# ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lec 1: January 12, 2017

Introduction and Overview



#### Where I come from

- Analog VLSI Circuit Design
- Convex Optimization
  - System Hierarchical Optimization
- Biomedical Electronics
- Biometric Data Acquisition
  - Compressive Sampling
- ADC Design
  - SAR, Pipeline, Delta-Sigma
- Low Energy Circuits
  - Adiabatic Charging

## Minimally Invasive Implant to Combat Healthcare Noncompliance



- Model for implants: reconfigurable RFID tags that continuously record specific biometric
  - During the read operation, energy storage element is recharged
- □ Size of package small enough to allow injection
- Actigraphy expected to be clinically useful
  - Platform allows for any sensor that gathers information on a slow time scale

## MicroImplant: An Electronic Platform for Minimally Invasive Sensory Monitors



#### Lecture Outline

- Course Topics Overview
- Learning Objectives
- Course Structure
- Course Policies
- Course Content
- Industry Trends
- Design Example

## Course Topics Overview



## Learning Objectives

- Apply principles of hierarchical digital CMOS VLSI, from the transistor up to the system level, to the understanding of CMOS circuits and systems that are suitable for CMOS fabrication.
- Apply the models for state-of-the-art VLSI components, fabrication steps, hierarchical design flow and semiconductor business economics to judge the manufacturability of a design and estimate its manufacturing costs.
- Design simulated experiments using Cadence to verify the integrity of a CMOS circuit and its layout.
- Design digital circuits that are manufacturable in CMOS.
- Apply the Cadence VLSI CAD tool suite layout digital circuits for CMOS fabrication and verify said circuits with layout parasitic elements.
- Apply course knowledge and the Cadence VLSI CAD tools in a team based capstone design project that involves much the same design flow they would encounter in a semiconductor design industrial setting. Capstone project is presented in a formal report due at the end of the semester.

## Learning Objectives

□ In other words...

□ Design in CADENCE\*

\*All the way to layout/manufacturability

# Layout in Cadence



- □ TR Lecture, 1:30-3:00pm in Towne 321
  - Start 5 minutes after, end 5 minutes early (~75-80min)
- □ Website (http://www.seas.upenn.edu/~ese570/)
  - Course calendar is used for all handouts (lectures slides, assignments, and readings)
  - Canvas used for assignment submission and grades
  - Piazza used for announcements and discussions
  - Previous years' websites linked at bottom of this year

- Course Staff (complete info on course website)
- □ Instructor: Tania Khanna
  - Office hours Wednesday 2-4:30 pm or by appointment
  - Email: <u>taniak@seas.upenn.edu</u>
    - Best way to reach me
- □ TA: Ryan Spicer
  - Office hours TBD
- □ Grader: TBD

#### Lectures

- Statistically speaking, you will do better if you come to lecture
- Better if interactive, **everyone** engaged
  - Asking and answering questions
  - Actively thinking about material

#### Textbook

- CMOS Digital Integrated Circuits Analysis and Design,
  Kang, Leblebici, and Kim, 4<sup>th</sup> edition
- Class will follow text structure

- Cadence
  - Technology: AMI .6u C5N (3M, 2P, high-res)
  - Schematic simulation (SPECTRE simulator)
    - Design, analysis and test
  - Layout and verification
  - Analog extracted simulation
  - Standard Cells (?)

## Course Structure - Assignments/Exams

- □ Homework 1-2 week(s) long (8 total) [25%]
  - Due Thursdays at start of class (1:30pm)
  - HW 1 out now
- □ Project two+ weeks long (2 total) [30%]
  - Design oriented
  - Project design and layout SRAM memory
    - Propose alternate project
    - Propose extra credit to use your memory (eg. FIFO, shift reg, etc.)
- □ Midterm exam [20%]
- □ Final exam [25%]

#### Course Policies

#### See web page for full details

- □ Turn homework in Canvas before lecture starts
  - Anything handwritten/drawn must be clearly legible
  - Submit CAD generated figures, graphs, results when specified
  - NO LATE HOMEWORKS!
- Individual work (except project)
  - CAD drawings, simulations, analysis, writeups
  - May discuss strategies, but acknowledge help

### Course Content

- Introduction
- Fabrication
- MOS Transistor Theory and Models
- MOS Models and IV characteristics
- Inverters: Static Characteristics and Performance
- Inverters: DynamicCharacteristics and Performance
- Combinational Logic Types (CMOS, Ratioed, Pass) and Performance

- Sequential Logic
- Dynamic Logic
- VLSI design and Scaling
- Memory Design
- I/O Circuits and Inductive Noise
- CLK Generation
- Robust VLSI Design for Variation

## Industry Trends



# Microprocessor Trans Count 1971-2015



## Trend – "Minimum Feature Size vs. Year



"Minimum" Feature Measure = line/gate conductor width or half-pitch (adjacent 1st metal layer lines or adjacent transistor gates)

## Intel Cost Scaling



http://www.anandtech.com/show/8367/intels-14nm-technology-in-detail

### 22nm 3D FinFET Transistor



http://download.intel.com/newsroom/kits/22nm/pdfs/22nm-Penn ESE 570 Spring 2017 - Khanna Details\_Presentation.pdf

## Moore's Law Impact on Intel uComputers



#### More-than-Moore



## More Moore → Scaling

### Geometrical Scaling

 continued shrinking of horizontal and vertical physical feature sizes

### Equivalent Scaling

 3-dimensional device structure improvements and new materials that affect the electrical performance of the chip even if no geometrical scaling

#### Design Equivalent Scaling

 design technologies that enable high performance, low power, high reliability, low cost, and high design productivity even if neither geometrical nor equivalent scaling can be used

# More Moore → Scaling

- Examples:
  - Design-for-variability
  - Low power design (sleep modes, clock gating, multi-Vdd, etc.)
  - Multi-core SOC architectures

### More than Moore → Functional Diversification

- □ Interacting with the outside world
  - Electromagnetic/Optical
    - Radio-frequency domain up to the THz range
    - Optical domain from the infrared to the near ultraviolet
    - Hard radiation (EUV, X-ray, γ-ray)
  - Mechanical parameters (sensors/actuators)
    - MEMS/NEMS position, speed, acceleration, rotation, pressure, stress, etc.
  - Chemical composition (sensors/actuators)
  - Biological parameters (sensors/actuators)
- Power/Energy
  - Integration of renewable sources, Energy storage, Smart metering, Efficient consumption

### "More-than-Moore"

Components Complement Digital Processing/
 Storage Elements in an Integrated System



## MicroImplant: An Electronic Platform for Minimally Invasive Sensory Monitors



# Semiconductor System Integration – More Than Moore's Law



R. Tummala, "Moore's Law Meets Its Match", IEEE Spectrum, June, 2006 Penn ESE 570 Spring 2017 - Khanna

# Improvement Trends for VLSI SoCs Enabled by Geometrical and Equivalent Scaling

- □ TRENDS:
- Higher Integration level
  - exponentially increased number of components/ transistors per chip/package.
- Performance Scaling
  - combination of Geometrical (shrinking of dimensions) and Equivalent (innovation) Scaling.
- System implementation
  - SoC + increased use of SiP > SOP

- CONSEQUENCES:
- Higher Speed
  - CPU clock rate at multiple
    GHz + parallel processing.
- Increased Compactness & less weight
  - increasing system integration.
- Lower Power
  - Decreasing energy requirement per function.
- Lower Cost
  - Decreasing cost per function.

# Trends in Practice at ISSCC (HW 1)

| Article Title (IEEE Journal of Solid State Circuits,<br>Volume 52, Issue 1, Feb. 2017)                                                                                                                  | System application(s) for the chip or system or technology | Fabrication technology description | Minimum feature size | Operating or clock speed | Die size | Most interesting features of<br>the chip or system or<br>technology reported |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------|----------------------|--------------------------|----------|------------------------------------------------------------------------------|
| PROCESSORS, NOC & DIGITAL PLLS                                                                                                                                                                          | -                                                          | -                                  | -                    | -                        | -        | -                                                                            |
| A 0.0021 mm2 1.82 mW 2.2 GHz PLL Using Time-Based Integral<br>Control in 65 nm CMOS; pp 8 - 20                                                                                                          |                                                            |                                    |                      |                          |          |                                                                              |
| A 16 nm FinFET Heterogeneous Nona-Core SoC Supporting<br>ISO26262 ASIL B Standard, pp 77 - 88                                                                                                           |                                                            |                                    |                      |                          |          |                                                                              |
| ENERGY EFFICIENT DIGITAL                                                                                                                                                                                | -                                                          | -                                  | -                    | -                        | -        | -                                                                            |
| Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep<br>Convolutional Neural Networks, pp 127 - 138                                                                                         |                                                            |                                    |                      |                          |          |                                                                              |
| 5.6 Mb/mm2 1R1W 8T SRAM Arrays Operating Down to 560 mV<br>Utilizing Small-Signal Sensing With Charge Shared Bitline and<br>Asymmetric Sense Amplifier in 14 nm FinFET CMOS Technology, pp<br>229 - 239 |                                                            |                                    |                      |                          |          |                                                                              |
| MEMORY                                                                                                                                                                                                  | -                                                          | =                                  | -                    | -                        | -        | -                                                                            |
| A 10 nm FinFET 128 Mb SRAM With Assist Adjustment System for<br>Power, Performance, and Area Optimization, pp 240 - 249                                                                                 |                                                            |                                    |                      |                          |          |                                                                              |
| A 1.2 V 20 nm 307 GB/s HBM DRAM With At-Speed Wafer-Level IO<br>Test Scheme and Adaptive Refresh Considering Temperature<br>Distribution, pp 250 - 260                                                  |                                                            |                                    |                      |                          |          |                                                                              |
| TECHNOLOGY DIRECTIONS                                                                                                                                                                                   | -                                                          | -                                  | -                    | -                        | -        | -                                                                            |
| Postsilicon Voltage Guard-Band Reduction in a 22 nm Graphics<br>Execution Core Using Adaptive Voltage Scaling and Dynamic Power<br>Gating, pp 50 - 63                                                   |                                                            |                                    |                      |                          |          |                                                                              |
| 256 Gb 3 b/Cell V-nand Flash Memory With 48 Stacked WL Layers,<br>pp 210 - 217                                                                                                                          |                                                            |                                    |                      |                          |          |                                                                              |
| IMAGERS, MEMS, MEDICAL & DISPLAYS                                                                                                                                                                       | -                                                          | =                                  | -                    | -                        | -        |                                                                              |
| A 0.6-V, 0.015-mm2, Time-Based ECG Readout for Ambulatory<br>Applications in 40-nm CMOS, pp 298 - 308                                                                                                   |                                                            |                                    |                      |                          |          |                                                                              |
| An EEG Acquisition and Biomarker-Extraction System Using Low-<br>Noise-Amplifier and Compressive-Sensing Circuits Based on<br>Flexible, Thin-Film Electronics, pp 309 - 321                             |                                                            |                                    |                      |                          |          |                                                                              |

## Design Example



## VLSI Design Cycle or Flow



## Illustrative Circuit Design Example



Input Variables:

addends: A, B

carry-in: C

**Output Variables:** 

sum\_out, carry\_out

Design a One-Bit Adder Circuit using 0.8 twin-well CMOS Technology. The design specifications are:

- 1. Propagation Delay Times of SUM and CARRY Out signals:  $\leq 1.2$  ns
- 2. Rise and Fall Times of SUM and CARRY Out signals:  $\leq 1.2$  ns
- 3. Circuit Die Area:  $\leq 1500 \text{ um}^2$
- 4. Dynamic Power Dissipation (@  $V_{DD} = 5 \text{ V}$  and  $f_{max} = 20 \text{ MHz}$ ):  $\leq 1 \text{ mW}$
- 5. Functional:

$$sum_out = A \oplus B \oplus C = ABC + A\overline{BC} + \overline{AB}C + \overline{AC}B$$

$$carry_out = AB + AC + BC$$

## Illustrative Circuit Design Example

#### START: Boolean description of binary adder circuit:



#### **DEFINE:**

Input Variables:

addends: A, B

carry-in: C

Output Variables:

sum\_out, carry\_out

| A | В | С | sum_out | carry_out |
|---|---|---|---------|-----------|
| 0 | 0 | 0 | 0       | 0         |
| 0 | 0 | 1 | 1       | 0         |
| 0 | 1 | 0 | 1       | 0         |
| 0 | 1 | 1 | 0       | 1         |
| 1 | 0 | 0 | 1       | 0         |
| 1 | 0 | 1 | 0       | 1         |
| 1 | 1 | 0 | 0       | 1         |
| 1 | 1 | 1 | 1       | 1         |

#### **BOOLEAN FUNCTION:**

 $sum\_out = A \oplus B \oplus C = ABC + A\overline{BC} + \overline{ABC} + \overline{ACB} = ABC + (A + B + C) \overline{carry\_out}$   $carry\_out + AB + AC + BC$ 

Use of carry\_out to realize sum\_out reduces circuit complexity and die area.

#### Gate Level Schematic of One-Bit Full Adder Circuit



## Transistor Level Schematic of One-Bit Full Adder Circuit



## 8-bit Ripple Adder



## Initial Layout of One-Bit Full Adder Circuit



## Initial Layout of One-Bit Full Adder Circuit



Layout with W/L = 2  $\mu$ m/0.8  $\mu$ m Area 21  $\mu$ m x 54  $\mu$ m = 1134  $\mu$ m<sup>2</sup>  $\leq$  1500 um<sup>2</sup>

Dynamic Power Dissipation (@  $V_{DD} = 5V$ ,  $f_{max} = 20 \text{ MHz}$ ): = 0.7 mW  $\leq 1 \text{ mW}$ 

#### Simulated Performance of One-Bit Full Adder Circuit

#### **SPECIFICATIONS:**

- 1. Propogation Delay Times of SUM & CARRY\_OUT signals: ≤ 1.2 ns
- 2. Transition Delay Times of SUM & CARRY\_OUT signals: ≤ 1.2 ns
- 3. Circuit Die Area: ≤ 1500 µm²
- 4. Dynamic Power Dissipation (@  $V_{DD} = 5 \text{ V}$  and  $f_{max} = 20 \text{ MHz}$ ):  $\leq 1 \text{ mW}$

#### Layout with W/L = $2 \mu m/0.8 \mu m$



#### Modified Layout Required

- 1. Increase W/L's of transistors
- 2. Consider more compact placement of transistors and reduce interconnect in critical paths

## Wrap up

- Admin
  - Find web, get text, assigned reading...
  - http://www.seas.upenn.edu/~ese570
  - https://piazza.com/upenn/spring2017/ese570/
  - https://canvas.upenn.edu/
- □ Big Ideas/takeaway
  - Model (a.k.a. analysis and simulation) to enable real-life design
- □ Remaining Questions?