innovation. At Mode Lab, Ronnie identifies new ways to connect and configure
client workflows by strategically aligning product vision with UX-centered
technology platforms. Ronnie’s expertise resides in the areas of advanced
computational modeling, instructional design, and research and development.
http://modelab.is
http://modelab.is/education

ANDREW PAYNE, PRINCIPAL, LIFT ARCHITECTS
Andrew Payne is a registered architect who founded LIFT architects in
2007. Andrew’s work explores embedded computation, intelligent buildings,
and generative design and he has published papers and taught workshops
throughout North America and Europe. In 2010, Andrew and Jason K. Johnson
published Firefly - a comprehensive software plug-in dedicated to bridging the
gap between Grasshopper, the Arduino microcontroller, the internet, audio/
visual tools, and more.
http://www.liftarchitects.com/

http://modelab.is
http://modelab.is/education
http://modelab.is
http://modelab.is/education
http://www.liftarchitects.com/

143

LICENSING INFORMATION
The Grasshopper Primer is licensed under
the Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported
license. The full text of this license is available
here: http://creativecommons.org/licenses/by-
nc-sa/3.0/us/legalcode

Under this license, you are free:

TO SHARE - to copy, distribute and transmit the
work

TO REMIX - to adapt the work

Under the following conditions:

ATTRIBUTION - You must attribute the
work in the manner specified as “Mode Lab’s
Attribution” below. You cannot attribute the
work in any manner that suggests that Mode
Lab endorses you or your use of the work.

NONCOMMERCIAL - You may not use this
work for commercial purposes

SHARE ALIKE - If you alter, transform, or build
upon this work, you may distribute the resulting
work only under the same Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
Unported license.

Please see the full text of this license (http://
creativecommons.org/licenses/by-nc-sa/3.0/
us/legalcode) to view all rights and restrictions
associated with it.

MODE LAB’S ATTRIBUTION:
©2014 Studio Mode, LLC. All rights reserved.
http://modelab.is

TRANSLATIONS:
If you create translated versions of this Primer
(in compliance with this license), please notify
Mode Lab at hello@modelab.is. Mode Lab
may choose to distribute and/or link to such
translated versions (either as-is, or as further
modified by Mode Lab)

This primer provides a comprehensive guide to the most current
Grasshopper build, version 0.90076, highlighting what we feel are some of
the most exciting feature updates. It is our goal that this primer will serve as
a field guide to new and existing users looking to navigate the ins and outs
of using Grasshopper in their creative practice.

Our Mode Lab Education brand provides blended learning solutions for
consumers and businesses looking to get ahead. We design and develop
targeted learning experiences that keep the learner at the center of every
technique and design method we share with our community.
http://modelab.is/education

Mode Lab is a multidisciplinary design consultancy specializing in
technology-driven process innovation.

From its inception, Mode Lab has been a space for experimenting with the
methods and technology used to design and make the world around us. We
are compelled to understand and improve upon the process of materializing
ideas – this is a journey we undertake in collaboration with our clients.
http://modelab.is

McNeel is a software development company with worldwide sales, support,
and training. Founded in 1980, McNeel is a privately-held, employee-owned
company with sales and support offices and affiliates in Seattle, Boston,
Miami, Buenos Aires, Barcelona, Rome, Tokyo, Taipei, Seoul, Kuala Lumpur,
and Shanghai with more than 700 resellers, distributors, OEMs, and
training centers around the world.
http://www.en.na.mcneel.com/

For designers who are exploring new shapes using generative algorithms,
Grasshopper is a graphical algorithm editor tightly integrated with Rhino’s
3D modeling tools. Unlike RhinoScript, Grasshopper requires no knowledge
of programming or scripting, but still allows designers to build form
generators from the simple to the awe-inspiring.
http://www.grasshopper3d.com/

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode
http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode
http://modelab.is
http://modelab.is/education
http://modelab.is
http://www.en.na.mcneel.com/
http://www.grasshopper3d.com/

	I.0
Preface
	I.1
Contents
	I.2
Grasshopper - an Overview
	I.3
Grasshopper in Action

	[F.] foundations
	F.0 Hello Grasshopper
	F.0.0
Installing & Launching Grasshopper
	F.0.0.0 Downloading
	F.0.0.1 Installing
	F.0.0.2 Launching

	F.0.1
The Grasshopper UI
	F.0.1.0 The Windows Title BAr
	F.0.1.1 Main Menu Bar
	F.0.1.2 File Browser Control
	F.0.1.3 Component Palettes
	F.0.1.4 The Canvas
	F.0.1.5 Grouping
	F.0.1.6 Widgets
	F.0.1.7 Using the Search Feature
	F.0.1.8 The Find Feature
	F.0.1.9 Using The Radial Menu
	F.0.1.10 The Canvas Toolbar

	F.0.2
Talking to Rhino
	F.0.2.0 Viewport Feedback
	F.0.2.1 Live Wires
	F.0.2.2 Gumball Widget
	F.0.2.3 Baking Geometry
	F.0.2.4 Units & Tolerances
	F.0.2.5 Remote Control Panel
	F.0.2.6 File Management
	F.0.2.7 Templates

	F.1 Anatomy of a grasshopper definition
	F.1.0
Grasshopper Object Types
	F.1.0.0 Parameters
	F.1.0.1 Components
	F.1.0.2 Object Colors

	F.1.1
Grasshopper Component Parts
	F.1.1.0 Label vs Icon Display
	F.1.1.1 component help
	F.1.1.2 Tool Tips
	F.1.1.3 Context Popup Menus
	F.1.1.4 Zoomable User Interface

	F.1.2
Data Types
	F.1.2.0 Persistent Data
	F.1.2.1 Volatile Data
	F.1.2.2 Input Parameters

	F.1.3
Wiring Components
	F.1.3.0 Connection Management
	F.1.3.1 Fancy Wires
	F.1.3.2 Wire Display

	F.1.4
The Grasshopper Definition
	F.1.4.0 Program Flow
	F.1.4.1 The Logical Graph

	F.2 Building blocks of algorithms
	F.2.0
Points, Planes & Vectors
	F.2.0.0 Points
	F.2.0.1 Vectors
	F.2.0.2 Planes

	F.2.1
Working with Attractors
	F.2.1.0 Attractor definition

	F.2.2
Mathematics, Expressions & Conditionals
	F.2.2.0 The Math Tab
	F.2.2.1 Operators
	F.2.2.2 Conditional Operators
	F.2.2.3 Trigonometry Components
	F.2.2.4 Expressions

	F.2.3
Domains & Color
	F.2.4
Booleans and Logical Operators
	F.2.4.0 Booleans
	F.2.4.1 Logical Operators

	F.3 Designing with Lists
	f.3.0
Curve Geometry
	F.3.0.0 NURBS Curves
	F.3.0.1 Grasshopper Spline Components

	f.3.1
What is a List?
	f.3.2
Data Stream Matching
	f.3.3
Creating Lists
	F.3.3.0 Manual List Creation
	F.3.3.1 Range
	F.3.3.2 Series
	F.3.3.3 Random

	f.3.4
List Visualization
	F.3.4.0 The Point List component
	F.3.4.1 Text Tags
	F.3.4.2 Color

	f.3.5
List Management
	F.3.5.0 List Item
	F.3.5.1 List Length
	F.3.5.2 Reverse List
	F.3.5.3 Shift List
	F.3.5.4 Insert Items
	F.3.5.5 Weave
	F.3.5.6 Cull Pattern

	f.3.6
Working with Lists

	F.4 Designing with Data Trees
	f.4.0
Surface Geometry
	F.4.0.0 NURBS Surfaces
	F.4.0.1 Projecting, Mapping & Morphing
	F.4.0.2 Morphing Definition

	f.4.1
What is a Data Tree?
	F.4.1.0 Data Tree Visualization

	f.4.3
Working with Data Trees
	F.4.3.0 Flatten Tree
	F.4.3.1 Graft Tree
	F.4.3.2 Simplify Tree
	F.4.3.3 Flip Matrix
	F.4.3.4 The Path Mapper
	F.4.3.5 Weaving Definition
	F.4.3.6 Rail Intersect Definition

	[A.] Appendix
	A.0
Index
	A.1
Resources
	A.2
Notes
	A.2
About the Authors

