Math 259: Introduction to Analytic Number Theory

The Riemann zeta function and its functional equation (and a review of the Gamma function and Poisson summation)

Recall Euler's identity:

$$
\begin{equation*}
[\zeta(s):=] \sum_{n=1}^{\infty} n^{-s}=\prod_{p \text { prime }}\left(\sum_{c_{p}=1}^{\infty} p^{-c_{p} s}\right)=\prod_{p \text { prime }} \frac{1}{1-p^{-s}} \tag{1}
\end{equation*}
$$

We showed that this holds as an identity between absolutely convergent sums and products for real $s>1$. Riemann's insight was to consider (1) as an identity between functions of a complex variable s. We follow the curious but nearly universal convention of writing the real and imaginary parts of s as σ and t, so

$$
s=\sigma+i t
$$

We already observed that for all real $n>0$ we have $\left|n^{-s}\right|=n^{-\sigma}$, because

$$
n^{-s}=\exp (-s \log n)=n^{-\sigma} e^{i t \log n}
$$

and $e^{i t \log n}$ has absolute value 1 ; and that both sides of (1) converge absolutely in the half-plane $\sigma>1$, and are equal there either by analytic continuation from the real ray $t=0$ or by the same proof we used for the real case. Riemann showed that the function $\zeta(s)$ extends from that half-plane to a meromorphic function on all of \mathbf{C} (the "Riemann zeta function"), analytic except for a simple pole at $s=1$. The continuation to $\sigma>0$ is readily obtained from our formula

$$
\zeta(s)-\frac{1}{s-1}=\sum_{n=1}^{\infty}\left[n^{-s}-\int_{n}^{n+1} x^{-s} d x\right]=\sum_{n=1}^{\infty} \int_{n}^{n+1}\left(n^{-s}-x^{-s}\right) d x
$$

since for $x \in[n, n+1](n \geq 1)$ and $\sigma>0$ we have

$$
\left|n^{-s}-x^{-s}\right|=\left|s \int_{n}^{x} y^{-1-s} d y\right| \leq|s| n^{-1-\sigma}
$$

so the formula for $\zeta(s)-(1 /(s-1))$ is a sum of analytic functions converging absolutely in compact subsets of $\{\sigma+i t: \sigma>0\}$ and thus gives an analytic function there. (See also the first Exercise below.) Using the Euler-Maclaurin summation formula with remainder, we could proceed in this fashion, extending ζ to $\sigma>-1, \sigma>-2$, etc. However, once we have defined $\zeta(s)$ on $\sigma>0$ we can obtain the entire analytic continuation at once from Riemann's functional equation relating $\zeta(s)$ with $\zeta(1-s)$. This equation is most nicely stated by introducing the meromorphic function $\xi(s)$ defined by ${ }^{1}$

$$
\xi(s):=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)
$$

[^0]for $\sigma>0$. Then we have:
Theorem (Riemann). The function ξ extends to a meromorphic function on \mathbf{C}, regular except for simple poles at $s=0,1$, which satisfies the functional equation
\[

$$
\begin{equation*}
\xi(s)=\xi(1-s) \tag{2}
\end{equation*}
$$

\]

It follows that ζ also extends to a meromorphic function on \mathbf{C}, which is regular except for a simple pole at $s=1$, and that this analytic continuation of ζ has simple zeros at the negative even integers $-2,-4,-6, \ldots$, and no other zeros outside the closed critical strip $0 \leq \sigma \leq 1$.
[The zeros $-2,-4,-6, \ldots$ of ζ outside the critical strip are called the trivial zeros of the Riemann zeta function.]

The proof has two ingredients: properties of $\Gamma(s)$ as a meromorphic function of $s \in \mathbf{C}$, and the Poisson summation formula. We next review these two topics.
The Gamma function was defined for real $s>0$ by Euler ${ }^{2}$ as the integral

$$
\begin{equation*}
\Gamma(s):=\int_{0}^{\infty} x^{s} e^{-x} \frac{d x}{x} \tag{3}
\end{equation*}
$$

We have $\Gamma(1)=\int_{0}^{\infty} e^{-x} d x=1$ and, integrating by parts,

$$
s \Gamma(s)=\int_{0}^{\infty} e^{-x} d\left(x^{s}\right)=-\int_{0}^{\infty} x^{s} d\left(e^{-x}\right)=\Gamma(s+1) \quad(s>0)
$$

so by induction $\Gamma(n)=(n-1)$! for positive integers n. Since $\left|x^{s}\right|=x^{\sigma}$, the integral (3) defines an analytic function on $\sigma>0$, which still satisfies the recursion $s \Gamma(s)=\Gamma(s+1)$ (proved either by repeating the integration by parts or by analytic continuation from the positive real axis). That recursion then extends Γ to a meromorphic function on \mathbf{C}, analytic except for simple poles at $0,-1,-2,-3, \ldots$ (What are the residues at those poles?) For s, s^{\prime} in the right half-plane $\sigma>0$ the Beta function ${ }^{3} \mathrm{~B}\left(s, s^{\prime}\right)$, defined by the integral

$$
\mathrm{B}\left(s, s^{\prime}\right):=\int_{0}^{1} x^{s-1}(1-x)^{s^{\prime}-1} d x
$$

is related with Γ by

$$
\begin{equation*}
\Gamma\left(s+s^{\prime}\right) \mathrm{B}\left(s, s^{\prime}\right)=\Gamma(s) \Gamma\left(s^{\prime}\right) \tag{4}
\end{equation*}
$$

(This is proved by Euler's trick of calculating $\int_{0}^{\infty} \int_{0}^{\infty} x^{s-1} y^{s^{\prime}-1} e^{-(x+y)} d x d y$ in two different ways.) Since $\Gamma(s)>0$ for real positive s, it readily follows that Γ has no zeros in $\sigma>0$, and therefore none in the complex plane.
This is enough to derive the poles and trivial zeros of ζ from the functional equation (2). [Don't take my word for it - do it!] But where does the functional equation come from? There are several known ways to prove it; we give

[^1]Riemann's original method, which generalizes to $L(s, \chi)$, and further to L-series associated to modular forms.

Riemann expresses $\xi(s)$ as a Mellin integral involving the theta function ${ }^{4}$

$$
\theta(u):=\sum_{n=-\infty}^{\infty} e^{-\pi n^{2} u}=1+2\left(e^{-\pi u}+e^{-4 \pi u}+e^{-9 \pi u}+\ldots\right)
$$

the sum converging absolutely to an analytic function on the upper half-plane $\operatorname{Re}(u)>0$. Integrating termwise we find:

$$
2 \xi(s)=\int_{0}^{\infty}(\theta(u)-1) u^{s / 2} \frac{d u}{u} \quad(\sigma>0)
$$

(That is, $\xi(-2 s)$ is the Mellin transform of $(\theta(u)-1) / 2$.) But we shall see:
Lemma. The function $\theta(u)$ satisfies the identity

$$
\begin{equation*}
\theta(1 / u)=u^{1 / 2} \theta(u) \tag{5}
\end{equation*}
$$

Assume this for the time being. We then rewrite our integral for $2 \xi(s)$ as

$$
\begin{aligned}
& \int_{0}^{1}(\theta(u)-1) u^{s / 2} \frac{d u}{u}+\int_{1}^{\infty}(\theta(u)-1) u^{s / 2} \frac{d u}{u} \\
= & -\frac{2}{s}+\int_{0}^{1} \theta(u) u^{s / 2} \frac{d u}{u}+\int_{1}^{\infty}(\theta(u)-1) u^{s / 2} \frac{d u}{u},
\end{aligned}
$$

and use the change of variable $u \leftrightarrow 1 / u$ to find

$$
\begin{gathered}
\int_{0}^{1} \theta(u) u^{s / 2} \frac{d u}{u}=\int_{1}^{\infty} \theta\left(u^{-1}\right) u^{-s / 2} \frac{d u}{u} \\
=\int_{1}^{\infty} \theta(u) u^{(1-s) / 2} \frac{d u}{u}=\frac{2}{s-1}+\int_{1}^{\infty}(\theta(u)-1) u^{(1-s) / 2} \frac{d u}{u}
\end{gathered}
$$

if also $\sigma<1$. Therefore

$$
\xi(s)+\frac{1}{s}+\frac{1}{1-s}=\frac{1}{2} \int_{1}^{\infty}(\theta(u)-1)\left(u^{s / 2}+u^{(1-s) / 2}\right) \frac{d u}{u}
$$

which is manifestly symmetrical under $s \leftrightarrow 1-s$, and analytic since $\theta(u)$ decreases exponentially as $u \rightarrow \infty$. This concludes the proof of the functional equation and analytic continuation of ξ, assuming our lemma (5).
This lemma, in turn, is the special case $f(x)=e^{-\pi u x^{2}}$ of the Poisson summation formula:

[^2]Theorem. Let $f: \mathbf{R} \rightarrow \mathbf{C}$ be a \mathcal{C}^{2} function such that $\left(|x|^{r}+1\right)\left(|f(x)|+\left|f^{\prime \prime}(x)\right|\right)$ is bounded for some $r>1$, and let \hat{f} be its Fourier transform

$$
\hat{f}(y)=\int_{-\infty}^{+\infty} e^{2 \pi i x y} f(x) d x
$$

Then

$$
\begin{equation*}
\sum_{m=-\infty}^{\infty} f(m)=\sum_{n=-\infty}^{\infty} \hat{f}(n) \tag{6}
\end{equation*}
$$

the sums converging absolutely.
[The hypotheses on f can be weakened, but this formulation of Poisson summation is more than enough for our purposes.]
Proof: Define $F: \mathbf{R} / \mathbf{Z} \rightarrow \mathbf{C}$ by

$$
F(x):=\sum_{m=-\infty}^{\infty} f(x+m)
$$

the sum converging absolutely to a \mathcal{C}^{2} function by the assumption on f. Thus the Fourier series of F converges absolutely to F, so in particular

$$
F(0)=\sum_{n=-\infty}^{\infty} \int_{0}^{1} e^{2 \pi i n x} F(x) d x
$$

But $F(0)$ is just the left-hand side of (6), and the integral is

$$
\sum_{m \in \mathbf{Z}} \int_{0}^{1} e^{2 \pi i n x} f(x+m) d x=\sum_{m \in \mathbf{Z}} \int_{m}^{m+1} e^{2 \pi i n x} f(x) d x=\int_{-\infty}^{\infty} e^{2 \pi i n x} f(x) d x
$$

which is just $\hat{f}(n)$, so its sum over $n \in \mathbf{Z}$ yields the right-hand side of (6).
Now let $f(x)=e^{-\pi u x^{2}}$. The hypotheses are handily satisfied for any r, so (6) holds. The left-hand side is just $\theta(u)$. To evaluate the right-hand side, we need the Fourier transform of f, which is $u^{-1 / 2} e^{-\pi u^{-1} y^{2}}$. [Contour integration reduces this claim to $\int_{-\infty}^{\infty} e^{-\pi u x^{2}} d x=u^{-1 / 2}$, which is the well-known Gauss integral - see the Exercises.] Thus the right-hand side is $u^{-1 / 2} \theta(1 / u)$. Multiplying both sides by $u^{1 / 2}$ we then obtain (5), and finally complete the proof of the analytic continuation and functional equation for $\xi(s)$.
Remarks. We noted already that to each number field K there corresponds a zeta function

$$
\zeta_{K}(s):=\sum_{I}|I|^{-s}=\prod_{\wp}\left(1-|\wp|^{-s}\right)^{-1} \quad(\sigma>1)
$$

in which $|I|$ is the norm of an ideal I, the sum and product extend respectively over ideals I and prime ideals \wp of the ring of integers O_{K}, and their equality
expresses unique factorization. As in our case of $K=\mathbf{Q}$, this zeta function extends to a meromorphic function on \mathbf{C}, regular except for a simple pole at $s=1$. Moreover it satisfies a functional equation $\xi_{K}(s)=\xi_{K}(1-s)$, where

$$
\xi_{K}(s):=\Gamma(s / 2)^{r_{1}} \Gamma(s)^{r_{2}}\left(4^{-r_{2}} \pi^{-n}|d|\right)^{s / 2} \zeta_{K}(s)
$$

in which $n=r_{1}+2 r_{2}=[K: \mathbf{Q}]$, the exponents r_{1}, r_{2} are the numbers of real and complex embeddings of K, and d is the discriminant of K / \mathbf{Q}. The factors $\Gamma(s / 2)^{r_{1}}, \Gamma(s)^{r_{2}}$ may be regarded as factors corresponding to the "archimedean places" of K, as the factor $\left(1-|\wp|^{-s}\right)^{-1}$ corresponds to the finite place \wp. The functional equation can be obtained from generalized Poisson summation as in [Tate 1950]. Most of our results for $\zeta=\zeta_{\mathbf{Q}}$ carry over to these ζ_{K}, and yield a Prime Number Theorem for primes of $K ; L$-series generalize too, though the proper generalization requires some thought when the class and unit groups need no longer be trivial and finite as they are for \mathbf{Q}. See for instance H.Heilbronn's "Zeta-Functions and L-Functions", Chapter VIII of [CF 1967].

Exercises

Concerning the analytic continuation of $\zeta(s)$:

1. Show that if $\alpha: \mathbf{Z} \rightarrow \mathbf{C}$ is a function such that $\sum_{m=1}^{n} \alpha(m)=O(1)$ (for instance, if α is a nontrivial Dirichlet character) then $\sum_{n=1}^{\infty=1} \alpha(n) n^{-s}$ converges uniformly, albeit not absolutely, in compact subsets of $\{\sigma+i t: \sigma>0\}$, and thus defines an analytic function on that half-plane. Apply this to

$$
\left(1-2^{1-s}\right) \zeta(s)=1-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\frac{1}{4^{s}}+-\cdots
$$

(with $\alpha(n)=(-1)^{n-1}$) and to $\left(1-3^{1-s}\right) \zeta(s)$ to obtain a different proof of the analytic continuation of ζ to $\sigma>0$.
2. Prove that the Bernoulli polynomials $\mathrm{B}_{n}(n>0)$ have the Fourier expansion

$$
\begin{equation*}
\mathrm{B}_{n}(x)=-n!\sum_{k}^{\prime} \frac{e^{2 k \pi i x}}{(2 k \pi i)^{n}} \tag{7}
\end{equation*}
$$

for $0<x<1$, in which \sum_{k}^{\prime} is the sum over nonzero integers k. Deduce that

$$
\zeta(n)=\frac{1}{2}(2 \pi)^{n} \frac{\left|B_{n}\right|}{n!} \quad(n=2,4,6,8, \ldots)
$$

and thus that $\zeta(1-n)=-B_{n} / n$ for all integers $n>1$. For example, $\zeta(-1)=$ $-1 / 12$. What is $\zeta(0)$?

It is known that in general $\zeta_{K}(-m) \in \mathbf{Q}(m=0,1,2, \ldots)$ for any number field K. In fact the functional equation for ζ_{K} indicates that once $[K: \mathbf{Q}]>1$ all the $\zeta_{K}(-m)$ vanish unless K is totally real and m is odd, in which case the rationality of $\zeta_{K}(-m)$ was obtained in [Siegel 1969].
A further application of (7):
3. Prove that $\sum \sum_{k, k^{\prime}=0}^{\infty}\left(k k^{\prime}\left(k+k^{\prime}\right)\right)^{-n}$ is a rational multiple of $\pi^{3 n}$ for each $n=2,4,6,8, \ldots$; for instance,

$$
\sum_{k=0}^{\infty} \sum_{k^{\prime}=0}^{\infty} \frac{1}{\left(k k^{\prime}\left(k+k^{\prime}\right)^{2}\right)}=\frac{4 \pi^{6}}{3} \int_{0}^{1} \mathrm{~B}_{2}(x)^{3} d x=\frac{\pi^{6}}{2835}
$$

Concerning the Gamma function:
4. If you've never seen it yet, or did it once but forgot, prove (4) by starting from the integral representation of the right-hand side as

$$
\int_{0}^{\infty} \int_{0}^{\infty} x^{s-1} y^{s^{\prime}-1} e^{-(x+y)} d x d y
$$

and applying the change of variable $(x, y)=(u z,(1-u) z)$.
We will have little use for the Beta function in Math 259, but an analogous transformation will arise later in the formula relating Gauss and Jacobi sums.
5. Now take $s=s^{\prime}=1 / 2$ to prove that $\Gamma(1 / 2)=\sqrt{\pi}$, and thus to obtain the Gauss integral

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

Then take $s^{\prime}=s$ and use the change of variable $u=(1-2 x)^{2}$ in the integral defining $\mathrm{B}(s, s)$ to obtain $\mathrm{B}(s, s)=2^{1-2 s} \mathrm{~B}(s, 1 / 2)$, and thus the duplication formula

$$
\Gamma(2 s)=\pi^{-1 / 2} 2^{2 s-1} \Gamma(s) \Gamma\left(s+\frac{1}{2}\right)
$$

Concerning functional equations:
6. Use the duplication formula and the identity $\mathrm{B}(s, 1-s)=\pi / \sin (\pi s)$ to write
(2) in the equivalent form

$$
\zeta(1-s)=2(2 \pi)^{-s} \Gamma(s) \cos \frac{\pi s}{2} \zeta(s)
$$

This asymmetrical formulation of the functional equation has the advantage of showing the trivial zeros of $\zeta(s)$ more clearly (given the fact that $\zeta(s)$ has a simple pole at $s=1$ and no other poles or zeros on the positive real axis).
7. Let χ_{8} be the Dirichlet character mod 8 defined by $\chi_{8}(\pm 1)=1, \chi_{8}(\pm 3)=-1$. Show that if f is a function satisfying the hypotheses of Poisson summation then

$$
\sum_{m=-\infty}^{\infty} \chi_{8}(m) f(m)=8^{-1 / 2} \sum_{n=-\infty}^{\infty} \chi_{8}(n) \hat{f}(n / 8)
$$

Letting $f(x)=e^{-\pi u x^{2}}$, obtain an identity analogous to (5), and deduce a functional equation for $L\left(s, \chi_{8}\right)$.
8. Now let χ_{4} be the character $\bmod 4$ defined by $\chi_{4}(\pm 1)= \pm 1$. Show that, again under the Poisson hypotheses,

$$
\sum_{m=-\infty}^{\infty} \chi_{4}(m) f(m)=\frac{1}{2} \sum_{n=-\infty}^{\infty} \chi_{4}(n) \hat{f}(n / 4)
$$

This time, taking $f(x)=e^{-\pi u x^{2}}$ does not accomplish much! Use $f(x)=$ $x e^{-\pi u x^{2}}$ instead to find a functional equation for $L\left(s, \chi_{4}\right)$.
We shall see that the L-function associated to any primitive Dirichlet character χ satisfies a similar functional equation, with the Gamma factor depending on whether $\chi(-1)=+1$ or $\chi(-1)=-1$.
9. For light relief after all this hard work, differentiate the identity (5) with respect to u, set $u=1$, and conclude that $e^{\pi}>8 \pi-2$. What is the approximate size of the difference?

Further applications of Poisson summation:
10. Use Poisson summation to evaluate $\sum_{n=1}^{\infty} 1 /\left(n^{2}+c^{2}\right)$ for $c>0$. [The Fourier transform of $1 /\left(x^{2}+c^{2}\right)$ is a standard exercise in contour integration.] Verify that your answer approaches $\zeta(2)=\pi^{2} / 6$ as $c \rightarrow 0$.
11. [Higher-dimensional Poisson, and more on zeta functions of quadratic forms] Let A be a real positive-definite symmetric matrix of order r, and $Q: \mathbf{R}^{r} \rightarrow \mathbf{R}$ the associated quadratic form $Q(x)=(x, A x)$. The theta function of Q is

$$
\theta_{Q}(u):=\sum_{n \in \mathbf{Z}^{r}} \exp (-\pi Q(n) u)
$$

For instance, if $r=1$ and $A=1$ then $\theta_{Q}(u)$ is just $\theta(u)$. More generally, show that if A is the identity matrix I_{r} (so $Q(x)=\sum_{j=1}^{r} x_{j}^{2}$) then $\theta_{Q}(u)=\theta(u)^{r}$. Prove an r-dimensional generalization of the Poisson summation formula, and use it to obtain a generalization of (5) that relates $\theta_{Q}(u)$ with $\theta_{Q^{*}}(1 / u)$, where Q^{*} is the quadratic form associated to A^{-1}. Using this formula, and a Mellin integral formula for

$$
\zeta_{Q}(s)=\sum_{\substack{n \in \mathbf{Z}^{r} \\ n \neq 0}} \frac{1}{Q(n)^{s}}
$$

conclude that ζ_{Q} extends to a meromorphic function on \mathbf{C} that satisfies a functional equation relating ζ_{Q} with $\zeta_{Q^{*}}$. Verify that when $r=2$ and $A=I_{2}$ your functional equation is consistent with the identity $\zeta_{Q}(s)=4 \zeta(s) L\left(s, \chi_{4}\right)$ and the functional equations for $\zeta(s)$ and $L\left(s, \chi_{4}\right)$.

References

[CF 1967] Cassels, J.W.S., Fröhlich, A., eds.: Algebraic Number Theory. London: Academic Press 1967. [AB 9.67.2 / QA 241.A42]
[GR 1980] Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. New York: Academic Press 1980. [D 9.80.1 / BASEmEnt reference QA55.G6613]
[Siegel 1969] Siegel, C.L.: Berechnung von Zetafunktionen an ganzzahligen Stellen, Gött. Nach. 10 (1969), 87-102.
[Tate 1950] Tate, J.T.: Fourier Analysis in Number Fields and Hecke's ZetaFunctions. Thesis, 1950; Chapter XV of [CF 1967].

[^0]: ${ }^{1}$ Warning: occasionally one still sees $\xi(s)$ defined as what we would call $\left(s^{2}-s\right) \xi(s)$ or $\left(s^{2}-s\right) \xi(s) / 2$, as in [GR 1980, 9.561]. The factor of $\left(s^{2}-s\right)$ makes the function entire, and does not affect the functional equation since it is symmetric under $s \leftrightarrow 1-s$. However, for most uses it turns out to be better to leave this factor out and tolerate the poles at $s=0,1$.

[^1]: ${ }^{2}$ Actually Euler used $\Pi(s-1)$ for what we call $\Gamma(s)$; thus $\Pi(n)=n$! for $n=0,1,2, \ldots$.
 ${ }^{3}$ a.k.a. "Euler's first integral", with (3) being "Euler's second integral".

[^2]: ${ }^{4}$ Jacobi introduced four "theta functions" of two variables; in his notation, our $\theta(u)$ would be $\theta_{3}\left(0, e^{-\pi u}\right)$. We can call this $\theta(u)$ because we shall not use $\theta_{1}, \theta_{2}, \theta_{4}$, nor $\theta_{3}(z, q)$ for $z \neq 0$.

