
Math 259: Introduction to Analytic Number Theory

The Riemann zeta function and its functional equation
(and a review of the Gamma function and Poisson summation)

Recall Euler’s identity:

[ζ(s) :=]
∞∑
n=1

n−s =
∏

p prime

 ∞∑
cp=1

p−cps

 =
∏

p prime

1
1− p−s

. (1)

We showed that this holds as an identity between absolutely convergent sums
and products for real s > 1. Riemann’s insight was to consider (1) as an
identity between functions of a complex variable s. We follow the curious but
nearly universal convention of writing the real and imaginary parts of s as σ
and t, so

s = σ + it.

We already observed that for all real n > 0 we have |n−s| = n−σ, because

n−s = exp(−s log n) = n−σeit logn

and eit logn has absolute value 1; and that both sides of (1) converge absolutely
in the half-plane σ > 1, and are equal there either by analytic continuation
from the real ray t = 0 or by the same proof we used for the real case. Riemann
showed that the function ζ(s) extends from that half-plane to a meromorphic
function on all of C (the “Riemann zeta function”), analytic except for a simple
pole at s = 1. The continuation to σ > 0 is readily obtained from our formula

ζ(s)− 1
s− 1

=
∞∑
n=1

[
n−s −

∫ n+1

n

x−s dx

]
=
∞∑
n=1

∫ n+1

n

(n−s − x−s) dx,

since for x ∈ [n, n+ 1] (n ≥ 1) and σ > 0 we have

|n−s − x−s| =
∣∣∣∣s∫ x

n

y−1−s dy

∣∣∣∣ ≤ |s|n−1−σ

so the formula for ζ(s) − (1/(s − 1)) is a sum of analytic functions converging
absolutely in compact subsets of {σ + it : σ > 0} and thus gives an analytic
function there. (See also the first Exercise below.) Using the Euler-Maclaurin
summation formula with remainder, we could proceed in this fashion, extending
ζ to σ > −1, σ > −2, etc. However, once we have defined ζ(s) on σ > 0 we
can obtain the entire analytic continuation at once from Riemann’s functional
equation relating ζ(s) with ζ(1 − s). This equation is most nicely stated by
introducing the meromorphic function ξ(s) defined by1

ξ(s) := π−s/2Γ(s/2)ζ(s)
1Warning: occasionally one still sees ξ(s) defined as what we would call (s2 − s)ξ(s) or

(s2 − s)ξ(s)/2, as in [GR 1980, 9.561]. The factor of (s2 − s) makes the function entire, and
does not affect the functional equation since it is symmetric under s ↔ 1 − s. However, for
most uses it turns out to be better to leave this factor out and tolerate the poles at s = 0, 1.
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for σ > 0. Then we have:

Theorem (Riemann). The function ξ extends to a meromorphic function on C,
regular except for simple poles at s = 0, 1, which satisfies the functional equation

ξ(s) = ξ(1− s). (2)

It follows that ζ also extends to a meromorphic function on C, which is regular
except for a simple pole at s = 1, and that this analytic continuation of ζ has
simple zeros at the negative even integers −2,−4,−6, . . ., and no other zeros
outside the closed critical strip 0 ≤ σ ≤ 1.

[The zeros −2,−4,−6, . . . of ζ outside the critical strip are called the trivial
zeros of the Riemann zeta function.]

The proof has two ingredients: properties of Γ(s) as a meromorphic function of
s ∈ C, and the Poisson summation formula. We next review these two topics.

The Gamma function was defined for real s > 0 by Euler2 as the integral

Γ(s) :=
∫ ∞

0

xse−x
dx

x
. (3)

We have Γ(1) =
∫∞

0
e−x dx = 1 and, integrating by parts,

sΓ(s) =
∫ ∞

0

e−xd(xs) = −
∫ ∞

0

xsd(e−x) = Γ(s+ 1) (s > 0),

so by induction Γ(n) = (n − 1)! for positive integers n. Since |xs| = xσ, the
integral (3) defines an analytic function on σ > 0, which still satisfies the re-
cursion sΓ(s) = Γ(s + 1) (proved either by repeating the integration by parts
or by analytic continuation from the positive real axis). That recursion then
extends Γ to a meromorphic function on C, analytic except for simple poles at
0,−1,−2,−3, . . .. (What are the residues at those poles?) For s, s′ in the right
half-plane σ > 0 the Beta function3 B(s, s′), defined by the integral

B(s, s′) :=
∫ 1

0

xs−1(1− x)s
′−1 dx,

is related with Γ by
Γ(s+ s′)B(s, s′) = Γ(s)Γ(s′). (4)

(This is proved by Euler’s trick of calculating
∫∞

0

∫∞
0
xs−1ys

′−1e−(x+y) dx dy
in two different ways.) Since Γ(s) > 0 for real positive s, it readily follows that
Γ has no zeros in σ > 0, and therefore none in the complex plane.

This is enough to derive the poles and trivial zeros of ζ from the functional
equation (2). [Don’t take my word for it — do it!] But where does the func-
tional equation come from? There are several known ways to prove it; we give

2Actually Euler used Π(s− 1) for what we call Γ(s); thus Π(n) = n! for n = 0, 1, 2, . . ..
3a.k.a. “Euler’s first integral”, with (3) being “Euler’s second integral”.
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Riemann’s original method, which generalizes to L(s, χ), and further to L-series
associated to modular forms.

Riemann expresses ξ(s) as a Mellin integral involving the theta function4

θ(u) :=
∞∑

n=−∞
e−πn

2u = 1 + 2(e−πu + e−4πu + e−9πu + . . .),

the sum converging absolutely to an analytic function on the upper half-plane
Re(u) > 0. Integrating termwise we find:

2ξ(s) =
∫ ∞

0

(θ(u)− 1)us/2
du

u
(σ > 0).

(That is, ξ(−2s) is the Mellin transform of (θ(u)− 1)/2.) But we shall see:

Lemma. The function θ(u) satisfies the identity

θ(1/u) = u1/2θ(u). (5)

Assume this for the time being. We then rewrite our integral for 2ξ(s) as∫ 1

0

(θ(u)− 1)us/2
du

u
+
∫ ∞

1

(θ(u)− 1)us/2
du

u

= −2
s

+
∫ 1

0

θ(u)us/2
du

u
+
∫ ∞

1

(θ(u)− 1)us/2
du

u
,

and use the change of variable u↔ 1/u to find∫ 1

0

θ(u)us/2
du

u
=
∫ ∞

1

θ(u−1)u−s/2
du

u

=
∫ ∞

1

θ(u)u(1−s)/2 du

u
=

2
s− 1

+
∫ ∞

1

(θ(u)− 1)u(1−s)/2 du

u

if also σ < 1. Therefore

ξ(s) +
1
s

+
1

1− s
=

1
2

∫ ∞
1

(θ(u)− 1)(us/2 + u(1−s)/2)
du

u
,

which is manifestly symmetrical under s ↔ 1 − s, and analytic since θ(u) de-
creases exponentially as u→∞. This concludes the proof of the functional equa-
tion and analytic continuation of ξ, assuming our lemma (5).

This lemma, in turn, is the special case f(x) = e−πux
2

of the Poisson summation
formula:

4Jacobi introduced four “theta functions” of two variables; in his notation, our θ(u) would
be θ3(0, e−πu). We can call this θ(u) because we shall not use θ1, θ2, θ4, nor θ3(z, q) for z 6= 0.

3



Theorem. Let f : R→C be a C2 function such that (|x|r + 1)(|f(x)|+ |f ′′(x)|)
is bounded for some r > 1, and let f̂ be its Fourier transform

f̂(y) =
∫ +∞

−∞
e2πixyf(x) dx.

Then
∞∑

m=−∞
f(m) =

∞∑
n=−∞

f̂(n), (6)

the sums converging absolutely.

[The hypotheses on f can be weakened, but this formulation of Poisson sum-
mation is more than enough for our purposes.]

Proof : Define F : R/Z→C by

F (x) :=
∞∑

m=−∞
f(x+m),

the sum converging absolutely to a C2 function by the assumption on f . Thus
the Fourier series of F converges absolutely to F , so in particular

F (0) =
∞∑

n=−∞

∫ 1

0

e2πinxF (x) dx.

But F (0) is just the left-hand side of (6), and the integral is∑
m∈Z

∫ 1

0

e2πinxf(x+m) dx =
∑
m∈Z

∫ m+1

m

e2πinxf(x) dx =
∫ ∞
−∞

e2πinxf(x) dx

which is just f̂(n), so its sum over n ∈ Z yields the right-hand side of (6). �

Now let f(x) = e−πux
2
. The hypotheses are handily satisfied for any r, so

(6) holds. The left-hand side is just θ(u). To evaluate the right-hand side, we
need the Fourier transform of f , which is u−1/2e−πu

−1y2
. [Contour integration

reduces this claim to
∫∞
−∞ e−πux

2
dx = u−1/2, which is the well-known Gauss

integral — see the Exercises.] Thus the right-hand side is u−1/2θ(1/u). Multi-
plying both sides by u1/2 we then obtain (5), and finally complete the proof of
the analytic continuation and functional equation for ξ(s).

Remarks. We noted already that to each number field K there corresponds a
zeta function

ζK(s) :=
∑
I

|I|−s =
∏
℘

(1− |℘|−s)−1 (σ > 1),

in which |I| is the norm of an ideal I, the sum and product extend respectively
over ideals I and prime ideals ℘ of the ring of integers OK , and their equality
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expresses unique factorization. As in our case of K = Q, this zeta function
extends to a meromorphic function on C, regular except for a simple pole at
s = 1. Moreover it satisfies a functional equation ξK(s) = ξK(1− s), where

ξK(s) := Γ(s/2)r1Γ(s)r2(4−r2π−n|d|)s/2ζK(s),

in which n = r1 + 2r2 = [K : Q], the exponents r1, r2 are the numbers of real
and complex embeddings of K, and d is the discriminant of K/Q. The factors
Γ(s/2)r1 ,Γ(s)r2 may be regarded as factors corresponding to the “archimedean
places” of K, as the factor (1− |℘|−s)−1 corresponds to the finite place ℘. The
functional equation can be obtained from generalized Poisson summation as in
[Tate 1950]. Most of our results for ζ = ζQ carry over to these ζK , and yield
a Prime Number Theorem for primes of K; L-series generalize too, though the
proper generalization requires some thought when the class and unit groups need
no longer be trivial and finite as they are for Q. See for instance H.Heilbronn’s
“Zeta-Functions and L-Functions”, Chapter VIII of [CF 1967].

Exercises

Concerning the analytic continuation of ζ(s):

1. Show that if α : Z→C is a function such that
∑n
m=1 α(m) = O(1) (for

instance, if α is a nontrivial Dirichlet character) then
∑∞
n=1 α(n)n−s converges

uniformly, albeit not absolutely, in compact subsets of {σ + it : σ > 0}, and
thus defines an analytic function on that half-plane. Apply this to

(1− 21−s)ζ(s) = 1− 1
2s

+
1
3s
− 1

4s
+− · · ·

(with α(n) = (−1)n−1) and to (1− 31−s)ζ(s) to obtain a different proof of the
analytic continuation of ζ to σ > 0.

2. Prove that the Bernoulli polynomials Bn (n > 0) have the Fourier expansion

Bn(x) = −n!
∑
k

′ e2kπix

(2kπi)n
(7)

for 0 < x < 1, in which
∑′
k is the sum over nonzero integers k. Deduce that

ζ(n) =
1
2

(2π)n
|Bn|
n!

(n = 2, 4, 6, 8, . . .),

and thus that ζ(1− n) = −Bn/n for all integers n > 1. For example, ζ(−1) =
−1/12. What is ζ(0)?

It is known that in general ζK(−m) ∈ Q (m = 0, 1, 2, . . .) for any number field K. In

fact the functional equation for ζK indicates that once [K : Q] > 1 all the ζK(−m)

vanish unless K is totally real and m is odd, in which case the rationality of ζK(−m)

was obtained in [Siegel 1969].

A further application of (7):
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3. Prove that
∑∑∞

k,k′=0 (kk′(k + k′))−n is a rational multiple of π3n for each
n = 2, 4, 6, 8, . . .; for instance,

∞∑
k=0

∞∑
k′=0

1
(kk′(k + k′)2)

=
4π6

3

∫ 1

0

B2(x)3 dx =
π6

2835
.

Concerning the Gamma function:

4. If you’ve never seen it yet, or did it once but forgot, prove (4) by starting
from the integral representation of the right-hand side as∫ ∞

0

∫ ∞
0

xs−1ys
′−1e−(x+y) dx dy

and applying the change of variable (x, y) = (uz, (1− u)z).

We will have little use for the Beta function in Math 259, but an analogous transfor-

mation will arise later in the formula relating Gauss and Jacobi sums.

5. Now take s = s′ = 1/2 to prove that Γ(1/2) =
√
π, and thus to obtain the

Gauss integral ∫ ∞
−∞

e−x
2
dx =

√
π.

Then take s′ = s and use the change of variable u = (1 − 2x)2 in the integral
defining B(s, s) to obtain B(s, s) = 21−2sB(s, 1/2), and thus the duplication
formula

Γ(2s) = π−1/222s−1Γ(s)Γ(s+
1
2

).

Concerning functional equations:

6. Use the duplication formula and the identity B(s, 1−s) = π/ sin(πs) to write
(2) in the equivalent form

ζ(1− s) = 2(2π)−sΓ(s) cos
πs

2
ζ(s).

This asymmetrical formulation of the functional equation has the advantage of
showing the trivial zeros of ζ(s) more clearly (given the fact that ζ(s) has a
simple pole at s = 1 and no other poles or zeros on the positive real axis).

7. Let χ8 be the Dirichlet character mod 8 defined by χ8(±1) = 1, χ8(±3) = −1.
Show that if f is a function satisfying the hypotheses of Poisson summation then

∞∑
m=−∞

χ8(m)f(m) = 8−1/2
∞∑

n=−∞
χ8(n)f̂(n/8).

Letting f(x) = e−πux
2
, obtain an identity analogous to (5), and deduce a func-

tional equation for L(s, χ8).
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8. Now let χ4 be the character mod 4 defined by χ4(±1) = ±1. Show that,
again under the Poisson hypotheses,

∞∑
m=−∞

χ4(m)f(m) =
1
2

∞∑
n=−∞

χ4(n)f̂(n/4).

This time, taking f(x) = e−πux
2

does not accomplish much! Use f(x) =
xe−πux

2
instead to find a functional equation for L(s, χ4).

We shall see that the L-function associated to any primitive Dirichlet character χ

satisfies a similar functional equation, with the Gamma factor depending on whether

χ(−1) = +1 or χ(−1) = −1.

9. For light relief after all this hard work, differentiate the identity (5) with
respect to u, set u = 1, and conclude that eπ > 8π−2. What is the approximate
size of the difference?

Further applications of Poisson summation:

10. Use Poisson summation to evaluate
∑∞
n=1 1/(n2+c2) for c > 0. [The Fourier

transform of 1/(x2 + c2) is a standard exercise in contour integration.] Verify
that your answer approaches ζ(2) = π2/6 as c→0.

11. [Higher-dimensional Poisson, and more on zeta functions of quadratic forms]
Let A be a real positive-definite symmetric matrix of order r, and Q : Rr→R
the associated quadratic form Q(x) = (x,Ax). The theta function of Q is

θQ(u) :=
∑
n∈Zr

exp(−πQ(n)u).

For instance, if r = 1 and A = 1 then θQ(u) is just θ(u). More generally, show
that if A is the identity matrix Ir (so Q(x) =

∑r
j=1 x

2
j ) then θQ(u) = θ(u)r.

Prove an r-dimensional generalization of the Poisson summation formula, and
use it to obtain a generalization of (5) that relates θQ(u) with θQ∗(1/u), where
Q∗ is the quadratic form associated to A−1. Using this formula, and a Mellin
integral formula for

ζQ(s) =
∑
n∈Zr

n6=0

1
Q(n)s

,

conclude that ζQ extends to a meromorphic function on C that satisfies a func-
tional equation relating ζQ with ζQ∗ . Verify that when r = 2 and A = I2 your
functional equation is consistent with the identity ζQ(s) = 4ζ(s)L(s, χ4) and
the functional equations for ζ(s) and L(s, χ4).
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Stellen, Gött. Nach. 10 (1969), 87–102.

[Tate 1950] Tate, J.T.: Fourier Analysis in Number Fields and Hecke’s Zeta-
Functions. Thesis, 1950; Chapter XV of [CF 1967].

8


