(5.4) Multiple-Angle Identities

Objective: To learn the Double-Angle Identities, Power-Reducing Identities, and Half-Angle Identies.

Why: These identities will be used in calculus.
$\xrightarrow{\text { Double Angle Formulas }}$
$\sin 2 \mathrm{u}=2 \sin \mathrm{u} \cos \mathrm{u}$ $\begin{aligned} \cos 2 u & =\left\{\begin{array}{c}\cos u-\sin u \\ \\ \end{array}=\left\{\begin{array}{l}2 \cos u-1 \\ \\ \end{array}=2 \sin u\right.\right.\end{aligned}$

$$
\tan 2 u=\frac{2 \tan u}{1-\tan u}
$$

Obj: To learn the Double-Angle Identities, Power-Reducing Identities, and Half-Angle Identies.

1. Use the sum and difference formulas to prove the identity. $\sin 2 u=2 \sin u \cos u$

Obj: To learn the Double-Angle Identities, Power-Reducing Identities, and Half-Angle Identies.
2. Use the sum and difference formulas to prove the identity. $\cos 2 u=2 \cos ^{2} u-1$ Identities, and Half-Angle Identies.
3. Find all solutions in the interval $[0,2 \pi)$

$$
2 \cos x+\sin 2 x=0
$$

Obj: To learn the Double-Angle Identities, Power-Reducing

 Identities, and Half-Angle Identies.4. $\cos 2 x=\sin x$

Prove the identity.

$$
\sin 3 x=(\sin x)\left(3-4 \sin ^{2} x\right)
$$

Power-Reducing Formulas

Obj: To learn the Double-Angle Identities, Power-Reducing Identities, and Half-Angle Identies.

$$
\sin ^{2} u=\frac{1-\cos 2 u}{2}
$$

* Proof involves taking the double angle identities and solving for $\sin ^{2} u$ or $\cos ^{2} u$. ex.

$$
\cos 2 u=1-2 \sin ^{2} u
$$

$$
\tan ^{2} u=\frac{1-\cos 2 u}{1+\cos 2 u}
$$

Obj: To learn the Double-Angle Identities, Power-Reducing Identities, and Half-Angle Identies.
Rewrite in terms of trigonometric functions with no power greater than 1. $\cos ^{4} x$

Half-Angle Identities

$$
\begin{aligned}
& \sin \frac{u}{2}= \pm \sqrt{\frac{1-\cos u}{2}} \\
& \cos \frac{u}{2}= \pm \sqrt{\frac{1+\cos u}{2}}
\end{aligned} \quad \tan \frac{u}{2}=\left\{\begin{array}{l}
\pm \sqrt{\frac{1-\cos u}{1+\cos u}} \\
\frac{1-\cos u}{\sin u} \\
\frac{\sin u}{1+\cos u}
\end{array}\right.
$$

Obj: To learn the Double-Angle Identities, Power-Reducing Identities, and Half-Angle Identies.

Using the Half-Angle Identites, give the exact value of $\sin 105^{\circ}$.

Find all solutions in the interval $[0,2 \pi$)

$$
\begin{aligned}
& \sin ^{2} x=\cos ^{2}\left(\frac{x}{21}\right)^{u} \\
& \cos ^{2} u=\frac{1+\cos 2 \omega}{2} \\
& \frac{2}{1}\left[\frac{1-\cos 2 x}{2}=\frac{1+\cos x}{2}\right] \frac{2}{1}\left[1-\cos ^{2} x=\frac{1+\cos x}{2}\right] \\
& 2-2 \cos ^{2} x=1+\cos x \\
& 1-\cos 2 x=1+\cos x \\
& 1-\left(2 \cos ^{2} x-1\right)=1+\cos x \\
& 1-2 \cos ^{2} x+1=1+\cos x \\
& 2-2 \cos ^{2} x=1+\cos x \\
& -1-\cos x \quad-1-\cos x \\
& 1-2 \cos ^{2} x-\cos x=0 \\
& -2 \cos ^{2} x-\cos x+1=0 \\
& 2 \cos ^{2} x+\cos x-1=0 \\
& (2 \cos x-1)(\cos x+1)=0 \\
& 2 \cos x-1=0 \text { or } \cos x+1=0 \\
& \cos x=\frac{1}{2} \quad \cos x=-1
\end{aligned}
$$

HW:
(HR) (5.4) Pg.432: 5, $7,\left(9,15,19,23,39^{\text {dentities, and Half-Angle ddenties. }}\right.$

$$
\begin{aligned}
& \text { (9) } \begin{aligned}
\sin 2 x-\tan x & =0 \\
\cos x\left[2 \sin x \cos x-\frac{\sin x}{\cos x}\right. & =0 \\
2 \sin x \cos ^{2} x-\sin x & =0 \\
\sin x\left(2 \cos ^{2} x-1\right) & =0
\end{aligned}
\end{aligned}
$$

$$
\sin x=0 \text { or } 2 \cos ^{2} x-1=0
$$

$$
\sqrt{\cos ^{2} x}= \pm \sqrt{\frac{1}{2}}
$$

$$
\cos x=\frac{8 \sqrt{2}}{2}
$$

$$
x=0, \pi
$$

$$
\sin \left(5^{\circ}=\sin \frac{30}{2}=\sqrt{\frac{1-\cos (30)}{2}}=\sqrt{\frac{\frac{3}{2}-\frac{\sqrt{3}}{2}}{2}}=\sqrt{\frac{\frac{2-\sqrt{3}}{2}}{\frac{2}{1}}}\right.
$$

$\sin (45-30) \quad=\sqrt{\frac{2-\sqrt{3}}{2} \cdot \frac{1}{2}}=\sqrt{\frac{2-\sqrt{3}}{4}}=\frac{\sqrt{2-\sqrt{3}}}{2}$
(15)

$$
\begin{aligned}
& \sin 4 x=2 \sin 2 x \cos 2 x \\
& \sin (2 x+2 x)= \\
& \sin 2 x \cos 2 x+\cos 2 x \sin 2 x= \\
& 2 \sin 2 x \cos 2 x=
\end{aligned}
$$

