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Foreword

Leonid Reznik’s Fuzzy Controllers is unlike any other book on
fuzzy control. In its own highly informal, idiosyncractic and yet
very effective way, it succeeds in providing the reader with a
wealth of information about fuzzy controllers. It does so with a
minimum of mathematics and a surfeit of examples, illustrations
and insightful descriptions of practical applications.

To view Fuzzy Controllers in a proper perspective a bit of
history is in order. When I wrote my paper on fuzzy sets in 1965,
my expectation was that the theory of fuzzy sets would find its
main applications in fields such as economics, biology, medicine,
psychology and linguistics – fields in which the conventional,
differential-equation-based approaches to systems analysis are
lacking in effectiveness. The reason for ineffectiveness, as I saw
it, is that in such fields the standard assumption that classes have
sharply defined boundaries is not a good fit to reality. In this
context, it is natural to generalise the concept of a set by
introducing the concept of grade of membership or, equivalently,
allowing the characteristic function of a set to take values
intermediate between 0 and 1.

Since my background was in systems analysis, it did not take
me long to realise that the theory of fuzzy sets is of substantial
relevance to systems analysis and, especially, to control. This
perception was articulated in my 1971 paper ‘Toward a theory of
fuzzy systems’, and 1972 paper, ‘A rationale for fuzzy control’.

The pivotal paper was my 1973 paper, ‘Outline of a new
approach to the analysis of complex systems and decision
processes’, in which the basic concepts and techniques that
underlie most of the practical applications of fuzzy set theory (or
fuzzy logic, as we call it today), were introduced. The concepts
in question are those of linguistic variable, fuzzy if-then rule and
fuzzy rule sets. These concepts serve as the point of departure for
what I call the theory of fuzzy information granulation. This
theory postulates that in the context of fuzzy logic there are three
basic modes of generalisation of a theory, method or approach:
(a) fuzzification, in which one or more crisp sets are replaced by
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fuzzy sets; (b) granulation, in which an object is partitioned into
a collection of granules, with a granule being a clump of points
(objects) drawn together by indistinguishability, similarity or
functionality; and (c) fuzzy granulation, in which a crisp or fuzzy
object is partioned into fuzzy granules. In effect, fuzzy
information granulation (f-granulation) is a combination of
fuzzification and granulation.

What has not been recognised to the extent that it should is that
the successes of fuzzy logic involve not just fuzzification but,
more importantly, fuzzy granulation. Furthermore, fuzzy logic is
the only methodology which provides a machinery for fuzzy
information granulation. As we alluded to already, the key
concepts underlying this machinery are those of linguistic
variable, fuzzy if-then rule and fuzzy rule sets. Basically, fuzzy
rule sets or, equivalently, fuzzy graphs, serve to provide a way of
approximating to a function or a relation by a disjunction of
Cartesian products of values of linguistic variables.

Viewed against this backdrop, it is – in effect, though not by
name – the machinery of fuzzy information granulation that is
employed in fuzzy controllers to explain – with high expository
skills – what fuzzy controllers are, how they are designed, and
how they are used in real-world applications. One cannot but be
greatly impressed by the profusion of examples, the up-to-
datedness of information, lucidity of style and reader-friendliness
of Leonid Reznik’s exposition. His work should have strong
appeal to anyone who is looking for a very informative and easy
to understand introduction to fuzzy controllers and their role in
the conception, design and deployment of intelligent systems.

An issue of key importance in the design of fuzzy controllers
is that of induction of rules from input-output data and tuning of
their parameters. In the past, this was done by trial and error. More
recently, techniques drawn from neurocomputing and genetic
computing have been employed for this purpose. In Fuzzy
Controllers, these techniques are discussed briefly but with insight
in the last chapters. In these chapters, the reader will also find a
very useful discussion of fuzzy system design software tools, their
capabilities and their applications.

In sum, this book is an unconventional and yet very informative,
self-contained and reader-friendly introduction to the basics of
fuzzy logic and its application to the design of fuzzy controllers.
Leonid Reznik deserves high marks for his achievement.

Lotfi A. Zadeh
Berkeley, CA

x FOREWORD
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PREFACE

Since fuzzy logic was introduced by Lotfi Zadeh in 1965, it
has had many successful applications mostly in control. This
‘fuzzy’ boom has generated strong interest in this area together
with a boom in studying and teaching of fuzzy theory and
technology. Although a few books which can be used for
teaching and learning are available on the market, what is still
missed is an introductory textbook suitable for both under- and
postgraduate students, as well as for a beginner.

The aim of the book is to teach a reader how to design a fuzzy
controller and to share some experience in design and
applications. It can be used as a textbook by both teachers and
students. Being an introduction this book tends to explain things
starting from basics roots and does not require any preliminary
knowledge in fuzzy theory and technology. I wanted to make this
book different from other books available on the market. My goals
were:

● to write a textbook that is intelligible even to a non-
specialist;

● to pay attention, first of all, to practical aspects of fuzzy
controller design;

● to facilitate the learning and teaching process for both a
student and a teacher.

The structure of the book includes a description of the theoretical
fundamentals of fuzzy logic as well as study of practical aspects
of fuzzy technology. Consideration of all topics is practically
oriented. This means that all the chapters work on achieving the
final goal: to give a reader the knowledge necessary to design a
fuzzy control system. To become a real textbook which can be
used for self-assessment and teaching, this book contains the list
of  problems, assignment topics and design projects.

The style of the book changes from a textbook at the beginning
(when it discusses theoretical aspects of fuzzy control) to a
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handbook (when it describes software and hardware tools which
can be used in a fuzzy controller design).  The book is written
(especially at the beginning) as a discussion between a teacher and
students who come from various educational and practical
backgrounds and are supposed to be interested in different aspects
of fuzzy control theory and technology.

I wanted to avoid making this book dull and boring, so I have
tried to apply ordinary (not scientific) language without losing a
correctness of mathematical determinations. It was very hard
sometimes. That’s why a few chapters (especially Chapter 2)
contain a number of mathematical definitions and other
constructions. However, I tried to provide the reader with some
explanation about what all this mathematical stuff meant.

xii PREFACE
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INTRODUCTION

Could you teach us very quickly how to design a fuzzy
controller?

Well, it is not that easy…

Just explain a general method of design, optimisation, and
implementation.

I do not think there is a general method of designing and
finding optimal parameters for a fuzzy controller, because any
such values always depend on the specific process or object
under control and the control objectives. This is particularly the
case for a fuzzy controller where the design process is very
subjective.

However, I understand you want to start a design
immediately. As you know nothing about fuzzy control and
fuzzy controllers, we will base our design just on our human
experience. Let us consider a classical control problem. We
control the boat movement which we should drive along the
straight line from point A to point B. How will you design a
controller to do it?

Well, firstly I must derive a mathematical model of the plant and
then develop a mathematical model of a controller.

And how will you develop this model?

I will apply one of the design methods, e.g., pole placement
design, and obtain a transfer function for the controller.

OK. Now suppose we do not know exactly the mathematical
model of our plant. Moreover, we do not know any classical
design method. What can we do then?

Nothing. You have to know some theory. Otherwise you cannot do
anything.

Try to use your own experience. How did you drive a boat
in your childhood?
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I turned the rudder left or right depending on the position of a boat.
Great! So we can say that if the boat is situated exactly on the

line we should not do anything, if the boat is situated to the left
of the line we should turn the rudder to the right (let us call this
direction positive), and if the boat is positioned to the right of the
line we should turn the rudder to the left.

Now let us try to formulate this control law as a set of rules.

If deviation is zero then turn is zero.
If deviation is positive then turn is negative.
If deviation is negative then turn is positive.

We have formulated the set of the control rules which can be
written as a table, which is a mathematical model of our controller.

No! A mathematical model is either an equation or a
mathematical function, or something like that.

Not necessarily. The mathematical model of a controller
should describe mapping of an input, in our case it is the
difference between the boat’s current position and the desired
one, to an output – control signal, in our case – the rudder angle.
By using this table we can find the output corresponding to each
value of the input.

Are you sure this table can control the boat movement?
Of course, very roughly. To improve the control quality and

make our controller more reactive, we need to increase the
number of values describing each variable. Until now we have
not distinguished the values of the deviation and turn, but just
considered their signs. Now let us use small, medium and big
values for both the deviation and the turn. Then we obtain the
rules table:

Deviation NB NM NS Z PS PM PB

Turn PB PM PS Z NS NM NB

How can we use this table? It just contains some abbreviations
which I do not understand.

Actually these abbreviations represent the labels of fuzzy
values. These labels give the ‘fuzzy’ value of the distance: big
(PB and NB), medium (PM and NM), small (PS and NS), and

xvi INTRODUCTION
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very small (Z). The prefixes P and N represent the side of the line,
that our boat deviates to, right or left, positive or negative.

So we describe our controller with the help of the rules table.
This is just a rules base controller. Where is the fuzzy logic
hidden?

In the processing of these rules. The problem of controller
design includes not just the compilation of the rules table, but
also the use of the table to calculate a control output. So we
should also say how to process these rules in order to get the
output result, and this processing is based on the fuzzy theory
methods examined in Section 3.2. This describes the process of
producing a fuzzy output from fuzzy inputs, which in the fuzzy
set theory is called an inference engine.

Fuzzy inputs and outputs? Usually a controller uses measurement
results, doesn’t it? Are they fuzzy?

Not exactly. In fuzzy control, the measurement results or
process outputs are generally assumed to be crisp, and are
produced by technical devices (sensors). On the other hand,
controller outputs should also be crisp to control different
technical devices (actuators). It means that a fuzzy controller
needs an interface at both input and output sides.

Have you started considering a structure of a fuzzy controller.
Yes. The process of fuzzy reasoning or processing the fuzzy

rules is described in Section 3.2. Section 3.3 describes how a
typical fuzzy controller operates. The structure of a simple fuzzy
controller is described in Section 3.4.

What is a typical fuzzy controller?
It is not easy to define. We look at a PID-like fuzzy controller

structure (Section 3.5) which has proved to be very popular with
different designers in many applications. However, we propose
a very brief consideration of more complicated structures and
problems in Sections 3.5 and 6. Section 3.6 explains how to
improve stability and performance of a fuzzy controller.

Both stability and performance?
You are actually asking how to evaluate the quality of a fuzzy

controller design. In this book we are applying the criteria
traditionally used in control engineering, especially in practical

INTRODUCTION xvii
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engineering, where one evaluates the controller performance based
on the system response obtained.

I see this book operates with some terms from control engineering
like a PID-controller, for example.

Yes. Basically there are two approaches to a fuzzy controller
design: an expert approach and a control engineering approach. In
the first (historically it was proposed earlier), the fuzzy controller
structure and parameters choice are assumed to be the responsibility
of the experts. Consequently, design and performance of a fuzzy
controller depend mainly on the knowledge and experience of the
experts, or intuition and professional feeling of a designer. This
dependence, which is considered far from systematic and reliable,
is the flaw of this approach. Chapter 3 helps to construct a fuzzy
controller based on this experience. However, this approach could
assist in constructing a fuzzy model or an initial version of a fuzzy
controller.

The second approach supposes an application of the
knowledge of control engineering and a design of a fuzzy
controller in some aspects similar to the conventional design with
the parameter’s choice, depending on the information of their
influence on the controller performance. This approach is
conducted mainly in  Chapter 4. This chapter opens Part II of
the book, which is devoted to the problems of a fuzzy controller
design.

So how do you describe a design practice?
A fuzzy controller design, as any other design process, consists

of the following main steps: an initial choice of the controller
structure and parameters (synthesis of the controller), together with
a controller examination (testing) and an evaluation of the
parameters’ influence on the controller performance (analysis of the
controller); an adjustment or change of the parameters and the
structure based on the analysis results. The first step is considered
in Chapter 4, and the last one in Chapter 5.

I still do not understand how you present practical design
aspects.

Chapter 4 starts with the description of the practical design
problems (Section 4.1) and proposed solutions. One of the
problems considered here will be referred to at different stages
of the design process. The chapter includes a brief description of
a fuzzy controller design procedure (Section 4.2) and discusses
in greater detail a choice of main parameters: scaling factors

xviii INTRODUCTION
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(Section 4.3), membership functions (Section 4.4), fuzzy rules
(Section 4.5), and defuzzification methods (Section 4.6).

In the second design approach, and to a lesser degree in the
first approach, the initial parameter choice may be followed by
the parameter tuning (a self-organising fuzzy controller) and the
plant model formulation or modification (an adaptive fuzzy
controller) – see Section 5.1. The methods of adjusting the fuzzy
controller parameters are considered in Chapter 5. Classical
tuning of fuzzy controller scaling factors is considered in Section
5.2 while an application of artificial neural networks and genetic/
evolutionary algorithms are looked at in Sections 5.3 and 5.4.
A brief description of the neuro-fuzzy controller design
methodology is given in Section 5.3. Note that this chapter
contains a considerable number of practical design examples.

Does one really need to design a fuzzy controller ‘by hand’? I
mean these days the design process is computerised and a
designer applies different design packages. What is the situation
with fuzzy controller design?

Basically the same as in other areas. A very fast-growing
information technology industry has already developed and
released a few good design packages which can be successfully
applied in different applications for a fuzzy controller design.
Among them are: RT/Fuzzy Toolbox for MATRIXxTM by
Integrated Systems Inc., Fuzzy Logic Toolbox for MATLABTM

by The MathWorks Inc., FIDETM by Aptronix, fuzzyTECHTM by
Inform, a number of products by Togai InfraLogic Inc., Fuzzy
Systems Engineering Inc., HyperLogic, etc. Some of them are
specific for a fuzzy technology, others are universal and include
a special fuzzy design toolbox.

The availability of these products on the market as well as
their price means we do not include any software tools for fuzzy
controller design in the text. Certainly our main advice is to use
one of these packages (see Chapter 6). We will consider the
features of the packages and give some examples of their
applications.

Chapter 7 describes a realisation and a hardware
implementation of fuzzy controllers. It gives advice on how to
construct real fuzzy controllers. This is the most important part
of the area of fuzzy controller design and implementation. New
chips and devices are now being developed and manufactured in
large quantities and any particular device will become obsolete
before this book is read. So this chapter is short with only general
descriptions and recommendations. However, it does include a

INTRODUCTION xix
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very brief description of some of the latest hardware design
achievements and products available on the market.

A considerable number of examples of practical fuzzy control
system design are incorporated in the text. The goal of these
examples is not just to illustrate theoretical assertions but to
plunge the reader into the design environment.

Why have you started with Chapter 3?
This is because I have a problem with Chapter 2. While I did
promise to avoid mathematical definitions and constructions, in
order to have a more or less comprehensive understanding of
fuzzy control the reader needs to grasp some basic mathematical
concepts. As a matter of compromise, Chapter 2 explains what a
fuzzy set is and what the difference between a fuzzy set and a
crisp set is (Section 2.1), and what operations can be performed
on fuzzy sets (Section 2.2).

Other parts of Chapter 2 are very important for understanding
how a fuzzy controller works. Section 2.3 describes linguistic
variables and hedges like Very Large, More or Less, Small, etc.,
which are applied in a fuzzy rules formulation. Section 2.4
describes how a conventional part of a control system processes
fuzzy variables (fuzzy algebra). Section 2.5 gives a brief
mathematical description of fuzzy processing (fuzzy relations).

If you like you can omit Chapter 2. Actually you can jump
around this book, omitting any part of it. Part I considers
theoretical fundamentals of a fuzzy controller operation, Part II
looks at practical problems of fuzzy controller design, and Part
III can be used as a manual in fuzzy controller design learning
and teaching.

Part III starts with a brief manual on fuzzy controller design
which summarises a design process and gives the reader concise
advice on different aspects of a fuzzy controller operation,
design, implementation and debugging. This part also includes
a number of problems which can be used in teaching and for
self-assessment. It proposes some possible topics for student
assignments and projects. The first assignment is an essay
comparing fuzzy control and technology with conventional
methods. This approach establishes a general understanding of
the place of fuzzy technology in modern science and industry.
The combination of problem solving, essay writing and project
design allows a teacher not just to cover mathematical
fundamentals of fuzzy set theory, but to improve the theoretical
and practical skills of students. The set of problems and design
projects covers the fundamentals of fuzzy set theory as well as

xx INTRODUCTION
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applications of fuzzy technology in different areas. So they could
be useful for students and specialists in various disciplines:
engineering (electrical, computer, mechanical, aerospace),
information technology, computer and mathematical sciences.
Problems are devoted mainly to particular aspects of fuzzy theory
and technology, while projects cover a wider area and usually
require a complex solution.

INTRODUCTION xxi
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FUZZY SETS, LOGIC AND CONTROL 1

HOW DOES IT WORK?
OR

THE THEORY OF FUZZY
CONTROL
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CHP1.PM5 6/12/97, 1:29 PM2



FUZZY SETS, LOGIC AND CONTROL 3

1 FUZZY SETS, LOGIC
AND CONTROL

1.1 Why do we need this new theory, what are the
advantages of fuzzy control?
I have heard different terms: fuzzy set theory, fuzzy logic theory,
fuzzy sets and logic. What is the difference? Do they denote
different studies?

Usually people mean just one theory which they refer to under
various names. This theory is rather young, which is why
different people use different names even in English. In other
languages, variations are much higher because of translations.
However, you should carefully consider any particular case. Last
year, some similar but different theories appeared, e.g. the theory
of rough sets. The authors of these theories used some different
axioms.

Different theories seem to appear. Why should we spend our time
learning about this one? Is it worth studying?

Toshiro Terano pointed out that three conditions were necessary
for a new theory [Ter94]:

● a societal need;
● a new methodology (both ideas and techniques);
● an attractiveness to researchers.

Let us consider these conditions. The aim of science and technology
is to make our life easier. I understand that this is a controversial
question, but do you agree that our life has become happier and
simpler? Different people will give different answers. However, it is
obvious that modern life includes large and complex organisations and
sophisticated technical devices that need to be controlled. This requires
the construction of mathematical models. Because these models are
rather complicated and include some vagueness, it is hard to use
classical mathematics to process these models. On the other hand, our
brains possesses some special characteristics that enable it to learn and
reason in a vague and uncertain environment. What to do?
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4 FUZZY SETS, LOGIC AND CONTROL

Table 1.1 Limitations of conventional controllers

● Plant nonlinearity. The efficient linear models of the
process or the object under control are too restrictive.
Nonlinear models are computationally intensive and have
complex stability problems.

● Plant uncertainty. A plant does not have accurate models
due to uncertainty and lack of perfect knowledge.

● Multivariables, multiloops and environment constraints.
Multivariate and multiloop systems have complex
constraints and dependencies.

● Uncertainty in measurements. Uncertain measurements
do not necessarily have stochastic noise models.

● Temporal behaviour. Plants, controllers, environments
and their constraints vary with time. Moreover, time
delays are difficult to model.

Maybe the answer is to try to model a human brain mathemati-
cally?

Right! A theory of creating and processing models, similar to
those used by a human brain, was sought – Lotfi Zadeh proposed
such a theory in 1965. The development of technology has
computerised our life and strengthened the problem of man–
machine interaction. Here I mean the man–machine interaction in
a wide sense, not just as an interface but as a problem of
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establishing a harmony in communication between a computer
and a human being on the levels of cooperative thinking, logic,
language. We have a computer, operating according to Boolean
logic with numerical mathematical models constructed by
application researchers, and users who operate with another sort
of logic and language including a high degree of ambiguity or
fuzziness. Fuzzy sets theory aims to bridge this gap. It can be
extremely useful not just in engineering and technological
sciences but in social sciences, eliminating the difference in the
approaches between natural and social sciences.

Table 1.2 Benefits of fuzzy controllers

● Fuzzy controllers are more robust than PID controllers
because they can cover a much wider range of operating
conditions than PID can, and can operate with noise and
disturbances of different natures.

● Developing a fuzzy controller is cheaper than developing
a model-based or other controller to do the same thing.

● Fuzzy controllers are customisable, since it is easier to
understand and modify their rules, which not only use a
human operator’s strategy but also are expressed in natural
linguistic terms.

● It is easy to learn how fuzzy controllers operate and how
to design and apply them to a concrete application.

In the last two decades, the fuzzy sets theory has established itself
as a new methodology for dealing with any sort of ambiguity and
uncertainty. An underlying philosophy of the theory is a mathematical
framework where imprecise conceptual phenomena in modelling and
decision making may be precisely and rigorously studied. It lets
mathematical models describe rather ‘unmodelled’ situations and finds
solutions of ‘unsolvable’ problems. The theory includes a new
mathematical apparatus and computer-realisable models.

The current number of researchers in this field and research
societies mushrooming around the world show the attractiveness
of this theory for both theoretical and practical researchers.

1.2 Where does fuzzy logic come from?
Fuzzy logic was introduced by Professor Lotfi Zadeh in 1965.
Not in the least degree trying to undermine his achievements, this
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6 FUZZY SETS, LOGIC AND CONTROL

theory has its roots in the previous history of science, particularly
in logic science. Although logic as a branch of Western science
had been developing as binary logic, there were some famous
paradoxes that could not be solved by binary logic. These
paradoxes are as follows:

Falakros. Pluck a hair from a man’s head and he does not
suddenly become bald. Pull out another, and a third, and a fourth,
and he still is not bald. Keep plucking and eventually the wincing
man will have no hair at all on his head, yet he is not bald.

The Paradox of the Millet Seeds. Drop a millet seed on the ground
and it makes no sound. But why is that dropping a bushel of millet
seeds make a sound, since it contains only millet seeds? (After
Zeno the Eleatic.)

Theseus’ Ship. When Theseus returned from slaying the Minotaur,
says Plutarch, the Athenians preserved his ship, and as planks
rotted, they replaced them with new ones. When the first plank
was replaced, everyone agreed it was still the same ship. Adding
a second plank made no difference either. At some point the
Athenians may have replaced every plank in the ship. Was it a
different ship? At what point did it become one?

Wang’s Paradox. If a number x is small, then x +1 is also small.
If x + 1 is small, then x + 1 + 1 is also small. Therefore five
trillion is a small number and so is infinity. (After mathematician
Hao Wang.)

Woodger’s Paradox. An animal can belong to only one taxonomic
family. Therefore, at many points in evolution a child must have
belonged to a completely different family from its parents. But
genetically, this feat is basically impossible. (After biologist John
Woodger.)

Scientists tried to solve these obvious contradictions. Below
[McNeil94] is a summary and some remarks on the problem of
multivalued logic.

Plato (427–347? BC) saw degrees of truth everywhere and recoiled
from them. ‘No chair is perfect, it is only a chair to a certain
degree.’
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Charles Sanders Peirce (1839–1914) laughed at the ‘sheep and
goat separators’ who split the world into true and false. ‘All that
exists is continuous and such continuums govern knowledge.’

Bertrand Russell (1872–1970) ‘Both vagueness and precision are
features of language, not reality. Vagueness clearly is a matter of
degree.’

Jan Lukasiewicz (1878–1956) proposed a formal model of
vagueness, a logic ‘based on more values than TRUE or FALSE’.
1 stands for TRUE, 0 stands for FALSE, 1/2 stands for possible.
Actually the three-valued logic by Lukasiewicz stayed just one
step away from the multivalued fuzzy logic by Zadeh and can be
considered as its closest relative.
Max Black (1909–89) proposed a degree as a measure of
vagueness.

Albert Einstein (1879–1955): ‘So far as the laws of mathematics
refer to reality, they are not certain. And so far as they are certain,
they do not refer to reality.’

Lotfi Zadeh (1923– ) introduced fuzzy sets and logic theory. ‘As
the complexity of a system increases, our ability to make precise
and significant statements about its behaviour diminishes until a
threshold is reached beyond which precision and significance (or
relevance) become almost mutually exclusive characteristics... A
corollary principle may be stated succinctly as, ‘The closer one
looks at a real-world problem, the fuzzier becomes its solution.’
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8 FUZZY SETS, LOGIC AND CONTROL

Table 1.3 describes the modern history of fuzzy logic after its
invention by Zadeh in 1965. It is uncomprehensive and includes
just some events but hopefully can be used for illustration of the
fuzzy logic development.

Table 1.3 BRIEF HISTORY OF FUZZY TECHNOLOGY

1965 Concept of fuzzy sets theory by Lotfi Zadeh (USA)
1972 First working group on fuzzy systems in Japan by

Toshiro Terano
1973 Paper about fuzzy algorithms by Zadeh (USA)
1974 Steam engine control by Ebrahim Mamdani (UK)
1977 First fuzzy expert system for loan applicant evaluation

by Hans Zimmermann (Germany)
1980 Cement kiln control by F. – L. Smidth & Co. – Lauritz

P. Holmblad (Denmark) – the first permanent industrial
application
Fuzzy logic chess and backgammon program – Hans
Berliner (USA)

1984 Water treatment (chemical injection) control (Japan)
Subway Sendai Transportation system control (Japan)

1985 First fuzzy chip developed by Masaki Togai and
Hiroyuke Watanabe in Bell Labs (USA)

1986 Fuzzy expert system for diagnosing illnesses in Omron
(Japan)

1987 Container crank control
Tunnel excavation
Soldering robot
Automated aircraft vehicle landing
Second IFSA Conference in Tokyo
Togai InfraLogic Inc. – first fuzzy company in Irvine (USA)

1988 Kiln control by Yokogawa
First dedicated fuzzy controller sold – Omron (Japan)

1989 Creation of Laboratory for International Fuzzy
Engineering Research (LIFE) in Japan

1990 Fuzzy TV set by Sony (Japan)
Fuzzy electronic eye by Fujitsu (Japan)
Fuzzy Logic Systems Institute (FLSI) by Takeshi
Yamakawa (Japan)
Intelligent Systems Control Laboratory in Siemens (Germany)

1991 Fuzzy AI Promotion Centre (Japan)
Educational kit by Motorola (USA)

After Too many events, inventions and projects to mention
1992
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1.3 What are the main areas of fuzzy logic
applications?

Why did you stop in 1991? What are modern projects and
inventions?
After 1991 fuzzy technology came out of scientific laboratories
and became an industrial tool. Table 1.4 includes just a small
number of successful projects and is intended to demonstrate a
huge diversity of possible applications. On the other hand, Table
1.6 [Ter94] presents the current and future research topics being
considered by Japanese researchers and engineers. One can see
this table represents a good combination of various technical and
social systems. It promises an interesting and fruitful future.

Table 1.4

● Automatic control of dam gates for hydroelectric power
plants (Tokyo Electric Power.)

● Simplified control of robots  (Hirota, Fuji Electric,
Toshiba, Omron)

● Camera-aiming for the telecast of sporting events
(Omron)

● Efficient and stable control of car engines (Nissan)
● Cruise-control for automobiles (Nissan, Subaru)
● Substitution of an expert for the assessment of stock

exchange activities (Yamaichi, Hitachi)
● Optimised planning of bus timetables (Toshiba, Nippon-

System, Keihan-Express)
● Archiving system for documents (Mitsubishi Elec.)
● Prediction system for early recognition of earthquakes

(Seismology Bureau of Metrology, Japan)
● Medicine technology: cancer diagnosis (Kawasaki

Medical School)
● Recognition of motives in pictures with video cameras

(Canon, Minolta)
● Automatic motor-control for vacuum cleaners with a

recognition of a surface condition and a degree of soiling
(Matsushita)

● Back-light control for camcorders (Sanyo)
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10 FUZZY SETS, LOGIC AND CONTROL

Tables 1.3 and 1.4 contain many very complex applications. Is it
very difficult to understand how fuzzy logic works and how it is
applied in these projects?

Not really. Firstly, fuzzy logic and fuzzy control feature a
relative simplification of a control methodology description. This
allows the application of a natural ‘human’ language to describe
the problems and their fuzzy solutions. It fills a gap between
modern scientific and technological devices and a simple ‘man on
a street’. Secondly, during the ‘fuzzy’ revolution, the fuzzy
technology was introduced not only to a world of complex
industrial projects, but to simple everyday home appliances (see
Fig. 1.1).

Panasonic®/National® Fuzzy Logic

National® Deluxe Electric Fuzzy Logic

I see the largest number of applications, included in the tables,
are control applications. And most of the inventions are from
Japan.

Rice cooker
Fuzzy logic controls the cooking
process, self adjusting for rice and
water conditions

Thermo pot
This unit represents the best
technology available in producing
clean boiled water on demand for
making tea. It is fuzzy logic
computer controlled

Fig. 1.1 Two of the
numerous fuzzy control
home appliances
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Table 1.5 Fuzzy controllers applications

Consumer products:
● washing machines
● microwave ovens
● rice cookers
● vacuum cleaners
● camcoders
● TVs and VCRs
● thermal rugs
● word translators

Systems:
● elevators
● train
● cranes
● automotive (engines, transmissions, brakes)
● traffic control

Software:
● medical diagnosis
● securities
● data compression

Absolutely right! These are two main paradoxes in the history of
fuzzy logic. Although the fathers of fuzzy logic initially expected
its main applications in large organisational system design and
social sciences, most of real applications have been developed in
engineering system control. And though the theory of fuzzy logic
was born in the USA, the most rapid development in technology
and applications has been in Japan. For example, one of the
industrial pioneers in this area, OMRON, began to study fuzzy
theory and technology seriously in 1984. Since then it has
developed many kinds of fuzzy control-based products and has
been granted many patents (more than 1000 in Japan and over 40
in the USA).

Fuzzy logic techniques have been adopted much more
gradually in the USA and Europe. But the success of the Japanese
developers is making companies like General Electric, General
Motors, Hewlett-Packard, Rockwell and others take note. Starting
in the 1990s, they have begun to apply it in their internal system
development. For example, in the early 1990s, US companies
started using fuzzy logic in the aerospace industry for applications
such as rotor transmission, servo control, missile warning,
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12 FUZZY SETS, LOGIC AND CONTROL

Fig. 1.2 1996 Saturn SL1
and Mitsubishi Galant
ES and LS are equipped
with fuzzy controlled
automatic transmission

automated manufacturing and navigation systems. Meanwhile,
General Motors has successfully incorporated fuzzy logic control
into a product as widely used as the automatic transmission
downshift mechanism of the SaturnTM (see Fig.1.2). However,
Mitsubishi GalantTM S is offered with a standard five-speed
overdrive manual gearbox and electronically controlled four-speed
overdrive automatic transmission with ‘fuzzy logic’ shift control.
Employing fuzzy logic, the electronic control unit of the
transmission calibrates gear shifts and considers such inputs as a
vehicle speed, throttle position and brake application, to determine
whether the vehicle is going uphill or downhill and how twisty
the road is before executing a shift.

Concluding this chapter, let me present two examples of
successful fuzzy control applications. The information included
here is taken mainly from the reports by David K. Kahaner
[Kah95]. The first control system manages a very ‘bad’ plant
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which is unstable, nonlinear and subject to large disturbances,
while the second one is developed to control the object with
‘good’ model behaviour.

Table 1.6

Machine systems Human-based Human machine
systems systems

Picture/voice recognition Human reliability model Medical diagnosis

Chinese character Cognitive psychology Inspection data
recognition processing

Thinking/behaviour
Natural language models Transfusion
understanding consultation

Sensory investigations
Intelligent robots Expert systems

Public awareness analysis
Crop recognition CAI

Risk management
Process control CAD

Environmental assessment
Production management Optimisation planning

Human relations structures
Car/train operation Personnel management

Demand trend models
Safety/maintenance Development planning
systems Energy analysis

Equipment diagnostics
Breakdown diagnosis Market selection models

Quality evaluation
Electrical power Category analysis
system operation Insurance system

Social psychology
Fuzzy controller Human interface

Home electrical Management decision-
making

appliance control
Multipurpose decision-

Automatic operation making

Knowledge bases

Databases

Example 1.1 Fuzzy controller in an intelligent
unmanned helicopter
One of the newest and most challenging technological applications
is of the fuzzy logic in the control system of a helicopter, which
is fundamentally unstable and with highly nonlinear dynamics.
The helicopter Yamaha R-50 is a scaled down (3.6 metres head
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to tail) real helicopter with all the machinery for flying, plus all
the control gears but minus the human accommodation. The
engine, with the exhaust pipe, looks like one used in a Yamaha
motorcycle. The development of R-50 was completed in 1987.
The production number has increased each year from 70 (1990),
to 100 (1991), 150 (1992), 200 (1993), and 250 in 1994. Its
application is spreading to aerial photography, geographic,
geological, oceanographic and coastal surveys, emergency rescue
and fire control missions.

Flight demonstration

The demonstration site is about the size of a baseball field.  The
helicopter must fly at a height of about 10 metres. The program
consisted of four parts:

A. Command-based flight: a square path. The vehicle was to
‘take off’, do ‘forward flight’, ‘90 degrees righthand turn’, ‘forward
flight’ again, ‘hover and turn left 90 degrees’, ‘fly backwards’,
‘hovering’, ‘fly sideways to the left’, ‘hover and then land’.

B. Command-based flight: zigzag. The vehicle was to ‘fly
forward’, then ‘fly to the right’, ‘fly to the left’, then again ‘fly
to the right’, ‘fly to the left’, and then ‘hover’.

C. GPS (Global Position System) guided flight: from point A
to point B while going through other two points, point #1 and
point #2. It starts from point A, ‘fly 20 metres forward to point
#1’, ‘hover and turn right 90 degrees’, ‘fly 30 metres forward to
point #2’, ‘hover and turn left 90 degrees’ then ‘fly 20 metres
forward to point B’.

D. Image-guided flight: auto-landing. The vehicle was to ‘take
off’, ‘fly forward and search for the landing spot’, ‘tilt down the

Fig. 1.3. An unmanned
voice-controlled
helicopter [Schw92]
(© IEEE 1992)
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camera’, ‘hover and adjust position’, ‘adjust position as the
vehicle lowers itself’ and then ‘land on the target spot’.

The flight programs proceeded smoothly without a hitch. The
significance of this demonstration, however, is not what it looks
like, but what goes into the control systems and what is involved
in the new technology.

The reasons for applying fuzzy control. It has been over 50
years since the helicopter and conventional control technique were
developed. The automatic control for the helicopter, however,  has
been limited to

● hovering control;
● maintaining the height after reaching a stable flight;
● change of route at intervals in accordance with the determined

route.

Only partial automation has been accomplished. Most of the
control has been manually operated.

Although unmanned helicopters, especially for military use,
have been developed in every large country of the world, their
control techniques have been confined to the remote control
system using manual operation; there have been no papers written
on the semi-remote control system (by language instruction
employed) in this project because the conventional control has
difficulty in achieving automatic operations.

Fuzzy control in view of the helicopter characteristics

A. Nonlinear behaviour: a helicopter has nonlinear characteristics.
Conventional control methods use a linear theory only suitable for
linear systems. In conventional control, the model is designed by
a linear approximation around the equilibrium point of the
helicopter, resulting in operational difficulties in states that deviate
far from the equilibrium, and there is no guarantee for the
performance. Fuzzy control is nonlinear and is thus suitable for
the nonlinear system control.

B. Unstable system: the helicopter is intrinsically unstable, and
there is a time delay between the input and output operations. It
is thus difficult to achieve stability by the conventional feedback
control which operates with further time lag.

C. Effect of the environment: a helicopter is very sensitive
to the wind, for example. Exposure to a side wind leads to
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16 FUZZY SETS, LOGIC AND CONTROL

instability during hovering. As a pilot redirects the nose of the
helicopter towards the wind, he attains stable hovering.  Now
there are no techniques associated with the conventional control
method to deal with the change of the environment. However,
fuzzy logic control can realise the pilot’s stabilisation method
by only adding the ‘if–then’ rules to accommodate with the
environmental changes.

Example 1.2 Fuzzy subway control system
(Sendai, Japan) [Yas85]
Another example of a major project is automatic train operation,
which was installed in the Sendai Subway system, and has been
in operation for approximately ten years. So this is a complete
engineering system, not a prototype or experimental system.

A conventional train controller is based on proportional integral
derivative (PID) control.  The PID controller takes the error
between the target speed and the actual train speed to control the
train’s motor and brake. A conventional control system requires
a linearised system model, a desired state, and an error criterion,
which is usually some function of the differences between desired
and actual state. Given these, a PID control system can easily be
implemented. This depends heavily upon analytic representations
of the system and an error function as well as an assumption that
the linearised model description does not deviate much from the
real state. This method does not provide adequate control for
systems with time-varying parameters or highly nonlinear systems,
although often they can be tuned by incorporating detailed design
information.

Humans can do still better because they can (on the basis of
experience) evaluate the system objectives. Fuzzy predictive
control is closer to a human operation. It attempts to evaluate not
only the current system state, but also assesses the effect of a
control command on the resulting state. As the performance
indices are taken in human terms, good, very good, etc., this leads
to the need to define the meaning of various linguistic
performance indices.

The fuzzy predictive train controller applies a system model
of the motor and brake to predict the next state of the speed,
stopping point and running time (three-state vector) as inputs to
a fuzzy controller.  The fuzzy controller then selects the most
likely control command based on the predicted state vector.

In many fuzzy control applications the model of the system
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is unknown – it is for this reason that fuzzy control methods are
usually chosen. But in this case the model is known precisely and
is relatively simple because of the nature of the problem.  In this
case, fuzzy control is more concerned with the subjective
measures for riding comfort, running time, and how close the train
comes to a predesignated stopping point.  Hence a distinction
must be made between fuzzy control for unknown systems or
nonlinear systems compared with fuzzy control with linguistic
measures of the main objective.

The train operation is broadly classified into two control
modes: (1) train speed regulation control, and (2) train stopping
control. In the context of the train operation system, there were
three key purposes:

● acceleration to a target speed;
● deciding and maintaining target speed;
● stopping accurately at a target position.

Also there are six performance indices:

● safety;
● accurate stopping;
● running time;
● energy consumption;
● comfort;
● traceability (maintaining target speed).

For the Sendai system, conventional PID automatic train operation
control hardware was already being installed. Thus, incorporating
predictive fuzzy control required only software changes to the
onboard minicomputer. The system actually began commercial
operation in 1987, and now operates through 17 stations over
about 15 km. It is highly computerised, including:

● train tracking;
● route control;
● schedule management and adjustments;
● public address system (train approach, etc.);
● data transmission to/from train (trip pattern, etc.);
● depot in/out control;
● closed circuit TV in control centre when trains enter station;
● system monitoring;
● logging;
● system supervision (power, disaster prevention, etc.);
● business management (ticket sales, usage, etc.).
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The use of fuzzy technology in automatic control of the Sendai
Subway system exhibits several interesting facets:

● Fuzzy control is an efficient alternative to conventional
control. Indeed, although automating train-driving operations
can be viewed as simple, and conventional control can also
be used, it does demonstrate that fuzzy control can do as good
a job as conventional control.

● The Sendai Subway fuzzy control seems to have some advan-
tages over a conventional control, such as riding comfort for
passengers, savings in labour force and energy consumption,
etc.

● From a technical viewpoint, it demonstrates that it is possible
to use expert knowledge to design control laws and fuzzy
theory as a means to translate natural language information into
control strategies.

All your examples were from the engineering field. I am currently
trying to persuade our business colleagues to utilise fuzzy control
in an internal decision engine application and for fuzzy clustering.
Could you provide us with an example of a financial application
of fuzzy control?

Example 1.3 Financial evaluation and control

One of the most important applications of fuzzy logic  was
Yamaichi Fuzzy Fund. This is the premier financial
application for trading systems. It handles 65 industries and
a majority of the stocks listed on Nikkei Dow and consists
of  approximately 800 fuzzy rules. Rules are determined
monthly by a group of experts and modified by senior
business analysts as necessary. The system was tested for two
years, and its performance in terms of the return and growth
exceeds the Nikkei Average by over 20 per cent. While in
testing, the system recommended ‘sell’ 18 days before Black
Monday in 1987. The system went into commercial
operations in 1988. All financial analysts including Western
analysts will agree that the rules for trading are all ‘fuzzy’.

Another example, which could be provided, is IBM which in
January 1994 announced the first commercial fuzzy information
systems application: a medical insurance fraud detection system.
It demonstrates a high potential of fuzzy logic and control
applications in ‘non-traditional’ areas.
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 2 BASIC MATHEMATICAL
CONCEPTS OF FUZZY
SETS

2.1 Fuzzy sets versus crisp sets

You said that fuzzy sets theory had many applications. Why do we
call it fuzzy sets theory?

The theory of sets and the concept of a set itself constitute a
foundation of modern mathematics. As far as one considers
mathematical and simulation models of application problems, one
deals with mathematics and the set theory at the base of
mathematics. So if one changes this concept the whole building
of modern science should be altered.

What is ‘fuzzy’ in a fuzzy set? How do you obtain a fuzzy set from
a crisp one?

Let us remember how we determine a crisp set: It is a collection
of objects of any kind, numbers, geometric points, chairs, pencils,
etc. Usually the set is determined by naming all its members (the
list method) or by specifying some well-defined properties satisfied
by its members (the rule method). In the second method, a rule
allows us to determine whether any particular element of the
universal set belongs to the set under determination, or it does not.
Similarly, one can name the elements of the universal set which do
not belong to our set. Then all the other elements of the universal
set compose the determined set. To indicate that an individual object
x is a member of a set A, we write x ∈ A. Whenever x is not an
element of a set A, we write  x ∉ A.

I understand that we can compose the set from some numbers, e.g.
A= {3,4,5,6} by naming them. But how can we name, say, all
positive numbers?

The list method can be used for finite sets only. When you
determined your set, you actually used the rule method (rule: all
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members are positive numbers). And by this rule you define which
elements of the universal set belong to your set.

Fine. I intuitively understand what the set is. But could you give
a more mathematical definition, please?

I am sorry, I can’t. As I have already said, the concept of the
universal set is a basic concept which is difficult to determine. We
can make analogy with the universe. The universe is everything
around us. The universal set (sometimes called the universe)
contains all  possible elements having nature or property under
consideration. If we determine the set of  the numbers larger than
3, the universe will contain all numbers. If we determine the set
of the whole numbers larger than 3, the universe will contain all
whole numbers. If we consider the set of long pencils, the universe
will contain the set of all pencils. The number of elements of the
universal set is always larger than or equal to the number of
elements of the set considered.

Then any set is a subset of the universal set, isn’t it?
That’s right! Any set A can be considered as a subset of the

universe U and we can write A ⊂ U. There is another important
set, the empty set ∅. While the universe contains  everything,  this
set contains nothing, no elements.

You mentioned the set of long pencils.  Can a set include not just
numbers?

Yes, it can. The elements of the set can have any nature: we
can have a set of points, a set of houses, a set of students, etc.
You need to remember just that the nature of  the elements of any
particular set should coincide with the nature of the universe on
which it is determined.

If we take the universal set as a base, then we can easily
determine any particular set (or strictly speaking a subset of the
universal set) by saying if any element of the universal set does
or does not belong to this set. This process, by which individuals
from the universal set X are determined to be either members or
non-members of a set, is mapping the universal set into the
determined set, and as mapping it can be defined by a function
which is usually called a characteristic function. For a given set
A this function assigns the value µ

A
(x) to every x ∈ X. Guess how

many values may this function have?
This function determines if the element of the universal set does

or does not belong to this set A. Hence the function may have two
values: TRUE or FALSE.
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Fig. 2.1 Definition of a set

That’s right. If we use Boolean function, we will have TRUE or FALSE, or in numbers,
1 or 0.

1 if and only if  x   ∈  A
µ

A
(x) =

0 if and only if  x   ∉  A

Sometimes this function is called a discrimination function, because it discriminates
the elements of the universal set which belong to the set from those which do not.
Determining the discrimination function, we divide the universal set into two parts. So
we have the certain discrimination and the certain border between these two parts.
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Fig. 2.2 Operations on
crisp sets

This figure illustrates the operations of complement, intersection
and union.

–

–
–

–

–
–

–
–
–

Mathematically speaking, the discrimination function is mapping
of the area on which it is determined to the two-elements set:

µ
A
 :   X  →  {0,1} (2.1)

Table 2.1 Properties of crisp set operations

Involution (A)’ = A

Commutativity A ∪ B = B ∪ A
A ∩ B = B ∩ A

Associativity (A ∩ B) ∩ C  =  A ∩  ( B ∩ C)
(A ∪ B) ∪ C  =  A ∪  ( B ∪ C)

Distributivity A  ∪ (B ∩ C)   =  ( A ∪ B)  ∩ ( A ∪ C)
A  ∩ (B ∪ C)   =  ( A ∩ B)  ∪ ( A ∩ C)

Idempotence A  ∪  A    =   A
A  ∩  A    =   A

Absorption A  ∩  ( A  ∪  B)  =  A
A  ∪  ( A  ∩  B)  =  A

Absorption of complement A  ∪  ( A  ∩  B)  =  A  ∪  B
A  ∩ ( A  ∪  B)  =  A  ∩   B

Absorption by U and ∅ A  ∪   U  =  U
A  ∩  ∅  =   ∅

Identity A  ∪  ∅   =   A
A  ∩  U   =   A

Law of contradiction A  ∩  A   =   ∅
Law of excluded middle A  ∪  A   =   U
De Morgan’s laws A  ∩  B   =   A ∪ B

A  ∪  B   =   A ∩ B

You may do some operations with crisp sets. The main operations
are complement  A (or A’), union A ∪ B, and intersection A ∩
B. Laws for these operations are shown in Table 2.1.

I do not understand how to implement these operations.
Let us circle the universal set consisting of all  points inside

the bold line in Fig. 2.2.

–

CHP2.PM5 6/13/97, 8:41 AM22



BASIC MATHEMATICAL CONCEPTS OF FUZZY SETS 23

Another example: consider all the students in a class as the universal
set. All students younger than 20 are as set A and all male students
are set B. Then the complement of A or A contains all students older
than 20 years, and complement B or B contains all female students.

The intersection of A and B includes all  male students that are
younger than 20. What about the union?

The union should include all male students and all female students
younger than 20. It gives us all  students except females older than
20. This statement can be obtained from De Morgan’s law.

Is there a more mathematical definition of operations?
Let us use the characteristic function. Then the complement of

A or A is determined by the characteristic function µ
A
(u) = 1 –

µ
A
 (u). The intersection A ∩ B  can be determined with the

characteristic function, for example

µ
A 

∩ 
B
 (u) = min (µ

A 
(u), µ

B
(u)).

What do you mean saying ‘for example’, ‘can be determined’?
How can it be determined otherwise?

The choice of these operations is arbitrary. The only property
the intersection operation has to satisfy is to return 1 if both
arguments are 1, and to return 0 otherwise. Propose another
formula to calculate the intersection characteristic function.

I think we can use µ
A^B

 (u) = µ
A 

(u) × µ
B
 (u).

Beautiful! Now what property should the union characteristic
function satisfy?

It has to return 1 if one of the arguments is 1, and 0 otherwise.
Well done! The following formulae realises it.

µ
A
∪

 B
 (u) = max (µ

A 
(u), µ

B
 (u))

Now let us expand a set of possible values of the characteristic
function from the two-element set to the continuum set (the set
of all real numbers between 0 and 1). Let us suppose that the
characteristic function may have any value between 0 and 1, not
just 0 and 1. Then we can replace (2.1) with

µ
A
:  X  →  [ 0,1 ]

Mathematically it is very easy. But what does it mean in the real world?
It means that now we do not determine exactly whether any

particular element of the universal set belongs or does not belong
to the set  A. We are saying that an element belongs to the set A

–

–
–
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with the determined membership degree. This degree is assessed
by a number between 0 and 1.

I understand, that if for the element x its membership degree is 0
it does not belong to the set A, and if it is 1 it does. What will
happen if it is 0.5?

It means we do not know whether this element of the universal
set does or does not belong to this set  A.

And if it is 0.8?
We still do not know exactly, but we think the possibility of

belonging is higher.
Actually we fuzzify the border between two parts of the

universal set. We expand the set of possible characteristic function
values and get the fuzzy set. In fuzzy set theory the characteristic
function is usually called the membership function.

But it means that the element can be simultaneously in both parts.
How can it come?

If we consider Boolean logic where any variable can have just
two values: TRUE or FALSE, it is impossible. A classic computer
works according to the rules of this logic. However, any real life
situation is much richer than this black and white model. A real
object usually contains a lot of grades of a grey colour between
black and white. So a real object can be more or less black, white,
short, long, young, old, etc.

This approach makes the theory more complicated. Two possible
values are replaced with a continuum set of values. The
discrimination function is replaced with the membership function.
Other properties of the sets should be changed as well.

From the computer point of view (if such a point exists) you are
right. However, a human intellect has had experience of processing
this information for ages. I would say that this model was more
general than the previous one. It is obviously closer to the models,
that a human being creates in his/her mind. This approach tends to
decrease the gap between natural intellect models produced by
human experts and artificial intelligence models used by computers.

OK. However, don’t these models have to be followed by more
complicated algorithms and procedures in solving application
problems?

Not always. As we will see later, the trend to use ‘accurate’
models for describing real objects and processes often leads to the
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sophisticated method application. Using fuzzy models, one can
significantly simplify models and corresponding procedures. Let
us leave it for a while and come back and define the basic terms
of fuzzy sets.

Definition 2.1 Fuzzy set

A fuzzy set A in the universal set U is a set of ordered pairs
of a generic element u and its membership degree   µ

A
(u) as

A = { (u, µ
A
(u))/ u  ∈ U}

I see the fuzzy set definition is similar to the crisp set one. To
determine a crisp set we name all the elements of the universe
which belong to the set A. In a fuzzy set we name all the elements
of the universe and supplement to them a number between 0 and
1. This number demonstrates to what degree this generic element
belongs to the defined fuzzy set. Actually, according to this
definition we just add to every element a number, which constitutes
the membership degree of this element.

Actually, a fuzzy set is given by its membership function. The
value of this function determines if the element belongs to the
fuzzy set and in what degree.

Fig. 2.3 Definition of the
fuzzy set
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Definition 2.2 Support

The support S(A) of a fuzzy set A is the crisp set of all the
elements of the universal set for which membership function
has non-zero value

S (A) = { u  ∈  U/  µ
A
( u ) > 0 }

I see. Only those elements should be considered that have any
chance of becoming members of the fuzzy set.

Yes. Depending on the universal set, a fuzzy set can have a
finite or an infinite number of elements. The support can be a
finite set. It means that just a finite number of elements of the
universal set have a non-zero membership degree.

Definition 2.3  Crossover point

The element of the universal set, for which the membership
function has the value of  0.5, is called a crossover point.

The crossover element marks the point where the possibility of
belonging becomes lower than the possibility of not belonging.
Although an exact position of a crossover point is usually not very
important, it characterises a shape of the membership function.

Example 2.1  Consider a set of five pencils located in the box.
Determine a fuzzy set of ‘short pencils’ A as
A= {pencil1/0.2, pencil2/0.5, pencil3/1.0, pencil4/1.0, pencil5/0.9}

In this example pencil3 and pencil4 are exactly short, pencil5 is
almost short, pencil2 is more or less short and pencil1 is almost
exactly not short.

Example 2.2 If the support is infinite we can consider membership
functions in Fig. 2.4.

Fig. 2.4 Membership
functions examples

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 ‘About  3’

a) Membership function ‘about 3’ b) Membership functions for
‘short’ and ‘long’ pencils
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In this figure we have different shapes of membership functions.
You are right. The most often used functions are:

● piecewise linear (triangular and trapezoidal);
● quadratic;
● gaussian according to the formula µ(x) = exp (– (x – µ)/σ)2);
● some special functions.

Which one is better to use?
Triangular or trapezoidal (piecewise linear) functions have

proved to be more popular with fuzzy logic theoretics and
practitioners rather than higher order based functions such as
quadratic, cubic, etc. A possible reason for this is a simplicity of
this function often allowing for the prediction and calculation of
an output of the fuzzy system. Another reason is that the extra
smoothness introduced by higher order fuzzy sets and demanding
higher computational consumption is not strongly reflected in the
output quality of a fuzzy model. However, the problem of the
membership function choice has not yet been solved theoretically.
Different researchers choose numerous shapes in various
application problems.

a) quadratic c) Gaussian

b) triangular and trapezoidal d) special function

Fig. 2.5 The most widely
used membership
function shapes
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A shape determines how many elements of the universal set have
the membership degree larger than a given value between 0 and 1.

Definition 2.4 Level set

The set of elements that belong to the fuzzy set A at least to
the degree α  is called the α-level-set or α-cut-set

A α= { u   ∈  U /   µ
A
( u )  > α }

This definition gives us another way to determine a fuzzy set.
As any membership function has all its values between 0 and 1,
we can construct a membership function on the base of the level
sets. And because a membership function determines a fuzzy set
completely, any fuzzy set A can be considered as the union of all
its level sets:  A = ∪α Aα, α ∈ [0,1].
By the way, what do you think, either an α-level-set is crisp or
fuzzy?

As a subset of a fuzzy set, it is fuzzy.
I do not agree that it is a subset of a fuzzy set. This is another

set, it contains the elements of the universe, so it is a subset of
the universe. As it includes just elements without their
membership degrees, it is crisp.

Example 2.3 The 0.5-level-set in Example 2.1 contains {pencil2,
pencil3, pencil4, pencil5}, the 0.8-level-set contains {pencil3,
pencil4, pencil5}.

Example 2.4 Consider the fuzzy set ‘about 3’ of Example 2.2. The
0.15- and 0.45-level-sets are marked on Fig. 2.7.

Fig. 2.6. A fuzzy set as a
collection of α-level sets

α

u

µA( u )
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Fig. 2.7 α-level-sets

Fig. 2.8 Main terms of
membership functions

Membership
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Definition 2.5 Height of a fuzzy set

The height of a fuzzy set A, hgt(A) is given by a supremum of
the membership function over all u∈U      hgt(A) = sup 

U
  µ

A
( u )

(Supremum in this definition means the highest possible (or
almost possible) degree.)
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2.2 Operations on fuzzy sets
Now let us try to determine operations with fuzzy sets. How do
we do it? Any idea?

Because the fuzzy set is a generalisation of a crisp set, we can
generalise operations with crisp sets.

How to generalise operations? What do you mean?

I do not know. The word ‘generalisation’ sounds nice and
significant.
I guess that the same operations, that have been determined on
crisp sets, can be determined on fuzzy sets. And because a fuzzy
set is determined by its membership function, the operations
actually should operate with membership functions.

Exactly! And main operations are complement, intersection (or
conjunction) and union (or disjunction).

Definition 2.6 The complement of a fuzzy set A has a
membership function which is pointwise defined for all
u ∈ U by      µ

A
( u ) = 1 –  µ

A
( u ).

This corresponds to the logical NOT operation. It is quite
simple.

Definition 2.7 The intersection of two fuzzy sets C = A  ∩ B
has the membership function
µ

A
 

 
∩ 

B
 (u ) = µ

A
(u)  �t   µ

B
(u)  ≤  Min (µ

A
(u), µ

B
(u) )

where t is a triangular norm (or measure) defined by the next
definition.
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1

  length, cm

Short =A

Long = NOT A

Fig. 2.9 Complement
operation on fuzzy sets
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Definition 2.8 The t norm
The triangular norm is a two-place function from [0,1] * [0,1]
to [0,1], i.e. t : [0,1] * [0,1] → [0,1] which is non-decreasing
in each element  x t w ≤ y t z if x ≤ y, w ≤ z      commutative,
associative and satisfies boundary conditions x t 0 = 0, and x
t 1 = x; for any x,y,z,w ∈ [0,1].

I do not understand this definition. How can we use it? How can
we calculate the membership function of the intersection? It
cannot be applied as an operation definition.

Why not?

A definition should explain how to make an operation. From this
definition we do not know what to do with membership functions
in order to obtain a result. Should we add them, multiply or make
logical operations?

One can use different ways and various formulas to calculate
the triangular norm. Some of them are given in Table 2.2.

Table 2.2 Some classes of fuzzy set unions and intersections

Reference Fuzzy unions Fuzzy Intersections Range of
parameter

max (a,b) min (a,b)

a + b – ab ab

Schweizer & 1 – max[0, (1 – a) –p max(0,a–p + b–p –1)–1/p p ∈ (– ∞,∞)
Sklar [1961] + (1 + b) –p –1)] 1/p

Hamacher (a + b – (2 – g) ab)/ ab/(g + (1–g)(a + b – ab)) g ∈ (0, ∞ )
[1978] (1 – (1 – g)ab)

Frank [1979] 1 – log
s
 [1 + (s1–a – 1) log

s 
[1 + (sa – 1)(sb – 1)/s – 1] s ∈ (0,∞ )

(s1–b – 1)/s –1]

Yager [1980] min[ 1, (aw + bw)1/w] 1 – min[1,(1 – a)w + w ∈ (0, ∞ )
(1 – b)w)1/w]

Dubois & a + b – ab – min(a,b,1 – α)
Prade [1980] ab/max(a,b,α) α ∈ (0,1)

max(1 – a,1 – b,α)

Dombi [1982]
1 1

λ ∈ (0,∞)
1 + [(1/a – 1)–λ + (1/b – 1) –λ]–1/λ 1 + [(1/a – l)λ + (1/b – 1)λ]1/λ
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Anyone can propose his or her own definition!?
You’re right! It is a good exercise to introduce a new way to

calculate the triangular norm. Try to write down a few.

Can we compare results of these definitions? Maybe different ways
of calculation produce different results.

They definitely do (see Fig. 2.10). On this figure, two
operations, min and product, were applied. And you see they have
produced different results. For example, for the element u = 5, if
we calculate the t norm operation as a product, the membership
degree will be 0.15. However, if one calculates it as a minimum
the degree will be 0.35. So, the difference is quite significant.

You see yourself your definition is wrong because it can be
realised by different ways which give different results.

Nothing is wrong here. You can use any definition if it
satisfies the conditions of Definition 2.8. We can compare these
different results, e.g. the usual tnorms are intersection and
algebraic product with x ∩ y ≥ x × y. Calculate the other results
and compare them.

Definition 2.9 The union (or disjunction) of two fuzzy sets
C = A ∪ B has the membership function
µ

A
 ∪ 

B
 (u) = µ

A
(u)   s   µ

B
(u)  ≥  max ( µ

A
(u),  µ

B
(u) )

where s is a triangular co–norm (measure or s norm) defined
below.
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Fig. 2.10. Two different
ways for calculating t1–

norm operations
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Definition 2.10. The s norm
The triangular co-norm is a two-place function from [0,1] *
[0,1] into [0,1], i.e. s: [0,1] * [0,1] → [0,1] which is non-
decreasing in each element, commutative, associative and
satisfies boundary conditions x s 0 = x, and x s 1 = 1; for x
∈ [0,1].

As far as I see, the triangular norm and the co-norm are rather
similar.

The definitions are similar and they have a determined
relationship with each other. This relationship is given by the
equivalent of De Morgan’s law in set theory:

x s y = 1 – (1 – x) t (1 – y),   for  x,y   ∈ [0,1] (2.2)

Now, by how many ways can the triangular co-norm be calculated?

I would not be surprised if it had plenty of  ways.
That’s right! Some of them are given in Table 2.2.

Which way is the best to use?
I do not know the answer. Different researchers propose and

apply different ways. Even computer packages include different
opportunities, which can be chosen by a user. The most commonly
used are intersection and algebraic product. Few experiments have
been carried out as to the optimal triangular norm selection. The
min (max) operators, for example, indicate no set interaction,
since when one membership function is smaller (larger) with
respect to the other, it has no influence on the resultant
membership function.

Is it good or bad?
This robustness is an advantage if the accurate values of

membership functions are not required. However, it makes the
result less sensitive to changes in one of the arguments.

To illustrate the idea of different calculations [Drian93] uses
the example by Van Nauta Lemke. First consider Fig. 2.11,
representing a prison cell with two windows. Suppose we have
two different problems to be solved:

1. How easy is it for a prisoner to escape from his prison cell?
2. How easy is it for sunlight to come into a prison cell?

Suppose window 1 is very difficult to escape from (the ‘simplicity’
is 0.1) and window 2 is easier (the simplicity is 0.3). Suppose also
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that window 1 is dirty and thick such that it is not so easy to
penetrate it (0.6), while window 2 is clean (0.9).

The answer to problem 1 should be min (0.1, 0.3) = 0.1 if we
do not take into account the fact that the person has to be fast or
may get tired, etc.

In problem 2, the answer is 0.6 × 0.9 = 0.54, because the
sunlight should penetrate both windows.

In Fig. 2.12 the cell configuration has changed. What operation
do we model here?

In Fig. 2.11 we model the operation AND (intersection) and
in Fig. 2.12 we model the operation OR (union).

And how then can we solve problems 1 and 2 in this case?
Answer 1 is max (0.1, 0.9) = 0.9 and answer 2 is 0.6 + 0.9 –

0.6 × 0.9 = 0.96
Now you see different problems may demand different

solutions.

2.3 Extension principle and fuzzy algebra

2.3.1 Extension principle

OK. Now we understand how to perform logical operations. How
do we make non-logical operations with fuzzy sets?

In any system, including control ones, different variables are
interconnected with each other with algebraic formulas and
equations. These relationships may reflect physical laws or a
system structure. For example, we know that the voltage across a
resistor is connected to the current with the formula: I = V/R and
to the power with the formula W = V2/R.  We want to know how
our information about the voltage, expressed as a fuzzy set, can
be used to get a model for the power and the current.

The question is: how to get a fuzzy model for a variable if we

Fig. 2.12. The prisoner problem
(another configuration): How easy
to escape? How easy to penetrate?

Fig. 2.11 The prisoner problem.: How
easy to escape? How easy to penetrate?
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know the fuzzy model for another variable and the functional
relationship between them. The answer is the extension principle,
one of the fundamentals of fuzzy sets theory.

What do we need this extension principle for?
It gives us the rule of how to calculate an output of a fuzzy

system. If we know the structure of the system, containing algebraic
and logical blocks, and the system inputs are fuzzy, on the basis
of this principle we can determine the outputs of the system.

Definition 2.11 Extension principle 1.

If A is a fuzzy set in the universe U and f is a mapping from
U to the universe Y, y = f(u) then the extension principle allows
us to define a fuzzy set B in Y as

B = f(A) = {(y, µ
B
(y))|

y = f(u), u ∈ U
}

where    sup µ
A
(u)  if f –1(y) ≠ 0,

µ
B
(y) = u∈f–1(y)

    0 if f –1(y) = 0

The reason for such a definition is quite obvious. We should
expect the same fuzziness incorporated in the second universe as
there was in the first universe.

I understand that. But why do we apply the supremum operation?
Because the function f may map different elements of the

universe U into one element of the universe Y. As a result this
element may inherit a few membership degrees, hence, we need
to determine one and we choose the highest one.

Example 2.5 Let A = {–2/0.3, –1/0.4, 0/0.8, 1/1, 2/0.7} and y =
f (u) = u2.
Then B = {4/0.3, 1/0.4, 0/0.8, 1/1, 4/0.7} = {0/0.8, 1/1, 4/0.7}.

It is rather simple when we deal with a single-input-single-output
(SISO) system. What will happen if we take a system with a few
inputs, for example, a structure as Fig. 2.13?

Fig. 2.13 Two-input-one-
output system structure

input 1

input 2

output 1
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In this case we need a more general form of the extension
principle.

Definition 2.12 Extension principle 2.

Let X be a Cartesian product of the universes X = U
1
* U

2
 *…

*U
r,
 and A

1
, A

2
, … , A 

r 
are fuzzy sets in these universes. f is a

mapping from X to the universe Y where y = f(u
1
, u

2,
… , u

r
).

Then the extension principle allows us to define the fuzzy set
B in Y as

B =  {(y, µ
B
(y))|

y = f(u1, u2,. . . , ur), ( u1, u2,. . . , ur) ∈ X
}

where   sup min {µ
A1

(u
1
) , … , µ

Ar
(u

r
) } if f –1(y) ≠ 0,

µ
B
(y) = ( u

1
, u

2
,… , u

r
) ∈ f –1(y)

         0 if f –1(y) = 0

Could you explain in greater detail, how this principle works,
please?

Let us first consider just a case of two variables: the sum y =
u

1 
+ u

2
. Then we have

µ
B
(y) =     sup       min {µ

A1
(u

1
), µ

A2
(u

2
) }

y = u
1
+ u

2

One can avoid considering an inverse operation. It means that for
any element y of the universe Y we can take any couple of the
elements u

1
 of U

1
 and u

2
 of U

2
, the sum of which equals to y and

determine the membership degree as the minimum of the
corresponding degrees. You see that one may have a huge or even
infinite number of combinations of two numbers with the same
sum and one needs to choose the supremum of all minimums.

It is rather difficult to apply. Can we use something simpler?
In a case of algebraic operations and some classes of fuzzy

sets, we can apply fuzzy algebra and fuzzy numbers. Fuzzy
algebra is not difficult to learn because:

● rules are rather natural and reasonable,
● fuzzy algebra is a generalisation and an extension of an

ordinary algebra.

Fuzzy arithemetic deals with fuzzy numbers.
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2.3.2 Fuzzy numbers

Definition 2.13 Fuzzy number.

If the support of the membership function is a part of the real
axis, the fuzzy set represents a fuzzy number if the
membership function is normal and convex.

In control and other physical systems we deal with measured
(compared against the measurement scale) inputs and outputs. One
can use fuzzy numbers to model real system variables. Classical
arithmetic and algebra deal with crisp (ordinary) numbers.

Can you write the membership function for the crisp number,
please?
Yes. For the number A it will be

1,  x = A
µ (x) =

0,  x ≠ A

Graphically this membership function can be presented as in Fig. 2.14.

And what about the interval? I mean when we know exactly that
the value cannot be smaller than A

1
 and greater than A

3
.

If we have an interval, the membership function can be written as

0,  x   <  A
1

     µ(x) = 1,  A
1
  ≤  x   ≤  A

3

0,   x   > A
3

or graphically as in Fig. 2.15

Now let us consider a general fuzzy number (Fig. 2.16)

Before we start I want to ask about normal and convex fuzzy sets.
We applied these words in the definition of a fuzzy number. What
do they mean?

1

0 A3

( x )

A1 x

µ
1

0 A2

Fig. 2.14. Membership function for a
crisp number

Fig. 2.15. Membership function for an
interval
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Definition 2.14 Normal fuzzy set.
The fuzzy set is normal if max µ(x) = 1.

Definition 2.15 Convex fuzzy set
Convex means that any α–cut which is parallel to the
horizontal axis
             A

 
α = [a

1 
(α), a

3
 (α)]

yields the property of nesting, that is if

α’ < α   = >    a
1 
(α’) ≤  a

1
(α) and a

3 
(α’) ≥  a

3
 (µα).

Alternatively (see Fig. 2.16), if we represent the α-cut by the
interval Aα as
Aα =  [a1(α),   a3(α)]  and   Aα’ = [a1(α’), a3(α’)]
then the condition of convexity implies that if α’ < α  = >
Aα  ⊂  Aα’.

You see that the fuzzy set can be considered as a series of α-
cut-sets which are represented by the intervals determined on the
real axis. For the convex normal fuzzy sets these intervals are
nested.

And what use is this?
It means that we can derive operations on fuzzy numbers based

on operations with intervals. These intervals are called the
intervals of confidence.

2.3.3 Arithmetic operations with intervals of confidence

Let me propose a problem: how would you find the resulting
interval for  some arithmetic operations with the intervals? Any
idea?
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a
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a
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a
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a
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α
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α α α α
Fig. 2.16 Membership
function for a fuzzy
number
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Based on the extension principle we should find the interval which
covers all possible results for all possible combinations of the
operands.

That’s right! Look at the following:

Addition:  [a
1
, a

3
] + [b

1
, b

3
] = [a

1
 + b

1
, a

3
 + b

3
]

Subtraction: [a
1
, a

3
] – [b

1
, b

3
] = [a

1
 – b

3
, a

3
 – b

1
]

What is [ – 2,4] + [3,5]?
The left boundary will be the sum of the left boundaries of the
operands and the right boundary will equal to the sum of the right
boundaries. So [ – 2,4] + [ 3,5] = [1,9]

Good! And in the case of subtraction?

The left boundary of the result will be a difference between  the
left boundary of the first operand and the right boundary of the
second one and the right boundary will equal the difference
between the right boundary of the first operand and the left
boundary of the second one.

Very good! Now we are ready to consider multiplication.

Multiplication: [a
1
, a

3
] × [b

1
, b

3
] = [a

1
 × b

1
, a

3
 × b

3
] ? (2.3)

For example [3,5] × [4,6] = [12,30].
However, if you consider [3,5] × [– 6, – 4] = [– 18, – 20] you

are not able to say that equation (2.3) is valid. A left boundary
cannot be larger than a right one.

In this case, the result will be [– 20, – 18], we need just to swap
the boundaries.

Your resulting interval is very narrow, much narrower than in
the case of all positive operands. It is confusing, isn’t it?
Yes, it is.

1

( x )µ

0 x1a b1 b33
a 1a b1

+
3

a +b3

A B
A+B

Fig. 2.17 Addition of
intervals
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The equation (2.3) is valid only if a
1
, b

1
 ≥ 0, i.e. both operands

are non-negative.
Generally, we should apply the formula

[a
1
, a

3
] × [b

1
, b

3
] =  [min(a

1 
× b

1
,a

1 
× b

3
,a

3 
× b

1
,a

3 
× b

3
), max

(a
1 
× b

1
,a

1 
× b

3
,a

3 
× b

1
,a

3 
× b

3
)]

which is always right.

Now we can easily determine other operations with the intervals.

Inverse:   [a
1
,a

3
]–1 = [min(1/a

1
,1/a

3
),max(1/a

1
,1/a

3
)].

Division:
[a

1
,a

3
]/[b

1
,b

3
] = [min(a

1
/b

1
,a

1
/b

3
,a

3
/b

1
,a

3
/b

3
), max(a

1
/b

1
,a

1
/b

3
,a

3
/b

1
,a

3
/b

3
)].

If a fuzzy set is defined over the set of positive real numbers
only (that is we consider just positive operands), the last formulas
can be simplified:

[a
1
,a

3
]–1 = [1/a

3
,1/a

1
]

[a
1
,a

3
]/[b

1
,b

3
] = [a

1
/b

3
,a

3
/b

1
]

If we denote the max operation as ∪ and a min operation as ∩,
we can rewrite the formulas given above as

[a
1
,a

3
] × [b

1
,b

3
] = [a

1
× b

1
 ∩ a

1 
× b

3
 ∩ a

3 
× b

1
 ∩ a

3 
× b

3
,   a

1
× b

1

∪ a
1 
× b

1
 ∪ a

1 
× b

3
 ∪ a

3 
× b

1
 ∪ a

3 
× b

3
]

[a
1
,a

3
]–1 = [1/a

1
 ∩ 1/a

3
,  1/a

1
 ∪ 1/a

3
]

[a
1
,a

3
] / [b

1
,b

3
] = [a

1
/b

1
 ∩ a

1
/b

3
 ∩ a

3
/b

1
 ∩ a

3
/b

3
,  a

1
/b

1
 ∪ a

1
/b

3
 ∪

a
3
/b

1
 ∪ a

3
/b

3
]

Why have we replaced one notation with another one?
We are trying to prepare for an introduction of operations with

fuzzy numbers.

Fig. 2.18 Multiplication
of intervals
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2.3.4 Arithmetic operations with fuzzy numbers

You remember that  a fuzzy set A can be considered as a union
of α-cut-sets:

                 A =      ∪    Aα
                      α ∈ [0,1]

The results obtained above for the intervals can be expanded to
fuzzy numbers A and B by expressing the fuzzy numbers at each
level of α as an interval of confidence.

The following formulas can be derived:

Addition: µ 
A + B

 (z) =     ∪    (µ
A
(x) ∩ µ

B
(y))

 z = x + y

Subtraction:  µ 
A – B

 (z) =     ∪   (µ
A
(x) ∩ µ

B
(y))

z = x – y

Multiplication: µ 
A × B

 (z) =     ∪   (µ
A
(x) ∩ µ

B
(y))

       z = x × y

Division: µ 
A / B

 (z) =     ∪  (µ
A
(x) ∩ µ

B
(y))

     z = x/y

Are these formulas valid for any fuzzy numbers?
Yes, they are, including a special case of fuzzy numbers – crisp

or ordinary numbers. One can replace any fuzzy number with an
ordinary one, giving ordinary arithmetic.

Actually calculation of these formulas requires a lot of work. How
can I decrease the time necessary for computation?

We can consider some special cases of fuzzy numbers which
are the most commonly used in applications. In these cases, the
situation can be significantly simplified.

1

0

( x )

x1a
3

ab1
b31a b1

+
3

a +b3

A B A + B

µ

Fig. 2.19 Addition of
fuzzy numbers
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Triangular fuzzy numbers

This class of fuzzy numbers has been used extensively in different
applications, first of all because of its simplicity. The membership
function is

0,                             x < a
1

(x – a
1
) / (a

2
 – a

1
),   a

1
  ≤  x  ≤ a

2

µ (x) =
(a

3
 – x) / (a

3
 – a

2
),  a

2
   ≤  x   ≤ a

3

0,                             x > a
3

If an α–cut is applied to define a fuzzy number then the fuzzy
number can be determined as

∀ α ∈ [0,1]: Aα = [ a
1α,a

3α ] = [(a
2
 – a

1
) × α + a

1
, –(a

3
 – a

2
) ×

α + a
3
]

So a triangular fuzzy number (TFN) can be given by three
ordinary numbers (a

1
, a

2
, a

3
).

Arithmetic operations on TFN have the following properties:

● Addition or subtraction operations on two TFN result in
another TFN;

● Multiplication, inversion and division operations on TFN do
not necessarily give a TFN as a result.

Addition: A + B = (a
1
,a

2
,a

3
) + (b

1
,b

2
,b

3
) = (a

1
+b

1
,a

2
+b

2
,a

3
+b

3
)

Subtraction: A – B = (a
1
,a

2
,a

3
) – (b

1
,b

2
,b

3
) = (a

1
–b

3
,a

2
–b

2
,a

3
–b

1
)

Trapezoidal fuzzy numbers (TrFN)

The membership function is:

0, x < a
1

(x – a
1
) / (a

2
 – a

1
), a

1
  ≤  x   ≤ a

2

µ (x) = 1, a
2
 ≤ x ≤ a

3

(a
3
 – x) / (a

3
 – a

2
), a

3
   ≤  x  ≤ a

4

0, x > a
4

1

0 a 3

( x )

a 1 xaa
2 4

µ
1

0 a 3

( x )

a 1 xa
2

µ

Fig. 2.20 Triangular fuzzy number Fig. 2.21 Trapezoidal fuzzy number
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A TrFN can be described completely by a quadruplet A =
(a

1
,a

2
,a

3
,a

4
). It can also be characterised by the interval of

confidence at level α. Thus,

∀ α ∈ [0,1]:     Aα = [ a
1α ,a

4α ]  = [(a
2
–a

1
) × α + a

1
,   – (a

4
–a

3
)

×  α + a
4
]

As one can see, a TFN is a particular case of a TrFN with a
2
 = a

3
.

Properties:

● addition or subtraction operations on two TrFN give another
TrFN;

● multiplication, inversion and division operations on TrFN do
not necessarily give a TrFN.

Addition:    A + B = (a
1
,a

2
,a

3
,a

4
) + (b

1
,b

2
,b

3
,b

4
) = (a

1
+b

1
, a

2
+b

2
,

a
3
+b

3
, a

4
+b

4
)

Subtraction:  A – B = (a
1
,a

2
,a

3
,a

4
) – (b

1
,b

2
,b

3
,b

4
) = (a

1
–b

4
, a

2
–b

3
,

a
3
–b

2
, a

4
–b

1
)

Gaussian Fuzzy Numbers (GFN)

exp ( – ((x – m)/σ
1
)2),   x ≤ m

µ(x) =
exp ( – ((x – m)/σ

2
)2),    x > m

GFN can be described by a triplet (m, σ
1
, σ

2 
) where m is the crisp

magnitude of the GFN and σ
1 

,σ
2
 are fuzziness parameters (a

membership function is given in Fig. 2.5c).

Arithmetic operations on GFN have the following properties:

● Addition or subtraction operations on two GFN give a GFN.
● Addition:  A + B =  (m

a
, σ

1a
, σ

2a
) + (m

b
, σ

1b
, σ

2b
) =  (m

a
+m

b
,

σ
1a

+σ
1b

, σ
2a

+σ
2b

)
● Subtraction:  A – B =  (m

a
, σ

1a
, σ

2a
) – (m

b
, σ

1b
, σ

2b
) =  (m

a 
–

m
b
, σ

1a
+σ

1b
, σ

2a
+σ

2b
)

● Multiplication, inversion and division operations do not
generally produce a GFN.

However, if the fuzziness parameters σ
1 
and σ

2 
are much less than

the magnitudes of the operands, the result can be described as a
GFN. In this case one can consider σ

1 
= σ

2 
and will have for the

multiplication:

A × B =  (m
a
, σ

1a
, σ

2a
) × (m

b
, σ

1b
, σ

2b
) ≈ ( m

a
 × m

b
, σ

a
 × abs(m

a
)

+ σ
b
 × abs(m

b
), σ

a
 × abs(m

a
) + σ

b
 × abs(m

b
))
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2.4 Linguistic variables and hedges
I have heard that fuzzy logic operates with words and terms of
natural language and you have been  presenting  just
mathematical formulas.

Fuzzy sets theory operates just with mathematical models as
any other mathematical theory does. It replaces one sort of
mathematical model with another one. However, you are right,
fuzzy sets theory allows us to model terms of natural language
with the help of linguistics variables. It has opened a wide area
of use of this theory in control and other applications.

How does it work?
A linguistic variable is one with a value that is a natural

language expression referring to some quantity of interest. These
natural language expressions are then in turn names for fuzzy sets
composed of the possible numerical values that the quantity of
interest can assume.

So is the value of the linguistic variable a word?
Yes, a word or a word sentence. This is the main difference

between a linguistic variable and a numerical one.

Generally, a linguistic variable is a composite term u = u
1
, u

2
, ....,

u
n
 which is a concatenation of atomic terms u

1
, u

2
, ...,u

n
, and

according to [Cox94] these atomic terms can be divided into four
categories:

● primary terms, which are the labels of specified fuzzy subsets
of the universe of discourse (e.g. small and big);

● the connectives AND, OR and the negation NOT;
● hedges such as VERY, MOST, RATHER, SLIGHTLY, MORE

OR LESS, etc.;
● markers such as parenthesis.

 VARIABLE

 Linguistic  Numerical

words or
sentences of a

natural language

numbersValues
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A primary term is actually just a name or a label of a fuzzy set.
It usually describes the word which is used by experts to express
their opinion about the value of one of the object characteristics,
e.g old, large, fast, etc.

The connectives realise the operations of intersections, union,
complement considered earlier.

Example 2.6 How can we express slow or medium, slow and not
fast?

Fig. 2.22 Membership
functions for linguistic
values
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 OR
 medium
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fast
 AND
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Fig. 2.23 Obtaining
membership functions for
composite terms from the
membership functions for
primary terms
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Hedges are used to produce a larger set of values for a linguistic
variable from a small collection of primary terms through the
processes of intensification or concentration, dilation and
fuzzification. For example, the operator ‘very’ is usually defined
as a concentration operator as very u =  u2

This operator can also be composed with itself, thus
very (very u) = (very u) 2 = u 4

Example 2.7  The composite term ‘very old’ can be obtained from
the term old as
very old = old2 (see Fig. 2.24)

Example 2.8  Consider a fuzzy set of ‘short pencils’ A (Example
2.1) as
A = {pencil1/0.2, pencil2/0.5, pencil3/1.0, pencil4/1.0, pencil5/0.9}.
Then a fuzzy set of ‘very short pencils’ can be determined as
B = {pencil1/0.04, pencil2/0.25, pencil3/1.0, pencil4/1.0, pencil5/0.81}.

We can see that this operator enhances an action of the term. It
significantly changes the membership function shape.  Try to find
the inverse hedge, which ‘fuzzifies’ the term and expands the
width of the corresponding membership function.

Obviously this hedge (let us denote it now as hedg1) can be
written as hedg1 u = u 1/2

Why do you think so?

Because then we have hedg1  (very u) = hedg1 (u2) = (u2) 1/2 = u
producing the inverse action.

Very good! What we need to do in order to form a linguistic
hedge is just to find a proper label. What would you like to
choose?

Let us name it ‘more or less’. Then we have more or less (very
u) = u. However, I do not understand why more or less means
exactly u 1/2. Can it be, for example, u 0.4?

Of course it can. You are able to determine the mathematical
model for more or less as you wish.

Why do we choose this model?
Some psychological experiments have been conducted to

determine the parameters of mathematical models expressing
linguistic hedges. Proposed parameters express an average opinion
of an average human expert. It can be varied, of course, within
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the borders limited by just a common sense. You need to
remember just that a hedge changes a membership degree for any
part in the domain or we can say in the scientific language that it
transforms a fuzzy surface.

A scientific approach features not just a specific language but also
an attempt to classify objects. Can we classify all possible hedges?

I do not think we can. As hedges could be constructed from
words and expressions of the natural language and a vocabulary
of the natural language is immense we are able to describe a very
limited subset of all possible hedges. And as we discussed earlier
every user could construct the mathematical description for any
hedge which is applied in any model. [Cox94] classified some
widely used hedges (see Table 2.3).

Table 2.3 Some widely used hedges

HEDGE MEANING

about, around, near, roughly approximate a scalar
above, more than restrict a fuzzy region
almost, definitely, positively contrast intensification
below, less than restrict a fuzzy region
vicinity of approximate broadly
generally, usually contrast diffusion
neighbouring, close to approximate narrowly
not negation or complement
quite, rather, somewhat dilute a fuzzy region
very, extremely intensify a fuzzy region

There are different types of hedges in that table. Which one is the
most important?

It is not easy to answer that question. Hedges represent the
words of natural language. Which words are more important than
others? Moreover, this table does not cover all hedges and all
words. We have included just a small subset of hedges and words,
maybe the most widely used. For example, approximation hedges
play an important role because they fuzzify a scalar.

What do you mean? How can we fuzzify a scalar number?
I mean that we can obtain the fuzzy domain for the variable.

For example ‘height is about 3 m’ will produce the following
fuzzy set (Fig. 2.25). The role of the approximation hedges is to
convert scalar values into fuzzy values and their place is at the
beginning of the fuzzification process.
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Why did you choose this membership function? And generally how
does an approximation hedge know how wide to make the support
of the fuzzy set?

An important question, especially because the approximation
hedges usually begin the process and determine the consequent
results. To choose the width we should consider these results: how
does the domain of the generated fuzzy region match the domain
of the consequent fuzzy space. We have to try to determine this
domain from our knowledge of the problem or the problem
context. We should consider not just immediate results but also
consequent fuzzy sets which are determined on the base of the
initial ones.

Why do you constantly repeat the phrase ‘consequent results’?
Let me explain. If we want to determine the domain for the

fuzzy variable ‘about 5’ and we know that it will be used to
determine the pressure at the testing point 1 and we know the rule
that ‘if the pressure at the testing point 1 is about 5 then the
temperature at the testing point 23 is high’ and we know the
domain for this temperature, then we can consider how different
domains for the pressure match this known domain for the
temperature.

So we should try the membership function, consider the results
and try again?

Yes, this is a usual design process, consisting of tries and
errors.

If we already have the fuzzy set, for example ‘the speed should
be around average’ (Fig. 2.26) can we apply the approximation
hedges here?

Sure we can. We shall fuzzify the previous domain a little bit.
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 m

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 10 20 30 40 50 60 70 80 900

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 old

 very old

Age (years)

Fig. 2.24 Obtaining the membership
function for the term ‘very old’ from the
membership function for the term ‘old’

Fig. 2.25  Membership function
‘about 3 m’
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Fig. 2.26 Applying
different hedges

What do other hedges do?
The hedges ‘about’, ‘around’, ‘near’, ‘roughly’ perform the

‘average’ fuzzification of the domain. The hedges like ‘close to’,
‘neighbouring’ perform a narrow approximation or fuzzification.
However, the hedge ‘in the vicinity of’ expands the initial domain
significantly (Fig. 2.26). Be careful with this hedge! Its application
could result in a fuzzy set with the domain exceeding the general
domain of the working fuzzy set and could lead to an unforeseen
degree of ambiguity.

What else can the hedge perform except fuzzifying the domain of
the fuzzy set?

A lot of different things. Restrict a fuzzy domain, for example,
like hedges ‘above’, ‘more than’, ‘below’, ‘less than’ .

Can we apply these hedges to a scalar? How do we construct a
membership function ‘above 5’?

[Cox94] proposes a crisp set where we have the step function
with the border exactly at the level of 5 . However, if we initially
apply the approximation hedge and the restriction hedge ‘above
around 5’, we have the usual membership function. An important
class of the hedges are those which intensify a fuzzy region
(‘very’, ‘extremely’) or dilute it (‘quite’, ‘rather’, ‘somewhat’).
The intensification hedges reduce a membership degree for each
value of the domain, while the dilution hedges increase it (Fig.
2.27).
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Fig. 2.28   Membership
function ‘high’ and ‘very
high’.
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Fig. 2. 27  Applying
intensification and
dilution hedges

From the figures we see that the hedge ‘very’ decreases the value
of the membership function but I think it should increase it,
because ‘very high’ should be larger than ‘high’.

That’s right! The hedge decreases a value of the membership
function for any value in the domain of, for example, a man’s
height. For example, 180 cm can be considered as ‘high’ with the
degree of 0.75 and ‘very high’ with the degree 0.57. On the other
hand, to be considered as ‘very high’ with the same degree of
0.75, a man should have a height of 190 cm. So the hedge
application definitely has increased the value of the height, which
has the same membership degree (Fig. 2.28).

Can we use more than one hedge?
Yes. The most important thing is that we can combine different

hedges, building rather complex linguistic expressions, for
example ‘almost very fast but generally below 100 km/h’ or ‘close
to 100 m but not very high’.

Sounds good. So we can use almost all expressions of a natural
language to describe something.

That’s right.
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But how can a computer understand and process these
expressions?

Hedges in complex expressions are processed in a manner
analogous to English adjectives. Thus the expression ‘not more
than above zero’ is interpreted as not (more than (about(zero))).
Firstly, a fuzzy region ‘about zero’ is created. Note, that it is
constructed by applying the hedge ‘about’ to the crisp number of
zero. The main thing you should remember is that the linguistic
variables and hedges allow us to construct mathematical models
for expressions of natural language. These models can be used to
write and process rules and other objects.

2.5 Fuzzy relations
Now, when we know how to determine a fuzzy set and what it is,
we are able to consider a relationship between fuzzy sets or the
fuzzy relations. The fuzzy relation regards at least two fuzzy sets.

What do we need this fuzzy relation for?
We need it to understand and formalise application problems.

Many application problem descriptions include fuzzy relations. For
example, to describe a plant or a control system one determines,
how an output(s) depends on inputs, or the relationship between
outputs and inputs. If one constructs a database and an information
system, one determines the relations between different attributes.
To model a fuzzy system one uses rules like

if  speed is slow then pressure should be high

If the speed is denoted as variable A and pressure as variable B
then one will have in a general case the rule:  if    A  then   B

This rule gives the dependence of output B on input A. How do
we determine the output if we know the input?

We must know the relation between these two variables.

Definition 2.16 A fuzzy relation of the form A ⇒ B, R,  can be
defined as a relation of two fuzzy sets  A  ∈  U  and  B ∈  V as
a fuzzy subset on the Cartesian product  U *V.  R is characterised
by the bivariate membership function   µ 

R 
(u, v) as

R = A * B =    ∫ 
U*V

   µ 
R 

(u, v) / (u,v)

 or for finite sets:

R = A * B =    Σ 
u,v

   µ 
R 

(u, v) / (u,v) (2.4)
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This is very difficult for non-mathematical people to understand.
What should we integrate?

Actually we do not integrate anything in a sense of a
mathematical operation.

What does the ∫ sign mean then?
It shows that all possible combinations of all the elements of

both universes of discourse should be considered. It is easier to
explain when both universes are finite sets. Suppose we have two
finite fuzzy sets: A which is given by its membership function µ

A

=  (1/1, 0.8/2, 0.6/3, 0.5/4, 0.4/5, 0.2/6), and B with the
membership function µ

B
 = (0.5/5, 1/6, 0.3/7).  Now we should

consider all the combinations of the elements of the universes
where the membership function has non-zero values. How many
combinations do we have here?

The first fuzzy set has 6 non-zero elements and the second one has
3. Then the fuzzy relation has 6 × 3 = 18 elements. Here are these
combinations:  (1,5), (1,6), (1,7), (2,5), (2,6), (2,7), (3,5), (3,6),
(3,7), (4,5), (4,6), (4,7), (5,5), (5,6), (5,7), (6,5), (6,6), (6,7).

That’s right! And now we need to determine a membership
degree for every pair.

How?
Just use the definition! You can use either the minimum or

product. If we use the minimum we have

µ
R
 (u,v) =  {0.5/ (1,5), 1/(1,6), 0.3/(1,7), 0.5/(2,5), 0.8/(2,6), 0.3/

(2,7), 0.5/(3,5), 0.6/(3,6), 0.3/(3,7), 0.5/(4,5), 0.5/(4,6), 0.3/(4,7),
0.4/(5,5), 0.4/(5,6), 0.3/(5,7), 0.2/(6,5), 0.2/(6,6), 0.2/(6,7)}.

And what will happen if we use the product?
µ

R
 (u,v) =  {0.5/(1,5), 1/(1,6), 0.3/(1,7), 0.4/(2,5), 0.8/(2,6), 0.24/

(2,7), 0.3/(3,5), 0.6/(3,6), 0.18/(3,7), 0.25/(4,5), 0.5/(4,6), 0.15/
(4,7), 0.2/(5,5), 0.4/(5,6), 0.12/(5,7), 0.1/(6,5), 0.2/(6,6), 0.06/(6,7)}

We have different answers!
Again different problems can demand different solutions! And

in the case of continuous membership functions, we use the sign
∫ to show ‘integration’ of all possible combinations.

Hang on! The fuzzy relation is the same fuzzy set but determined
on the universe which is a combination of two other universes.

Absolutely! To denote this new universe we use the words
‘Cartesian product’ to demonstrate that we formed a new support set.
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Why did we use just the minimum and product operations? Can
we use other operations from Table 2.2?

Sure we can! More accurately we should have determined the
equation (2.4) as a t norm operation.

  µ
R
 (u,v) = ∫ 

u,v
   µ

A 
(u) t µ

B
 ( v) / (u,v)

or
  µ

R
 (u,v) = Σ

u,v
   µ

A 
(u) t µ

B
 ( v) / (u,v).

To choose which one to use, let us compare their actions. You can
consider different applications described in the literature (see, for
example, [Har93]). Even for simple illustrative examples, it can
be observed that an algebraic product operator leads to a smoother
fuzzy relation surface.

Now let us try to make some calculations of fuzzy relations.

Definition 2.17     N-ary fuzzy relation
Similarly to (2.4), we can determine the n-ary relation between
n fuzzy sets.

R 
U

1
 * U

2
 *... * U

n
 =   ∫

U
1
 * ...*U

n
    µ

R  
(u

1
, … , u

n
 )  / (u

1
, … , u

n
 ) ∈

U
1
 * … * U

n

or in the case of discrete sets

R 
U

1
 * U

2 
*... * U

n
 =   Σ

U
1

 * ...*U
n
    µ

R  
(u

1
, … , u

n
 )  / (u

1
, … , u

n
 ) ∈

  U
1
 * … * U

n

where u
1
 ∈  U

1
,  u

2 
 ∈   U

2
, … ,  u

n
  ∈  U

n.

You see that this relation is determined on the n-dimensional space
U

1
 * … * U

n.

This is very difficult to understand! What does n-ary fuzzy
relationship mean? How can I imagine it?

To imagine it you should have a multidimensional space vision.

How do you calculate its result?
Actually you need to calculate the membership function of

this relation as a Cartesian product. To do it you may use any t
norm. Let us determine the Cartesian product of the fuzzy sets.
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Definition 2.18 Cartesian product
If A

1
, … , A

n
 are fuzzy sets in the universes of discourse U

1
,

… , U
n
 then the Cartesian product of A

1
, … , A

n   
is a fuzzy

set in the product space U
1
 * … * U

n
 with the membership

function

µ 
A

1
* . . . *A

n
 ( u

1
, … , u

n
 ) =  µ 

A
1
 (u

1
) t µ 

A
2
 (u

2
) t … t µ 

A
n
 (u

n
)

What do we need it for? I guess a simple two–dimensional fuzzy
relation is more than enough.

With a two-dimensional relation you can derive the output of
one simple rule: if A then B, e.g., if speed is slow then temperature
is low. However, a fuzzy rule can consist of fuzzy sets from more
than two disparate universes of discourse: if A then B then C, e.g.,
if speed is slow then temperature is low then pressure is high. In
this case we should apply a n-ary relation. You have to remember
that all the fuzzy sets here vary in nature and are determined in
the different universal sets.

What will happen if we have a few rules? for example, if
temperature is low then pressure is high, or, if temperature is
medium then pressure is medium, or, if temperature is high then
pressure is low.

A good question! Of course, in practical problems we usually
have a few rules. To calculate the result we should combine all
the rules. Mathematically every rule is described by a relation.
All the rules will be described by the composition of these
relations.

Definition 2.19 Multirelational composition
If R and S are fuzzy relations in the Cartesian spaces  U * V
and  V * W respectively, the composition  of R and S is a fuzzy
relation given by the sup – t composition

µ
R ° S

  =  {[ sup 
V
 ( µ

R 
(u,v) t µ

S
 (v, w))}, u  ∈ U,  v ∈ V,  w ∈ W}

or by the inf-s  composition

µ
R  °  S

  =  {[ inf 
V
 ( µ

R 
(u,v) s µ

S
 (v, w))}, u  ∈ U,  v ∈ V,  w  ∈ W}.

I do not understand which formula to apply. We have got two of
them.

If you look carefully you will see that we have more than two
because s and t operations can be determined by different ways.
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Your explanation has not made the situation easier. All the possible
combinations are not used in practical applications, are they?

In practice the sup-min, sup-algebraic and if-max composition
operators are utilised. And to make the situation easier you can
show yourself, that sup-min and if-max operations produce the
same result.

We can provide some properties of the sup-min composition:

(R  ∪  T)  ° S    =    R   °   S   ∪    T   °    S
if  R

1
   ∈    R

2
   then    R

1
 ° S   ∈    R

2
 °  S

(R  ∩  T)  ° S   ∈     (R  °  S)   ∩     (T  °  S)
for  R

1
, R

2
, R, T  ∈   U * V,  and S  ∈   V * W

In practice, the most important case of compositional inference
is when we know the fuzzy input and the fuzzy relation between
the input and the output and we need to obtain the output.

Definition 2.20 Compositional rule of inference
If  R is a fuzzy relation in U * V and ΑΑΑΑΑ is a fuzzy set in U
then the fuzzy set B in V induced by ΑΑΑΑΑ is given by

ΑΑΑΑΑ ° R for sup–t composition
B =

ΑΑΑΑΑ ° R for inf–s composition

You see that because the fuzzy relation is actually the fuzzy set,
we can determine the operations with fuzzy relations similarly as
with fuzzy sets.

Definition 2.21
 If  R and S are fuzzy relations in U * V the intersection of R
and S is

 µ
R∩S

 (u,v) = µ
R
(u,v) t  µ

S
(u,v)

where t-norm can be calculated as a minimum operator, for
example

µ
R∩S

 (u,v) = min ( µ
R
(u,v),  µ

S
(u,v))

or a product  µ
R∩S

 (u,v) = µ
R
(u,v) × µ

S
(u,v)

–

––

–

–
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Definition 2.22
If  R and S are fuzzy relations in U * V the union of R and S is

µ
R ∪ S

 (u,v) = µ
R 

(u,v)  s  µ
S 
(u,v)

where we can calculate s norm as a maximum operator, for
example,

µ
R ∪ S

 (u,v) = max ( µ
R
(u,v),  µ

S
(u,v)).

And what do we need these definitions for?
A fuzzy relation describes interactions between fuzzy variables.

For example, if we have the statement ‘Temperature 1 is about
Temperature 2’,we actually have two fuzzy variables: Temperature
1 and  Temperature 2. By this statement  we wish to describe the
relation between them. Suppose Temperature 1 can have five
values, 11, 12,13, 14, 15, and  Temperature 2 can have three
values, 10, 12, 14. Then the fuzzy relation can have the
membership function:

µ 
R*S

 (u,v) = (0.9/(10,11), 0.7/(10,12), 0.5/(10,13), 0.3/(10,14),
0.1/(10,15), 0.9/(12,11), 1/(12,12), 0.9/(12,13), 0.7/(12,14), 0.4/
(12,15), 0.5/(14,11), 0.7/(14,12), 0.9/(14,13), 1/(14,14), 0.9/
(14,15))

or if we rewrite it in a more convenient table (matrix) form:

Temperature 1

11 12 13 14 15

Temperature 10 1.0 0.7 0.5 0.3 0.1

2 12 1.0 1.0 1.0 0.7 0.4

14 0.5 0.7 1.0 1.0 1.0

Consider now another statement: ‘Temperature 1 seems to be
larger than Temperature 2’. This fuzzy relation  will have the
membership function:

Temperature 1

11 12 13 14 15

Temperature 10 0.9 1.0 1.0 1.0 1.0

2 12 0.1 0.5 0.9 1.0 1.0

14 0 0 0.1 0.5 0.9

Now we want to determine the membership function for the
statement ‘Temperature 1 is about Temperature 2 and Temperature
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1 seems to be larger than Temperature 2.’ This relation can be
determined as an intersection of two relations and will have the
membership function:

Temperature 1

11 12 13 14 15

Temperature 10 1.0 0.7 0.5 0.3 0.1

2 12 0.1 0.5 0.9 0.7 0.4

14 0 0 0.1 0.5 0.9

Try to determine the membership function for the statement
‘Temperature 1 is about Temperature 2 or Temperature 1 seems
to be larger than Temperature 2.’

I understand this relation to be determined as a union of both and
will have the membership function:

Temperature 1

11 12 13 14 15

Temperature 10 0.9 1.0 1.0 1.0 1.0

2 12 1.0 1.0 1.0 1.0 1.0

14 0.5 0.7 1.0 1.0 1.0

The definitions and examples considered above allow us to obtain
the fuzzy output of the fuzzy system block and to understand the
basics of fuzzy reasoning methods.
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3 THE STRUCTURE AND
OPERATION OF A
FUZZY CONTROLLER

3.1 The reasons to apply fuzzy controllers
During our study we have learned many techniques for the
synthesis of automatic controllers. Why do we need to learn one
more?

The proposed method differs significantly from conventional
ones. Usually a control strategy and a  controller itself is
synthesised on the base of mathematical models of the object or
process under control. The models of an object under control
involve quantitative, numeric calculations and commonly are
constructed in advance, before realisation.

What about adaptive or self-organising controllers?
In these controllers, the exact control strategy is not calculated

in advance but is generated by optimisation algorithms based on
the controller ‘experience’. However, this approach also supposes
the construction of ‘numeric’ mathematical models.

Isn’t there another approach?
Yes, there is. A different method is  to comprehend instructions

and to generate strategies based on a priori verbal communication.
Most control engineers would accept intuitively that mathematical
modelling, which they perform in translating their concept of a
control strategy into an automatic controller, is completely
different from their own approach to a manual performance of the
same task. On the other hand,  linguistic description of control
seems to be similar to its manual implementation.

I do not understand the reason for this. I guess if we apply a right
method it should produce the best results (in some sense). I think
people just apply the wrong numeric models.

I agree with you just partly. The problem is that often it is very
difficult to derive the ‘right’ model. Many real objects and real
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life processes are too complicated to model mathematically.
Instead, if we try to construct a good model, it may be too
complex for a successful application of a control theory. In Fig.
3.1 you may see that there is a long way to go to solve a control
problem. Unfortunately, one meets a lot of disturbances on the
way. Usually even the best model is not complicated enough for
a comprehensive description of a real process. On the other hand,
it may be too complex to apply.

Why fuzzy control?

● Ability to translate imprecise/vague knowledge of human experts
● Simple, easy to implement technology
● Software design and hardware implementation support
● Results are easy to transfer from product to product
● Smooth controller behaviour
● Robust controller behaviour
● Ability to control unstable systems

Maybe you are right. However, to investigate the problem, we
constructed a mathematical model. How can we control the object
otherwise?

It was Mamdani who demonstrated the way [Proc79] by
constructing the first fuzzy controller. The controller was designed
for a plant which comprised a steam engine and boiler
combination. The model of the plant had two inputs: the heat input
to the boiler and the throttle opening at the input of the engine
cylinder, and two outputs: the steam pressure in the boiler and the
speed of the engine. The problem in classical control was that the
plant model was highly nonlinear with both magnitude and
polarity of the input variables.

Fig. 3.1 Control problem-
solving process structure

CHP3.PM5 6/13/97, 10:21 AM60



THE STRUCTURE AND OPERATION OF A FUZZY CONTROLLER 61

FUZZY LOGIC EXPLOITS THE TOLERANCE FOR IMPRECISION

High precision entails high cost ⇒ to minimise cost, minimise
precision

High precision entails low solvability ⇒ to make a problem treatable,
lower precision

I know it is not easy to control such a plant.
Yes, this plant possesses different characteristics at different

operating points, so that the direct digital controller implemented
for comparison purposes had to be tuned (by a trial and error
process) to reach the best performance each time the operating
point was altered.

3.2 Fuzzy rules processing

3.2.1 Mamdani-type fuzzy processing

Mamdani proposed to control the plant by realising some fuzzy
rules or fuzzy conditional statements, for example:

if pressure error (PE) is Negative Big (NB)
then heat change (HC) is Positive Big (PB)

So we can measure outputs of a plant and calculate a control
action according to this rules table.

What is the pressure error?
It is the difference between the current value of the pressure

and the set point. And the speed error (SE) is again the difference
between the current speed and the set point.

I am not a control engineer, could you explain what the set point
is?

A set point is usually a desired value for the plant output: the
values which some measured parameters of the process or the
object should have at a particular time.

It is similar to our boat control, isn’t it?
Exactly! But Mamdani proposed a modification. In order to

improve the control quality, he increased the number of control
inputs and used the change in pressure error (CPE), defined as the
difference between the present PE and the last one (corresponding
to a last sampling instant), and the change in speed error (CSE)
as well.
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Why does that improve the control quality?
Because it provides a controller with some degree of

prediction. For example, if PE is Negative Big and CPE is also
Negative Big, it means that at the next moment PE will become
even more Negative Big and HC should obviously be Positive Big.
But if  PE is Negative Big and CPE is Positive Big, it means that
at the next moment PE will become  Negative Smaller and we
should think about how to choose PE. This addition increases the
sensitivity of the controller.

Mamdani realised his controller on the PDP-8 computer. It
contained 24 rules. A fixed digital controller was also
implemented on the computer and applied to the same plant for
a comparison. For the fixed controller, many runs were required
to tune the controller for the best performance. This tuning was
done by a trial-and-error process. The quality of the fuzzy
controller was found to be better than the best result of the fixed
controller each time, so opening a new era in a controller design.

I do not understand why it was so important. I have heard the
rule-based control was used before Mamdani.

True. But the main problem is how to process these rules.
Mamdani used fuzzy theory to calculate the output according to
the rules set and gained a solid theoretical base. It means that we
can use this result to construct other fuzzy controllers. Some of
these controllers, illustrating different possible applications, are
given in Table 3.1.

Table 3.1 Fuzzy logic controllers (sample)

Date Application Designers
1975 Laboratory steam engine Mamdani and Assilian
1976 Warm water plant Kickert and Van Nauta Lemke
1977 Ship course control Van Amerongen
1978 Rolling steel mill Tong
1979 Iron ore sinter plant Rutherford
1980 Cement kiln control Umbers and King
1985 Aircraft landing control Larkin
1989 Autonomous guided vehicle Harris et al.
1991 Ship yaw control Sutton and Jess

How are these rules processed?
In the literature, the process is called the inference mechanism

or the inference engine. Let us write  Mamdani rules in a general
case. Mathematically a rule will look like

Ri: IF    A
i1
 (x

1
), A

i2
 (x

2
), ..., A

im
 (x

m
)   THEN Y is B

i
.
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What does it mean?
Here x

1, 
x

2
, ... x

m 
 stand for input variables, for example,

pressure, temperature, error, etc., A
ij
 (xj) (j = 1,2,...m) is a fuzzy

set on X
j
, Y is an output variable, B

i
 is a fuzzy set on Y.

so, in the rule:

 if pressure error (PE) is Negative Big (NB) then heat change
(HC) is Positive Big (PB)

pressure error is X
1, 

heat change is Y, A
i1
 (x

1
) is Negative Big, and

B
i
 is Positive Big.
Right! The method is clear and easy to understand.

I understand it, but what about a computer? It is a computer that
should calculate the result of this rule.

The result is fuzzy, a fuzzy set. The inputs of the inference
engine are fuzzy sets and the output is also a fuzzy set. To clarify
how a computer works in greater detail, let me  provide you with
a more formalised explanation. We will reintroduce some of the
basic notions dealing with linguistic variables and properties of
fuzzy sets.

3.2.2 Linguistic variables

A linguistic variable is defined by < Xi, LXi, Xi, A(Xi) >. Here
Xi is the symbolic name of a linguistic variable (for example,
pressure or temperature), LXi stands for the set of linguistic
values that Xi can take on (Negative Big, Positive Big and
Zero). The set of all possible values is LX. We denote an
arbitrary element of LX by LXi. Xi is the actual physical domain
over which the meaning of the linguistic value (temperature
between –50 and +100°C) is determined, X can be discrete or
continuous. A(Xi) is a semantic function which gives a
‘meaning’ (interpretation) of a linguistic value in terms of the
quantitative elements of X, i.e.,

A(X): LXi  → µ 
LX

 (x),

where A(X) is a denotation for a fuzzy set or a membership
function defined over X, i.e.,

A(X)= Σ µ
LX

  (x) / x  in a case of discrete X,
A(X) = ∫ µ

LX
  (x) / x  in a case of continuous X.
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Fuzzy rules

Most of the fuzzy logic applications involve construction
and processing of fuzzy rules

Fuzzy rules serve to describe, in linguistic terms, a
qualitative relationship between two or more variables

Processing of fuzzy rules or fuzzy reasoning provides a
mechanism for using fuzzy rules to compute the response to
a given fuzzy controller input

In other words, A(X) is a function which takes a symbol as its
argument and returns the ‘meaning’ of this symbol in terms of the
fuzzy set or the membership function of the fuzzy set.

You have not  started your explanation, but I’m already lost. What
is A(X)?

A(X) is a procedure which communicates the membership
function for the linguistic value, for example, Negative Big for
pressure (Fig. 3.2).

We can now define a set of m rules as

if X
1
 is LX

1
(k) and ... and X

n
 is LX

n
(k) then u is LU(k),  k = 1, ..., m,

for example.

if pressure is high and temperature is low then time is short or

Fig. 3.2 A membership
function
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if interest rate is low and price is low invest a large amount of
money.

In a real engineering fuzzy system usually crisp inputs are used.

3.2.3 Fuzzy rules firing

What do you mean by crisp inputs?
I mean that we usually know the value of the inputs:

temperature is 25°C , pressure is 2.5kPa, interest rate is 9.9%. One
can apply these inputs to the fuzzy system (controller). This
process of applying the inputs to the rules is called firing the rules.
Actually, firing consists of computing the degree of match
between the crisp input and the fuzzy sets, describing the meaning
of the antecedent part of the rules, and then ‘clipping’ the fuzzy
set describing the meaning of the consequent part of the rule, to
the degree to which the antecedent part has been matched by the
crisp input.

Could you explain it in greater detail, please? First of all, what
are the antecedent and consequent parts?

The antecedent part is the condition part, the first part of the
rule. The consequent part is the result part, the second part of the
rule. For example, in the rule:

if interest rate is low < antecedent part >
and share price is low

then invest a large < consequent part >
amount of money

When we apply the crisp input to the rule we compare the
input value with the membership functions describing different
linguistic variables (Fig. 3.3). The result of this comparison will
be a set of pairs (LX, µ

LX
 (x) ), e.g., if one applies the membership

functions in Fig. 3.3 and the crisp value for the pressure error is
–22kPa, then it will be transformed into the fuzzy input (Negative
Big, 0.75) and (Negative Small, 0.05).

I understand that the fuzzy input is the result of comparing the
crisp input and the membership functions assigned to describe this
input. Where do these membership functions come from?

We will discuss that later in section 4.4. Moving on, the fuzzy
input obtained is applied to the rules.

CHP3.PM5 6/13/97, 10:21 AM65



66 THE STRUCTURE AND OPERATION OF A FUZZY CONTROLLER

Which rules? All of them or just one?
One tries to apply or fire all the rules. However, just those rules

where the antecedent parts contain the corresponding input, will
be fired.

Example 3.1 In the following rules table

if  pressure is Neg Big then time is  short ♣ – fired
if  pressure is Neg Small then time is short ♣ – fired
if  pressure is Zero then time is average
if  pressure is Pos Small then time is long
if  pressure is Pos Big then time is  long

just first two will be fired in the situation of Fig. 3.3.

Why just these two?
Because to fire the rule, one compares the fuzzy input with the

rule antecedent part. If the antecedent part contains this input, the
rule is fired. Our input is Neg Small and Neg Big, so just the first
two rules are fired.

What does one fire the rules for?
As a result of firing, the fuzzy input is mapped into the fuzzy

output. To execute this mapping, one needs to transform the
membership degree from the rule antecedent part to the rule
consequent part. In our example, the output will be (short, 0.75),
(short, 0.05).

Why two short?
Because that is the consequent part of two fired rules.

Fig. 3.3   Fuzzification
of the crisp input –
pressure

CHP3.PM5 6/13/97, 10:21 AM66



THE STRUCTURE AND OPERATION OF A FUZZY CONTROLLER 67

Fig. 3.4   Fuzzy processing with the rules table

I think we should  choose one result or calculate it.
Right! As a result an s -norm is usually calculated and a maximum

operation is taken. So the fuzzy output will be (short, 0.75).

Yes, I realise what happens if we have just one condition in the
antecedent part. How do we fuzzify inputs if we have two or more?

Let us again consider the rule

if pressure is Neg Big and temperature is high then time is short

and the corresponding membership functions for pressure (Fig.
3.3) and temperature (Fig. 3.5). In the case when crisp inputs are
pressure = –22kPa and temperature = 22°C try to fuzzify inputs.

3.2.4 Calculating the applicability degree

At this stage the degree to which the whole condition part (all the
inputs) satisfies the rule is calculated. This degree is called the degree
of applicability of the condition part. It is denoted here as β.

β =  A
1
 (x

1
) t A

2
 (x

2
) t ... t A

n
 (x

n
) (3.1)

Fig. 3.5   Fuzzification
of the crisp input –
temperature
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where x
i
 is the value for the ith crisp input, Ai (x

i
) is the

membership function for the corresponding linguistic value for the
corresponding input, t denotes a t norm operation.

I hope you remember that t norm can be calculated by different
ways. So the Equation (3.1) can be rewritten as a product β =  A

1

(x
1
) * A

2
 (x

2
) * ... * A

n
 (x

n
) or minimum operation

β = min ( A
1
 (x

1
) , A

2
 (x

2
) , . . . , A

n
 (x

n
))

Hang on! I understand how the t norm can be calculated but I
do not understand what corresponds to what in your explanation.

In our example we have two conditions in the antecedent part
and two inputs: pressure and temperature. The membership
functions for the linguistic variable pressure are given in Fig. 3.3
and the membership functions for the linguistic variable
temperature are given in Fig. 3.5. Now we need to determine the
degree to which the value of –22kPa for pressure matches the
membership function for the linguistic value NegBig (it will be
0.75) and determine the degree to which the value of  22°C for
temperature matches the membership function for the linguistic
value high (it will be 0.6). Is it clear?

Yes.
Then the degree of applicability can be calculated as

β =  0.6 * 0.8 =  0.48 or
β =  min (0.6, 0.8) = 0.6

And now this degree can be applied to the output of the rule.
Right! The membership function of the linguistic value for the

consequent part is clipped or scaled to the level of the degree of
applicability.

3.2.5 Clipping and scaling a fuzzy output

How can the fuzzy set be ‘clipped’?
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1 Short Medium

time

Fig. 3.6  Membership function for
the rule consequent part

Fig. 3.7  Scaled and clipped
membership function
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This process is illustrated in Fig. 3.7. Let us denote the ‘clipped’
fuzzy set as CLU. The height of CLU(k) is equal to the degree
of match of the kth rule antecedent degree of applicability, and
is denoted by βk. The peak value of CLU(k) is equal βk. Actually
here we cut the membership function of the unclipped version
LU(k) on the level βk. In our example we need to clip the
membership function of the linguistic value short for the output
time on the level of 0.48 or 0.6 .

How do you scale the fuzzy set?
You need to remember that even when we discuss clipping and

scaling fuzzy sets, we actually talk about their membership
functions. So I reformulate your question as: how do you scale
the membership function? This method can be applied if you think
clipping is not fair enough.

Not fair enough?
Yes. In the case of clipping, one assigns the same degree to

a range of the input values regardless of the membership
degrees of the unclipped membership functions. In the case of
scaling, you change the membership degrees for all the
elements of the universe. A scale rate depends on an
applicability degree. A scaled membership function should
have the peak value equal to the applicability degree. It means
that in order to produce the scaled membership function, we
need to multiply all the membership degrees by the value of
β. It is only valid  in a case when a peak value of the unclipped
fuzzy set was 1. If it was α, then the multiplication factor
should be β/a.

What will one have as a result of a rule application?
Each rule produces the clipped or scaled fuzzy set, or more

exactly, the clipped or scaled membership function.

This is not a result of fuzzy processing, is it?
What do you think?

I guess it cannot be the result, because until now we have
discussed just processing one rule and usually we have at least
a few.

Right! A fuzzy system includes some rules. Each rule produces
the fuzzy set. To obtain the result of the whole set of rules
processing or the fuzzy output of the system, one needs to
combine the resulting fuzzy sets from all the rules.
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I know we may determine the final result as the union of all the
rules results

U    =  U
1
   ∪  U

2    
∪ . . . ∪  U

m

where U
i
 is the result of applying the ith rule and m is a number

of rules applied.
That’s it! Finally, the overall control output U is obtained as

the union of the clipped or scaled control outputs. U may be a
convex fuzzy set or may be a non-convex fuzzy set which consists
of a number of convex fuzzy subsets. You should remember that
U

i
 is a clipped fuzzy set CLU

i
 or a scaled fuzzy set SLU

i
. Do you

remember how to calculate the union?

There are different ways. For example the maximum operation can
be used

µ
U
 = max (µ

U1
, µ

U2
, … µ

Um
)

or one can apply any other s-norm operation.

3.2.6 Sugeno-type fuzzy processing

We have considered how fuzzy processing was realised by
Mamdani, and the method is called after him. Another method
was proposed by Sugeno, who changed a part of the rules. In his
method, the consequent part is just a mathematical function of the
input variables. The format of the rule is:

if  A
1
(x

1
), A

2
(x

2
), . . . , A

n
 (x

n
)  then  Y = f (x

1
, x

2
, . . . , x

n
).

You see that an antecedent part is similar  to the Mamdani method.
The function f in a consequent is usually a simple mathematical
function, linear or quadratic:

f  =  a
0
 + a

1 
× x

1
 + a

2
 × x

2
 + . . . + a

n
 × x

n

The antecedent part in this case is processed in exactly the same
way as the Mamdani method, and then an obtained degree of
applicability is assigned to the value of Y calculated as the
function of real inputs.

Can you give an example.
Let us again consider the rule:

if pressure is NegBig and temperature is high then time is short
but now replace it with:
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Fig. 3.8  Fuzzy inference
structure
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if pressure is NegBig and temperature is high then time is 0.3 ×
pressure + 0.5 ×  temperature.

What do the values of 0.3 and 0.5 mean?
Suppose they are factors expressing how the necessary time

depends on pressure and temperature. Then again for crisp inputs
of –22kPa for a pressure error and 22°C for temperature we
calculate the applicability degree of this rule, which is 0.6. Now
we calculate the value for Y as a real function of crisp inputs. The
result is 0.3 × (–22) + 0.5 × 22 = 4.4. And the membership degree
obtained earlier is assigned to this result. So the output of the
inference process will be (4.4, 0.6) where 4.4 is a real result and
0.6 is its membership degree.

Is it the final result?
No, it is not. It is the result of the application of one rule. The

final result will be obtained after applying all the rules. Then one
will have a fuzzy set as a result. Once again if any element of the
universe has two or more different membership degrees as a result
of different rules processing, one can choose the maximum value
or apply another s norm calculation method.

Table 3.3 Mamdani verses Sugeno

Similarity:
The antecedent parts of the rules are the same.

Difference:
The consequent parts are fuzzy sets. The consequent parts are

singletons (single spikes)
or mathematical functions of
them.

Advantages:
Easily understandable by a human More effective
expert. computationally.
Simpler to formulate rules. More convenient in

mathematical analysis and in
system analysis.

Proposed earlier and commonly used. Guarantees continuity of
the output surface.

Every time we meet different methods for almost any operation. I
understand the advantage of making my  own choice, but how can
I choose the best one? And how should I decide whether to apply
a Mamdani or Sugeno controller?

I think that the Mamdani fuzzy controller (each rule output is
described by a  membership function) is good for capturing the
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expertise of  a human operator. But it is awkward to design if you
have the plant model but don’t have a working controller (for
instance, a human operator). Sugeno fuzzy controller (each rule’s
output is a linear equation) is good for embedding linear controller
and continuous switching between these output equations. (In fact,
gain scheduling!). This becomes very effective when the plant
model is known. Also an adaptive capability and mathematical
tractability make this type of fuzzy controller a primary choice
for nonlinear and/or adaptive control design that is subject to
rigorous analysis.

To summarise our discussion about fuzzy inference, we should
say that this procedure can be roughly divided into three steps:

● Calculation of the degree of applicability of the antecedent
(condition) part of each control rule.

● Calculation of the inference result (solution fuzzy set) for each
control rule.

● Synthesis of the solution set for each control rule into the fuzzy
output set.

This process is illustrated on Fig. 3.8.

I think fuzzy inference is very complicated. It contains too many
operations and not one of them is easy to understand. Most of
these operations are nonlinear mappings.

Maybe you are right. However, this complication allows us to
create complicated input/output characteristics with a very small
number of control rules. The designer should formulate a small
number of simple rules, the computer should perform rather
complicated calculations. Isn’t that fair enough?

3.3 Fuzzy controller operation
The inference engine is the heart of a fuzzy controller (and any
fuzzy rules system) operation. Its actual operation can be divided
into three steps (Fig. 3.9):

● Fuzzification – actual inputs are fuzzified and fuzzy inputs are
obtained.

● Fuzzy processing – processing fuzzy inputs according to the
rules set and producing  fuzzy outputs.

● Defuzzification – producing a crisp real value for a fuzzy
output.
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FUZZIFICATION

actual
inputs

fuzzy
inputs

FUZZY PROCESSING

fuzzy
output

DEFUZZIFICATION
control
output

Inputs
membership

functions

Outputs
membership

functions

Fuzzy
rules

if  pressure is Neg Big then time is  short
if  pressure is Neg Small then time is short
if  pressure is Zero then time is average
if  pressure is Pos Small then time is long
if  pressure is Pos Big then time is  long

Fig. 3.9  Operation of a
fuzzy controller

We have considered the first two stages. What do we need the third
one for?

In a real control system, the controller output should be used
to control a real object or process. So we need to know a crisp
value for every output signal. Defuzzification produces this value
on the basis of output membership functions.

Oh! We have spent a lot of time studying this fuzzy inference in
order to come back to the crisp output. What did we need this
fuzzy stuff for?

The main reason is that fuzzy control gives us a rather simple
to use method for producing high quality controllers with
complicated input/output characteristics.

Can you describe this defuzzification process.
Yes, it is not very difficult. But once again a few methods have

been developed and to help you to solve the choice problem, we
consider this process later in Section 4.6 in greater detail.

3.4 Structure of a simple open-loop fuzzy controller
After you have considered how a fuzzy controller operates, we
can discuss how to design simple fuzzy controllers.

I understand that in order to construct a fuzzy controller, one
needs just to write some rules.

It’s not so simple! The classical design scheme contains the
following steps:

1. Define the input and control variables – determine which
states of the process shall be observed and which control
actions are to be considered.

2. Define the condition interface – fix the way in which
observations of the process are expressed as fuzzy sets.
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3. Design the rule base – determine which rules are to be
applied under which conditions.

4. Design the computational unit – supply algorithms to
perform fuzzy computations. Those will generally lead to
fuzzy outputs.

5. Determine rules according to which fuzzy control
statements can be transformed into crisp control actions.

The typical structure of a fuzzy controller is given in Fig. 3.10.

There seem to be so many problems! How can we solve them?
Step by step! The first one is a usual step in the design of any

controller. You choose variables which can be measured. They
become the inputs of the controller. Step 2 represents the
fuzzification process, Step 4 fuzzy inference and Step 5
defuzzification process.

However, you are right, the heart of a fuzzy controller design
is a formulation of the rules.

Where can I get these rules from?
The main basis is an expert’s experience, his/her understanding

how a fuzzy controller should operate and what it should do.

Example 3.2 A fuzzy vacuum cleaner

Let us try to develop the rules table for the fuzzy controller of a
vacuum cleaner. This controller should regulate the force of
sucking dust from a surface being cleaned. This force can be
described as a linguistic variable with values: very strong, strong,
ordinary, weak, very weak. The input of this controller should
obviously consider an amount of dust on the surface. The surface
can be very dirty, dirty, rather dirty, almost clean, clean. The

Fig. 3.10     The fuzzy
logic controller (a basic
structure)
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controller can change the force depending on how dirty the
surface is. One can propose the following set of rules to describe
the controller operation:

if surface is very dirty then force is very strong,
if surface is dirty then force is  strong,
if surface is rather dirty then force is ordinary,
if surface is almost clean then force is weak,
if surface is clean then force is very weak.

It is more convenient to write this rules set in a table form.

Table 3.3 Rules table for a fuzzy vacuum cleaner

Surface Force
very dirty very strong

dirty strong
rather dirty ordinary

almost clean weak
clean very weak

Will this controller work?
It will, however, maybe not very well. To improve the

performance, one should apply some extra expert’s knowledge. So
perhaps a driving force should depend not only on an amount of
dust, but on the surface texture and fabric also. There is some
difference in cleaning wood and wool, for example. So let us
introduce another input: surface type with linguistic values of
wood, tatami, carpet. Then we can implement the following rules
table.

Table 3.4 Rules table for surface type and dust amount

    clean almost rather dirty very
clean dirty dirty

wood very weak very weak weak ordinary strong

tatami very weak weak ordinary strong very strong

carpet weak ordinary ordinary strong very strong

Could this controller now be used?
Actually a controller like this has been applied in a Japanese

manufactured vacuum cleaner [Hir93]. A block diagram of the
controller is given in Fig. 3.11. You see that the fuzzy controller
has two inputs and one output.
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I do not understand how this controller can work in a case of,
say, a linen fabric surface. Can it be applied for cleaning wood,
tatami and carpets only?

These names, or linguistic labels, have a symbolic sense only.
They just mark different membership functions which should
describe how easy it is to clean a particular surface, i.e. to mark
a different degree of ‘easyness’. And remember these degrees are
fuzzy, in that a fabric can be considered as ‘a little tatami and
mainly wood’.

And what about linen?
This could be placed between tatami and carpet and considered

as a little of this and a little of that.

How is this vacuum cleaner implemented practically?
The dust sensor includes a photo transistor which is mounted

opposite an infrared light-emitting diode. Infrared rays are emitted
in a beam. When they pass through the dust, some rays are lost,
causing the amount which reaches the photo transistor to decrease.
The varying component is amplified and used to evaluate the
amount of dust on the surface being cleaned.

What about the second input? How is the surface type evaluated?
As cleaning proceeds, the amount of dust decreases, but the

speed of decreasing depends on the surface type. If the surface
is smooth like wood, it is cleaned very fast because it is easy to
pick up dust from such a surface. On the other hand, it is hard to
clean wool carpet surfaces. Thus, by evaluation of the change of
the dust amount collected during a time unit, we can judge the

Dust sensor

Time counter

Surface type
indicator

Amplifier

Fuzzy
controller

Fan motor

Drive circuit

Fig. 3.11 The structure
of the vacuum cleaner
fuzzy controller
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type of the surface being cleaned. This controller works well
under different conditions.

So in this controller, the first input is the amount of dust collected
during a time unit. And the second input is the change in this
amount. Is that right?

Yes, it is.

Then the second input can be considered as a derivative of the
first one. Is that right?

Yes, it is.

So our fuzzy controller is an analogy to a classical PD-controller,
isn’t it?

Yes, you are right.

3.5 Structure of a feedback PID-like fuzzy controller

3.5.1 Fuzzy controllers as a part of a feedback system

We were taught how to design conventional PID controllers. How
can I design a fuzzy PID controller?

It is not easy to design an exact  PID controller and I think it
is not necessary, but one can construct a PID-like fuzzy controller.
To do it we need to choose the input and output variables and the
rules of the controller properly.

If one has made a choice of designing a P-, PD-, PI- or PID-
like fuzzy controller, this already implies the choice of process
state and control output variables, as well as the content of the
rule-antecedent and the rule-consequent parts for each rule.

The process state variables representing the contents of the
rule-antecedent (if-part of a rule) are selected among:

● error signal, denoted by e;
● change-of-error, denoted by  ∆e;
● sum-of-errors or an integral error, denoted by Σe.

The control output (process input) variables representing the
contents of the rule-consequent (then-part of the rule) are selected
among:

● change-of-control output, denoted by ∆u;
● control output, denoted by u.

Hang on! What is this error?
The error is the difference between the desired output of the object
or process under control or the set-point and the actual output.
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This is one of the basic milestones in conventional feedback
control. Furthermore, by analogy with a conventional controller,
we have:

● e(t) = y
sp

 – y(t);
● ∆e (t) = e(t) – e(t – 1);
● ∆u (t) = u(t) – u(t – 1).

In the above expressions, y
sp

  stands for the desired process
output or the set-point, y is the process output variable (control
variable); k determines the current time.

By the way, considering the classes of a PID-controller, what
type of a controller can be represented by the boat controller
designed in the introduction?

I think the deviation can be considered as an error and the turn
as a control output. Then this table represents a choice of the
control output roughly proportional to the error. It means that we
have designed a P-like controller.

That’s right! Now let us try to design the PD-like controller.

3.5.2 PD-like fuzzy controller

The equation giving a conventional PD-controller is

u(k) = K
P 

× e(t) + K
D
 × ∆e(t),

where K
P
 and K

D
 are the proportional and the differential gain

factors.

If I try to describe this equation with the help of rules, what
inputs and outputs should I use for the rules table?
I do not know.

Let us consider this equation. The PD controller for any pair
of the values of error (e) and change-of-error (∆e) calculates the
control signal (u). The fuzzy controller should do the same thing.
For any pair of error and change-of-error, it should work out the

Fig. 3.12 A block-
diagram of a PD-like
fuzzy control system
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control signal. Then a PD-like fuzzy controller consists of rules,
and a symbolic description of each rule is given as

if  e(t)  is <property symbol> and  ∆e(t)  is <property symbol>
then  u(t)  is <property symbol>, where <property symbol> is the
symbolic name of a linguistic value.

The natural language equivalent of the above symbolic description
reads as follows. For each sampling time. t:

if the value of error is <linguistic value> and the value of change-
of-error is <linguistic value> then  the value of control output is
<linguistic value>.

We will omit the explicit reference to sampling time t, since such
a rule expresses a casual relationship between the process state and
control output variables, which holds for any sampling time t.

What does the symbolic name of a linguistic value mean?
This is one of the linguistic qualifiers, determined for the

proper variable: error, change-of-error or control signal, for
example: high, low, medium, etc.

So I have to have membership functions, describing all these
qualifiers for all my variables:  error, change-of-error or control.

Definitely. And you should remember that these variables may
be measured in different units. So the rules of the PD controller
can be like:

if error is Positive Big and change-of-error is Negative Big then
control is Negative Small

Why do you use positive and negative values?
We need to describe an error signal. Because the actual process

output y can be higher than the desired one as well as lower, the
error can be negative as well as positive. Values of error (e) with
a negative sign mean that the current process output y(t) has a
value below the set-point y

sp
  since e(t) = y

sp
 – y(t) < 0. A negative

value describes the magnitude of the difference y
sp

 – y. On the
other hand, linguistic values of e with a positive sign mean that
the current value of y is above the set-point. The magnitude of
such a positive value is the magnitude of the difference y

sp
 – y.

The change-of-error (∆e) with a negative sign means that the
current process output y(t) has increased when compared with its
previous value y(t–1), since ∆e(t) = e(t) – e(t – 1) = –y(t) + y(t –
1) < 0. The magnitude of this negative value is given by the
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magnitude of this increase. Linguistic values of ∆e(t) with a
positive sign mean that y(t) has decreased its value when
compared to y(t – 1). The magnitude of this value is the magnitude
of the decrease.

Linguistic values of e with a negative sign mean that the
current process output y has  a value below the set-point y

sp
 since

e(t) = y
sp

 – y(t) < 0.   The magnitude of a negative value describes
the magnitude of the difference y

sp 
– y.   On the other hand,

linguistic values of e with a positive sign mean that the current
value of y is above the set-point.  The magnitude of such a positive
value is the magnitude of the difference y

sp
 – y.

Linguistic values of ∆e with a negative sign mean that the
current process output y(t) has increased when compared with its
previous value y(t – 1) since ∆e(t) = – (y(t) – y(t – 1)) < 0. The
magnitude of such a negative value is given by the magnitude of
this increase. Linguistic values of ∆e(t) with a positive sign mean
that y(t) has decreased its value when compared to y(t – 1). The
magnitude of such a value is the magnitude of the decrease.

A linguistic value of ‘zero’ for e means that the current process
output is about  the set-point. A ‘zero’ for ∆e means that the
current process output has not changed significantly from its
previous value, i.e. – (y(t) – y(t – 1)) = 0. The sign and the
magnitude for u constitutes the value of the control signal.

3.5.3 Rules table notation

I want to propose to you a convenient form to write down rules. This
table form is suitable when we have two inputs and one output. On
the top side of the table we should write the possible linguistic values
for the change-of-error (∆e) and on the left side, the error (e). The
cell of the table at the intersection of the row and the column will
contain the linguistic value for the output corresponding to the value
of the first input written at the beginning of the row and to the value
of the second input written on the top of the column.

Let us consider the example [Drian93] where both inputs and
an output have a set of possible linguistic values {NB, NM, NS,
Z, PS, PM, PB} where NB stands for Negative Big, NM stands
for Negative Medium, NS stands for Negative Small, Z stands
for Zero, PS stands for Positive Small, PM stands for Positive
Medium and PB stands for Positive Big (Table 3.7).

The cell defined by the intersection of the first row and the first
column represents a rule such as:

if e(t) is NB and ∆e(t) is NB then u(t) is NB
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Table 3.5

PB PM PS Z NS NM NB

PB NB NB NB NB NM NS Z
PM NB NB NB NM NS Z PS
PS NB NB NM NS Z PS PM
Z NB NM NS Z PS PM PB
NS NM NS Z PS PM PB PB
NM NS Z PS PM PB PB PB
NB Z PS PM PB PB PB PB

How do we fill in this table?
This table includes 49 rules. We are taking into account now

not just the error but the change-of-error as well. It allows to
describe the dynamics of the controller. To explain how this rules
set works and how to choose the rules, let us divide the set of all
rules into the following five groups:

Group 0: In this group of rules both e and ∆e are (positive or
negative) small or zero. This means that the current value of the
process output variable y has deviated from the desired level (the
set-point) but is still close to it. Because of this closeness the control
signal should be zero or small in magnitude and is intended to
correct small deviations from the set-point. Therefore, the rules in
this group are related to the steady-state behaviour of the process.
The change-of-error, when it is Negative Small or Positive Small,
shifts the output to negative or positive region, because in this case,
for example, when e(t) and ∆e(t) are both Negative Small the error
is already negative and, due to the negative change-of-error, tends
to become more negative. To prevent this trend, one needs to
increase the magnitude of the control output.

Group 1: For this group of rules e(t) is Positive Big or
Medium which implies that y(t) is significantly above the set-
point. At the same time since ∆e(t) is negative, this means that y
is moving towards the set-point. The control signal is intended to
either speed up or slow down the approach to the set-point. For
example, if y(t) is much below the set-point (e(t) is Positive Big)
and it is moving towards the set-point with a small step (∆e(t) is
Negative Small) then the magnitude of this step has to be
significantly increased (u(t) is Negative Medium). However, when
y(t) is still much below the set-point (e(t) is Positive Big) but it
is moving towards the set-point very fast (∆e(t) is Negative Big)
no control action can be recommended because the error will be
compensated due to the current trend.

Group 2: For this group of rules y(t) is either close to the set-

Gr. 0
Gr. 1
Gr. 2
Gr. 3
Gr. 4

∆∆∆∆∆e
e
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point (e(t) is Positive Small, Zero, Negative Small) or
significantly above it (Negative Medium, Negative Big). At the
same time, since ∆e(t) is negative, y(t) is moving away from the
set-point. The control here is intended to reverse this trend and
make y(t), instead of moving away from the set-point, start
moving towards it. So here the main reason for the control action
choice is not just the current error but the trend in its change.

Group 3: For this group of rules e(t) is Negative Medium or
Big, which means that y(t) is significantly below the set-point. At
the same time, since ∆e(t) is positive, y(t) is moving towards the
set-point. The control is intended to either speed up or slow down
the approach to the set-point. For example, if y(t) is much above
the set-point (e(t) is Negative Big) and it is moving towards the
set-point with a somewhat large step (∆e(t) is Positive Medium),
then the magnitude of this step has to be only slightly enlarged
(u(t) is Negative Small)

Group 4: The situation here is similar to the Group 2 in some
sense. For this group of rules e(t) is either close to the set-point
(Positive Small, Zero, Negative Small) or significantly above it
(Positive Medium, Positive Big). At the same time since ∆e(t) is
positive y(t) is moving away from the set-point. This control signal
is intended to reverse this trend and make y(t) instead of moving
away from the set-point start moving towards it.

So to design a PD-like controller we need just to create a rules
table like Table 3.5.

Not always. The contents of the table can be different. For
example, you may replace the rule:

if e is PS and ∆e is PM then u is NB

with the rule:

if e is PS and ∆e is PM then u is NM.

We will discuss the concrete choice of the rules in greater detail
in Section 4.5.

3.5.4 PI-like fuzzy controller

The equation giving a conventional PI-controller is

u(t) = K
P 

× e(t) + K
I
 × ∫ e(t) dt, (3.2)

where K
P
 and K

I
 are the proportional and the integral gain

coefficients. A block diagram for a fuzzy control system looks like
Fig. 3.13.
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Fuzzy
controller

Plant
OutputControl

Error

Integral
of error

Set-point
K

K

+

∫

(Ref.
input)

_

i

p

Fig. 3.13 A block-
diagram of a PI fuzzy
control system (version 1)

I see this diagram has a different form from the previous one. We
have replaced differentiation with integration and a change-of-
error with an integral error. How do we formulate the rules table?

Now the fuzzy controller and the rules table have other inputs.
It means that the rules themselves should be reformulated.
Sometimes it is difficult to formulate rules depending on an
integral error, because it may have the very wide universe of
discourse.

What can we do in this case?
We can move the integration from the part preceding to a fuzzy

controller to the part following it. We can integrate the output of
a controller, not the input. Then we may have the error and the
change of error inputs and still realise the PI-control.

How does it work?
When the derivative, with respect to time, of the Equation (3.2)

is taken, it is transformed into an equivalent expression

du(t) / dt = K
P
 × de(t)/dt  + K

I
 × e(t)

or in the discrete form

∆u(t) = K
P 

× ∆e(t)  + K
I
 × e(t)

One can see here that one has the error and the change-of-error
inputs and one needs just to integrate the output of a controller. One
may consider the controller output not as a control signal, but as a
change in the control signal. The block diagram for this system is
given in Fig. 3.14. You should remember, that the gain factor Ki is
used with the error input and Kp with the change-of-error.

Can you propose the rule format for this controller?
We can write the rule as:

if e is <property symbol> and ∆e is <property symbol>
then ∆u is <property symbol>.

In this case, to obtain the value of the control output variable u(t),
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the change-of-control output ∆u(t) is added to u(t – 1). It is
necessary to stress here that this takes place outside the PI-like
fuzzy controller, and is not reflected in the rules themselves.

Now try to compile the rules table for this type of a controller.

Can we use the table similar to the previous one?
Yes, you can. But you should remember that now the output

is not a control signal but the change-of-control.
I’m not going to use the same table, let me change something.

Table 3.5

PB PM PS Z NS NM NB
PB NB NB NB NB NM NS Z
PM NB NB NB NM NS Z PS
PS NB NB NM NS Z PS PM
Z NB NM NM Z PM PM PB
NS NM NS Z PS PM PB PB
NM NS Z PS PM PB PB PB
NB Z PS PM PB PB PB PB

We have changed two rules:

if e is Z and ∆e is NS then ∆u is PM
and if e is Z and ∆e is PS then ∆u is NM.

Will our controller become better?
Your correction will lead to the change of the control surface.

Your controller will become more reactive in the neighbourhood
of the set-point. It means that even small deviation errors will be
followed by larger control signals. It is difficult to say if it will
become better in a general case. However, usually a designer tries
to make the control surface smoother in the vicinity of a set-point.
So I do not think your modifications have been very successful.

OK. If we want to make our controller less reactive to the large
errors, what should we do?

Positive large or negative large?

Fuzzy

controller Plant
OutputControl

Error

Change
of error

Set-point

Delay ∆t

K

K

-
+

+ ∫

Change
of control

p

i

-

Fig. 3.14   A block-
diagram of a PI fuzzy
control system (version 2)

e
∆∆∆∆∆e
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Both.
In this case you need to modify the top and the bottom rows,

maybe like this:

Table 3.6

PB PM PS Z NS NM NB
PB NB NB NB NM NS Z Z
PM NB NB NB NM NS Z PS
PS NB NB NM NS Z PS PM
Z NB NM NS Z PS PM PB
NS NM NS Z PS PM PB PB
NM NS Z PS PM PB PB PB
NB Z Z PS PM PB PB PB

If it is not enough, can we change these rows more significantly?
You can do whatever you want. However, if I change the left

bottom corner to PS, for example, there will be a gap between two
adjacent cells. So when e is changed a little bit from PM to PB,
the output will jump from NS to PS. Generally speaking you
should avoid these gaps and try to perform a smooth
transformation between adjacent cells (see Section 4.5 for details).

It means that if we want to make significant modifications, it is
best to make changes to the regions than to changes in individual
cells.

You are absolutely right!

3.5.5 PID-like fuzzy controller

The equation for a PID-controller is as follows:

u = K
p
 × e + K

d
 × e + K

i
 × ∫ edt.

Thus, in the discrete case of a PID-like fuzzy controller one has
an additional process state variable, namely sum-of-errors, denoted
σe and computed as:

σe(t) =  .

Have a look at the rules for PD- and PI-like fuzzy controllers and
try to write down the rules format for a PID-like controller.

The symbolic expression for a rule of a PID-like fuzzy
controller is:

if  e is < property symbol > and  ∆e is < property symbol > and

e
∆∆∆∆∆e
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σe is < property symbol> then  u is < property symbol >

Good! What is the main difference between the rules for these
controllers?

The last one has three conditions in the antecedent part but
the previous ones had just two. So we will need to formulate many
more rules to describe the PID-controller.

Why?

If any input is described with seven linguistic values, as it was
before, then because the PID-controller has three inputs and any
rule has three conditions we will need 7 × 7 × 7 = 343 rules.
Previously we had just 7 × 7 = 49 rules.

It is too much work to write 343 rules. The PID-like fuzzy
controller can be constructed as a parallel structure of a PD-like
fuzzy controller and a PI-like fuzzy controller (Fig. 3.15) with the
output approximated as:

u = (Kp/2 × e + Kd × de/dt) + (Kp/2 × e + Ki × ∫ edt).

Should we always use these inputs? An error and a change of
error?

Of course not. When information about the object or process
under control and its structure is available, one may not want to
be confined to using error, change of error, and sum of errors as
process state variables, but rather use the actual process state
variables. The symbolic expression for a rule in the case of
multiple inputs and a single output (MISO) system is as follows:

if x
1
 is <property symbol> and ... and x

n
 is <property symbol>

then u is <property symbol>

Rules of this if – then type are usually derived from a fuzzy
process model.

Fig. 3.15   The structure
for a PID-like fuzzy
controller
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Example 3.3   The fuzzy controller for steam turbines [Kiup94]

The fuzzy controller has been designed to control the turbine
speed and pressure. The block diagram of a fuzzy control system
for a turbine speed control is given in Fig 3.16.

All blocks on this figure demonstrate a nonlinear behaviour,
which is the main reason for a fuzzy control application. The
fuzzy controller has been designed as a PID-like fuzzy controller.
It has three inputs: the error (the difference between a set-point
and an actual output), the change of error, and the integral-error,
and one output. To fuzzify the inputs, three classes are applied for
each input with the membership functions given in Fig. 3.17a.

In order to defuzzify the output, seven classes are applied with
the membership functions presented in Fig. 3.17b. Because the
fuzzy controller has three inputs, its rules table has a three-
dimensional image given in Fig. 3.18.

Fig. 3.16  The block
diagram of a fuzzy
control system for a
turbine speed control
[Kiup94]

N Z P
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Fig.  3.17 Membership
functions for the inputs
and outputs
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Fig. 3.18. The rules table
[Kiup94] for the fuzzy
controller

Example 3.4

I recently had to design a fuzzy-controller for backing up a truck
and trailer combination. I went all through fuzzy theory, but found
the best way to improve performance was to increase the number
of rules used. Whether they were fuzzy or classical didn’t really
matter; but the non-fuzzy rules were much easier to implement.
So, is fuzzy logic just a phrase the Japanese put on their consumer
electronics to help it sell?  What real difference does it make?

Some type of servo operators are much simpler with standard
rules (e.g., ‘if the sensor goes past this line, then actuate’). A truck
and trailer, however, might have to recognise moving objects (e.g.,
birds or people), determine if some objects require a wider margin
(e.g., walls or other trucks), or might need to work in less than
optimal conditions (e.g., dark, fog, diesel smoke) or work with
inefficient sensors. In all of these cases, Boolean rules fail due
either to complexity or special cases.

The advantage of fuzzy logic for this case would be using
fewer, simpler rules to handle all the cases reasonably.  With fuzzy
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logic you could write three to six rules for size, motion, etc., and
sum them.  The rules follow more closely what a truck driver
standing behind a truck does: instead of examining every item and
plugging in every rule he or she knows about objects and decides
that something is either ‘a problem’ or ‘can be ignored’ or ‘keep
an eye on it’ as the driver is guided backwards. This allows them
to ignore cats, birds, open lunch boxes, paper bags, ignore
pedestrians who obviously see the truck and are moving at a safe
distance from it without having to make a special rule for each
of them. Things like drunks stumbling under the wheels, broken
glass, other trucks or unaware pedestrians receive more attention
because they fit into the class of ‘problem items’.

In one sense all measured inputs have some fuzziness even in
classical control.  The mechanisms we have available for sensing,
feedback and control all have limits to precision.  As a result no
rules will be ‘absolutely accurate’, since the error terms, physical
limitations (e.g., phase-shift and attenuation) and input noise will
normally be a noticeable part of the input. Also filtering inevitably
reduces the legitimate input, attenuating the original signal.  At
that point, fuzzy logic simply recognises what we have been doing
all along and ‘hard’ rules are ignored: mapping approximations
onto the response which makes the useful outcome more likely.

3.5.6 Combination of fuzzy and conventional PID controllers

I understand that a fuzzy controller can be particularly good as
an operator replacement. In this case can the rules be formulated
by observing an operator’s action?

Yes. We will consider a rules formulation problem in Section
4.5 in greater detail.

However, an operator in process control systems usually controls
different technical devices including PID-controllers. Can a fuzzy
controller manage this role?

Sure it can. In this case a fuzzy controller is placed on a higher,
more intelligent level. It produces command signals for
conventional controllers. Another possible task for a fuzzy
controller in this structure is a future prediction. The famous
Japanese subway and helicopter control systems are based on
these principles.

Example 3.5 Hybrid guidance control for a self-piloted aircraft
[Bour96]
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A modern aircraft is well equipped with conventional control
techniques and, in particular, various PID controllers which
demonstrate a good performance and successfully solve different
guidance problems. Guidance control in a modern aircraft is
performed by the PID controllers producing the control signals
which are applied to ailerons and elevators. The necessary
reference inputs for a PID controller are usually supplied by the
aircraft crew based on different data, first of all the current
position provided through the global positioning system (GPS).

Some piloted aircraft classes are to be replaced with
autonomous vehicles which are cheaper in operation and have
some other advantages. The hybrid guidance control system,
incorporating conventional PID controllers and a fuzzy controller,
is proposed for this aircraft. A fuzzy controller takes the place of
a pilot (an operator) in developing reference signals for a PID
controller.

The navigation of the self-piloted vehicle is organised by the
onboard GPS receiver tied to a PC-based flight director. Flight-
planning software generates a list of consecutive points necessary
to track the mission-determined flight path. Onboard autopilots
keep the aircraft stable, while the flight director (guidance system)
interprets the point positions to determine the course, speed, climb
rate and turns of the aircraft. The objective of the guidance system
is to bring the aircraft to the next operational point at a specified
altitude and to stabilise the vehicle to allow for the operation of
the onboard photographic and/or measurement equipment. The
aircraft is assumed to be guided to an initial position during the
take-off stage before the guidance system takes over a control.

The designed control structure is shown schematically in Fig.
3.19. The altitude of the aircraft is controlled by a low-level
conventional PID feedback controller through aerodynamic
ailerons and an elevator with mechanical limits of their deflection
angles. A speed of the aircraft is controlled by the throttle setting.
The guidance fuzzy controller has to provide reference signals for
the PID controller, which are required roll and pitch angles (φ

ref

and θ
ref

 respectively) for a levelled flight, and also to produce the
throttle setting command T

th
 if a change of altitude is required.

Fig.3.19 Structure of the
combined control system
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An operation of the fuzzy controller developed is illustrated in Fig.
3.20. Coordinates of the aircraft current position and of the next
operational point are used to estimate an offset angle, δ, between
the direction to the operational point and the current velocity
vector, v, and the rate of change of the offset angle, δ, as well as
an altitude difference between the current position of the aircraft
and the operational altitude, h, and the rate of change of the
altitude difference h, These estimates become the input signals for
the fuzzy controller and are subject to fuzzification.

The whole control structure consists of three fuzzy controllers
operating independently with each of them having two input and
one output signals. This input–output mapping provides a simple
two-dimensional structure of the linguistic rules sets.

The fuzzy controller output mainly depends on a definition
of the membership functions and the rules. The control variables
δ, δ and h domains are divided into seven linguistic values with
the relative memberships, and the control variable h into five,
respectively. The rule definition is subjective and based on the
expert’s knowledge and experience. For a system with two
control variables and seven membership functions in each range
it may lead to a 7 × 7 decision table. The total of three rules
sets is used in this fuzzy controller design: for the roll angle
control, the pitch angle control and the throttle position control.
These rules sets can be viewed as 7 × 7, 7 × 5 and 7 × 5 decision
tables, respectively. As an illustration, the rules set for roll angle
control is given in Table 3.7, where equally shaded cells produce
the same fuzzy output.

Memberships for
input parameters

Memberships for
output parameters

δ

δ
.

h

h
.

Input
parameters

Rule sets

ϕ

θ

Tth

Output
parameters

Set of rules
for

roll angle

Set of rules
for

pitch angle

Set of rules
for

throttle position

Fuzzification Rule evaluation Defuzzification

Fig. 3.20 Operational
block diagram of the
fuzzy control system

·

·

·
·

·
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Table 3.7

NB NM NS SM PS PM PB

NB LB LB LB LB LB LB LL
NM LB LL LL LL LL LL LM
NS LL LM LM LM LM LM LLIT
SM LM LLIT LLIT LLIT LLIT LLIT LMN
PS LLIT LMN LMN LMN LMN LMN LLN
PM LMN LLN LLN LLN LLN LLN LBN
PB LLN LBN LBN LBN LBN LBN LBN

In this table linguistic labels for roll angle are denoted: LB, big;
LL, large, LM medium; LLIT, little; the character N denotes
negative.

Simplicity and low hardware implementation cost determine a
choice of the membership functions of a singleton type for the
output parameters (roll angle, pitch angle and throttle position).
The linguistic variables of the fuzzy outputs that are evaluated by
cycling through the rule sets are projected onto output sets of the
memberships.

The defuzzification process takes place after the generation of
the fuzzy control signals is completed using the inference
mechanism. As more than one fuzzy output variable can be
assigned a non zero degree, the contribution of each variable into
the physical output should be taken into account. The
defuzzification method was based on calculating the centre of
gravity of all fuzzy outputs for each system physical output.

3.6 Stability and performance problems for a
fuzzy control system

3.6.1 Stability and performance evaluation by observing the
response

We understand now how a fuzzy controller operates. The next
problem is how to decide if it functions well?

A control engineer often judges the quality of a control system
by studying the response curve of the system. The curve reveals
the dynamics of the system, responding to changes in its inputs.

So to make a decision, do we need to consider all possible inputs?
Of course not. Usually a small set of standard signals are

studied (Fig. 3.21). A unit step input imitating a change of a set-
point (Fig. 3.21a), a unit ramp input (Fig. 3.21b) simulating
smooth change of the operating conditions, and rather seldom, a

δ
δ
·
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parabolic signal (Fig. 3.21c) when one needs to simulate a
variable speed of changing.

If a system responds well to these signals, a control practitioner
usually judges it as a good system.

What does ‘responds well’ mean?
First of all, the system should prove to be stable. Stability is

usually the most important issue to examine in determining the
quality of the response (curve) of a system.  It is concerned with
the good behaviour of an output of the control system in response
to either external inputs or internal excitations. Stability is a very
complex theoretical problem, indeed, so complex that there are
even different definitions of stability. Let us take the simplest one.
The system is stable if its response for every bounded input is
bounded. Practically, it means that for any finite change in its
input, the system does not produce infinite output change. Or
considering a unit step input the system response should be
limited in magnitude. Figure 3.22a  demonstrates some examples
of a unit step response for a stable system, and Fig. 3.22b shows
an unstable system.

Fig. 3.21a A unit step input Fig. 3.21b A unit ramp input
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I think it could be unreliable to analyse the system stability just
by observing the response curve. Are there some other methods?

Yes, there are. In control theory there are some methods, among
them:

● Nyquist’s stability criteria;
● Routh’s stability criteria;
● describing-function approach;
● phase-plane method.

Unfortunately all of these approaches cannot be used for stability
analysis of fuzzy control systems.

Why not?
All of them require a special mathematical model of a control

system prior to stability analysis. Nyquist and Routh–Hurwitz’s
criteria require a Laplace transform or z transform of a
mathematical control model. The model is usually required to be
linear due to the characteristics of the Laplace transform and z
transform. Furthermore, these two criteria often fail if the control
system is time-variant. The describing-function approach for
determining stability is only approximate. The phase-plane
method usually applies only to first- and second-order systems.
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Fig. 3.22a    Examples of
a unit step response for a
stable system

Fig. 3.22b. Examples of
a unit step response for
an unstable system
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Are there any criteria to determine the stability of a fuzzy control
system?

Some methods have been proposed based on the Liapunov
second method. The second method of Liapunov (also referred to
as the direct method) is the most general for determining the
stability of a nonlinear and/or time-variant system of any order.
It is a hot research topic now. But a universal reliable method has
not yet been put forward. So I would recommend evaluation the
stability by observing the system response and its parameters.

3.6.2 Stability and performance indicators

What parameters do you mean?
These parameters are marked in Fig. 3.23. Their definitions can

be found in any control textbook. They are overshoot, rise time,
settle time. This set of parameters is used to evaluate not just the
stability, but the performance of a system as well, and often is
given in specifications.

So to evaluate the performance, one has to determine the value
of the indicators mentioned above.

Not always. One may apply other indicators. For example,
steady state error. Or integral criteria.

Fig. 3.23  System
performance parameters
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How should I choose the indicator?
Generally speaking, the indicator choice depends on the

problem domain.

Example 3.6 A performance indicator for navigation control.

In Example 3.5, the task was to direct an aircraft to the destination
point. The final errors in positioning of the aircraft with respect
to the target point and the attitude errors were taken as measures
of performance. The orientation error was defined as the offset
angle between the direction to the arrival point and the direction
of the current velocity vector. Figure 3.24 gives an example of the
fuzzy control results. In the plot of positioning errors, the
distribution is elliptically spread, indicating a normal distribution
of the coordinate errors.

And what about the stability? When is the stability not good?
Control systems have a high potential to be unstable if the

following are observed in the response curve of the system:

● very fast rise time;
● high overshoot ratio;
● very long settle time.

To improve the system stability, one needs to decrease the
overshoot ratio and the settle time.

How can I do that?
You can adjust either the rules, or the input and output scaling

factors, or some other parameters of a fuzzy controller (See
Chapter 5).
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3.6.3 Stability evaluation by observing the trajectory

There is another method of predicting the stability of the system
– observing the order in which the rules are fired. If we draw
this order as a trajectory on the rules table for a good stable
system, the error and change of error should be gradually
decreased during the rules firing process. It means that we have
to move along this trajectory from the edges of the table to its
centre (Fig. 3.25) decreasing the group number from Group 4
towards Group 0.

For an unstable system there is an inverse tendency or at least
this tendency is not present (Fig. 3.26). Be careful with these
figures. They must be considered as just examples. And of course,
they demonstrate a tendency, not an exact order to follow.

So to make the system stable we need just to provide the
corresponding values for the parameters mentioned above. How
can I do that?

There can be different ways. The first and most obvious one
is to try to avoid making mistakes in fuzzy controller design. The
wrong choice of the rules and/or membership functions (to a lesser
degree) may make the system unstable. The first thing which
should be done is check the rules table. The widespread error for
the beginner is the wrong sign for the table output or one of the
inputs. It is easy to correct such a mistake. One needs just to
replace NegBig with PosBig, NegSmall with PosSmall, PosBig
with NegBig and so on. Another mistake is the wrong choice of
the range for possible input or output values.

If one makes no design mistakes, will the system be stable?
It is not so simple. Even if one makes no wrong decisions in

the simple structure controller design, the system may still be
unstable.

Fig. 3.25  A typical
trajectory of rules firing
for a stable system
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3.6.4 Hierarchical fuzzy controllers

What can be done in this case?
You may try another structure: try to apply a hierarchical

(multilevel) fuzzy controller or a fuzzy controller with meta rules.
In [Wang94] this approach is called a supervisory control. The
idea is pretty simple. The fuzzy controller is designed to satisfy
the performance specifications without a serious consideration of
stability problems. As the trade-off between performance and
stability is the most common problem in any controller design,
this way one is able to simplify the controller design significantly
as well as improve performance.

Hang on! Do we need a good performance when the system is
or can become unstable?

No, we do not. This controller has to work and cope with
ordinary situations. When the situation tends to become dangerous
from the stability viewpoint another controller has to take control.
This second controller is called a supervisory controller.

As the current theoretical methods of proving fuzzy control
system stability are limited in their applications, the stable-in-
theory  top level controller is highly desirable. This demands the
controller to be constructed as a simple unit with a small number
of inputs and rules. The deviation error can possibly be the single
input for this controller and it can be implemented with five to

Gr. 0
Gr. 1
Gr. 2
Gr. 3
Gr. 4

Fig. 3. 26   A typical
trajectory of rules firing
for a unstable system
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nine rules. This controller should be switched on when the
deviation error is large, and off when it is small. We use rough
terms to determine the switching rules as the switcher itself may
be implemented as a fuzzy controller. Undoubtfully this controller
should provide fast convergence of the output(s) to the desired
values. The steady-state characteristics of this controller are not very
important, because within a short time it will be switched off.

The low level controller(s) can have a complicated structure
and achieves the desired steady-state and time response
characteristics. In constructing  these controllers, all the methods
developed until now can be implemented. The intermediate level
controller(s) should provide smooth handing over the control
between the levels and eliminate the possibility of oscillation
between them. The deviation error can be considered as the
control input of the switch controller.

Example 3.7    Fuzzy control system for power system stabilisation

One of the main power system stability problems is the low-
frequency oscillations of the interconnected electric power
systems. These oscillations may be sustained for minutes and
grow to cause a system separation, if no adequate damping is
available. The model of one machine infinite-bus power system
[Ishig92] is given in Fig. 3.28. Unsurprisingly, the design of a
state-of-the-art power system stabiliser (PSS) for improving
stability has received much attention. This stabiliser should
demonstrate good performance under small as well as high
disturbances under various operating conditions of the power
system. The system is equipped with a fast-acting exciter (AVR)
and a speed governor (GOV) as controllers. The supplementary
stabilising signals U

a
 and U

g
 are added to each controller, and

these signals are produced by the fuzzy controller.

Fig. 3.28 The model of a
power system stabilised
by a fuzzy controller
[Ishig92]
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To solve this problem the structure of the fuzzy control system
was proposed and tested [Shi95]. The hierarchical fuzzy control
system includes a multilayer controller which incorporates two
fuzzy controllers on a low level and one on the upper level. Higher
level supervisory control is used for supervising an operation of
the direct controllers. Typical tasks of the supervisory controller
are monitoring the power system to determine the operating
modes, assignment of a direct controller and an adaptation
scheme. There are two fuzzy controllers at the lower level: one
is responsible for operation under large perturbation, the other
under small perturbation.

The supervisory controller monitors a value of the frequency
speed deviation. When the power system is subject to the large
perturbation, the speed deviation is high and vice versa. The lower
level fuzzy controller for the large perturbation has 49 rules to
cover the whole operating range, the lower level controller has just
24 rules. The dynamic responses of all fuzzy controllers are given
in Fig. 3.29.  Comparison analysis has proved that the hierarchical
fuzzy controller provides the same performance as the 24-rule
fuzzy controller under the small disturbance condition, however,
it provides much better response than the 24-rule controller under
the large disturbance condition.

Will this control system guarantee the stability for any system?
That is a good question. It is hard to answer in respect to any

system. [Wang 94] has proved the stability of the hierarchical
system satisfying some conditions. Other research has also proved
the stability of a single fuzzy controller under some conditions.

Fig. 3.29  Speed
deviation corresponding
to a large disturbance of
a three phase to ground
fault
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Fine control
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Actuator

Fine
actuator

Coarse

control

Exact

position

position

Approximate
Fuzzy

controller
(top level)

Fuzzy
controller
(low level)

Fuzzy
controller
( switch)Fig. 3.30 The model of a

compound actuator with
the coarse actuator and
the fine actuator
controlled by a fuzzy
controller [Yen92].

∆e

What is the difference? What do we need this multilevel structure
for?

Theoretically these conditions are different. Practically the
main advantage is the design simplicity. It is very convenient to
design a fuzzy controller based on just one criterion: either
stability or performance, not both.

Example 3.8 Servo controller for an optical disk drive [Yen92]

To control a disk drive, the compound actuator is widely used.
Data in an optical disk drive is recorded on the disk surface as
small areas of different reflectivity along concentric or spiral
tracks. The data tracks are 2 mm apart. With a 5¼-inch disk, the
actuator has to move the head across a 5cm stroke and position
it with a 0.1µm error. The compound actuator consists of a fine
actuator mounted on the back of a coarse actuator (see Fig. 3.30).
The fine actuator has a fast response and a high resolution, while
the coarse actuator can easily move over large distances.

The fuzzy control system includes two fuzzy controllers. Both
are rather identical in respect to the inputs, output and the rules
table. They use two inputs: the error and the change-of-error. Both
inputs have five classes and the output (control signal) has nine
classes. The following rules table is applied.

Table 3.8

e NB NS Z PS PB
NB Z PS PM PL PG
NS NS Z PS PM PL
Z NM NS Z PS PM
PS NL NM NS Z PS
PB NG NL NM NS Z
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The difference between fuzzy controllers is in the choice of the
input and output scaling factors. The hierarchical structure is also
applied here. To control the compound actuator the following rules
are applied:

● if the fine actuator is capable of handling the head movement,
it is applied,

● if the distance exceeds the fine actuator stroke, then the fine
actuator is maintained at the stretched position and the coarse
actuator is applied.

The two rules regulate the handover process between the two
controllers.
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HOW TO MAKE IT WORK
OR

DESIGN AND
IMPLEMENTATION

OF FUZZY CONTROLLERS
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4 FUZZY CONTROLLER
PARAMETER CHOICE

4.1 Practical examples

4.1.1 Fuzzy autopilot for a small marine vessel

Let us now reconsider our initial design attempt in a more
formalised way. We want to design an autopilot fuzzy controller
to control a movement of a small marine vessel.

Automation of a ship-steering process was initiated during the
1920s. Most modern autopilots are based on the PID controller
and have fixed parameters that meet specified conditions
[Polk93]. The aim is to keep a vessel moving along the
predetermined trackline with as small a deviation as possible. A
PID controller works well with a linear plant. In practice,
maritime vessels are nonlinear systems. Any changes in the
speed, water depth or mass  may cause a change in their dynamic
characteristics. In addition, the weather conditions will alter the
effects of disturbances caused by winds, waves and currents.

Typical PID autopilots have settings to adjust course and
rudder deadbands to compensate for vessel or environmental
changes. Despite this possibility, the resulting performance is
often far from optimal, causing excessive fuel consumption and
rudder wear. These effects are particularly obvious in small
vessels, where the sensitivity to disturbances and controller
settings is far greater than with large ships. Fuzzy controllers are
thought to be robust, enabling them to cope with nonlinear
changes arising in ship dynamics and sea conditions.

We will design a fuzzy autopilot for a vessel which proceeds
at a forward speed randomly distributed around 3.5 m/s and is
to follow straight line tracks with  as small a deviation as
possible. A trackline may be up to 10 km in length. Any number
of tracklines may be defined, and they may be parallel or
directed at some arbitrary angle to the previous trackline. Parallel
tracklines must be separated by at least 15 m.

The vessel is equipped with a position fixing system which will
establish its position in x and y coordinates with normally
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distributed random errors (standard deviation of 1 m). The heading
of the boat is measured with a normally distributed random error
(standard deviation of 1 degree).

Table 4.1

 Sea state Disturbance

Boat heading Position 3 dB bandwidth
w.r.t. current w.r.t. current of disturbance

heading position (Hz)
(degrees) (m)

Dead calm 0 0 0.000
Slight 5 2 0.200
Moderate 10 5 0.125
High 20 10 0.100

The guidance requirements are to be accomplished in the presence
of environmental disturbances of wind, waves and varying ocean
currents. For the purpose of this problem, the influence of wind and
waves may be treated as bandlimited random noise affecting the
vessel heading and position. Disturbances as high as 10 m and 20
degrees may be assumed. The controller should be exercised over
a range of environmental disturbances as defined in Table 4.1.

Ocean currents are constant within a given trackline and may
be up to 1.5 m/s and may approach the vessel from any randomly
chosen direction.

To give you more information the simulation model of the vessel
movement process in MATRIXx is provided (Fig. 4.1). Because

Fig. 4.1   The
MATRIXxTM simulation
model for the vessel
movement
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the heading angle and both coordinates can be measured, this
model has three outputs: the angle (Output 1), and the vessel
position coordinates, x (Output 2) and y (Output 3). This block
has just one input: the control input, the rudder angle. In this
model, blocks 4, 6, 16 perform the transformation of the rudder
angle into the heading angle. Actually they simulate a ‘pure’
(without any disturbance and errors) reaction of the vessel heading
on the control signal.

A few blocks simulate disturbance which acts on the heading
(block 5) and position (blocks 98, 80, 81, 82). The Disturbance_
for_position signal is produced by the block DIST_POS and is
presented by the filtered random signal, the characteristics of
which are chosen to satisfy the specifications (see Table 4.1). This
block has three outputs to simulate slight, moderate and high
disturbance. To imagine the influence of this disturbance you may
have a look at Fig. 4.2 which represents one coordinate position
disturbance only. The structure of the Disturbance_for_heading
block  is similar (block DIST_HEAD). This disturbance affects
the heading angle of the vessel. The current is modelled as having
a constant value, but the angle between the trackline and the ocean
current direction can be changed. All measured values include
measurement errors. These errors are modelled as normally
distributed random values and are added to the unmeasured values
to get real results.

Fig. 4.2   The simulation
result for the
Disturbance_for_position

slight disturbance

high disturbance

CH4.PM5 6/13/97, 10:26 AM109



110 FUZZY CONTROLLER PARAMETER CHOICE

All these disturbances are used to simulate a real-life movement.
The output of the vessel model (the heading angle) is affected by
the Disturbance_for_heading (block 5) and the measurement error
(block 25) to obtain the Heading_angle as the Output_1 for the
block. Also this angle is used to get the movement projections on
x and y axes after integration (blocks 87, 7). To simulate the
movement, the random signal (normal distribution with the average
3.5 m/s and various standard deviations) that is modelling the actual
speed of the boat is used (block 27). To simulate the real life
movement, the signals modelling the Disturbance_for_position
(blocks 98, 80, 81, 82), Ocean_current (blocks 2, 17, 84, 86) and
measurement errors (blocks 14, 26) are added to get x (Output_2)
and y (Output_3) coordinates of the current vessel position.

The values of  the Ocean_current magnitude and angle and the
Disturbance_for_position angle can be changed while modelling
to allow for various cases. The initial conditions in the integrators
may be changed to model different positions of the object before
the movement starts. The initial condition in the transfer function
block allows the model different initial positions of the heading
in respect to the trackline direction before the movement starts.
This model will be used as a plant model to design a fuzzy
controller.

Do we need a controller? All the disturbances look pretty
symmetrical. Will not the influence of any disturbance now be
compensated for later on?

Suppose our vessel starts moving along the straight line. In this
case, we do not need to turn it to keep the trackline. Suppose that
initially it is directed along the trackline as well. In this case, we
are putting our vessel under very favourable conditions. Let us
have a look at Fig. 4.3, which represents the vessel trajectory
without any controller.

The trajectory is shifted because of the ocean current effect. We
need just to compensate for this influence.

No. In this figure the movement was simulated in the absence
of any ocean current. If we add the ocean current of 1 m/s, we will
have the trajectory on Fig. 4.4. In this case you see that our vessel
deviates further and further away from the required trajectory. The
system is definitely unstable and needs to be controlled.

But without an ocean current, the trajectory is not that bad, is it?
No, it is not. Anyway let us see how far we can improve it with

a fuzzy controller, which we are going to design in the next
sections.
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Fig. 4.4 The vessel
trajectory without any
control (with the ocean
current of 1m/s)

Fig. 4.3   The vessel
trajectory without any
control (no ocean
current)

Why are we considering just a simulation? Real life examples are
more interesting.

OK. Before we start improving let me present two real
projects which have been developed and actually implemented
by Adaptive Logic, Inc.
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4.1.2 Smart heater control

Example 4.1

The description of this project is given in [Adap96]. Household
appliances that use heaters, such as ovens, rice cookers, and
toasters, should come quickly to the desired temperature and
maintain it regardless of changes in conditions such as load or air
flow. Heating elements, because of thermal inertia, require a
certain amount of time to change temperature. This latency
between control and response causes the heater to overshoot and
oscillate about the desired temperature. Once the selected
temperature is achieved, varying environmental conditions often
throw the heater back into oscillation. In addition, most heaters
have poor temperature control due to the use of crude, on–off
switches. The result is an inefficient and inconsistent operation.

To overcome this drawback, many industrial and consumer
products as diverse as industrial chambers, ovens, rice cookers,
toasters and irons use heating elements that could benefit from the
advantages and feature enhancements of fuzzy logic control. A
heater control has been designed that uses a fuzzy controller to
sense the temperature, compare it to the user-selected temperature
and control heater current. The inexpensive, dedicated fuzzy logic
device is an adaptive controller that prevents thermal instability,
providing consistent performance under all conditions.

We will describe both the fuzzy logic rules and design for the
heater control. Most appliance heaters are controlled by bimetallic
strips or capillary tubes that expand with heat and switch the
heater on or off. These crude mechanical controllers merely react
to temperature fluctuations and cannot anticipate when the heater
is approaching the selected temperature. When the element passes
through the operating point, the switch opens, cutting power to
the heater. But by this time, the heater has enough energy to carry
the system temperature far above the selected range and it takes
a while for it to return.

The switch stays open until the heater cools to the correct
temperature. At that point the switch closes, but some time is
required before the heater can again provide sufficient heat and
the system cools well below the correct temperature. The
overshoot and undershoot process can continue for minutes or
hours. A change in the selected temperature or in the
environment (such as changing air conditions in a heating system
or opening an oven door) may cause the heater to go into
oscillation again.
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Heaters have widely varying characteristics. They are specified
in terms of their form including length, shape, thickness and
material composition. Heating elements may add instability to a
system because of their slow response time and thermal inertia.
The heater specifications are based on the requirements of the end
product. The end product also has a range of thermal
characteristics that influence the behaviour of the heater. Many
variables of heating systems make the design of a controller for
different systems a difficult task. A control system using a fuzzy
controller brings the temperature of the heater to the selected
temperature quickly and keeps it there regardless of any changes
in the load or environment. This results in a more stable and
reliable operating temperature.

There are three external inputs monitored by the controller.
The first  comes from a thermistor to monitor the temperature.
The second  is the user-selected, desired temperature setting.
Input three is, again, the measured thermistor value signal only
delayed by a small amount of time. This last input enables the
controller to know the direction and magnitude of the
temperature change in addition to the absolute temperature. The
controller samples the input data, processes it and outputs a pulse
width modulated (PWM) output signal that switches a triac
controlling the current through the heater.

The fuzzy controller design parameters (inputs, outputs, fuzzy
variables and rules) are given in Fig. 4.5, followed by a brief
description of the fuzzy controller operation. The main part of any
fuzzy controller is implemented as a set of rules. It performs the
control algorithm. By studying the rules, one can see the criteria
for taking actions such as switching the heater on or off. These
rules make decisions based on adjustable membership function
definitions. The rules are easily modified to respond to different
criteria. The following  describes the rules’ purposes in relation
to the inputs, their associated fuzzy variables, and the action taken
when a rule is fired.

Timer rules (Rules 1 and 2) are used to generate the timer for
pulse switching the triac and to adjust the data processing rate.
Rule one increments the ramp output if it is in the count
membership function. When the ramp reaches the reset function,
then the reset rule will be fired and return the ramp to zero to begin
to increment through the count again. The rate of an increment is
set to 12, but could be any non-zero value according to the
requirements of the application. The increment and reset actions
implement a timer that causes the ramp to sweep across an axis.
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The heater output is used to define the centre value of
membership functions On and Off. On and Off are, in turn, used
by later rules to switch the triac on and off. Rules 3–19 consider
both the current temperature and the previous value of temperature
whenever the time has reached reset. The winning rule in this group
will add to or subtract from the value of the heater.

The fuzzy variables classify the temperature as matching the
selected value, or being too hot or cold. The membership
functions used the user selected temperature (TSET) as a floating
centre value to compare the selected temperature with the actual
temperature. As the user varies the desired temperature value, the
membership function centres move left or right. Other fuzzy
variables use the current temperature value to define their centres.
As the temperature varies, the functions shift right or left. The
fuzzy variables compare the current temperature with its time-
delayed value. The comparison is a calculation of the derivative
value and sign of the temperature. By comparing both the current
value and derivative of temperature with the desired temperature,
one can calculate a temperature correction value based on both
the absolute difference and the rate of change of temperature. The
calculation allows for precise control and minimises the overshoot.

Rules 3–19 use one fuzzy variable from each set to adjust the
value of the heater. The actions of the rules are designed to move
the heater towards the desired temperature without causing it to
overshoot. Table 4.2 summarises the various conditions and
actions of the heater control rules. Note, if all of these rules are
not fired (i.e., the blank boxes scenarios in Table 4.2) then the
value of the heater is not changed. Some of the rules are described
below. Values indicated are added from the heater based upon the
winning condition of TEMP and DELAY. No action is taken
where there are blanks.

Table 4.2

    TEMP TVLOW TMLOW TSLOW TON TSHIGHT MHIGH TVHIGH

DELAY

DLPOS –15

DSPOS –8 –6 –1 –2

DON 25 5 1 0 –1 –5 –25

DSNEG 2 1 6 8

DLNEG 15
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Inputs
TEMP Measured temperature
TSet Desired temperature setting
Delay Delayed measured temperature

Outputs
Ramp Pulse width ramp
Heater PWM adjust value
Triac PWM output to triac

Fuzzy variables
Heater Triac Control
Ramp is Count
Ramp is Reset

Timing control
Ramp is On
Ramp is Off

Rules
Timing Ramp Generation
1. If Ramp is Count then Ramp + 12
2. If Ramp is Reset  then Ramp = 0

Heater temperature control
 3. If TEMP is TON and Delay is DOn and Ramp is Reset then Heater + 0.
 4. If TEMP is TVLow and Delay is DOn and Ramp is Reset then Heater + 25.
 5. If TEMP is TVHigh and Delay is DOn and Ramp is Reset then Heater –25.
 6. If TEMP is TMLow and Delay is DLPos and Ramp is Reset then Heater –15.
 7. If TEMP is TMLow and Delay is DSPos and Ramp is Reset then Heater –8.
 8. If TEMP is TMHigh and delay is DLNeg and Ramp is Reset then Heater + 15.
 9. If TEMP is TMHigh and delay is DSNeg and Ramp is Reset then Heater + 8.
10. If TEMP is TMLow and Delay is DOn and Ramp is Reset then Heater + 5.
11. If TEMP is TMHigh and Delay is DOn and Ramp is Reset then Heater –5.
12. If TEMP is TSLow and Delay is DSNeg and Ramp is Reset then Heater + 2.
13. If TEMP is TSLow and Delay is DSPos and Ramp is Reset then Heater –6.
14. If TEMP is TSLow and Delay is DOn and Ramp is Reset then Heater + 1.
15. If TEMP is TSHigh and delay is DOn and Ramp is Reset then Heater –1.
16. If TEMP is TSHigh and Delay is DSNeg and Ramp is Reset then Heater + 6.
17. If TEMP is TSHigh and Delay is DSPos and Ramp is Reset then Heater –2.
18. If TEMP is TON and Delay is DSNeg and Ramp is Reset then Heater + 1.
19. If TEMP is TON and Delay is DSPos and Ramp is Reset then Heater –1.

Over-temperature turn-off
20. If TEMP is OverT             then Heater –1.

Heater triac control
21. If Ramp is Off then Triac = 0.
22. If TEMP is OverT             then Triac = 0.
23. If Ramp is On then Triac = 255.

Fig. 4.5     Fuzzy
controller for a smart
heater

Temperature detection
TEMP is TON
TEMP is TSHigh
TEMP is TMHigh
TEMP is TVHigh
TEMP is TVLow
TEMP is TMLow
TEMP is TSLow

Over-temperature detection
TEMP is OverT

Delayed temperature detection
Delay is DLNeg
Delay is DLPos
Delay is DSNeg
Delay is DSPos
Delay is DOn
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Rule 3, for example, is true if the temperature and its previous
value are in the selected range, and leaves the heater unchanged.
Rules 4 and 5 detect the temperature to be far from the selected
value and not changing. These rules make large increases or
decreases of the heat. Rules 6 and 7 both consider a medium-low
value for the temperature (TMLOW), but they consider different
derivatives and have different action values. Rule 6 considers a
large positive delayed value (DLPOS) while Rule 7 considers a
small one (DSPOS). At first glance, the correction actions for the
rules may seem to be counterintuitive. In each rule the temperature
is too low, yet the action is to reduce the value of the heater which
decreases temperature when the heat is stable. The key is that in
each rule the derivative is positive indicating that the temperature
of the heater is increasing. The reduction in the value of heat
prevents overshoot while still allowing the temperature to reach
the set point.

The corrective action from Rule 6 is larger than that for Rule
7 because in the former rule the derivative value of the air
temperature was larger indicating a faster increase in temperature.
The larger previous value subtracts more from the heater (–15)
than does the smaller (–8). The same reasoning holds in the
remaining rules in the set. As the heater moves closer to the
desired point, other rules will act to gradually hold it there.

Rules 20 and 22 guard against the heating unit from getting
too hot. Rule 20 decreases the heater value in small increments
when the temperature has gone above the safety level. During this
process, at the same time, Rule 22 prevents the PWM control of
the triac and keeps it off until the temperature decreases to below
the safety value. Note that Rule 23 (which turns on the pulse) will
never be enacted while the temperature is greater than the safety
value. Even if the fuzzy variables Ramp is ON and TEMP is
OverT should evaluate to the same value, the precedence goes to
the first rule (Rule 22) for determining the action. If the
temperature is above the safety value, TEMP is OverT will
always be evaluated as a maximum value.

Rules 21–23 control the PWM output, triac, turning it on and
off. The decision is based upon the comparison of the ramp
feedback value to the heater value. The heater value serves as a
centre for membership functions ON and OFF. As the ramp moves
across count and back to zero, it also moves between the functions
ON and OFF. Depending on the value of  the heater, the position
of the centre value for the two functions will move to the left or
right. That will vary the amount of time during a given sweep that
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the heater is on or off. By moving the heater, one changes the width
of the pulse controlling the triac and the heater temperature.

4.1.3 Active noise control

Another example is provided with the real application results.

Example 4.2
Perhaps,  there is no more popular problem in telecommunication
engineering than one of noise cancellation. One of the methods
explored which is called an active noise control (ANC) is
producing an anti-noise signal. Adaptive Logic, Inc. has
developed a solution [Adap96] based on fuzzy controller design
and realisation. The solution achieves audio noise reduction of
over  –20 dB. By adjusting phase and gain values from the
measured noise level, the controller reduces significantly the

dynamic error measured at the cancellation point. The idea of an
ANC is to produce an anti-noise signal coinciding with the noise
in phase and magnitude to cancel it out. Figure 4.6  shows a
typical ANC system that contains a noise source, noise sensor,
error sensor and the control or anti-noise source. The system can
be modelled as a closed loop system, where the error is

Fig. 4.6  A typical ANC
system

Fig. 4.7  Waveform
synthesis for an ANC
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continuously being minimised. Though there are various methods
for producing the anti-noise, they all rely on the principle that a
signal, when added to the inverse of itself, will produce a null.
The problem is that in a time variable world, producing the exact
inverse signal can be very difficult. Additionally, acoustic
reflections can add to the original signal producing even more
complexity in the system. The exact specifications for the anti-
noise signal might be known for some very periodic systems. In
these cases, only the phase and amplitude need to be adjusted. An
example of such a system might be a large transformer or motor,
which being driven at 60 Hz, produces 60 Hz noise and
harmonics. For this system, the exact frequency is known so it can
be regenerated, phase shifted and amplitude adjusted to make the
anti-noise. Figure 4.7  shows a waveform synthesis system.

For simplicity in this example, the error signal is the RMS
value of the noise sensor signal. Response time is critical, because
if set too slow, transients will not be seen, and if too fast, a null
may never be reached. The controller monitors the error signal,
and generates a derivative, so that the direction of the error can
be measured. The derivative is simply produced by copying the
error signal to an output and then on the following cycle
comparing the old stored value at the output (internally fed back)
with the new error signal.

By monitoring the error and delayed error, the controller can
determine if the overall error is improving or getting worse.
Since this is all the controller knows, it must try parameter
changes to see how they affect the error. In other words, the
controller does not know if the phase should be increased or
decreased. It only knows that since an error exists, an adjustment
must be made. If after making an adjustment to the phase or
amplitude, the error has improved, then the controller makes the
same adjustment again. When an increase in the error signal is
measured, the controller ‘takes back’ the last change made,
which caused the error to increase. It then begins to adjust the
other parameter in the same way before again returning to
readjust the first parameter. It will continually switch back-and-
forth between parameter adjustments tuning them for optimal
noise cancellation. By making the adjustment larger when the
error is large, and smaller when the error is small the time
needed to reach a null can be shortened. Because the dynamics
of this system are slow, audio frequencies, we must be sure that
after making a change, we wait for the system to respond before
the change to error is read.
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If the remaining harmonics are high enough to cause concern,
they too might need to be cancelled in a similar manner, but with
a separate phase and amplitude circuit. For most systems of this
type, only the primary frequency and first harmonic need to be
cancelled.

The phase accuracy of the anti-noise causes the most change
and therefore error in this type of system. Figure 4.8 illustrates a
single wave being cancelled by its inverse, but with 5 degrees of
error. It can be seen that with only this small degree of error, a
significant signal still remains. This problem is only worsened
with more complex signals, therefore care must be taken in the
phase shifter design. Note that delay in a given system remains
fairly constant over time. This means that the phase shifting circuit
need not vary more than the delay would change over a long term,
typically less than 45 degrees. So the resolution of the controller
can be effectively increased by concentrating it to the narrower
region.

The rule set for this example developed by Adaptive Logic, Inc.
is listed in Fig. 4.9. This example uses one analog input, Error,
and two analog outputs, Phase and Gain. Two other outputs, State
and ErrorDly are used for internal variable storage. The State
variable forms a state machine that controls the flow of the
system. As discussed earlier, ErrorDly, is used to determine the
direction of Error. In other words it tells the controller if Error is
getting better or worse.

The rules are divided into four sections – one section for each
of the two outputs and two variable registers. For each sample
only one rule in each section can win. That rule then adjusts the
output. If no rules are fired, the output does not change.

Fig. 4.8 Error caused by
a small phase shift
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The delayed error, ErrorDly, is simply the Error delayed by one
sample time. To solve the terms Error is Worse and Error is
BetterSame, Error is compared with ErrorDly. If Error is greater
than ErrorDly, then Error is Worse. Otherwise, it is Better or the
Same. There are four Phase and four Gain states. In either case,
State 2 increases the parameter, and State 3 decreases it. States 1
and 4 are used to provide time for the parameter change to settle
before checking the response of Error.

To illustrate the efficiency of the fuzzy control methodology,
Fig. 4.10  shows the frequency spectrum of a noise source with
many spurious frequencies.

Phase control rules section
0. If State is Zero then Phase = 127.
1. If State is PHASESTATE2 and Error is High then Phase + 5.
2. If State is PHASESTATE3 and Error is High then Phase – 5.
3. If State is PHASESTATE2 then Phase + 1.
4. If State is PHASESTATE3 then Phase – 1.
5. If State is PHASESTATE1 and Error is Worse then Phase – 1.
6. If State is PHASESTATE4 and Error is Worse then Phase + 1.

Gain control rules section
7. If State is Zero then Gain = 127.
8. If State is GainState2 and Error is High then Gain + 5.
9. If State is GainState3 and Error is High then Gain – 5.
10. If State is GainState2 then Gain + 1.
11. If State is GainState3 then Gain – 1.
12. If State is GainState1 and Error is Worse then Gain – 1.
13. If State is GainState4 and Error is Worse then Gain + 1.

State control rules section
14. If State is Zero then State = PHASESTATE1.
15. If Error is Zero and State is NotZero then State = PHASESTATE1.
16. If State is PHASESTATE1 and Error is BetterSame then State =

PHASESTATE2.
17. If State is PHASESTATE2 then State = PHASESTATE1.
18. If State is PHASESTATE1 and Error is Worse then State = PHASESTATE3.
19. If State is PHASESTATE3 then State = PHASESTATE4.
20. If State is PHASESTATE4 and Error is BetterSame then State = PHASESTATE3.
21. If State is PHASESTATE4 and Error is Worse then State = GainState1.
22. If State is GainState1 and Error is BetterSame then State = GainState2.
23. If State is GainState2 then State = GainState1.
24. If State is GainState1 and Error is Worse then State = GainState3.
25. If State is GainState3 then State = GainState4.
26. If State is GainState4 and Error is BetterSame then State = GainState3.
27. If State is GainState4 and Error is Worse then State = PHASESTATE1.

Error delayed rules section
28.  If Anything then ErrorDly = Error.

The frequencies, though centred around 500 Hz, extend down to
0 Hz and up to over 6 KHz. The noise level at the peak is about
–2 dB. Figure 4.11  shows the cancelled spectrum for this noise

Fig. 4.9   Rule Set

CH4.PM5 6/13/97, 10:27 AM120



FUZZY CONTROLLER PARAMETER CHOICE 121

source. With the active cancellation, the peak noise level is now
at –25 dB and the energy contained in the other frequencies is
dramatically reduced. With multinode cancellation other
frequencies could be further reduced as well.

4.2 Iterative nature of a fuzzy controller design
process
A fuzzy controller design process contains the same steps as any
other design process. One needs initially to choose  the structure
and parameters of a fuzzy controller, test a model or the
controller itself and change the structure and/or parameters based
on the test results. You may see that the actual design process

Fig. 4.10  Complex noise
source frequency
spectrum

Fig. 4.11 Cancelled
complex noise frequency
spectrum
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consists of choosing the controller structure and some parameters
(synthesis of the controller) and evaluation of their influence on
the controller stability and performance (analysis of the
controller). The processes of the analysis and synthesis are
interrelated and interdependable on each other. The process can
be divided roughly into two steps: an initial choice of the structure
and parameters, and the subsequent adjustment based on the
analysis. The first step in fuzzy controller design is characterised
by a high  degree of subjectivity, and as a result, the second step
may require a high effort in order to be implemented. This simple
algorithm is presented on Fig. 4.12.

The first step of  fuzzy controller design is considered in this chapter,
the second step will be presented in Chapter 5. Obviously, the better
the initial choice, the simpler the second step. One can hope to correct
all mistakes later, though, a good start cannot be overrated.

This figure is really pretty simple. However, I have a lot of
questions. For example, how do I choose parameters? Which
parameters?

Let us consider these problems in greater detail. The classical
fuzzy controller design scheme contains the following steps:

● A selection of the input and control variables – a definition of
which states of the process shall be observed and which control
actions are to be considered.

● A definition of the condition interface – fixing up the way in
which observations of the process are expressed as fuzzy sets.

● A design of the rule base – a determination of which rules are
to be applied under which conditions.

● A design of the computational unit – supplying algorithms to
perform fuzzy computations. Those will generally lead to fuzzy
outputs.

● A definition of  the rules according to which fuzzy control
statements can be transformed into crisp control actions.

Structure and parameters initial choice

Testing

No

END

The results are satisfactory
Yes

1st step
(subjectivity)

Change (tune) parameters
2nd step

(high effort)
Fig. 4.12 A fuzzy
controller design process
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The first step is usual in design of any control system. Inputs and
outputs of the controller need to be chosen.

Should we apply the error and change of error as the inputs of
the controller?

This is a universal approach for a feedback control in a case
of a PD-like fuzzy controller. Sometimes another choice can
produce better results. In our vessel movement control problem,
both the deviation from the trajectory and the difference between
the required heading angle and the actual one can be considered
as an input. One or both of them can be used.

Hang on! You mentioned that both the position and angle of
deviation can be chosen as the inputs. Which one should I
choose?

I do not know a general answer. In Fig. 4.13 and Fig. 4.14, you
see the movement trajectory for both angle and deviation taken
as the inputs. However, the results presented on Fig 4.13 do not
take into account the current and in Fig. 4.14  the current of
1 m/s is simulated. You see the results are pretty different. Because
a fuzzy controller realises a nonlinear mapping, it is very hard to
predict the performance of which controller and in which aspect
would be better. I would advise you to try both of them. And if
you design a fuzzy regulator fighting against high disturbances,
try a parallel structure of both fuzzy controllers.

Fig. 4.13  Movement
trajectory without any
current
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4.3 Scaling factor choice

4.3.1 What is a scaling factor?

The first stage of the fuzzy controller operation is fuzzification
and the last one is defuzzification. On both stages, the
membership functions which describe different values of the
linguistic variables (or labels) are applied.

What is a scaling factor?
To choose membership functions, first of all one needs to

consider the universe of discourse for all the linguistic variables,
applied to the rules formulation. To specify the universe of
discourse, one must firstly determine the applicable range for a
characteristic variable in the context of the system designed. The
range you select should be carefully considered. For example, if
you specify a range which is too small, regularly occurring data
will be  off the scale (Fig. 4.15b), that may impact on an overall
system performance. Conversely, if the universe for the input is
too large (Fig. 4.15a), a temptation will often be to have wide
membership functions on the right or left to capture the extreme
input values.

For our vessel control system, for the deviation input the
universe of discourse can be considered as a possible reasonable
range of deviation, for example ± 50 m. If the actual room
temperature is applied as the input for a control system, then the
reasonable range will be between 10°C and 40°C. One needs to

Fig. 4.14  Movement
trajectory with the
current of 1 m/s
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Fig. 4.15 Choice of the
scaling factors

remember that a reasonable choice in one case can become bad
in another. It is very hard to give general recommendations.

What can we do in this case?
Because of this situation it is usually desirable and often

necessary to scale, or normalise, the universe of discourse of an
input/output variable. Normalisation means applying the standard
range of [–1,+1] for the universe of discourse both for the inputs
and the outputs.

Doesn’t it mean that our actual values will be too large or small?
It does if we do not modify the structure of the fuzzy

controller. The structure of  Fig. 3.10 should be replaced with one
given in Fig. 4.16.

In the case of the normalised universe, an appropriate choice
of specific operating areas requires scaling factors. An input
scaling factor transforms a crisp input into a normalised input in
order to keep its value within the universe. An output scaling
factor provides a transformation of the defuzzified crisp output
from the normalised universe of the controller output into an
actual physical output.

What do these scaling factors affect?
The role of a right choice of input scaling factors is evidently

shown by the fact that if your choice is bad, the actual operating
area of the inputs will be transformed into a very narrow subset
of the normalised universe or some values of the inputs will be
saturated.
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So the right choice of the input scaling factors is the most
important thing.

Wait a minute. Let us consider the role of the output scaling
factor. One can see when the output is scaled, the gain factor of
the controller is scaled. The choice of the output scaling factor
affects the closed loop gain, which as any control engineer knows,
influences the system stability. The behaviour of the system
controlled depends on the choice of the normalised transfer
characteristics (control surface) of the controller. In the case of a
predefined rules table, the control surface is determined by the
shape and location of the input and output membership functions.

4.3.2 Where should the tuning start?

[Palm95] recommends the following priority list:

● The output denormalisation factor has the most influence on
stability and oscillation tendency. Because of its strong impact
on stability, this factor is assigned to the first priority in the
design process.

● Input scaling factors have the most influence on basic
sensitivity of the controller with respect to the optimal choice
of the operating areas of the input signals. Therefore, input
scaling factors are assigned  the second priority.

● The shape and location of input and output membership
functions may influence positively or negatively the behaviour
of the controlled system in different areas of the state space
provided that the operating areas of the signals are optimally
chosen. Therefore, this aspect is the third priority.

According to these recommendations, I understand that we have
to choose the output scaling factors and then the input scaling
factors.

It is better to try to make both choices simultaneously. Actually
all scaling factors influence the performance indicators.

Normalisation

Ref.
input

Defuzzification

Process or object under control

fuzzy

output

Controller

membership functions
output

Database  Rule Base
Knowledge Base

input
crisp crisp

output

Inference EngineFuzzification
fuzzy

input

input
membership functions

Rules
table

Denormalization

Fig. 4.16  The structure
of a fuzzy controller with
the normalisation and
denormalization blocks

CH4.PM5 6/13/97, 10:27 AM126



FUZZY CONTROLLER PARAMETER CHOICE 127

Yes, like coefficients in PID controllers. Maybe our previous
experience with them can help.

Absolutely! The obvious way is to apply the existing
knowledge of classical PID design to a fuzzy controller design.
This idea was proposed a rather long time ago [Tang87].

To do it we need to understand the similarity between a fuzzy
controller and a PID controller. We have to analyse the
relationship between the scaling factors of a fuzzy controller and
the coefficients of a PID controller.

Exactly! Some research has been conducted in this area. The
most clear recommendations are presented in [Yag94], which
analysed a fuzzy PI-like controller (Fig. 3.14) in comparison with
a classical PI controller. The analysis established the similarity
between coefficients K

I
 and K

P
 of the PI controller and scaling

factors and, proves that a fuzzy controller can be approximated
by a virtual PI controller:

∆u(t) = K
I 
e(t) + K

P
 ∆e(t)

with parameters:

K
I
  = K

I 
(K

du 
K

e
) and K

P
  = K

P 
(K

du 
K

d
).

From here one can conclude that:

● increasing/decreasing the output scaling factor K
du  

causes
increasing/decreasing both coefficients of the corresponding PI
controller, and therefore, it determines the gain factor of the
fuzzy controller;

● increasing/decreasing the input scaling factor K
e
 results in

increasing/decreasing of the parameter K
I
;

● increasing/decreasing the input scaling factor K
de  

causes
increasing/decreasing of the parameter K

P
.

How can it help in the fuzzy controller parameter choice?
If you do not have any experience in a classical PID

controller design, it is no help. However, if one applies the
knowledge of PID coefficients’ influence on a controller
performance, one will be able to use similar rules for tuning
scaling factors of a fuzzy controller in the manner identical to
a PI controller. The rules derived for tuning a PI-like fuzzy
controller scaling factors are given in Table 4.3. A similar
relationship can be derived for a PD-like and a PID-like fuzzy
controller (see Fig. 4.17).
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Table 4.3 Rules for tuning parameters of a PI-like fuzzy controller [Rez95-2]

Tuning action for

Error attribute Kde Kdu Ke

Steady divergence Decrease Decrease Decrease
Overshoot / oscillation Decrease Decrease Decrease
Speed of response Increase Increase Decrease
Steady state error Decrease Decr/Inc Increase

As far as I understand these recommendations, they give some
advice of how to tune scaling factors or at least in what direction
they should be shifted. However, they do not explain how to
choose these parameters initially.

I do not agree. The relationship between a fuzzy controller
and a PID controller given in [Yag94] has a global nature. One
can use them as a basis for other recommendations. For example,
one can see that the gain factor of a fuzzy controller could be
evaluated approximately as a product of an output and a first input
scaling factor. So initially one can choose the output scaling factor
to provide the gain required by the controller specifications. Of
course, design is a trial-and-error process. Because one
understands how a change of the scaling factors influences the
performance characteristics, one can try different scaling factors,
changing their values in a corresponding direction, until the
controller demonstrates the performance required by the
specifications.

We discussed before that an output scaling factor is determined
by the universe of discourse for the output, similarly for an input.
Now you are talking about other reasons.

Sure, if you have a possible output range limited by
specifications, physically or by any other way, you should not
cross this boundary. One needs to remember that any controller,
including a fuzzy one, produces an output signal, which is applied
to the object under control. This object can impose some
limitations upon the signal. In this case, the output scaling factor
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Fig. 4.17  Similarity
between scaling factors
of a fuzzy controller and
coefficients of a PID
controller
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is fixed. Then the input scaling factor should be determined to
provide the required gain for the controller.

Aren’t the same limitations valid for the input?
If we use a feedback structure and apply an error signal as one

of the controller inputs, the answer is generally no, because
usually it is hard to draw up obvious limitations for the error
signal. However, if we use another specified input, the limitations
can be derived from the controller future behaviour consideration,
and these limitations have to be applied to determine the scaling
factors.

Sometimes the right choice of the scaling factor becomes the
main problem of a design project. In this case, special attention
is paid to the problem. The scaling factor can be determined, for
example, at early stages of the fuzzy controller design and used
later.

4.3.3 Application example
Example 4.3  A camera-tracking fuzzy controller [Lea92]

A control system for managing the traffic around a space station
is under development at the Johnson Space Centre. The first
phase of this development is a camera-tracking system that should
control the camera gamble drive to keep any object in the field
of view (FOV) of the camera.

The camera generates measurement results in terms of pixels
where the field of view is represented with a 512 × 512 pixel map.

A fuzzy controller controls pan and tilt rates based on pixel
object position.

512 pixels

512 pixels

0

����������	
�������

Fig. 4.18 Tracking an
object with a camera
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The object tracking  means aligning the pointing axis of a
camera along the object line of sight (LOS) vector. The
monitoring camera is typically mounted on the pan and tilt
gamble drives, which are capable of rotating the pointing axis
within a certain range. The object LOS vector is estimated from
the position measurements in terms of pixel (as shown in Fig.
4.18) and is an input for a fuzzy controller. The controller outputs
the rotation rate required to align the pointing vector along the
LOS vector.

The main problem in the design of this fuzzy controller was
a scaling factor choice. This was because the universe of discourse
of the output strongly depended on the position of the object and
its velocity in respect to the camera. If the object is very far away
and has a typical approach velocity, its LOS vector is going to
rotate slowly. If the object is close enough, its approach velocity
may rotate the LOS vector with a high rate. In that case the object
may go out of the FOV quickly.

To solve this problem, the decision was taken to evaluate the
scaling factor depending on the distance. This problem was solved
by the first part of the controller (Fig. 4.19) which outputs a fuzzy
estimation of the scaling factor. This estimation is applied to the
main part of the fuzzy controller.

One needs to remember that while changing the scaling factors,
one actually modifies a linguistic sense of the inputs and outputs
of the fuzzy controller. If the only purpose of this change is to
improve a system performance without intending to maintain a
linguistic essence of a fuzzy controller, then one may change the
scaling factors. However, if the rules base has been formulated
by the expert such an approach cannot be appropriate. Changing
the scaling factors may result in losing the original linguistic sense
of a rules base. The experts may not recognise their rules after
tuning the scaling factors and will not be able to formulate new
rules.

Fuzzy controller

for gimble rates
Tilt rate

Pan ratePixel X position

Pixel Y position

Rules table
for scaling factor

Distance

Fig. 4.19 The structure
of a fuzzy control system
for a camera tracking
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4.4 Membership function choice

4.4.1 Distributing membership functions on the universe of
discourse

We concluded in the previous section that a fuzzy controller was
similar to a linear PID controller. Is it right?

Yes it is. A fuzzy controller can be approximated as a PID-
like controller very roughly. This approximation can be applied
when one considers the problem of an initial scaling factors
choice. In a case of a PID controller, a design problem includes
a proper choice of the PID-controller coefficients.  In a fuzzy
controller design, one needs to choose many more parameters:
membership functions, fuzzification and defuzzification
procedures, etc. These extra parameters make a fuzzy controller
more robust and much more difficult for analysis as well.

In the membership function choice, one has to solve a few
problems: how to choose general parameters, such as the number
of classes (membership functions) to describe all the values of the
linguistic variable on the universe, the position of different
membership functions on the universe of discourse, the width of
the membership functions, and concrete parameters, such as the
shape of a particular membership function.

We will try to provide general recommendations first of all.
Let us start with the position of the classes on the universe.
Suppose we have three classes: high, medium and low with the
membership functions given in Fig. 4.20. What do you suggest
here?

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Low Medium High

Fig. 4.20  Membership
functions (classes)
distribution
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I guess it is not very good. If we take, for example, a real input
signal of 16, it does not correspond to any class (the degree of
matching any class is 0). It means that this real input does not
fire any rule so the controller does not react on this input. If the
membership functions distribution is supposed to describe output
classes in some defuzzification methods, the area on which
integration is performed will be discontinued.

I agree that the membership functions describing different
classes should overlap. But how much? Which overlap is better,
Fig. 4.21a or b? The  choice of membership functions remains as
the most undeveloped problem in fuzzy controller design.

Software design packages propose  different ways to define
membership functions but give no, or in the best case very
general, recommendations on how to select the membership
function shape and width. Although some theoretical [Kre92] and
practical [Fuz92] suggestions have been already made, this choice
is based mainly  on  professional experience and common sense.

4.4.2 An evaluation of the membership function width

The first step in a width selection should be the choice of a
parameter to evaluate it. The absolute value of the width is not
appropriate as it does not compare the width of the separate
membership function with the number of classes and the universe
of discourse. [Mar92] has proposed two indices which meet this
demand: the overlap ratio and the overlap robustness. These
indices evaluate a width of membership functions through the
overlap of two adjacent functions. The idea is very fruitful,
because it allows us to compare the scope of the separate
membership function with the universe and the number of classes.

[Mar92] considered just linear membership functions, and these
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indices worked very well. They can easily be calculated for all
membership functions with a limited discourse area, however, this
is not the case  for functions with an infinite discourse area, for
example, an exponential (Gaussian) membership function.
Moreover, the first index does not depend on the membership
function shape at all and the second one depends on the shape
within the overlap area only.

For these reasons we would like to propose the index of the
whole overlap:

∫ 
x 
min (µ

1
 (x), µ

2
 (x))

WO =
∫ 

x 
max (µ

1
 (x), µ

2
 (x))

where µ
A
(x)  and µ

B
(x) are two adjacent membership functions.

The evaluation formulas for this index and some usual
membership functions are given in Table 4.4.

Fine. But what do we need this parameter for?
We can see that the index of the whole overlap (WO) can easily

be calculated in the cases of membership functions with the
unlimited discourse area as well as in the cases of simple functions
with a limited area. Also it gives us  complete information about
the width of a membership function, comparing it with a number
of classes and an area of discourse. Judging all of these reasons,
we can choose this parameter as a base to evaluate its influence
and the influence of the membership functions position on the
different performance indicators of a fuzzy controller.

Fig. 4.22 A whole
overlap parameter
evaluation
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Table 4.4 Whole overlap parameter for some membership functions

Membership function Formula WO ratio

Linear µ(x) = 1 – abs((x – m)/σ)
(triangular)

Exponential (Gaussian) µ(x) = exp[–((x – m)/σ)2]

Quadratic µ(x) = max (0, 1 – ((x –m)/σ)2)

The research results [Rez93] let us make the following assertions:

● The parameter of the whole overlap is appropriate for an
evaluation of a membership function width as it compares the
width of a separate membership function with the area of
discourse and the number of classes.

● Use of narrower membership functions results in a faster
response (smaller response time).

● Larger oscillation, overshoot and settling time appear when
narrower membership functions are used.

● Use of narrower membership functions produces the system
with lower steady-state error. But with a very narrow function,
the steady state may possibly not be reached at all.

● The choice of the defuzzification method does not significantly
influence the system performance characteristics.

● The presence of small noise and disturbances generally keeps
the statements made above valid.

If we compare an action of a fuzzy controller with the action of
a conventional PID controller, we can state that when we decrease
a membership function width (decrease the WO ratio), we increase
the differential part, and in the opposite case we emphasise an
integration performance of the controller. So we can see some
analogy between a membership functions choice and a PID
controller coefficients choice similar to that we established for a
scaling factor choice.

Has large noise presence been considered in this research?
Yes, it has. Generally speaking in the presence of large
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disturbances it would be better to apply a fuzzy controller with a
higher overlap.

4.4.3 Application example
Example 4.4 A temperature control servo system

A control servo system keeps a constant temperature for a
conventional water heater tank. The water heater  basically has
five outputs: the temperature error (the difference between the
desired temperature and the real one) and four other states related
to the water level of the tank itself. Initially only the temperature
was examined. If the temperature is too high, then the amount of
necessary heat is less than the current amount. If it is too low, then
more heat is necessary. The fuzzy controller with different
membership functions has been used to control this plant. In Fig.
4.23 step responses of this control system with different overlaps
are given. The Gaussian membership functions and means of
maximum defuzzification methods were applied.

This was a simple example and even here one can see that such
response parameters as the steady-state error, overshoot, settling
time do depend on the overlap and consequently on the
membership function choice. A more complicated one is our
vessel control.

Example 4.5 A vessel movement control system

Figure 4.24 presents two different trajectories realised by similar
fuzzy controllers. The only difference was in the overlap of the
controller input and output membership functions. You see that the
results obtained are quite different.

Fig. 4.23 The step
response for the tank
temperature control
system with various
overlaps
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And that is not all. On the base of this analysis a user can be
advised as follows:

● Initially one chooses the width of the membership functions
to provide the whole overlap about 12–14 per cent.

● In order to improve steady-state accuracy one has to decrease
the membership functions’ whole overlap after their initial
choice and simulation.

● In order to improve stability characteristics (oscillation, settling
time, overshoot) one has to increase the whole overlap.

● The use of a fuzzy controller with wider membership functions
and a higher overlap can be recommended in the presence of
high disturbances.

Now we have some rather clear recommendations about the
membership function width selection and further modification.
What about the choice of the shape?

Research results do not demonstrate a significant dependence of
the performance indices on the shape of the membership functions
generally. However, this dependence should be investigated in any
particular case because some improvement can be achieved.

4.5 Fuzzy rule formulation

4.5.1 Where do rules come from?

It is very important to emphasise the role of the rules in a fuzzy
controller. Some research has been conducted and some results

Fig. 4.24 The various
trajectories
corresponding to
different overlap
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have been achieved. If one tries to classify the approaches applied
to the rules derivation [Lee90], the results are as  Table 4.5 and
Section 8.7.

Table 4.5 Main approaches and sources of fuzzy controller rules

Expert experience and knowledge.
Operator’s control actions learning.
Fuzzy model of the process or object under control usage.
Learning technique application.

The first approach comes from an expert systems domain. The
reason for that is pretty obvious: any fuzzy controller is actually
an expert system applied to control problems. All theoretical and
practical methods of knowledge acquisition developed in artificial
intelligence and other sciences are to be applied here. It should be
noted that by using linguistic variables, fuzzy rules provide a natural
framework for human thinking and knowledge formulation. Many
experts find that fuzzy control rules provide a convenient way to
express their domain knowledge. So cooperation with the experts
will be easier for a knowledge engineer.

How do we find the rules practically? I mean how should this
process be organised?

Two methods can be proposed based on work with the
documentation or the experts themselves. The first one is based on
redeveloping manuals, operation instructions and  any other
documents available into the set of the rules. Another way includes
an interrogation of experienced experts or operators using a carefully
organised questionnaire. Of course, a good knowledge engineer
always tries to apply the combination of these two approaches.

Another method is pretty similar to the first one. Here the rules
are formulated by observing how a skilled operator controls the
object or the process. In this case the operator should be an expert.
As was pointed by Sugeno, in order to automate a control process,
one can express the operator’s control rules as fuzzy if–then rules
employing linguistic variables. In practice, such rules can be
deduced from  observation of the human controller’s actions.

Both of the approaches proposed seem rather subjective,
depending on an expert opinion. Is there another method based
on for example, some measured data?

Yes, there are two other methods. The first one is the
generation of a set of fuzzy control rules based on the fuzzy model
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of the process or object under control. This approach is
ideologically similar to a classical controller design technique in
which we derive a mathematical model of the controller from the
mathematical model of the plant. Here the mathematical plant
model is fuzzy.

Another method is based on learning and experience gained.
This method supposes employing adaptive and/or self-organising
fuzzy controllers and is to be considered in  Section 5 in greater
detail.

All of these methods suppose a heuristic (at least initially)
derivation of the fuzzy control rules. Obviously, there is a need
in the following analysis and justification of the rules.

I understand that the rules are formulated on the base of some
knowledge about the process, object or some data available. What
can we do if almost nothing is available?

Although any special knowledge is very valuable in rules
formulation, do not underestimate the ‘classical’ examples of the
PID-like fuzzy controllers’ rules. This can be a good starting point
for many cases, especially with the analysis and adjustment to
follow.

4.5.2 How do we get rules?
Example 4.6 Fuzzy controller for automated delivery of muscle
relaxants [Mas94]

Anaesthetists are familiar with administering bolus injections of
nondepolarising muscle relaxants at more or less regular intervals
with minimal feedback as to the level of muscle relaxation.
Computer controllers are needed nowadays to regulate the
continuous infusion of muscle relaxant to match each individual
patient’s needs, avoiding overdose and maintaining stable
relaxation. A fuzzy self-organising controller was proposed in
[Mas94] for this problem. As there was no expertise available
to build the rule base, because anaesthetists are not generally
accustomed to controlling muscle relaxation by a continuous
infusion, a general technique was applied. A PD-like fuzzy
controller with two inputs was proposed: inputs were error and
change of error, with the error being the deviation from the desired
level of muscle relaxation. The output of the controller was the
infusion rate. This controller has the following rule base (Table
4.6). One can see that a standard PD-like fuzzy controller was
applied here because of the absence of special knowledge.
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Table 4.6 Rule base for a fuzzy controller for automated delivery of
muscle relaxants

NB NM NS Z PS PM PB

NB NB NB NB NM NM NS Z

NM NB NB NM NM NS Z PS

NS NB NB NS NS Z PS PM

NO NB NM NS Z Z PM PB

PO NB NM Z Z PS PM PB

PS NM NS Z PS PS PB PB

PM NS Z PS PM PM PB PB

PB Z PS PM PM PB PB PB

4.5.3 How do we check if the rules are OK?

Usually the rules are formulated one by one. After this, one has
to analyse the whole set of the rules. In this analysis, one needs
to determine if the set of the rules is:

● complete;
● consistent;
● continuous.

How do we do that?
Let me start with the definitions. The rules set is complete if

any combination of input values results in an appropriate output
value. Any combination of inputs should fire at least one rule.

Example 4.7  The fuzzy controller has the following rules set
(Table 4.7).

Table 4.7

NB NS Z PS PB

NB 11 12 PB13 PS14 Z15

NS 21 PB22 PS23 PS24 Z25

Z PS31 PS32 Z33 Z34 NS35

PS Z41 Z42 NS43 NS44 NB45

PB NS51 NS52 NB53 NB54 NB55

Is this rules set complete?

I do not think it is, as there are some empty cells in the table. It
means that some combinations of the inputs: (NB,NB), (NS,NB)

e
∆∆∆∆∆e

e
∆∆∆∆∆e
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and (NB,NS) will fire no rules. It will confuse the controller and
produce no output in this case.

I agree that  an incomplete rules set is not good. However, I
reckon that empty cells do not necessarily mean that the set is
incomplete.

But the definition says that any combination of the inputs must
be possible.

Yes, but you forget that inputs of the fuzzy controller are
crisp, and inputs of the rules table are fuzzy or fuzzified crisp.
So we need to consider any combination of the crisp inputs and
the membership functions for both inputs. For example, if we have
the membership functions for the input classes like in Fig. 4.25,
the rules set is complete.

How come?
Let us consider two crisp inputs, both  –1.8, which we suspect

as having a very good chance of producing no outputs. After
fuzzification, both of them will take a fuzzy value of (NB, 0.8) and
(NS, 0.2). It means that to decide which rules are fired, we need
to consider the combinations (NB,NB), (NB,NS), (NS,NB) and
(NS,NS). The first three do not produce any output, but the fourth
does. So this combination of the crisp inputs will fire one rule.
Actually, in this controller, there is no combination of the crisp
inputs which results in no outputs. Hence, this set is complete.

So the rules table may have empty cells.
Absolutely! And practically implemented fuzzy controllers

usually have a few. It saves some memory and makes a controller
operation faster.

A set of rules is consistent if it does not contain
contradictions. By that I mean a situation when two similar
antecedent parts produce different consequent parts, for example:

if error is Z and change of error is Z then output is Z

and:

0-1-2

NB NS Z PS PB

Change of error
NB NS Z PS PB

0-1-2

Error

Fig. 4.25   Membership
functions for the inputs
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if error is Z and change of error is Z then output is NB.

This is an obvious mistake and one of the rules must be excluded.
A set of rules is continuous if it does not have neighbouring

rules with output fuzzy sets that have an empty intersection.

Hang on. Which rules are neighbouring? And what is this
intersection?

We can define ‘neighbouring rules’ as follows: two rules are
neighbours if their cells are neighbours. In the previous rules table,
Rule 33 has neighbouring Rules 23, 32, 34, and 43. An intersection
means that the rules do not allow a jump in  output value for a small
change in an input value. We have decided that a crossing point
between two adjacent membership functions should not be zero. It
means that this property requires a change to the adjacent class in
any input to result in a change to an adjacent class in the output.
If this small change in an input results in jump over a neighbouring
class, the rules set is discontinuous.

What is wrong with this set?
In some situations, it could not provide smooth control.

Sometimes it may significantly decrease the controller performance.
Rules can be formulated on a base of not just professional

experience but a common knowledge and even common sense.
An antecedent part of any rule may contain non-measured inputs
which can be determined as fuzzy inputs initially, although this
is not widespread in control applications. For example, in the
problem of colouring a map [Ter94] the following rules are given:

if  season is spring then colour is rather light green
if  season is winter then colour is slightly grey brown.

4.5.4 Application examples
Example 4.8
Let us come back to our vessel control again and consider the
rules sets in Tables 4.8 and  4.9.

Table 4.8

NB NS Z PS PB
NB PB PB PB PS Z
NS PB PB PS Z NS
Z PB PS Z NS NB
PS PS Z NS NB NB
PB Z NS NB NB NB

∆∆∆∆∆e
e
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Table 4.9

NB NS Z PS PB
NB PB PB PB PB Z
NS PB PB Z Z NB
Z PB PB Z Z NB
PS PB Z NB NB NB
PB Z NB NB NB NB

Now try to compare these tables.

I see that the second table represents the discontinuous set of the
rules.

And a result of this you may see in Fig. 4.26. The trajectory
is quiet different from the previous one.

Example 4.9  AC induction motor fuzzy controller [Clel92]

The most important challenge to reducing motor power
consumption is to vary properly the shaft speed of motors which
are designed as constant-speed machines. Electric motors use
over 60 per cent of the electrical power generated in the United
States[Bald87]. The efficiency of a constant-speed induction motor
can drop drastically under reduced loads. To minimise power
losses, it is necessary to control a motor speed and thereby adjust
the motor speed to the load requirements. The most recent and
successful approach is an adjustable speed drive (ASD). An
embedded fuzzy controller can be added to conventional ASDs.

Fig. 4.26  Continuous and
discontinuous rules set
applications

∆∆∆∆∆e
e

continuous control

discontinuous
control
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The fuzzy controller should solve the following problems:

● Assess a direction of change of an input power (P
in
) to the

motor and change the stator motor voltage V
s
 in a

corresponding direction for reducing the input power.
● Sense when the input power was minimised to an extent that

further variations in V
s
 produce negligible results.

● Control the step size for varying V
s
 so that convergence on the

optimum operating point is accelerated.
● Limit perturbations to avoid an insufficient torque or excess

speed (typical limits were ±5 per cent in respect of variations
of the initially specified values).

Based on these goals, the rules table, describing how the stator
voltage should be changed depending on how it and the input
power were changed before, can be formulated as follows:

If  ∆ P
in  

is Neg  and ∆V
old

 is Neg  then ∆V
new

 is Neg.
If  ∆ P

in  
is Neg  and ∆V

old
 is Pos then ∆V

new
 is Pos.

If  ∆ P
in  

is Pos  and ∆V
old

 is Neg  then ∆V
new

 is Pos.
If  ∆ P

in  
is Pos  and ∆V

old
 is Pos  then ∆V

new
 is Neg.

If  ∆ P
in  

is Zero  and ∆V
old

 is Any  then ∆V
new

 is Zero.

The last rule is needed for the convergence on an optimal input
power. However, this small set was found to be not sufficient  to
produce a good transient response. Additional linguistic variables
(Pos Medium and Neg Medium) and rules were added to
eliminate overshoot.

Example 4.10  Torque maximiser for a locomotive based on fuzzy
rules [Hel94]

The actual driving force for a modern electrical locomotive is the
friction force acting between a wheel and a rail.  There should be a
balance between the forces at the wheel and the motor shaft in which

Fig. 4.27 An electrical
locomotive driving force
as a function of a slip.
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a drive introduces a motor torque. The friction force depends on the
slip and generally is a nonlinear function with parameters determined
by the velocity of the locomotive and the quality of the wheel-rail
conditions. Ideally the slip-friction curve should have a maximum or
a plateau and can be divided into two regions: stable and unstable.

 For the stable region (the rising branch of the curve) a non-
controlled dynamic system vehicle-rail is always stable if the
required motor torque in addition to the forces of inertia, damping
forces and spring forces does not exceed the maximum of the
friction force. However, if an increase of the motor torque disturbs
the force balance, the system can be stabilised again. The aim of
the torque maximiser is to keep the system characteristics close
to the optimum point where the friction reaches the maximum.
It is done by calculating the value of the slip correction (corr),
which depends on the part of the curve the system is working at
the moment. If the system reacts with a positive (or negative)
change of the friction force Df, when a positive (or negative) slip
correction is introduced, it means that the system is working on
the stable branch of the curve. Otherwise, the system is in the
unstable region. Because the closer the system is to the optimal
point, the smoother the curve, a rough value for the correction can
be determined on the base of the absolute values of the previous
slip correction and force reaction. This description allows to
formulate 25 rules in the table.

Table 4.10

NB NS Z PS PB

NB PB PS Z NS NB

NS PS PS Z NS NS

Z Z Z Z Z Z

PS NS NS Z PS PS

PB NB NS Z PS PB

To examine this controller, several tests have been performed
[Hel94] simulating different operating conditions. The
performance of the fuzzy controller has been evaluated against
different criteria. This controller has demonstrated better
performance than the conventional PI controller.

In the rules design, sometimes it is useful to subdivide a whole
fuzzy controller into two parts. The second part can be considered
as a main controller, while the first one is a preparation part. The
goal of the first part is to produce fuzzy signals which are used

∆s
∆f
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in the rules table of the second part. In this way, the preparation
part can be applied to solve classification problems.

Example  4.11  Automotive automatic transmission fuzzy control-
ler [Hir93]

This fuzzy controller is used for a shift scheduling of automatic
transmission vehicles. Usually the vehicle velocity and the throttle
angle are the only two factors that are applied for determination
of the shift scheduling in an automatic transmission. The influence
of these factors can be expressed with the following rules:

If speed is low and throttle is low then shift +1.
If speed is low and throttle is high then shift –3.
If speed is high and throttle is low then shift +3.
If speed is high and throttle is high then shift –1.

By contrast, a driver using a manual transmission makes the gear
shift decision based on a consideration of some extra factors, such
as the road resistance, the current shift, the brake time, the vehicle
acceleration. To improve a shift scheduling, one can introduce
some extra rules describing the influence of these extra factors:

If resistance is NegBig and throttle is Close and shift is
NotLow then shift –2.
If speed is Low and shift is High then shift is –3.
If brake time is Long and shift is NotLow then shift is –2.

An introduction of the extra rules makes the controller operation
similar to a human driver. Considering these rules in combination
with the previous set, one can significantly improve a performance
of the controller, especially in uphill driving.

Example 4.12 Siemens automatic transmission control [Hel94]

Let us consider how this rules table can be generated in greater
detail. Taking into account inputs from the accelerator and brake
pedals, gearbox and other areas, and processing them with the
help of two dozen rules, a fuzzy controller can deduce whether
a vehicle is climbing or descending, and thus optimise vital
motor functions to meet not only the driver’s habits and style, but
to enhance safety and reduce fuel consumption. The fuzzy control
system can consist of two parts: the preparation part and the
control. The first part receives seven input signals (e.g. throttle
opening, dki, change in dki, etc.) and produces three output signals
(Fig. 4.28): one is used for the load detection, one for the driver
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classification and one is a shift signal indicating whether this shift
is allowed or not. Both the load and driver signals are used to
choose a shift pattern.

The importance of a shift pattern adaptation to the driver and load
could be illustrated with the following example. In the case of an
increasing load or a sporty driver, shift patterns with flat curve
characteristics are selected. This leads to a delay in shifting up
or even to shifting down. Therefore, the engine will run at a higher
speed. The third signal (indicating which shift is allowed) limits
possibilities, depending on the engine construction. For example,
if there are four gear positions available, it is not possible to shift
up when driving in the fourth gear. Shifting down must be
forbidden when driving too fast for a lower gear position.

This part allows us to prepare conditions for a proper gear
choice. The system includes some rules describing the behaviour
of a normal driver, for example:

If dki is Very Big and n
ab

 is Not Very Big and Dn
ab

 is Not Positive
then load is Mountain.

Another set of rules allows us to take into account the typical
behaviour of a driver. The driver classification depends on the
change of throttle opening and the changes of it, for example:

If ∆dki is High and ∆n
ab

 is High then the driver is sporty.

The shift signal has four discrete states: Shift Forbidden, Shift
Allowed, Shift Down Forbidden, Shift Up Forbidden. The rules
including this input in their antecedent parts provide a proper tech-
nological system behaviour and a system security.

Fig. 4.28  The
preparation part of the
fuzzy controller
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4.6 Choice of the defuzzification procedure
Here we give a very brief description of the most widely used
defuzzification procedures and compare them. Let me remind you
that the defuzzification goal in Mamdani-type fuzzy controllers
is to produce a crisp output taking the fuzzy output obtained after
rules processing, clipping or scaling (see Fig. 3.7). No
defuzzification is necessary in a Sugeno-type fuzzy controller.
Because the input for the defuzzification procedure is the clipped
(or scaled) membership function, most of the methods propose the
procedure of calculating the integrated evaluation of this input.

We will consider the following methods:

● Centre-of-area/gravity defuzzification.
● Centre-of-largest-area defuzzification.
● Mean of maxima.
● First-of-maxima defuzzification.
● Middle-of-maxima defuzzification.
● Height defuzzification.

Why are there so many methods?
I suppose the main reason is that none of them has proved

its advantage over others. Nowadays the choice of the
defuzzification procedure is based mainly on personal preference.
It is  even hard to introduce these methods, as different authors
sometimes name the same procedure differently.

The first two methods tend to produce an integral output
considering all the elements of the resulting fuzzy set with the
corresponding weights. Other methods take into account just the
elements corresponding to the maximum points of the resulting
membership functions.

4.6.1 Centre-of-area/gravity

The centre-of-area method (in the literature also referred to as the
centre-of-gravity method) is the most well-known defuzzification
method. In the discrete case (when we have some values of the
output signal with the corresponding membership degrees {u

1
/µ

(u
1
), ..., u

k
/µ (u

k
) }) this results in

k
Σ     u

i
 * µ(u

i
)

i = 1
u* =

k
Σ      µ(u

i
)

i = 1
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In the continuous case we obtain

∫
 U

   u * µ(u) du
      u*  =

  ∫
 U

   µ(u) du

where ∫ is the classical integral and µ (u) is a combined member-
ship function.

This method determines the centre of the area below the combined
membership function  (Fig. 4.29).

This method sometimes includes a threshold or an index
element T. Its application eliminates in the evaluation of u* those
elements u

i
  where the membership degree is less than  T. This

threshold is selected at a value that reflects disturbances in both
input data and  properties of the object under control. In this case,
the result is the centre of the area between the threshold and the
combined membership function.

It can be seen that this defuzzification method takes into account
the area of U as a whole. Thus, if the areas of two clipped fuzzy
sets are overlapped, then the overlapping area is not paid any
particular attention. Because of integration, this operation is
computationally rather complex and therefore results in quite slow
inference cycles.

4.6.2 Centre-of-largest-area

The centre-of-largest-area is used in the case when U is non-
convex, i.e. it consists of at least two convex fuzzy subsets which
are not overlapped. Then the method determines the convex fuzzy
subset with the largest area and defines the crisp output value u*
to be the centre-of-area of this particular fuzzy subset (Fig. 4.30).
It is difficult to represent this defuzzification method formally,
because it involves first finding the convex fuzzy subsets, then

Fig. 4.29 Centre-of-area
defuzzification method
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1

0
u

U

computing their areas, etc.
In this method the defuzzification result is biased towards a side
of one membership function. It does not take into account other
parts of the clipped (scaled) membership function. Why not take
an integral characteristic as produced by the centre-of-area
method?

You are right, one can consider the centre-of-area estimation.
However, in that case the defuzzification result (the crisp output)
may be equal to the element with a very small or even zero
degree. That estimation is not plausible as we will discuss a little
bit later. To satisfy the criterion of plausibility, this method has
been proposed.

4.6.3 First-of-maxima/last-of-maxima

First-of-maxima uses U and takes the smallest value of the domain
U with the maximal membership degree in U. This is realised
formally in three steps:

Let   hgt(U) = sup      µ
U
 (u) be the highest membership

 u ∈ U degree of U, and let

{u ∈ U | µ
U
 (u) = hgt(U)} be the set of domain elements with

degree of membership equal to hgt(U).

Then u* is given by u* =  inf  {u ∈ U|µ
U
(u) = hgt(u)}

u∈U

The alternative version of this method is called last-of-maxima and
is given as

u* =   sup  {u ∈ U|µ
U
(u) = hgt(u)}

         u∈U

First-of-maxima Last-of-maxima

1

0
u

Fig. 4.31 First-of-
maxima/last-of-maxima
defuzzification procedure

Fig. 4.30   Centre-of-
largest area
defuzzification procedure
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4.6.4 Middle-of-maxima

Middle-of-maxima is very similar to first-of-maxima or last-of-
maxima. Instead of determining u* to be the first or last from all
values where U has the maximal membership degree, this method
takes the average of these two values (see Fig. 4.32). Formally it
can be written as

 inf  {u ∈ U|µ
U
(u) = hgt(u)} + sup  {u ∈ U|µ

U
(u) = hgt(u)}

u∈U             u∈U
u*   =

2

4.6.5 Mean-of-maxima

This method does not differentiate between the elements of the
combined membership function, instead it considers all of them
and takes the average. If the membership function has n maximal
points then the output will be:

n
Σ   {u ∈ U|µ

U
(u) = hgt(u)}

i = 1
    u*   =

n

1

0
u

Middle-of-Maxima

Fig. 4.32   Middle-of-
maxima defuzzification
procedure

1

0
u

Fig. 4.33   Mean-of-
maxima defuzzification
procedure
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4.6.6 Height

Height defuzzification is a method which, instead of using U,
applies the individual clipped or scaled control outputs. This
method is very similar to the previous one. It takes the peak value
of each clipped membership function CLU and builds the
weighted  (with respect to the height fk of CLU) sum of these
peak values. Thus, neither the support or shape of CLU play a role
in the computation of u*.

4.6.7 Compare different defuzzification procedures

I understand there are a lot of different procedures. Could you
recommend any criteria for choosing a particular one?

I cannot recommend one criteria, but you may apply a few.
Some criteria for a defuzzification method choice could be:

● continuity;
● disambiguity;
● plausibility;
● computational complexity.

Continuity again?
That’s right. Now it is in respect to a defuzzification procedure.

It means that a small change in an input of  a fuzzy controller
should not result in a large change in the output

Disambiguity means that a defuzzification method should
work in any situation. This is not always the case. For example,
the centre-of-largest-area method cannot make a choice when we
have two equal areas.

Plausibility means that a procedure produces a defuzzified
output that lies approximately in the middle of the support of
the resulting membership function and has a high degree of
membership. The centre-of-area method, for example, does not
satisfy these properties: although the centre-of-area output lies in
the middle of the support set, its membership degree may be one
of the lowest possible.

The computational complexity criterion is particularly
important in practical applications of fuzzy controllers. The
methods dealing with the maximal points are fast methods,
whereas the centre-of-area method is slower. The computational
complexity sometimes depends on the shape of the output
membership functions and whether max–min composition-based
inference or scaled inference is chosen. The middle-of-maxima
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method, for example, is faster with a scaled inference. There is
also an issue of representation of the fuzzy sets. In the case of
the centre-of-area defuzzification, a tabular representation of the
fuzzy sets in combination with clipped fuzzy sets (max–min
composition) makes the defuzzification procedure very slow.

Let us  summarise the features of all the methods in Table 4.11
[Drian93] where:

● CoA is centre-of-area;
● MoM is middle-of-maxima;
● FoM is first-of-maxima;
● HM is height and  mean-of-maxima method;
● CLA is centre-of-largest-area,
● No* is only in the case of scaled inference.

Table 4.11

CoA MoM FoM HM CLA

Continuity Yes No No Yes No

Disambiguity Yes Yes Yes Yes No

Plausibility Yes No* No Yes Yes

Computational Bad Good Good Good Bad
complexity

You can use this table to make your choice depending on your
preference.
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5 FUZZY CONTROLLER
PARAMETER ADJUSTMENT

5.1 Self-organising, adaptive and learning fuzzy
controllers: the main principles and methods

5.1.1 What do we need adjustments for?

What do we need this second stage for? When we design a
conventional controller, we do not adjust it. We just derive a
mathematical model of the controller and then implement it.

Yes, you are right. In many conventional cases, we do not tune
the parameters of a conventional controller. In those cases we know
the exact model of the plant or object under control and, based on
it, we are able to develop a mathematical model for the controller.
The necessity for applying further tuning arises in situations where
a controller must operate under conditions of uncertainty, and when
the available a priori information is so limited that it is impossible
or impractical to design in advance a controller that has fixed
properties and also performs sufficiently well [Tsyp73]. You know
that operational uncertainty is quite typical in a fuzzy controller. On
the other hand, if conventional design methods suppose using a
plant model, known a priori (before the design starts), in fuzzy
control one usually has very limited, if any, knowledge about the
plant. Even if the mathematical model is available, it usually
includes some elements (nonlinearity, uncertainty) which make
application of classical methods impossible. Moreover, a fuzzy
approach assumes a design carried out under conditions of
uncertainty. In this context, tuning can be viewed as a means for
solving those problems that lack sufficient a priori information to
allow a complete and fixed control system design to be achieved
in advance.

But can we design a good fuzzy controller at the first stage?
Of course you can. In some cases (usually with simple

problems), the controller’s design solves the problems,
demonstrates a satisfactory performance, and does not need any
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further reconsideration. The goal of the second stage is to enable
a wider class of problems to be solved by reducing the prior
uncertainty to the point where satisfactory solutions can be
obtained on-line.

A priori design information available

GOOD ➡➡➡➡➡ Fixed control design
(1st stage only)

POOR ➡➡➡➡➡ Adjustment and
tuning necessary
(1st and 2nd stages)

I guess another good reason for tuning is changes in the plant
and the environment in time. When the operational conditions
are modified, a designer has to adjust the controller.

Right.

5.1.2 Self-organising fuzzy controllers

How do I tune the parameters of a fuzzy controller? I mean, how
do I decide which parameters to change and by how much?

These criteria should be based on some evaluation of what
is good and what is bad. Usually one or a few of the parameters
characterising the controller performance are applied as a
criterion. If the performance indicator is improved as a result of
tuning, this adjustment should be accepted.

So the controller must not control but evaluate itself, right?
Not exactly. The controller has to control and evaluate the

control performance.

But the controller structure does not suppose such evaluation,
does it?

It means that the controller structure of Fig. 3.10 must be
replaced with another one, see Fig. 5.2.  We have added the
metalevel of the controller which evaluates a performance and
changes parameters. This structure represents a so-called self-
organising fuzzy controller. The first controller of this type was
proposed by Mamdani [Mam79].

5.1.3 Performance/robustness problem and solutions

The main goal of this self-organisation feature is to make the
controller robust as much as possible to any changes. A trade-off

Fig. 5.1 Is the second
stage necessary?
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exists between performance and robustness, since robust control
designs are usually achieved at the expense of the resulting closed-
loop system performance (relative to a control design based on a
perfect model). Advanced robust control system design methods
have been developed to minimise this inherent performance/
robustness trade-off.

Although robust design methods are currently limited to linear
problems, nonlinear problems with model uncertainty can
sometimes be approached by gain scheduling, a representative
set of robust point designs over the full operating envelope of
the plant, thus decreasing the amount of model uncertainty that
each linear point design must accommodate. Nevertheless, the
performance resulting from any fixed control design is always
limited by the availability and accuracy of a priori design
information.

If there is sufficient complexity or uncertainty so that a fixed
control design will not suffice, then a satisfactory closed-loop
system performance can only be obtained in one of three ways
[Far92]:

● improved modelling to reduce the uncertainty;
● via an automatic on-line adjustment technique;
● manual tuning of the nominal control law design.

Fig. 5.2  The self-
organising fuzzy logic
controller

Performance
under specified

operational
conditions Robustness to changes

in operational conditionsFig. 5.3  The trade-off
between performance
and robustness is a
typical design problem
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I understand there are some other ways for tuning a fuzzy
controller.

Yes, there are. As a result of this tuning process, a new fuzzy
controller appears, which can be classified as:

● Self-organising controller – a selfish creation noticing nothing
outside itself and always observing itself only and nothing else.

● Adaptive controller – a system that is just a current situation
with neither memory nor recollections about the past and
reflections about the future.

● Learning controller – an industrious student constantly
developing  and expanding his or her knowledge and
experience.

Although this classification is not contentious, the definitions are
not easy to formulate. There are some different opinions because
of changing understanding; however, here we try to present the
most common point of view.

5.1.4 Adaptive fuzzy controllers

What is the difference between a self-organising and an adaptive
controller?

A self-organising controller can be determined as a controller,
the parameters of which are changed without any other changes
in the plant model and other models used. An adaptive control
usually supposes modifications of the plant model, and a learning
control assumes the modification of the control strategy based
on past experience. One should note that these definitions are
general and not specific to a fuzzy controller.

You mean that conventional controllers can be adaptive or self-
organising?

Yes, they can. Any adaptive control system can adjust itself
to accommodate new situations, such as changes in the observed
dynamic behaviour of a plant. In essence, adaptive techniques
monitor the input–output behaviour of the plant to identify, either
explicitly or implicitly, the parameters of an assumed dynamic
model. The control system parameters are then adjusted to achieve
some desired performance objectives. Thus, adaptive techniques
seek to achieve an increased performance by updating or refining
some representation, which is determined (in whole or in part) by
a model of the plant structure, based on an on-line measurement
information. An adaptive control system will attempt to adapt, if
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the behaviour of the plant changes by a significant degree. The
structure for an adaptive fuzzy controller is given in Fig. 5.4.

What do we need any other type of tuning for?
The problem is time for adaptation. If the dynamic

characteristics of the plant vary considerably over its operation
(e.g., due to nonlinear dynamics), then the control system may
be required to adapt continually. During these adaptation periods,
a high closed-loop performance cannot be guaranteed. Note that
this adaptation can occur even in the absence of time-varying
dynamics and disturbances, since the control system must readapt
every time a different dynamic regime is encountered (i.e., one
for which the current control law is inadequate), even if it is
returning to an operating condition it has encountered and
successfully adapted to before. So the adaptation must take place
in every case of changing. This inefficiency results in  degraded
performance, since the transient behaviour due to the parameter
adjustment will occur every time the recently observed dynamic
behaviour of the plant changes by a sufficient degree.

In general, adaptive controllers operate by optimising a small
set of adjustable parameters to account for a plant behaviour that
is local in both state-space and time. To be effective, adaptive
controllers must have relatively fast dynamics so that they can
react quickly to any change of the plant behaviour. In some
instances, the plant parameters may vary so fast (perhaps due to
nonlinearity), that the adaptive system cannot maintain desired
performance through an adaptive action alone. As argued by
[Fu64], it is in this type of situation where a learning system is
preferable. Because the learning system retains some
information, or we may say, some knowledge, it can in principle
react more rapidly to spatial variations once it has learned.

Fig. 5.4  Adaptive fuzzy
logic controller
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5.1.5 Features of different controller types

How can the reaction time be shortened?
The controller can employ a mechanism of learning which

associates a control signal with the operating conditions. So if the
operating conditions coincide with the ones experienced
previously, the learning controller does not calculate the control
signal but just restores it.

Table 5.1 Features of different controller types

Self-organising Adaptive Learning

Modification of the controller Yes Yes Yes
parameters

Controller redesign No Yes Maybe

Limitations in redesign and Very strong Strong No
updating

Identification and modification No Yes Maybe
of the plant model

Ability to accommodate novel Poor Good Poor
operating environment

Time for adaptation Medium Long Short

Ability to control slowly changing Poor Good Poor
with time processes

Ability to control the processes Very good Poor Good
and objects with unknown
models

Memory requirement for No No Large
implementation

Accuracy of the control law derived Poor Good Poor

Ability to preserve high Poor Medium Good
performance during functioning

This controller will need some memory to store these conditions–
control associations. So do you pay for speed with memory?

Yes, you are absolutely right. This is another example of the
usual speed–memory trade-off. However, due to this, the
designer can find the best possible way to solve any particular
problem. The processes of adaptation and learning are
complementary: each has unique desirable characteristics. For
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example, adaptive capabilities can accommodate dynamics that
vary slowly with time and novel situations (e.g., those which have
never been experienced before), but are often inefficient for
problems involving significant nonlinear dynamics. Learning
approaches, in contrast, have the opposite characteristics: they are
well equipped to accommodate poorly modelled nonlinear
dynamic behaviour, but are not well suited to applications
involving time varying dynamics.

5.1.6 Learning fuzzy controllers

You have not provided the structure of a learning fuzzy controller.
No, I have not. It is not easy to draw the structure of a

learning fuzzy controller, but it can be classified into three groups
[Lin95]:

● supervised learning;
● reinforcement learning;
● unsupervised learning.

In the first two regimes, the learning process is based on the
feedback signal, indicating the performance of the whole system
under current conditions. In supervised learning the desired
objective is provided at each time step. The performance indicator
can be and is applied  for an evaluation of the degree in which
the current set of parameters satisfies the formulated objective.
This learning regime can be considered as similar to a self-
organising controller. In reinforcement learning, the teacher’s
response is not immediate and direct and serves more to evaluate
a state of the system. In this aspect this regime looks like an
adaptive controller. In early learning control systems, the output
of the objective function was mapped to a binary reinforcement
signal. In such situations the reinforcement signals could be
thought of as being ‘positive’ or ‘negative’. Positive reinforcement
was designed to encourage the same behaviour in future, when
the same control situation  appears, while negative reinforcement
was designed to discourage that behaviour. Unsupervised learning
does not require any feedback, because this can be inefficient in
control applications, and is not applied often. There are different
ways of how the tuning process of the fuzzy controllers can be
realised. Conventional methods, e.g., gradient analysis can be
applied for these purposes. In this way the performance criteria
are analysed as functions of the parameters to be adjusted. The
directions of change are determined on the base of this analysis.
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We will consider three methods originating from intelligent
technologies:

● tuning of the fuzzy controller parameters with a fuzzy decision-
maker (controller);

● neural network tuning;
● genetic/evolutionary algorithms tuning

5.2 Tuning of the fuzzy controller scaling factors

5.2.1 On-line and off-line tuning

Scaling factors are very important parameters of a fuzzy
controller. Their role and some general recommendations about
their choice were considered in Section 4.3. Here we will try to
give more detail and consider practical examples. Generally
speaking when we change values of scaling factors between the
runs (when the controller does not work or is not tested), that
is called off-line tuning, and during the run, that is called on-line
tuning.  We will consider both cases. Both input and output
scaling factors can be tuned. In the first example, just the output
scaling factors are adjusted. In the second one, the input and
output scaling factors are both adjusted.

5.2.2 Off-line tuning of the output scaling factors
Example 5.1 Self-organising fuzzy controller for an electric motor.

Let us consider the electric motor given by its transfer function

G(s) =   
8

1 16( )( . )s s+ +

Fig. 5.5 The MATRIXxTM

model of the control
system with a PID-like
fuzzy compensator
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This plant was chosen as an object to control. The uncompensated
closed loop system has characteristics as following:

● maximum overshoot  is 22.08 per cent;
● ±5% settling time is 2.3077 s;
● unit step steady-state error is 0.888.

Obviously it badly needs a compensator. The fuzzy PID controller
incorporating two parallel fuzzy controllers with the structure as in
Fig. 3.15 is applied. The structure of the control system including
the fuzzy PID (MATRIXxTM model) is given in Fig. 5.5.  The output
scaling factors of both fuzzy controllers should be adjusted.

Fine. How do we adjust these factors?
Some advice was given in section 4.3. We can try to formulate

some rules like:

If settling time is large and overshoot is negative then increase
K

p
 and K

I
 coefficients.

If settling time is large and overshoot is positive then decrease
K

p
 and K

I
 coefficients.

If settling time is medium then increase K
p
 and K

II
 coefficients.

If overshoot is large then decrease K
p
 and K

I
 coefficients.

Implementing even such a simple set can improve your response
significantly. Figure 5.6 demonstrates how the parameters of the
response are changed when the output scaling factors are tuned.

How long does it last? I mean how many times should one run
or simulate the controller to get an acceptable response and the
corresponding values of the parameters?

The answer depends on the initial choice but not significantly.
Figures 5.6–5.8  demonstrate how the response is changed when
an initial PI gain is too small (Fig. 5.6) or large (Fig. 5.7) as well
as when the initial choice is not bad (Fig. 5.8).

The rules given above do not refer to the integral error.
That is because such rules are not so easy to formulate. The

more complicated structure is necessary in this case.

5.2.3 On-line tuning of the input and output scaling factors

On-line tuning assumes constant changing of the scaling factors.
In many cases, it allows good results to be achieved much faster.
The following example describes a system of simultaneous on-
line tuning of both input and output scaling factors. It may look
a bit complicated, but then the problem is not that simple.
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Fig. 5.6    Adjustment of
the output gain factor
when an initial value is
too small

Fig. 5.8  Adjustment of
the output gain factor
when an initial value is
not bad

Fig. 5.7    Adjustment of
the output gain factor
when an initial value is
too large

Self-Organisation of System

CH5.PM5 6/12/97, 1:45 PM162



FUZZY CONTROLLER PARAMETER ADJUSTMENT 163

5.2.4 Application example

Example 5.2 Self-organising fuzzy controller for a power system
stabiliser (PSS)

The wide area of fuzzy controller applications in power system
generation control involves an excitation system and a PSS design,
and many successful applications have been reported [Hsu93]. A
brief description of the problem and the simplest fuzzy controller
applied was presented in Example 3.5. The most popular fuzzy
controller structure and algorithm used in PSS design is one
proposed by [Hiy89]. Here this method is advanced to achieve a
multisectoral plane.

Let us try to find a solution as universal as possible. We want
to design a universal tuner that can be used to adjust the set of
the input and output scaling factors. This proposed calculator will
operate together with  a main fuzzy controller, i.e., the controller
applied to manage the plant and designed in Section 3.6 and will
change the scaling factors of the fuzzy controller. Any
modification will be performed on-line. The purpose of the tuner
is an on-line change of the fuzzy controller scaling factors in order
to provide an acceptable system response. A general layout of the
proposed system is shown in Figure 5.9. The proposed scheme
requires some performance monitors calculated on the base of the
current values of the main fuzzy controller signals. The error
signal can be employed as such a monitor.

e(k)

Reference

Input tuning
signal

Input
Main FLC

Final
stage
(4)

Dec_Inc
(3)

Operational status
(1)

Operational sectors
(2)

Output tuning
signal

Fig. 5.9 The tuner
structure
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The four blocks labelled 1–4 in Fig. 5.9 are the main parts of the
tuner. Blocks 2 and 3  employ the same principles as used in the
Shay structure described in  [Ghan95-2].

How does it work?
Block 1 considers the current state of the main fuzzy controller

operational status.  The upper and lower limits of the main
controller response are of  great importance in the operation of
this block. This block applies fuzzy values of the output of the
main fuzzy controller at two successive samples as two inputs
(fz(t) and fz(t – 1)) and produces a fuzzy value representing the
operational status. This fuzzy output may have three values:

● R
1
 – under operation,  the response currently is changing too

slowly;
● R

2
 – normal operation,  the speed of change is acceptable;

● R
3
 – over operation,  the response  is changing too fast.

Input classes of this block are shown in Fig. 5.10a, where classes
R

11
 and R

21
 (R

1
 of Input 1 and R

1
 of Input 2) are limited by the

lower class in the main fuzzy controller (magnitude). Classes R
13

and R
23

 are limited by the upper limits of the main fuzzy
controller. The output classes are shown in Fig. 5.10b and the
fuzzy value of the operational status is calculated by the rule base
in Table 5.2. Determining an operational status gives a sufficient
indication of required tuning for either the input or the output
ranges, or both.

a Input

R13

R23

R11

R21

0 x1
10

1

x2

R12

R22

R3R1

0 0.5 1
0

1

R2

b Output

fz(k)
 fz(k – 1)

R1 R2 R3

R1 R1 R2 R2
R2 R2 R2 R2
R3 R2 R2 R3

Table 5.2 Operational status
rule base

angle
θ=90oθ=0 θsw

0

1

P N

 e(k – 1)

 e(k)
sector 1

sector 2
sector 3

sector 4

sector 5

sector 6

 θ = 45
θ =45

Fig. 5.10 Operational status classes

Fig. 5.11 Operational sectors Fig. 5.12 P-N classes
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Block 2 in Fig. 5.9 analyses the current sector of the fuzzy
controller operation [Ghan95-2]. A definition of the sector is
performed by considering two successive samples of the
performance monitor (e(t) and e(t – 1)) and the acceleration (∆e)
of this monitor (∆e(t) = e(t) – e(t – 1)). The division of the error
signal plane into sectors is presented in Fig. 5.11.

Block 3 in Fig. 5.9 is a decrement/increment block. The
objective of this block is to produce a signal that will increase or
decrease the input and/or  output ranges. The tuning signal value
generated by this block depends on how much a system error
signal is changed during the current sampling period. The value
of change is characterised by two parameters:

● θ(k), the angle between the two consequent positions of the
error signal on the operational plane (Fig. 5.11);

● |e(k)|, the absolute value of the error signal.

Table 5.3 Rule base for deriving θθθθθsw

Decrement Increment

e
1

e
2

e
3

e
4

e
5

e
1

e
2

e
3

e
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θ1 θ
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θ
sw2

θ
sw3

θ
sw3

θ1 θ
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θ
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θ
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θ
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θ
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θ
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θ
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θ
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θ
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θ
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θ
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θ
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θ
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θ5 θ
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θ
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θ
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θ
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θ
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θ6 θ
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θ
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Two nonlinear classes (P-N) (Fig. 5.12) are used to derive the
decrement/increment values [Ghan95-2] and θ(k) is scaled

(a) Input 1: θ(k)  classes

0

1

0 10 20 30 40 50 60 70 80 90

θ1 θ9θ4 θ5 θ6 θ7 θ8θ2 θ3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

e1 e2 e3 e4 e5

0

1

0 10 20 30 40 50 60 70 80 90

θsw1 θsw9θsw4 θsw5 θsw6 θsw7 θsw8θsw2 θsw3

(b) Input 2: |e(k)| classes (c) Output: θsw(k) classes

Fig. 5.13 Increment–
decrement classes

|e(t)| |e(t)|

θ(t)θ(t)
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between 0–90o in all sectors. The derivation of the tuning signal
is performed through fuzzy processing, using the input and output
classes shown in Fig. 5.14. The rule base of Table 5.3 is used to
determine the switching angle θ

sw
(k). Different arrangements of

P-N functions are shown in Fig. 5.15 for different θ
sw

.
The information derived and collected from previous stages is

integrated at this stage in order to produce the final tuning signal
for both the input and output ranges. Processing the full
information is summarised in the logic flow diagram of Fig. 5.15.
The processing at this stage relies on two main factors, the
reference signal and the performance monitors. The logic flow
diagram in Fig. 5.15 demonstrates the final stage processing, used
in the testing examples, where a reference signal of positive and
negative values is applied and the performance monitor is the error
signal (e), where e is a difference between the reference and the
main controller output signals.

5.3 Artificial neural networks and neuro-fuzzy
controllers

5.3.1 What is a neural network?

There are many answers to this question. Many definitions of
neural networks assume that you already know the basics of such
networks, or that you are at least mathematically literate and

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

θsw= 0.0 θsw = 11.25 θsw =22.5 θsw = 33.8 θsw = 45.0 θsw = 56.3 θsw = 67.5 θsw = 78.8 θsw = 90.0

P N

Fig. 5.14 Different
arrangements of P-N with
different choice of θ

sw

Fig. 5.15 Logic diagram
for the final stage of
tuning
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comfortable with calculus and differential equations. Although
mathematical models of computation are valuable, it is easy for
people who are not specialists to be intimidated by them. Other
definitions tend to be jargon, and still others end up being esoteric
or vague. Often they talk about a new computing architecture
inspired by biological models. So following [Nel91] let me give
you a few definitions, describing different aspects of the nets.

The artificial neural network (ANN) is:

● A new form of computing, inspired by biological models.
● A mathematical model, composed of a large number of

processing elements organised into layers.
● A computing system, made up of a number of simple, highly

interconnected processing elements, which processes
information by its dynamic state response to external inputs.

The first definition tends to consider the origin of the ANN. The
second one considers ANN as a mathematical model of the object.
The third one refers to a structure and a technological
implementation.

I guess the name was inherited from its biological prototype.
Correct. Most of the textbooks on this subject include a

description of a biological neuron and consider a human brain as
a network of such neurones. The authors assume that a biological
neuron is so simple and well known to a reader, that it helps to
explain such a complicated technological phenomenon as a ANN.
To differentiate the technology from  nature, the corresponding
computing system is called an artificial neural network. The ANN
is supposed to consist of artificial neurones or processing elements
(PE). These artificial neurones bear only a modest resemblance
to the real things. Processing elements model approximately three
of the processes, out of the 150 we know, that neurones perform
in the human brain.

5.3.2 ANN structure

The PE handles several basic functions:

● It evaluates the input signals, determining the strength of each
one.

● It  calculates a total for the combined input signals and
compares that total against some threshold level.

● Depending on the result, it determines what the output should
be.
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Any PE has many inputs and one output (see Fig. 5.16)  All of
them should come into our PE simultaneously. As a response to
the input varies, a neuron either ‘fires’ or ‘doesn’t fire’, depending
on some threshold level.

How does a PE calculate the output value using the input values?
Let us consider the simplest case. Here the output is just a

weighted sum of the inputs (see Fig. 5.17). If we denote the ith
input as x

i
 and the output as y, then we can write the mapping from

the inputs to the output performed by the PE in this case as:

y =  f(x
1
, x

2
, ..., x

n
) = w

1
 × x

1 
+ w

2
 × x

2
+ ... + w

n
 × x

n

You see that this is a linear function, and the linear ANN can be
constructed in this way. You may have another function, not a sum
but a product or a logical function, for example.

Which function will we have then?
A nonlinear one and a nonlinear network. Another way to

create a nonlinear network is to compare the mapping result with
the threshold (Fig. 5.18). As a result of a comparison, a special
impulse (an excitation signal) is generated if the weighted sum
of the inputs is higher than the threshold value (the neuron is
fired). I should mention that the threshold usually is chosen as a
function of the inputs and in control applications is called the
transfer function.

How do we determine this function?
This is a good question as it represents a current research area.

The choice of a linear function is pretty boring, but it will allow
you to model just linear systems.

.
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Inputs

Output

.

..

Inputs

Output

Σ
w1

w2

wn

weighted sum

Fig. 5.16  Processing element (PE) Fig. 5. 17  Processing element with
an output determined as a weighted
sum of the inputs

.

..

Inputs
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Σ
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/ T
neuron impulse

Fig. 5.18  Processing
element with an output
determined as a
comparison result of the
weighted sum of the
inputs with the threshold
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Why not choose just the threshold function as in Fig. 5.19a?
We may have a lot of problems with this function because we

are not able to take the derivative from it near the transformation
point. Learning methods based on a gradient descent include
differentiating. That’s why some more complicated functions
given on Figs 5.20c and d are applied in modern ANNs.

The transfer function could be something as simple as 0. The
output then depends upon whether the result of the summation is
positive or negative. The network could output 1 and –1, or 1 and
0, etc., and the transfer function would then be a ‘hard limiter’
or ‘step’ function (Fig. 5.19a). It has only a binary output. Another
type of transfer function is the threshold or ramping function (Fig.
5.19b), which could mirror the input within a given range, say
from zero to one, but could operate as a hard limiter outside that
range. It is a linear function that has been clipped to the minimum
and maximum values, which then makes it nonlinear. Yet another
option would be a sigmoid or S-shaped curve (such as shown in
Figs 5.19c and d). The curve approaches  minimum and maximum
values at the asymptotes.

That sounds pretty interesting but does not explain how an ANN
can be used for our purposes.

New effects appear when you connect PEs into a network and
if we attach some local memory to our PE, we can store results
of previous computations and modify the weights used as we go
along. This ability to change the weights allows a PE to modify
its behaviour in response to its inputs, or to ‘learn’. For example,
suppose a network identifies a dog as ‘a cat’. On successive
iterations, connection weights that respond correctly to dog
images are strengthened, those that respond to other images, such

Fig. 5.19  Different ways
to determine the
threshold (transfer)
function
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as cat images, are weakened until they fall below the threshold
level. It is more complicated than just changing the weights for
a dog recognition; the weights have to be adjusted so that all
images are correctly identified.

How can we connect PEs into a network?
Any way. PEs are supposed to compose a layer, and layers are

connected together composing an ANN. Suppose we take one
processing element and combine it with other PEs to make a layer
of these nodes. Inputs could be connected to many nodes with
various weights, resulting in a series of outputs, one per node.

Since each PE is a non-linear block, such an arrangement of PEs
results in a highly non-linear network.

Carrying the design yet another step, we can interconnect
several layers. The layer that receives the inputs is called the input
layer. It typically performs no function other than buffering of the
input signal. The network outputs are generated from the output
layer. Any other layers are called hidden layers because they are
internal to the network and have no direct contact with the
external environment. Sometimes they are likened to a ‘black box’
within a network system. But just because they are not
immediately visible doesn’t mean you cannot examine what goes
on in those layers. There may be several hidden layers.

The connections are multiplied by the weights associated with
that particular node with which they interconnect. They convey
analog values. Note that there are many more connections than
nodes. The network is said to be fully connected if every output
from one layer is passed along to every node in the next layer.

Inputs OutputsInput layer Output layerHidden layer

Fig. 5.20   ANN structure
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.

..

Inputs OutputsInput layer Output layerHidden layer

5.3.3 ANN types

Can the nodes be connected in any way? Is any order necessary?
It depends on the type of the particular network. Actually a lot

of different ANN have been proposed. Some of them are given
in Table 5.4. Sometimes it is very hard to answer even a simple
question. Anyway we will try to give just a very general
classification. On the basis of the connection types ANN can be
divided into feedforward and recurrent. If the output of each node
propagates from the input side (left) to the output side (right)
unanimously then the ANN is called feedforward (Fig. 5.21).  If
there is any link between nodes directed from the right to the left,
this ANN has a recurrent type (Fig. 5.22).

The life of any ANN includes two phases: learning and
application. Before one starts applying an ANN, it should be
trained. The training procedures are determined by a learning
regime and can be quite different from each other.

Generally, the goal of a neural network is to modify the
weights to minimise the response error. Nudge the weights in the
direction that will minimise the difference between the measured
and desired outputs. The technique for modifying weights in the
appropriate direction and magnitude (called a credit assignment
problem) eluded researchers for years. However, the recent
development of the back propagation learning scheme has solved
this problem. Since the advent of ‘back-prop’, neural networks
have enjoyed renewed emphasis and application.

Fig.  5.21    A
feedforward network
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Table 5.4

UNSUPERVISED LEARNING (i.e., without a ‘teacher’)

Feedback nets
    Additive Grossberg (AG)
    Shunting Grossberg (SG)
    Binary Adaptive Resonance Theory (ART1)
    Analog Adaptive Resonance Theory (ART2, ART2a)
    Discrete Hopfield (DH)

UNSUPERVISED LEARNING (i.e., without a ‘teacher’)

Feedback nets
    Continuous Hopfield (CH)
    Discrete Bidirectional Associative Memory (BAM)
    Temporal Associative Memory (TAM)
    Adaptive Bidirectional Associative Memory (ABAM)
    Kohonen Self-organising Map (SOM)
    Kohonen Topology-preserving Map (TPM)

Feedforward-only nets
    Learning Matrix (LM)
    Driver-reinforcement Learning (DR)
    Linear Associative Memory (LAM)
    Optimal Linear Associative Memory (OLAM)
    Sparse Distributed Associative Memory (SDM)
    Fuzzy Associative Memory (FAM)
    Counterpropagation (CPN)

SUPERVISED LEARNING (i.e., with a ‘teacher’)

Feedback nets
   Brain-State-in-a-Box (BSB)
   Fuzzy Cognitive Map (FCM)
   Boltzmann Machine (BM)
   Mean Field Annealing (MFT)
   Recurrent Cascade Correlation (RCC)
   Learning Vector Quantisation (LVQ)

Feedforward-only nets
  Perceptron
  Adaline, Madaline
  Backpropagation (BP)
  Cauchy Machine (CM)
  Adaptive Heuristic Critic (AHC)
  Time Delay Neural Network (TDNN)
  Associative Reward Penalty (ARP)
  Avalanche Matched Filter (AMF)
  Backpercolation (Perc)
  Artmap
  Adaptive Logic Network (ALN)
  Cascade Correlation (CasCor)
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How does this back propagation work?
The method is based on an analysis of how a change in any

particular weight influences the output of the network. After such
analysis is done, the designer understands how to change the
weights to achieve the specified values for the outputs.

What does such analysis include?
First of all, one must construct a chain similar to Fig. 5.23. This

chain examines the influence of any weight factor on the output
value and, hence, on the error value. We consider as an error the
difference between the actual output and the desired one.

Is this just the way for forward propagation?
Yes it is. The way backward will include a definition of how

any particular weight factor should be changed to minimise the
error. Here one must go through these chains in a reverse order.
The so-called ordered derivatives originating from ordinary partial
derivatives, form a base of the process.

This process is a learning process, of which there are two types:
supervised and unsupervised. In a supervised mode, the actual out-
put of the ANN is compared with the desired output. The ANN
must be trained before it starts being used. In an unsupervised
mode, there are no external factors influencing weight adjustment.

I still do not completely understand.
Neither do I. At present, this learning mode is not well

understood and is still a research subject. Generally, neural
networks can be considered as trainable dynamic systems where

.

..

Inputs OutputsInput layer Output layerHidden layer

Fig. 5.22  A recurrent
network

Change in the 
⇒

weight factor
⇒

Change in the 

weight factor
node with this

Change in the 

output value ⇒
Change in the 

output error
Fig. 5.23  ANN analysis
algorithm

CH5.PM5 6/12/97, 1:45 PM173



174 FUZZY CONTROLLER PARAMETER ADJUSTMENT

the learning, noise tolerance and generalisation abilities grow out
of their network structures, their dynamics and their distributed
data representation.

5.3.4 ANN application in fuzzy controller design

We must come back to ANN application in fuzzy controller
design.

How are ANNs applied in fuzzy controller design?
Once again by different ways. According to [Tak95] there are

three main approaches:

● fuzzy systems where ANN learn the shape of the surface of
membership functions, the rules and output membership
values;

● fuzzy systems that are expressed in the form of ANN and are
designed using a learning capability of the ANN;

● fuzzy systems with ANN which are used to tune the
parameters of the fuzzy controller as a design tool but not as
a component of the final fuzzy system.

In the first two approaches, ANNs become a component of the
whole neuro-fuzzy system. In the first approach, an ANN is
applied directly to design nonlinear multidimensional
membership functions, which partition an input space. In this
way, an ANN is utilised to conduct fuzzy reasoning [Tak91]. The
rather famous ANFIS systems [Jang95] are an example of the
second approach.

x x1 2

y r

w
j

xh
j

w
i j

...

r

r

r

0

Fig. 5.24   A neuro-fuzzy controller Fig. 5.25  ANN for one
rule implementing
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5.3.5 ANFIS architecture

Let us consider the example of a Sugeno fuzzy model given in
[Jang95]. Here the ANN is used to realise fuzzy processing of
typical fuzzy rules like

If x
1
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1
 and x

2
 is A

2
 then y
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= w
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2
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To realise this processing, the ANN similar to Fig. 5.26 has been
developed.

The first layer is the membership layer. An output of any node
in this layer gives the membership degree of an input. The second
layer is the multiplication layer. Every node here multiplies the
inputs or membership degrees and produces the firing strength of
the rule or the degree in which the corresponding rule is fired.

Why is multiplication applied? I understand that any t norm
operation can be used.

You are absolutely right. Multiplication has been chosen in this
application to represent the t norm operation. The third layer is a
normalising layer. It calculates a ratio of the particular rule-firing
degree to the sum of all rule degrees. The fourth layer is the output
calculating one. Any node here is an adaptive node with the output
calculated according to the formula:

f = V (w
1
 × x

1 
+ w

2
 × x

2 
+

 
r

1
)

where V is the output of the third layer node and x
1 
and x

2 
are the

inputs of the network.

Fig. 5.26  ANFIS
architecture
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Where does this polynomial come from?
This is the consequent part of the Sugeno fuzzy system which

we want to model. Finally, the only node of the fifth layer
calculates the overall output as the sum of all incoming signals.
So the ANN has been constructed that operates exactly
(functionally) as the Sugeno system.

There are different ways of creating a neuro-fuzzy system. One
is the ANN-fuzzy controller structure proposed in [Lin94]. This
structure also has five layers but these are a little bit different.
Layer 1 is a transparent layer. It just transmits input values directly
to the next level. Layer 2 calculates the membership degrees,
Layer 3 finds the matching degrees for any rule, Layer 4 integrates
the rule strengths and Layer 5 calculates the output.

5.3.6 Adaptive neuro-fuzzy controller

Example 5.3   An adaptive neuro-fuzzy system. Fuzzy control for
monitoring combustion process [Tao94]

Combustion is a complex, fluid, dynamic, reactive multiphase
process. An all-encompassing measurement technique is the basis
for efficient monitoring and control. Local point measurements or
exhaust analysis give too little information about the process state.
Therefore, the entire visual information for process control needs
to be applied. Image processing methods are used for the
recognition of non-optimal burning states. The neuro-fuzzy
controller has to learn and achieve an optimal burning state which
is set up by a human expert. The optimal and the current states
are determined with a small number of characteristics which are
to be measured. The differences between them are applied as
controller inputs. Implementation of the fuzzy controller (Fig.
5.27) in the form of a neural network provides the possibility that
the system can learn from the environment and improve the
robustness against environmental disturbances through updating
network weights.

The system determines a control action by using a neural
network which implements a fuzzy inference. In this way, the
prior expert’s knowledge can be incorporated easily. The
controller has two states, a learning state and a controlling state.
In the learning state, the performance evaluation is carried out
according to the feedback which represents the process state. The
original model was proposed in [Lin91, Ber92]. If input–output
training data (a teacher) is available, the performance can be
assessed easily, and supervised learning can be employed.
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Otherwise, the performance evaluation only gives a reinforcement
signal where reinforcement learning can be applied. In the
controlling state, the controller simply does fuzzy inference
without adjusting its parameters. The neural network consists of
a few layers. Nodes in Layer 1 are input nodes, representing input
linguistic variables. They transmit sensor readings to the next layer
which performs fuzzification. Nodes in Layer 3 are rule nodes and
ones in Layer 4 perform defuzzification.

5.3.7 Application examples
Example 5.4   Neuro-fuzzy controller for a washing machine
[Tak95-2] (Matsushita Electric Group)

This model needs less water,
energy and detergents, yet gets
the  wash spotlessly clean.

Its features:

● New ‘stains program’ for
effective, specific stain
removal.

● Consumption: 50 litres of
water and 1.7 kWh.

● Sensor-controlled automatic
dosing by fuzzy logic.

Fig. 5.27 Neuro-fuzzy
controller for combustion
monitoring

Fig. 5.28 ÖKO
LAVAMAT 6955  sensor
logic washing machine
for stains
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The fuzzy controller for a washing machine applies three inputs:
clothes mass, impurity of water and time differential of impurity.
The last input application allows a construction of a fuzzy PD-
like controller. Any input description includes three linguistic
values, which are given by their membership functions. An
adjustment of the membership functions, performed by the ANN,
increases the performance of the controller and the washing
machine. This principle was chosen by Matsushita for the design
of its consumer products traded overseas under the trademark of
Panasonic.

Example 5.5  A neuro-fuzzy controller for a washing machine
produced by Hitachi [Tak95-2]

Hitachi has chosen another way to design a neuro-fuzzy controller.
It applies the ANN to correct the fuzzy controller output values.
This way means the company does not need to redevelop a whole
fuzzy controller. It is particularly important in the case when the
input set is changed, for example, because a new sensor has been
added. Due to a strong competition in the consumer products
market, the designers have to modernise products very often. In
this design, just the more flexible ANN part should be
modernised.

Here, the sensor that measures the water temperature has been
replaced with a sensor for air temperature.  However, the old fuzzy
controller continues to be used. The ANN part is applied to
modify the output values (see Fig. 5.30).

Fig. 5.29  Neuro-fuzzy
controller for a washing
machine (Matsushita
Electric Group)
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INPUTS

Clothes mass

Clothes quality

Water temperature

OUTPUTS

Water quantity

Water flow speed

Washing time

Rinsing time

Spinning time

Clothes mass

Clothes quality

Air temperature

Correcting
values

Fuzzy
Rule  base

system

ANN
Fig. 5.30 Neuro-fuzzy
controller for a washing
machine (Hitachi)

I understand that fuzzy logic and ANN  work simultaneously or
in parallel. It saves a lot of time.

Right. It  did in these examples but generally it doesn’t have to.

Example 5.6   Sanyo rotating electric fan.

This fan should rotate itself towards the user. The user’s position
is identified by a remote control signal origin. The fan has three
infrared sensors where the signals are used to calculate a distance
to the user using a fuzzy system. Then this distance and the ratios
of sensor outputs are used by an ANN to compute the fan
direction (Fig. 5.31). This combination has allowed  significant
improvement in the quality of a distance calculation.

INPUTS

mid(L,R,C)

max(L,R,C)

Angle estimate

min( C/C+L, C/C+R)

ANN

Fuzzy
Rule  base

system

Fig. 5.31  A neuro-fuzzy
controller for a rotating
fan
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5.4 Adjustment procedures with genetic/evolutionary
algorithms

5.4.1 How does it work?

Another technique which is used in fuzzy controller design and
which was inspired by biology is genetic algorithms.

We have just finished with artificial neurones. What do we need
these genetic algorithms for? Isn’t ANN enough?

ANN represent a great method but it has its limitations, of
course. Before applying, any ANN should be trained. Training is
performed with a presentation of the sampling data. In some cases,
several thousands data examples may be required to be presented
in a randomised order, and the learning techniques often demand
human supervision to guarantee convergence [Link95]. So the
application of ANN may require a high computational power and
a long period for training, which are not available in some control
applications. There is a need  to optimise the training process, and
genetic algorithms (GA) application is one of these ways.

Explain about genetic algorithms.
The GA method imitates natural evolution processes, and hence

includes operations such as reproduction, crossover and mutation.
A conventional GA has four main features: population size,
reproduction, crossover and mutation. Reproduction is a process
in which a new generation of population is formed by the
stochastic selection of individuals from an existing population,
based on their fitness.

This process results in individuals with higher fitness values
being more prevalent in the next generation, while low fitness
individuals are less so; for this reason it is sometimes referred to
as a ‘survival of the fittest’ test. Crossover is perhaps the most
dominant operator in most GAs, and is responsible for producing
new trial solutions on-line. Under this operation, two individuals
are selected to produce new offspring by exchanging portions of
their structures. These offspring may then replace the existing
trials. Mutation is a localised, bitwise operator, which is applied
with a very low probability, typically 0.001 per bit or less. Its role
is to alter the value of a random position in a gene-string. When
used in this way, together with the other operators, reproduction
and crossover, mutation acts as an insurance against total loss of
any genes in the population, by its ability to introduce a gene
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which may not, initially, have existed or was lost in the course
of application of other operators.

For a given population of trials and set of operators, together with
the evaluation function, a typical GA proceeds as follows:

● an initial random population of trials, Π(0) = A
n
(0), n = 1,...,N,

where N is the population size, is generated;
● for successive sample instances t, the performance of each trial,

µ (A
n
(t)),t = 0,1,2,..., is evaluated and stored;

● one or more trials are selected to produce offspring by taking
a sample of Π(t) using the probability distribution:
ρ (A

n
(t)) = µ (A

n
(t))/Σ µ (A

i
(t))

● one or more of the genetic operators are applied to the selected
trials in order to produce new offspring, A°

m
 (T), m = 1,..., M,

where M is the number of offspring, which is usually equal to
the number of selected parent trials;

● the next generation of population, Π(t + 1) is formed by
selecting A

i
(t) ∈ Π(t), i = 1, ..., M to be replaced by the

offspring, A
j
(t), j = 1 – M. The criterion for selecting which

trials should be replaced may be random, on the basis of the
least fit or some other fitness basis;

● the GA process is terminated after a pre-specified number of
generations or on the basis of a criterion which determines
convergence of the population.

Fig. 5.32   Genetic
algorithm procedure

CH5.PM5 6/12/97, 1:46 PM181



182 FUZZY CONTROLLER PARAMETER ADJUSTMENT

5.4.2 GA and EA application in fuzzy controller design

How are GA actually applied for tuning the parameters of the
fuzzy controller?

In a typical application, all the parameters which are to be
tuned are coded as a binary or digital code. The codes of all
parameters are combined into one string which is a chromosome
of the genetic algorithm. Constraints for the controller parameters
are also coded.

What is the difference between genetic and evolutionary
algorithms (EA)?

The strategies are pretty similar to each other. The main
difference is a coding format of the parameters to be adjusted
[Pres95]. GA suppose binary coding of the parameter string and
EA apply real number coding.

Is that all? Is it so important?
Yes, it is, because this difference determines the application

areas for each of them. EA, due to their coding, are better suited
for searching the optimum on flat and continuous spaces, while
GA have no problems with discontinuity. It may have
consequences for a fuzzy controller parameter adjustment. EA are
superior when just small changes are supposed, while GA should
be used when selecting rules or membership functions initially.

Genetic algorithms            Evolutionary algorithms

Population of individuals

(binary coding)

Population of individuals

(real number coding)

Selection of
parents

Reproduction,
recombination
(crossover)

Mutation

Selection of the
best

reproduction
Mutation

Recombination

Conversion of parameters

Fuzzy  controller

Parameters

Fig. 5.33 Structure of GA
and EA
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How do these algorithms work in fuzzy controller design?
Let us consider the process in greater detail following

[Huang95]. GA have been widely applied for the membership
function adjustment. One can adjust the shape of  membership
functions or parameters of the shape selected. For example, if the
triangular function has been chosen, the set of three parameters
has to be evaluated. As the parameters of not one but a few
membership functions are to be determined, all of them are
concatenated as a string. This string is then encoded. The number
of bits (or digits) in a code string determines the length of a
chromosome – the parameter of GA.

Let us consider the operation with GA in greater detail, step
by step (see Fig. 5.32). On the first step, a random number
generator is applied to generate individuals – chromosomes. On
the second step, the fitness of each chromosome is evaluated. The
predetermined fitness function is used here to calculate how good
the chromosome is. Criteria traditionally applied in control
engineering can be utilised here as a fitness function, for example,
the error signal. One has to remember, however, that the higher
value of the fitness function should correspond to the better
chromosome. So the error signal can be applied directly as a
fitness function but should be converted. In the case of the error
the fitness function could be chosen as e ke−  where k is a positive
number and e is the error value.

At the next step the process of a parent selection is conducted.
This process is similar to a spin of a roulette wheel. The selection
algorithm is implemented based on the computed fitness of
individuals. A new population pool is formed by several spins of
a roulette wheel. Since the slot size is made to be proportional to
the individual’s fitness, most of the selected parents come to the
new population pool with a higher fitness. Although the average
fitness in the new pool is higher than in the original pool, some
individuals may have the lower fitness. A pair of parents are then
selected from this new pool for a further genetic operation.

The next step is the stage for a crossover and mutation process.
A crossover point along the chromosome is randomly selected.
A part of the genes on one side of this point is given to the child.
The rest of the child’s genes come from the same side of the other
parent. Mutation plays a vital role in genetic optimisation as it
introduces new genetic material that was lost by chance through
poor selection of mates. However, one must be careful, as the
overuse of mutation may distract a good chromosome in the next
generation. The probability of mutation must be small enough to
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avoid degenerating the performance [Krist92]. So the mutation
rate is usually selected to be about 0.0001–0.01. The number of
individuals in each generation (the population size) is chosen on
the base of the experiments. All the individuals in each generation
have to be evaluated. One should understand that a large size may
cause a long operation time. So usually the operation size is
chosen between 50 and 500.

5.4.3 Application example

Example 5.7 Membership functions adjustment in aircraft flight
control [Bour 96]

Let us consider an adjustment of the membership functions for
the fuzzy controller given in Example 3.5. The triangular
membership functions are applied to describe input and output
variables. There are two ways to achieve optimal membership
functions:
● choose the entire membership functions as variables to be

optimised;
● only choose the overlaps between membership functions as

variables to be optimised.

We use the first method for the optimisation procedure. In this
case, the triangle membership functions can have a variable width
and be shifted along the x axis. This is the method of choosing
all the points of the triangle shapes of the membership functions
and moving these points along the x axis (as long as they do not
exceed the upper and lower limits of the universe of discourse)
until efficient membership functions are found. The triangles can
change their variable base. Therefore, each triangle requires the
definition of only one point to fix it. The entire set of fuzzy
membership functions for a fuzzy controller must be represented
as a binary string (of 0 and 1). To do this, the best choice is to
use binary coding.

To apply GA, one needs initially to perform the following
procedures

● Parameter coding: translate the fuzzy membership functions
into strings.

● Initial generation: generate an initial population of 50 strings
by using random numbers.

● Fitness function: decode each string into a set of actual
parameters as membership functions and calculate the fitness
value of each set by simulation.
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The bit strings, representing the overlapping parameters, must then
be judged and assigned a fitness value, which is a score
representing a degree to which they accomplished the goal of
defining high performance. However, the definition of the fitness
function, that enables the GA to locate high performance and
efficient membership functions, is application dependent. The
performance index of the ith string (or the ith membership
function) is defined as a trajectory length which is required to
reach the goal point.

● Selection: copy strings into the mating pool according to their
fitness value.

● Reproduction: copy strings with  better fitness values into a
new generation. We assume that the best 10 per cent  of the
generation of the size of 50 can be copied into the new
generation.

● Generation of new strings: generate 90 per cent of 50 strings
into a new generation.

● Crossover: select pairs of strings from the mating pool and
exchange their corresponding portions of a string at a randomly
selected position. The crossover probability of 0.8 is taken for
simulations.

● Mutation: alternate the value of the randomly selected integer
byte, this value may be changed into any number. The mutation
probability of 0.1 is supposed.

● Iteration: repeat the process from the fitness function
calculation to mutation until it reaches the predetermined
ending condition.
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 6 FUZZY SYSTEM DESIGN
SOFTWARE TOOLS

6.1 Fuzzy technology products classification
A  fast-growing information technology industry has already
developed and released about a dozen good design packages
which are successfully used in different applications for fuzzy
controller design. Among them are: RT/FuzzyTM Toolbox for
MATRIXxTM by Integrated Systems Inc., Fuzzy Logic Toolbox
for MATLABTM by The MathWorks Inc., FIDETM by Aptronix,
fuzzyTECHTM by Inform, a number of products by Togai
InfraLogic Inc., Fuzzy Systems Engineering Inc., HyperLogic,
etc. Some of them are specific for a fuzzy technology, others are
universal and include a special fuzzy design toolbox. These
products started appearing on the market in the late 1980s and
early 1990s.

Table 6.1

Company Products

Aptronix (USA) FIDE
Bell Helicopter Textron (USA) FULDEK
Byte Craft (Canada) Fuzz-C
CICS Automation (Australia) Fuzzy Control Toolbox for UNAC
Fuzzy Systems Engineering (USA) Fuzzy Knowledge Builder, Fuzzy

Decision Maker, and Fuzzy
Thought Amplifier

FUZZYSOFT AG and GTS FS-FUZZYSOFT
Trautzel GmbH (Germany)

FuzyWare (USA) FuziCalc
HIWARE (Switzerland) HI-FLAG
HyperLogic (USA) CubiCalc, CubiCalc RTC, CubiCalc

RuleMaker, CubiCard, and
CubiQuick

Inform (Germany) fuzzyTECH
Integrated Systems (USA) RT/Fuzzy in MATRIXx
Intelligent Machines (USA) O INCA
KentRidge Instruments (Singapore) FlexControl
Management Intelligenter DataEngine

Technologien (MIT)
GmbH (Germany)

The MathWorks (USA) Fuzzy Logic Tool Box for MatLab
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Table 6.1 (continued)

Company Products

MentaLogic Systems (Canada) Quick-Fuzz, Auto-Fuzz, Multi-Fuzz,
Flex-Fuzz, Process-Fuzz, Auto
Sim-Fuzz, Fuzz-Drive, F-MTOS,
CT-FLC

Metus Systems (USA) FuzzySP
MODICO (USA) FUZZLE
National Semiconductor (USA) NeuFuz
Nicesoft (USA) Decision Plus
Texas A&M University (USA) FL Control
Togai InfraLogic (USA) TILShell+ and other products
University of New Mexico (USA) Fuzzy logic Code Generator (FLCG)

The availability of the products on the market as well as their price
means that we will not include in this text any homemade software
tools for fuzzy controller design. Certainly, the main advice is to
use one of these packages. The purpose of this chapter is to

Fig. 6.1 Classification of
fuzzy system design tools
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illustrate how. We will consider the features of the packages and
give some examples of their applications. The main difference
from other references available at the moment  is that we try not
to describe different packages but to point out some their common
and specific features. This is the only way to preserve the value
of this text for some time, at least. For more detail see the
information booklets issued by companies, as well as an excellent
survey in [Chiu95].

Table 6.1 contains the names of the some companies that
produce fuzzy products. Please note that not all of these products
and even companies are currently on the market. This table was
compiled from different sources including [Chiu95, Jam94]. The
trademarks given in the right-hand column of Table 6.1 are
registered with the corresponding companies in the left-hand
column. A little more detailed information about the companies
including their addresses and some characteristics of their products
is provided in Table 8.6.

Let us look at the different types of fuzzy products available
nowadays (Fig. 6.1). Software tools for fuzzy system analysis
(FuzzyCalcTM, CubiCalcTM, etc.) were historically the first
generation of the products on the market. They were produced by
small innovative companies. After that, companies producing
general-purpose simulation and design tools (MATRIXxTM, etc.)
introduced fuzzy parts into their packages. One should note that
despite the availability of universal fuzzy design software, many
companies have chosen to invest money and time in the
development of specialised, in-house fuzzy logic design tools.
Companies such as Motorola, Intel, Siemens, SGS-Thomson,
Texas Instruments and Hitachi have demanded customisation
from the providers of commercial fuzzy tools because the off-
the-shelf products were inadequate for their requirements.
Similarly, National Semiconductor built its own in-house fuzzy
software product to aid in the design and implementation of their
semiconductor chips. This generation of commercial fuzzy logic
design products had a limited aim: the design of simple control
systems for specialised embedded microprocessors.

The list of the products and the review following in this
chapter refer mainly to the universal design packages, that is,
software tools which can be applied for different designs and
which are not oriented towards use on a particular hardware
platform. The most common features of the packages available
are considered and illustrated with some examples in the
following sections.

CH6.PM5 6/12/97, 1:59 PM189



190 FUZZY SYSTEM DESIGN SOFTWARE TOOLS

6.2 Main features of the fuzzy software tools
The goals of the design package are usually:

● speeding up a design process;
● making the design simple, user friendly and attainable;
● providing the possibility to apply fuzzy logic and control

methods without a deep understanding of how they work.

Applications are often universal and can be applied in expert
systems as well as control system design; only a few target control
applications and control system design.

It is important to provide good service, pre- and after-sale
customer support, and continuous improvement and development
of the products.

The basic description and programming language is an object-
oriented high level language that provides connections and links
to other design tools, programming and simulation environment
(e.g. FTLTM by Inform Software).

In order to achieve multisystem realisation, different versions
are usually available for MS-WindowsTM, UNIXTM , and VMETM

operating system environments.
A design package often includes other intelligent technology

tools, first of all neural networks, and the option to integrate
them with fuzzy design tools in order to improve and even
optimise a design (e.g. Neural Networks toolbox in MatlabTM,
NeuroFuzzyTM module in fuzzyTECHTM).

The package includes automation tools for all life phases of
the product development, from design to implementation through
simulation, debugging, optimisation for a target platform and
verification. It supports a design environment where a designer
does not have to write a single line of programming code.

The design package is almost always accompanied by the
educational tools provided by the manufacturer. These tools can
be used for learning the fundamentals of fuzzy logic and control,
as well as for acquiring basic knowledge about using and
applying this particular package. The tools can be provided as
a written tutorial (Togai InfraLogic) or even as a computer
educational kit (Fuzzy Logic Educational program by
fuzzyTECHTM Explorer).

It supports an advanced man–machine graphical interface
including all-graphical editors for different elements of fuzzy
systems and other systems in all design phases. Also, it usually
provides a user-friendly interface for any level user, sometimes
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with the possibility of producing an executable program code
without any programming.

Different methods of fuzzy processing are supported, shapes
of membership functions, fuzzification and defuzzification
methods, etc., providing a user with many choices

The package is able to generate a portable C-code (almost all
packages) and/or source codes oriented to different types of
microprocessors, programmable controllers, etc. The type of code
generated can be a main factor in choosing between the systems.
They can interface with a large number of other general design
tools such as MATLABTM, MS-ExcelTM, etc. Systems are often
supplied in a package with the hardware products (different
products have this option in various degrees from a board to a
special control unit).

Many of the companies producing fuzzy design tools originate
from university research and were founded by distinguished
fuzzy logic and control academics and scholars (Zimmermann,
Jamshidi, Goodwin, Welstead).

6.3 Realisation examples
The examples following illustrate different features of the design
packages and give some more information about them.

Example 6.1 Support of the entire development process including
system analysis of the problem – FS-FUZZYSOFT design
environment (Fig. 6.2)

The first step in the design of a fuzzy-based system is an analysis
of the problem. This results in a basic system outline structure,
and includes its inputs and outputs. The specific knowledge of the
system has to be described by means of linguistic variables and
fuzzy rules. During an implementation of the project, several
operators and parameters have to be defined, such as a fuzzy-
specific inference method, or an internal resolution (to investigate
system behaviour when implemented as a microcontroller with
limited data resolution, e.g., only 8-bit data, no floating point
hardware).

For the system test, simulation can be done by applying various
signals, either in a closed loop, together with a model, or finally,
on-line at the real process. An optimisation is done interactively,
by use of the various sophisticated debugging tools. As the final
step in the design of a fuzzy system, the system is implemented,
either by generating the C-code or the code for a specific
microcontroller.
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Example 6.2 Incorporation of the fuzzy system block into
modelling and simulation environment  – RT/FuzzyTM block in
MATRIXxTM

The RT/Fuzzy block has been developed mainly for control
applications. It is constructed as just one of the blocks among
others to model and simulate a control system in the special
environment called SystemBuildTM. RT/Fuzzy has become an
element of the library which includes linear dynamic systems,
nonlinear elements, signal generators, mathematical functions
and signal junctions. This is particularly convenient for rapid
prototyping.  The modularity principle is applied to the
construction of the block itself as well. Any particular block can
be accessed by clicking a corresponding icon. The rapid
prototyping is highly recommended by the software authors as
the method for applying fuzzy logic to describe parts of the
whole system that are not yet fully understood. So it allows an
approximation of the system behaviour with a fuzzy logic
model.

The fuzzy block itself contains the rules and the data about the
inputs and outputs. A user has an opportunity to enter different
rules and data, change and edit them. User-definable functionality

Fig. 6.2  The structure of
the FS-FUZZYSOFT tools
for design support
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generally is one of the construction principles of these packages.
To define the fuzzy system, a user has to fill in a set of special
forms interconnected to each other.

After the design is completed, the fuzzy controller becomes
just one of the blocks in the entire model. Examples of such
models are seen in Figs. 4.1 and 5.6.

Example 6.3 User education with specially provided teaching
tools – Fuzzy Logic Computer educational kit by Aptronix.

This kit accompanies the FIDETM design package but is available
separately. It presents, in an interactive mode, basic knowledge in
fuzzy theory, fuzzy system analysis and design. It  includes some
computer-based tutorials covering fuzzy logic theoretical
fundamentals and fuzzy technology. The kit contains information
about main applications and requires the user to design simple
systems. It also includes a number of self-assessment questions
to test understanding.

The first part of the kit presents the mathematical fundamentals
of the fuzzy logic and fuzzy sets theory. The presentation is built
as a comparison between crisp (classical) sets and fuzzy sets,
classical logic operations and fuzzy logic operations. This
construction allows the user both to use his or her knowledge of
classical mathematics in learning new theory and to refamiliarise
the user with classical set and logic theory. Then come the
chapters specifically for fuzzy logic. The first part serves as the
theoretical introduction for solving application problems,
particularly problems of fuzzy control.

The main part of the kit is occupied by fuzzy control problems.
Because of the practical orientation, the main domain in this part
is devoted to the design of fuzzy logic controllers. It incorporates
the manuals on FIDE fuzzy products and their application in fuzzy
controller design.

The kit runs under MS-Windows. The computer realisation
provides:

● an interaction between the user and a computer;
● a graphical presentation of educational materials;
● a simple menu-driven control of the computer session, with an

adaptation to the user’s level.

Example 6.4 High-level object oriented programming language
for design and development, – the TIL Fuzzy Programming
LanguageTM (FPL) by Togai InfraLogic
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The TIL FPL is specifically designed for the implementation of
fuzzy knowledge bases. Programming consists of combining
special language objects. There are nine special objects: project,
package, source, fuzzy, var, connect, rule, fragment and member.
As there are special hierarchical relationships between different
objects (see Fig. 6.3), specific rules are applied, where an object
can be defined.

The project object is the top level object. There should be only
one project in the file, which contains information necessary to
define a fuzzy system. The package object can be applied to
divide a fuzzy system into subsystems and to create a hierarchical
structure. This object is used to describe a part. Fuzzy objects
define fuzzy rule bases and rules objects define rules. To embed
source codes into rules bases, fragment objects are applied. Var
objects correspond to the variables in conventional programming
languages. Member objects are used to define membership
functions.

Example 6.5 Inclusion of software tools for all life stages of the
design: from the project description to implementation – FIDETM

by Aptronix

FIDE (Fuzzy Inference Development Environment) integrates
system design, tuning and simulation of a fuzzy system tools.
FIDE tools work on two levels: FIDE inference unit (FIU) design
and an overall system design.

To develop a FIU one has to:
● create and edit a FIU;
● debug, tune and simulate;
● generate a real-time code (for single FIU applications).

Fig. 6.3 FPL object
structure

Project

Package

Source  Fuzzy Var Connect

Fragment Rule Member
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To design the whole system one may:

● graphically link FIUs and conventional execution units;
● debug and tune an overall system;
● make an overall system host executable code;
● run the overall system simulation while tuning FIUs;
● generate a real-time code for each FIU.

At the unit level, a single FIU is developed by specifying the
membership functions and writing the rules. Optionally, one can
develop a system for an application.  The system level may
consist of multiple inference units and conventional execution
units.  FIDE links previously compiled and tested FIUs and non-
fuzzy units into a coherent whole design.

Example 6.6 User-friendly design and advanced graphical
interface – CubiCalcTM

CubiCalc provides a text editor for entering the rules as if–then
statements and a graphic point-and-click editor for defining
membership functions as connected line segments. Rule weights
and linguistic hedges are supported. Rule weights can be entered
by a user interactively or from other modules. While defining a
membership function, the editor first presents a simple shape
formed by a few connected vertices. A user can reshape the
membership function by moving the vertices with the mouse or
add new vertices to create a more complex shape.

Any variable available to CubiCalc can be plotted on a two-
dimensional scrolling strip chart, a scatter chart or a polar plot.
The output membership functions can also be displayed. A three-
dimensional plot of the decision surface can also be presented
to a viewer. CubiCalc can be used to view a surface plot with
any variable as a function of two others.

Example 6.7  New ‘clicking mouse’ technology of programming
and software design with an ability of producing an executable
software without knowing any programming language or
compiling any program segments – FUZZLETM

FUZZLE software is fully supported with graphics displays and
mouse functions. One of the outputs is a source code in C or
FORTRAN language that can be converted into an executable
code and attached to an application environment. In addition,
FUZZLE has its own execution module with graphics support
which does not require any programming, compilation or linking.
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Fig. 6.4 FUZZLE
operational environment

Using this option, the user can obtain inference results directly
from the FUZZLE shell by entering data via keyboard or external
data files. Once the inference engine is validated, the executable
portion of the software can be extracted by a click of a button,
and it can be customised for special purpose applications. The
final product, which is stripped from FUZZLE related functions
and screen images, is ready for distribution and it is royalty-free.

Example 6.8 Producing an output code oriented on different
hardware implementation – fuzzyTECHTM

To satisfy any user, different fuzzyTECH versions may include
translators which produce an output file in C, an assembly code
for INFORM’s FUZZY-166 fuzzy processor, an assembly code for
various Intel, SGS-Thomson, and Siemens microcontrollers, or a
code for programmable logic controllers (PLC) produced by
Allen-Bradley, Siemens and Klockner-Moeller. Users are
supposed to purchase the different versions of fuzzyTECH
depending on the type of the code they wish to generate.

Example 6.9 Advanced simulation and debugging support –
FIDETM

FIDE provides tools for simulation and debugging separate FIUs
as well as an entire system. One can debug a FIU using MF-Edit,
Analyser, Tracer and Simulator.
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● MF-Edit – graphically modifies membership functions. One
may edit membership functions by modifying the FIL source
code.  However, it may be more convenient to tune
membership functions graphically. The Membership Function
Editor (MF-Edit) graphically defines new shapes for
membership functions and saves the results in files (if possible
to edit).

● Analyser – provides a three-dimensional view of  the response
function, it can  also trace back to the source code for any
anomaly point.

● Tracer –  provides the user with an ability for given input
values to inspect the output, inference process step by step,
and trace back to the source code. Tracer is used to track
specific FIU behaviour to the actual rules. Tracer also
provides a detailed look at every step of the inference process.
One can follow an execution from the output directly back
to the rule base in the source code. The  anomalies are
apparent which should be addressed in the debugging
process.

● Simulator – allows a user to view input and output values
graphically as a function of time (steps). The simulation is
driven by a set of input values which are specified by the user
in a separate file. If the resulting response functions exhibit
undesirable behaviour (such as the overshoot, for example), the
rules and membership functions that cause this behaviour can
be directly determined with Tracer, and then the FIL source
code is recompiled.

These tools are used to identify and correct errors in source codes.
Also, one can fine-tune one’s application with other debugging
tools. The Composer is a text and graphic editor used to link
FEUs, FIUs and FOUs and then  interconnect them.  It can also
be used to illustrate data flow graphically through the overall
system and locate errors which may not be apparent until the
entire system is analysed.

All debug utilities are able easily to identify rules and
membership functions that require modification.  Rule modi-
fication is accomplished using FIL editor.  Membership func-
tion modification can use FIL editor or the graphical MF-Edit
feature.  Once changes are made, the FIU can be recompiled
and the debug process can start again. The real-time code
(RTC) option on the FIDE menu allows one to generate as-
sembly code versions of one’s FIU for various Motorola
microprocessors.
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Example 6.10 Combining abilities with other intelligent tools –
NeuroFuzzyTM Module in fuzzyTECHTM

In many applications, the desired system behaviour is represented
by data sets. In control systems, these data sets may represent
operational states. The NeuroFuzzy Module allows us to use these
data sets for an automated fuzzy controller adjustment with any
fuzzyTECH edition. An adjustment of both membership functions
and fuzzy rules is supported as well as an automatic optimisation
towards the data sets. The NeuroFuzzy Module (Fig. 6.5)
integrates neural network technologies to train fuzzy logic
systems. In contrast to conventional neural network solutions, the
entire training process and the resulting fuzzy logic system
remain completely self-explanatory.

The training technology used  is based on a fuzzy logic
inference extension that is implemented in most fuzzyTECHTM

editions: the use of Fuzzy Associative Maps (FAM). Such FAM
rules can be considered generalised neurones and by using the
NeuroFuzzy Module technologies, neural net training methods
are applicable. A fuzzy logic system generator optionally sets up
appropriate membership functions and rule blocks prior to the
actual training phase based on the data sets.

The NeuroFuzzy Module can also be used to optimise existing
fuzzy logic systems. Starting with an existing system, the
NeuroFuzzy Module interactively tunes rule weights and
membership function definitions, so that the system converges to
the behaviour represented by the data sets. Any fuzzy logic system
generated by the NeuroFuzzy Module can be optimised manually
and verified.

Fig. 6.5  Neuro-Fuzzy
Module structure
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Example 6.11 Including hardware blocks together with the
software tools to generate, model and simulate fuzzy controller
with the embedded code – Fuzzy Microcontroller Development
System by MentaLogic Systems Inc.

The automated fuzzy controller design station (see Fig. 6.6)
includes the fuzzy expert system, AutoFuzz, for generation and
optimisation of automatic fuzzy rules and membership functions.
It includes the FlexFuzzTM HPC1600 block for control modelling
and a special evaluation board for chip development.

Example 6.12 Integration of software and hardware tools into a
united complex for design, simulation and real-time control –
UNACTM

UNAC comprises two main components, GIACTM and SAACTM.
GIAC (Graphical Interface for Advanced Control) is a software
package running on a host computer, usually a workstation or PC.
It provides a graphical user interface for operating UNAC. SAAC
(Stand-Alone Advanced controller) is a hardware unit which
communicates with the host computer via both serial or Ethernet
links. SAAC also communicates with the sensors and actuators of
the process being controlled, via industry-standard links.

So UNAC is an integrated complex (see Fig. 6.7), combining
software and hardware components, with a fuzzy control toolbox
being just a part of its software half. The hardware part (SAAC)

Fig. 6.6 The structure for
the design and
development system
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Fig. 6.7 The integration
complex structure

Data Acquisition Data Preprocessing

Data Presentation

DataEngine VI

LabVIEW

is applied to acquire information from a plant. This data is used
to develop a dynamic model of the process, from which the block-
diagram schematic is derived. Using the dynamic model, a
designer synthesises a control strategy for the process control, and
tests it by simulation. After the model and control are verified, the
control program is downloaded into the hardware and applied for
actual control.

Example 6.13 Integration and close interaction with other
development tools and environments – DataEngineTM

DataEngine has been developed as the product which contains
different tools for solving complex data analysis problems
[Ang95]. The main members of this family are:

● DataEngine – development tools for data analysis;
● DataEngine ADL – C++ library for the integration of data

analysis solutions in an existing software environment;
● DataEngine VI – virtual instruments for LabVIEW.

DataEngine VI incorporates the so-called Virtual Instruments to
train and run neuro-fuzzy systems under the environment of
LabVIEW®. So this product plays the role of an extra add-on
library for LabVIEW® which enables an automation of
classification and pattern recognition problems. The relationship
between DataEngine VI and LabVIEW® is illustrated in Fig. 6.8
[Ang95].

Fig. 6.8  Integration of
DataEngine VI with the
LabVIEW products
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7 FUZZY  CONTROLLER
IMPLEMENTATION

7.1 How do we implement a fuzzy controller?
This chapter  describes the hardware implementation of fuzzy
controllers. It gives some advice on how to construct real fuzzy
controllers. This is the most exciting part of such a developing
area as a fuzzy controller design and implementation. New chips
and devices are being developed and manufactured now in large
quantities and any particular device will become obsolete before
this book is read. So this chapter is short and filled with only
general descriptions and recommendations.

The simplest and the most usual way to implement a fuzzy
controller is to realise it as a computer program on a general
purpose processor. However, a large number of fuzzy control
applications require a real-time operation to interface high-speed
external devices. For example, automobile speed control, electric
motor control robot control are characterised  by severe speed
constraints. Software implementation of fuzzy logic on general
purpose processors cannot be considered as a suitable design
solution for this type of application. In such cases, design
specifications can be matched by specialised fuzzy processors.

The requirements to the hardware implementation are:

● high-speed performance;
● low complexity;
● high flexibility.

These conditions contradict each other. So it is not easy to choose the
right way, especially if one takes into account some other factors, such
as  manufacturing cost (very important for consumer product fuzzy
controllers) or design cost (important in research and development).

I understand what one needs high performance for. What does low
complexity mean with regard to the hardware implementation?
And high flexibility?

Low complexity means that algorithms for fuzzy processing,
fuzzification and defuzzification have to be very simple and
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demand as small an amount of memory as possible for their
realisation. Flexibility means the ability of the hardware to be used
successfully in different applications and configurations.

Considering these requirements, have any devices been
developed yet?

During recent years, there has been an increasing interest in
the development of an efficient fuzzy controller hardware
capable of coping with the requirements of real-time applications.
Togai and Watanabe [Tog86]  developed the first fuzzy logic chip
in 1985. Later Yamakawa developed a fuzzy logic hardware using
analog techniques. Since then, several chips have been proposed
utilising both analog and digital techniques. Generally speaking,
three different ways of implementating fuzzy controller hardware
can be proposed. They are summarised, together with their
advantages and disadvantages, in Table 7.1.

Table 7.1

Class of hardware Advantages Disadvantages
implementation

Digital general purpose Flexibility in choice Low performance
processor of hardware and unless a very powerful

software tools one is used

Digital specialised Increasing Incrementing complexity
processor performance and cost, as it must be

coupled with a standard
host processor

Lack of flexibility, as it
may be applied to a
limited class of
problems
Higher cost

Analog processor High performance Mainly the research topic
Low cost Low accuracy
Low power Lack of flexibility

consumption

One can see that any hardware type has its positive and negative
sides for fuzzy controller application. That’s why we will briefly
discuss all of them.

7.2 Implementation on a digital general purpose
processor
Nowadays, most fuzzy controllers are implemented as software
programs on general purpose processors and microprocessors. If
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there is a need for higher operation speed, a specialised fuzzy
processor can be added. An example of such a processor is the
FC110 from Togai.

So, if one needs a real-time operation, the specialised fuzzy
processor should be applied?

Not always. The advantage of this processor is the powerful
arithmetic logical unit. However, for  defuzzification
implementation, a fast multiplication and division are needed.
If  an 8- or 16-bit microprocessor is applied for a fuzzy controller
realisation, the FC110 speeds up the operation significantly. If
a 32- or 64-bit processor is used, the advantage of the FC110
processor is only the fast minimum and maximum operations.
At the same time, other operations can be performed faster on
a general purpose processor.

I understand that to speed up a fuzzy controller operation, a
more powerful processor must be used.

Yes, while this is an obvious answer, it is not the only one.
Other ways suppose the optimisation of the algorithm of a fuzzy
controller operation.

You mean the optimisation on the target platform as proposed
in [Fuz92]?

Not exactly. Some advice can be provided on how to speed
up a controller operation on a general processor. In this case, the
optimisation is based not on the features of a particular platform,
but on the specific features of the fuzzy controller operation.

What are they?
Research has demonstrated that only two stages of a fuzzy

controller operation take most of the processing time, about 83
per cent for rules processing and 16 per cent for defuzzification
[Ung94]. This is why the main efforts should be and are
concentrated on the inference engine implementation. On the other
hand,  the important features of modern general microprocessors
[Sur94] should be considered as well. These features include the
following:

● Addition, multiplication and division operations are about 10
to 100 times faster with integer numbers than with floating
point numbers. Floating point operations are not available on
microcontrollers.

● Usually minimum and maximum operations are not available.
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● Jumps for short distances are fast.
● Data that is often used is held in the processor cache or register

memory.

Based on this, the following recommendations can be provided:

● All calculation operations must be done with integer numbers.
It can be easily realised as the input signal for the fuzzy
controller comes from the AD converter which outputs an
integer code.

● The membership functions for the inputs are to be stored in
look-up tables. In this case the antecedent parts of the rules
can be calculated very fast.

● Data dependencies, especially the property of the minimum
operation, that min (X,0) = 0, can reduce the number of
operations drastically. It can cause a significant reduction in
the rules calculation time. If an antecedent part is zero and
the t norm operation is interpreted as the min operation, then
this rule is not activated. There is no need to calculate the
consequent part. Moreover, other antecedent conditions need
not be checked. All other rules with the same antecedent part
do not need to be calculated either. Generally, if similar
antecedent parts are used in different rules (that is quite
common in fuzzy controllers), there is no need to recalculate
them, and the result of the first calculation can be reused in
the actual rule.

How far can the processing time be reduced with this
optimisation?

Quite significantly. Let us consider a typical PD-like controller
with a rules table given in Section 3.5.3. It has 49 rules with two
conditions each and without any reduction 49 × 2 = 98
antecedent parts should be calculated. By reusing the results
available, the number of antecedents to be calculated can be
decreased down to 14. The number of minimum operations can
be reduced as well.

Can you give us any real results?
You can find them in the literature. For example, in [Sur94]

the comparison between PC80486, 33 MHz, the FC110 from
Togai InfraLogic and the MC8052, 12 MHz is given. In the
benchmark (see Fig. 7.1) the FC110 is nearly 20 times faster than
MC8052 and needs less program memory.

In general, microcontrollers like the MC8052, which is an 8-
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bit type, are suitable as a cheap realisation of fuzzy controllers
with a medium complexity and a low or medium execution time.
These and similar microcontrollers are well tested and often used.
However, the PC80486 with an optimised C-code implementation
is faster than the FC110 because of the improved algorithm. By
the generation and optimisation of the assembler code, the
execution time for it can be reduced even further. So, for faster
processing, the extension and optimisation of some basic fuzzy
operations are the most important.

7.3 Implementation on a digital specialised processor
Research into the balance between performance and cost has
recently led to the development of architecture solutions with a
specific support, and several accelerator coprocessors dedicated
to fuzzy logic and control have been proposed. Dedicated
hardware may be considered as the best way in terms of
performance, but it can only cover a limited range of
applications. In spite of the lack of flexibility, the choice of the
entire specialised hardware solutions may represent an effective
way, in particular for the applications which require a large
number of rules. Specific fuzzy hardware allows us in many cases
to reach a better cost–performance ratio because of the
exploitation of parallelism in fuzzy processing and the
introduction of special purpose units.

To introduce this type of implementation, let me consider two
specialised processors. The first one is FC110 from Togai
InfraLogic. It is rather old already (a few years). The second one
is AL220 from Adaptive LogicTM, which is very new.

The FC110 digital fuzzy processor from Togai InfraLogic was
developed as a specialised fuzzy coprocessor. It is a single chip
small enough for sensitive embedded applications. Its architecture

Fig. 7.1 Comparison
results for a standard
microcontroller MC8052,
a specialised digital
processor FC110, and a
general digital processor
PC80486: performance
benchmark in iterations
per second [Sur94]
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supposes high communication possibilities for working together
with a host processor. It is not oriented to any particular host type
and is flexible in possible applications. Variable data are stored
in a 256 byte on-chip RAM. At least the low 64 bytes are shared
between the host and the device with arbitration provided by the
FC110. Special communication capabilities are assigned to two
of these addresses. Off-chip data interfacing is also possible.

Due to this architecture, the microprocessor allows the program
and all the constant data to reside in an off-chip ROM and the
variable data to be placed in an on-chip RAM that both the host
and the device can access. The shared RAM is used for temporary
storage and to transfer observations, commands, conclusions.
Additional RAM is provided in a 192-byte segment adjacent to
the shared RAM.

The AL220 is an inexpensive, high performance, stand-alone
microcontroller utilising fuzzy control. The device contains four
8-bit resolution analog inputs and four 8-bit analog outputs, and
an internal clock generator. Inputs can be directly connected to
sensors or switches. Outputs can be connected to analog devices
or used to control a mechanism. The AL220 consumes very little
power during normal operation and has a power-down mode. The
AL220 diagram is given on Fig. 7.2

The main elements are a fuzzifier, a defuzzifier and a controller,
performing fuzzy processing. The knowledge base containing
rules and membership functions is realised as an EEPROM/ROM
with the capacity of 256 × 8 bits. It is available in either an 18-
pin DIP or 20-pin SOIC versions. One can see that this device

Fig. 7.2  Detailed AL220
block diagram
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includes on-chip A/D and D/A converters that eliminates a need
in external devices and gives a designer a one-chip solution.
Can you provide more information on how it works please?

The microcontroller [Inn95] reads voltage levels from its four
analog inputs using an 8-bit A/D converter, processes the channel
data according to fuzzy rules contained on the chip, and
generates four analog inputs via its 8-bit D/A converters and four
sample-and-hold output drivers. Fuzzy processing is performed at
a decision rate of 500,000 rules per second that allows one to
carry out first-, second- and third-order derivatives calculation and
control, automatic calibration and rule-based timing at 10,000
samples per second for each of the four analog channels.

Let us have a look at some fuzzy processor chips currently
being developed. In order not to be accused of any biased
approach, two fuzzy chips are presented, one of a Japanese design
and another one of an European design (see Table 7.2). Data given
is from the manufacturers. Omron is famous for the world’s first
high-speed fuzzy controller, FZ-1000. FP-3000 is a new
generation fuzzy processor which is applied in different Omron
products. WARP (Weight Associative Rule Processor) by SGS-
Thomson (see Fig. 7.3) is claimed to be the technological state-
of-the-art processor. Table 7.2 is not comparing these two chips,
but presenting some real-life data and demonstrating how fast this
area is being developed.

Fig. 7.3   WARP fuzzy
processor
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Table 7.2

Key features FP-3000, WARP, SGS-
Omron Thompson

No. of rules processing inputs 8 16
No. of rules processing outputs 4 16
No. of  possible membership 7 16

functions for each input
No. of  possible membership 7 128

functions for each output
No. of types of membership 4 shapes (L,P,S,Z) All

functions supported
No. of rules Single mode: 29 Up to 256

Expanded mode:
128 per group with
3 groups

Operation time 20 rules with 5 32 rules with 5
inputs and inputs and
2 outputs and 1 output are
defuzzification evaluated in
by centre-of-gravity 1.85 µs
method in 650 µs (1.5 MFLIPS)

Data resolution Unsigned 12 bit 8 bit

You mentioned that a specialised fuzzy processor is usually
applied as a coprocessor. How is this cooperation organised?

A fuzzy coprocessor by Togai InfraLogic, [Tog95], the
VY86C570, is a high-performance fuzzy coprocessor with a 12-
bit FCA (Fuzzy Computational Acceleration) core, 4 K × 12
OCTD (Observation, Conclusion and Temporary Data), RB (Rule
Base), SMI (Shared Memory Interface), and host interface logic
combined in a single chip. The VY86C570 is capable of executing
simple to very complex fuzzy computations at high speeds,
making it suitable for a wide range of fuzzy logic applications.
Simple-to-medium complexity fuzzy logic rule bases can be
directly downloaded by a host processor to 4 K words
(approximately 200 rules) of on-chip rule base memory. This
allows designers to create fuzzy coprocessing systems without the
need for an expensive on-board memory. For larger fuzzy
application requirements, the VY86C570 includes an external rule
base interface that allows up to 64 K words (over 1,000 rules) of
rule base memory.

In a typical fuzzy application (see Fig. 7.5) a fuzzy rule base
is downloaded by the host into RB memory prior to the start of
any fuzzy computation. At the beginning of a fuzzy computation,
‘crisp’ input values, or observations, are downloaded by the host
into OCTD SMI. The fuzzy core uses the rule base information
stored in the RB memory to perform calculations and produce a
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Fig. 7.4  Specialised
fuzzy coprocessor chip
produced by Togai
InfraLogic

Fig. 7.5 Typical
application when a
custom ASIC chip is used
as a fuzzy coprocessor

set of ‘crisp’ output values or conclusions. These values are stored
by the fuzzy core in the OCTD SMI and are read by the host
through the host interface. Control status registers are used to
control the modes of the chip and to provide status read-back.

7.4 Specialised processor development system
I understand that this controller should have some rules and
membership functions to fulfil all its functions. How do we fill
in its electronic knowledge base?

A special design environment is supplied, to put all these data
onto the microcontroller chip called a development system. FC110
has a development system, while AL220 has one called INSIGHT
IIeTM.  This includes some software and a special hardware unit.
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All together this system provides an interface and tools for design
development, simulation, real-time emulation and debugging. The
development process is conducted on the personal computer in an
MS-Windows environment and is pretty easy to perform.

The block diagram for the FC110 development system is
presented in Fig. 7.6, which explains the contents and operation
of this system. In the Togai InfraLogic design package, the fuzzy
controller rule base is written in FPL high level language (see
Example 6.4 of Section 6.3). The development system should
translate this FPL description into an executable code that can  be
downloaded into the FC110 processor. The system includes a
special Compiler, Assembler and Linker. The Compiler translates
the FPL code into the machine code optimised for the FC110
digital processor. The Assembler converts additional files written
in assembler language into relocatable files. These files may
contain information  other than a knowledge base. The Linker
combines all the parts of the code together. It utilises specific
information describing the board configuration. The Linker
produces the code which will be downloaded into the target board,
if the knowledge base memory is implemented as RAM, burned
in, if the memory is a PROM or permanently programmed into a
ROM. It also outputs the C-code file which is used for the
interface with the application software programs.

Fig.  7.6 The FC110
development system
block diagram.
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7.5 Implementation on analog devices
During the last few years, analog circuits attracted close attention
as a good candidate for a fuzzy controller implementation. This
implementation is characterised with a higher operation speed and
a lower power consumption. The functional efficiency is also
much larger than for the digital realisation because of the
possibility of the versatile exploitation of small analog devices for
a wide variety of low level linear and nonlinear processing
required for fuzzy inference realisation.

But isn’t it true that analog circuits are generally not able to
provide good accuracy?

Generally, that is  right. But the fuzzy controller application
is a lucky exemption which does not require high accuracy.
Accuracy of 6–9 bits is enough and is quite affordable even for
the cheapest analog implementations. This makes analog circuits
natural candidates for designing fuzzy controller chips with
optimum speed-to-power ratio figures for low and medium
precision applications, up to about 1 per cent. That’s why some
circuits and chips have been developed and implemented already.

Could you describe these chips in greater detail?
Let me give just a brief introduction [Jar94] into Yamakawa’s

design which is pretty representative for the hardware developed.
The whole fuzzy system is divided into two parts according to their
functions, that is, the rule chip for fuzzy inference (FP9000) and
the defuzzifier chip for defuzzification (FP9001). This functional
division facilitates flexible system configuration. The distinctive
features of these chips are: high-speed fuzzy logic operation in
parallel mode, compact fuzzy systems (chip saving) suitable for
built-in application and adaptability of the fuzzy system based on
a rule set during execution of fuzzy inference. These design features
have allowed an inference speed of more than 1 mega fuzzy logical
inferences per second, excluding defuzzification [Mik95].

The fuzzy engine is implemented in a parallel architecture
where the consequents of all rules in response to the determined
antecedents are defined and programmed internally, aggregated
by an analog ‘or’ construction and combined to produce a
defuzzified output value. The internal processing in both FP9000
and FP9001 is performed in an analog mode as opposed to other
implementations, although a digital interface has been included
in the latest version in order to define, modify (write) and read
the parameters of each fuzzy rule quickly.
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The rule chip consists of an antecedent block, a consequent
block and a rule memory to store fuzzy rule sets. Up to four fuzzy
rules can be stored and processed simultaneously, each with three
antecedent variables and one consequent variable. The t norm
operation applied to the antecedent parts is performed by a min
circuit. To describe input fuzzy variables, only S or Z functions
are allowed as membership functions. Each membership function
circuit can produce up to six different alternate function types,
with a total of 31 different centre positions within the universe
of discourse.

The consequent block has four demultiplexer circuits (one for
each rule in memory) to decode the single consequent label
defined for each fuzzy rule. A three bit opcode provides seven
possible combinations (code 000 is not assigned) labelled NL,
NM, NS, Z, PS, PM, PL for the definition of the consequent
centre values within the universe of discourse. The consequent
block performs a max operation (t conorm). The rule memory
supports a digital interface for fuzzy rules definition and
application. It is a two-stage memory consisting of 24 8-bit
registers (three duplicated antecedents and four inference engines)
and four 3-bit registers for the consequent parts of each engine.

The defuzzifier chip accepts a set of singletons, one from each
rule consequent, which are considered as the centres of the fuzzy
outputs. Singletons are applied to increase the computation speed
and decrease the complexity. They calculate a crisp output by the
centre of gravity method, using the assigned weights for each
singleton.

What are these S- and Z-type membership functions?
These are terms to describe the classes of membership given

in Fig. 7.7, which are standard for hardware implementation.

How can one manage to avoid using any other types except Z-
type and S-type?

One can apply a combination of these two types. For example,
both P- and L-types are the minimum combination of Z- and S-
type functions.

Z-type P-type S-type L-type

Fig. 7.7   Standard
membership function
types
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 It is not necessary to apply chips to develop a fuzzy controller.
One may construct the whole circuit from simple elements.

How can I do that?
Layer by layer. Because a fuzzy controller operation includes

some stages like fuzzification, fuzzy rules processing,
defuzzification, a circuit using it contains parts or layers
corresponding to these operations. Each layer realises one of the
operations. For example, let us construct the simple circuit based
on the operational amplifier which realises the S-type of
membership functions. This circuit is applied in fuzzification.

Note, that the Z-type membership function has two
parameters: a and b. Then it can be defined as:

Z(a,b,x) = min (1, max (0, Z
0
 (a,b,x))),

where Z
0
(a,b,x) = ½ – (x–a) × b.

To realise this membership function the circuit given in Fig. 7.8
with the symmetric power supply V

cc
 can be proposed [Sanz94].

In this case:

a = R
2
/R

1

V
cc 

( a + 1) (R
4
/R

3
 –1)

b =
 a(R

4
/R

3
 + 1)

Is it so simple to design an analog fuzzy controller?
It is not that difficult if one has only to consider basic design

principles. The example of an analog reconfigurable fuzzy
controller  recently developed is given in [Guo94, Guo95]. This
controller has a modular architecture and reconfigurable inference
engine. It is a two-input and one-output fuzzy controller which
implements Mamdani’s min–max inference engine and centre-of-

R R

R

+ Vcc

Vcc

V0
_

3

R4

+

1 2

_

Fig. 7.8  Circuit for the
implementation of the Z-
type membership
functions
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area defuzzification method. Each input and output includes five
membership functions. The controller implements 13 rules. It was
designed with analog circuits working in a voltage mode. The
design was implemented in 2.4 micron CMOS technology.

7.6 Integration of fuzzy and conventional control
hardware
As fuzzy control has become popular and a number of successful
real life applications has been developed, hardware developers
have started proposing complex solutions, integrating fuzzy
software and hardware with conventional PLC (programmable
logic controller) and DCS (distributed control systems) hardware.
The aim is to provide an opportunity to complete a design and
implement a controller for any particular application without any
need for any extra software and hardware. Merging of design
(development and simulation) and implementation was
considered in Chapter 6 (see Example 6.12). Here,  attention is
paid to the hardware integration. Two ways of transforming fuzzy
controller design methodology into real industrial applications are
given below.

The first one is called UNACTM [CICS96, Adams95] which
was developed by CICS Automation. It proposes the combination
of fuzzy and conventional technology on a ‘macro’ level. UNAC
consists of a design package, including fuzzy control
methodology, and a hardware part (SAACTM – see Fig. 7.10)
which is downloaded with a controller code developed by the
software. The SAAC 1000 uses a DEC Alpha AXPVMETM

processor board utilising a VxWorksTM real-time operating system.
It incorporates a VME backplane and supports an extensive range
of VMETM cards. Communication with the workstation running a
software package is via 10 Mbit/s Ethernet using TCP/IP. High-

Fig. 7.9 A reconfigurable
fuzzy controller (a
microphotograph)
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speed sampling is provided via VME based I/O cards, and other
systems can be accessed using RS-232, RS-422, RS-485 and
GPIB. SAAC 1000 may be integrated into DCS or PLC systems
via communication protocols such as Modbus. This provides
SAAC 1000 with access to the DCS/PLC operator interface and
plant I/O. And in its turn, it provides the DCS/PLC system with
a user-friendly advanced process control facility.

The second methodology is the ‘micro’ level solution,
developed by Inform Software and Klockner-Moeller, and consists
of two chips, field bus connections and interfaces [Geb96]. An
analog ASIC handles the analog/digital interfaces at industry
standard 12-bit resolution. Snap-on modules can extend the
periphery for large applications of up to about 100 signals. An
integrated field bus connection, based on RS485, provides further
extension by networking. The conventional and the fuzzy logic
computation is handled by a 16–32 bit RISC microcontroller. The
operating system and communication routines, developed by
Klockner-Moeller, are based on a commercial real-time
multitasking kernel. The internal RAM of 256 kB can be extended
by memory cards using flash technology. Thus, the fuzzyPLCTM

(Fig. 7.11) is capable of solving real complex problems of
industrial automation.

The fuzzyPLC is programmed by an enhanced version of the
standard fuzzy logic system development software fuzzyTECHTM

of Inform Software. Unlike all other control design packages,
fuzzyTECH has been enhanced with editors and functions to

Fig. 7.10 SAAC 1000TM

portable controller
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support the conventional programming of the PLC. Thus, a user
only needs one tool to program both conventional and fuzzy
logic parts of the solution. The software runs on a PC and is
linked to the fuzzyPLC by a standard serial cable (RS232) or the
field bus (RS485). Through this link, the developer downloads the
designed system to the fuzzyPLC. Because fuzzy logic systems
often require optimisation ‘on-the-fly’, fuzzyTECH and the
fuzzyPLC feature ‘online debugging’, where the system running
on the fuzzyPLC is completely visualised by the graphical editors
and analysers of fuzzyTECH. Plus, in online-debugging modes,
any modification of the fuzzy logic system is instantly translated
to the fuzzyPLC without halting operation.

Fig. 7.11 fuzzyPLCTM, an
integration of fuzzy and
automation hardware
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8 A BRIEF MANUAL TO
FUZZY CONTROLLER
DESIGN

8.1 When to apply fuzzy controllers
A plant can be considered as a black box with outputs available
for measurement and a possibility of changing inputs. The plant
is supposed to be observable and controllable. Some information
about the plant operation or plant control is available, which can
or cannot be of a quantitative nature, but it can be formulated as
a set of rules (maybe after some processing).

An acceptable fuzzy control solution is possible, which should
satisfy design specifications. It must not be optimal in regard to
some criteria as it is hard to prove that a fuzzy control system is
optimal and even stable. However, a fuzzy controller is able to
provide a stable and ‘good’ solution.

8.2 When not to apply fuzzy controllers
Fuzzy controllers should not be used when:

● conventional control theory yields a satisfying result;
● an easily solvable and adequate mathematical model already

exists;
● the control problem is not solvable;
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8.3 Fuzzy controller operation
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Stage 2:  Fuzzy Processing
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Stage 3:  Defuzzification methods
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Table 8.1 Features of different fuzzy controller types

Simple fuzzy Complex and/or Adaptive and/or
controllers multilevel fuzzy self-organising fuzzy

controllers controllers

One-level controller Multilevel controller Usually: one-level
structure, no structure with a few controller structure,

hierarchical rules controllers at a level, no hierarchical
structure hierarchical rules rules structure

structure Possibly: multilevel
controller structure

with a few controllers at
a level, hierarchical

rules structure

Fixed operational procedures including the methods of approximate
reasoning, fuzzification and defuzzification

Fixed input and output scaling factors Input and output
scaling factors can be

modified (tuned) between
runs or changed during

the run

Fixed inputs and outputs Practically: fixed inputs
and outputs

Theoretically: inputs or
outputs can be changed

All rules have the same degree of Rules may have different
confidence, equal to unity degrees which can be tuned

A number of rules strongly depends on a Dependence is not
number of inputs usually so dramatic

Fixed number of classes (membership Number of classes can
functions) for any input and output be changed (tuned)

Fixed membership functions for each class Parameters, shapes and
position of membership

functions can be
changed (tuned)

8.5  Fuzzy controller structure and parameter choice

Table 8.2

Choice of Apply the hierarchical structure whenever there is
the structure any doubt in the stability of a fuzzy control system

or in applications requiring high reliability

Choice of the inputs The same as for a conventional control system
The error and change of error (derivative) signals
are often applied as the inputs for a fuzzy controller
Additional: it is easy to choose the inputs
depending on some control rules, expressing the
dependence of the output on these inputs

8.4 Which fuzzy controller type to choose
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Table 8.2 Continued

Choice of the scaling Initially choose the scaling factors to satisfy the
factors operational ranges (the universe of discourse) for

the inputs and outputs, if they are known
Change the scaling factors to satisfy the perform-
ance parameters given in the specifications on the
base of recommendations formulated in Section 4.3

Choice of the number There are several issues to consider when
of the classes determining the number of membership functions
(membership functions) and their overlap characteristics

The number of membership functions is quite often
odd,  generally anywhere from 3 to 9
As a rule of thumb, the greater control required
(i.e., the more sensitive the output should be to the
input changes), the greater the membership
function density in that input region

Choice of the The expert’s approach – choose the membership
membership functions functions determined by the expert(s)

The control engineering approach:

• initially choose the width of the membership
functions to provide the whole overlap (see
Section 4.4), about 12–14%;

• in order to improve the steady-state error and the
response time, decrease the membership
function’s whole overlap;

• in order to improve transient characteristics
(oscillation, settling time, overshoot), increase the
whole overlap;

• the use of a fuzzy controller with wider
membership functions and a large overlap can be
recommended in the presence of large
disturbances.

Choice of the rules Main methods:

• expert’s experience and knowledge;
• operator’s control actions learning;
• fuzzy model of the process or object under

control usage;
• learning technique application.

The whole rules set should be:

• complete;
• consistent;
• continuous.

Choice of the Choose the method according to the criteria (see
defuzzification Table 4.11)
method The most widely used are: the Centre of Area and

Middle of Maxima

Choice of the fuzzy Choose Mamdani method if the rules are expected
reasoning method to be formulated by a human expert

Choose Sugeno method if computational efficiency
and convenience in analysis are important
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Table 8.2 Continued

Choice of the t norm See Section 2.2
and s norm calculation The most widely used are:
method

• for t norm min or product operators;
• for s norm max or algebraic sum.

8.6 How to find membership functions

Table 8.3

Method Source of information Brief procedure
applied description

Expert’s professional Based on an expert’s An expert assigns the
knowledge and ability to generate membership degree to any
intuition information through element of the universe or

his/her knowledge and proposes the whole
understanding of the function for the fuzzy set
problem and/or problem definition. A fuzzy set
area can be described with the

linguistic term

Opinion poll results The same as previous As previous but the
processing but applied to a set of degrees assigned by

experts and followed by individual experts are
processing to get the processed altogether to
results get total characteristics

Ranking Based on expert(s) Expert(s) assess prefer
ability to compare and ences, often by pairwise
rank different objects comparisons, determining

the membership degrees
by this way

Logic inference Based on deductions Membership degrees are
from available deduced from some
knowledge (nature laws, information available and
expert knowledge, etc.) related to the object

considered

Inductive reasoning Based on deriving Membership degrees are
membership degrees derived by generalising
from particular facts some available data
(data sets)

Fuzzy statistics Based on statistical Membership degrees are
processing of the data derived by the methods of
available mathematical statistics

Control engineering Based on assignment of Membership functions are
membership functions assigned according to
from recommendations some rules derived from
of control theory control theory methods

Subjective
approach

Objective
approach
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Table 8.3 Continued

Method Source of information Brief procedure
applied description

Neural networks Based on modelling Neural networks become
membership functions a part of a neuro-fuzzy
or their parameters with system modelling, for
neural networks example, membership

functions

Genetic algorithms Based on choosing Parameters of the
parameters of the membership functions
membership functions initially chosen are
with genetic/evolu- changed by applying a
tionary algorithms special optimisation

technique

8.7 How to find rules

8.8 How to implement a fuzzy controller

Table 8.4 Fuzzy controller implementation

Conditions Recommended
implementation

Simple fuzzy controller with a rather small Analog circuit
number of rules for applications with a high processor
production rate (e.g. consumer products)

Complex fuzzy controller with a large number Digital specialised
of rules for real-time industrial applications processor
(e.g. robot control, motor control)

Fuzzy controller for research applications, Digital general
test development, and other applications purpose processor
without special requirements

Fuzzy Rules

Fuzzy
data analysis

Experimental results,
measurements,

quantitative observations

Interviews, human
opinions,

qualitative observations

Natural language
protocols and
expressions

Fig. 8.1 Main sources
and ways of rules
formulation

Objective
Approach
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8.9  How to test a fuzzy controller
Because the theory of fuzzy controller analysis has just started to
be developed, the most widely used method of testing is by
simulation. The first and most important criterion which the fuzzy
controller must satisfy is common sense and one’s professional
knowledge and the knowledge of an expert in the application
domain.

Some advice is as follows:

● It is better to test a fuzzy controller jointly with the plant, if
the plant or its model is available.

● Use one of the design packages available to simulate the fuzzy
controller and the plant.

● During simulation, try different combinations of the inputs and
observe the corresponding outputs.

● Try values for the inputs which you suspect may ‘break’ the
fuzzy controller, such as:

– input values at the extreme ends of the universe of
discourse;

– input values at the extreme ends of the individual
membership function domains;

– input values corresponding to membership function
overlap.

Many design packages allow for a control surface creation.
Analyse the control surface obtained. You must verify that the
control surface conforms to your expectations.  A lack of
conformity is usually due to one of three problems in this order:

1. Incorrectly specified rules.
2. Incorrectly defined membership functions.
3. Inappropriate fuzzy operators.

Make sure that the strong changes of the surface (maximum rate
of change of input vs output) are not concentrated on the borders
for all surface views. If they are, you may want to:

● re-examine and possibly modify the scaling factors;
● Make the membership function density higher in the area of

maximum surface changes – this will tend to make the slope
more graceful.

Check to see if the surface has unexpected anomalies.  A common
reason for this is that rules refer to the wrong labels.
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8.10 How to fix a fuzzy controller

Table 8.5 Fuzzy controller design troubleshooting

What’s wrong What to do

Fuzzy controller does 1. Change the structure of the control system.
not provide stability Apply the supervisory fuzzy controller.
to the system However, you need to remember that this

approach usually decreases the controller
performance to some degree.

2. Check the rules table: sometimes one needs to
change an incorrect sign in the rules output.

3. Decrease the output scaling factor of the fuzzy
controller.

Overshoot (output 1. Decrease the output scaling factor of the fuzzy
oscillation magnitude) controller.
is too high 2. In a PID-like fuzzy controller, decrease the

output scaling factor of the PD-part.

Speed of response is 1. In a PID-like fuzzy controller increase the
too low (rise time output scaling factor of the PD-part.
is too long) 2. Increase the scaling factor for a differential

input compared to other inputs.

Poor steady-state 1. In a PID-like fuzzy controller, decrease the
accuracy output scaling factor of the PD-part.

2. Increase the scaling factor for an integral input
compared to other inputs.

3. Apply the centre of gravity defuzzification
method.

4. Reduce the width of the membership function
for the zero class of the error signal.

5. Redistribute the membership functions,
increasing their concentration around the zero
point.

Insufficient sensitivity Increase the scaling factor for this input.
to the input signal

Anomalies in the 1. Check the rules table: it may contain some
control surface incorrect rules.

2. Check the rules table against required properties.
3. Check the membership functions distribution:

they must have the right overlap.

Insufficient speed 1. Try another defuzzification and fuzzy inference
(performance) method.

2. Consider another implementation (a specialised
digital or analog processor).
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8.11 How to choose a design package

Table 8.6

Company Products Goal Platform Environ- Features
ment

Adaptive
Logic (USA)
Stopped
operations
product is
available
from other
companies: see
Nu Horizons,
10 Maxess
Rd, Melville,
NY11747.
Fax: (1516)
396 5050

American
NeuraLogix,
Inc (USA)
411 Central
Park Dr.
Sanford, FL
32771 USA
Fax: (1407)
322 5609

Aptronix Inc.
(USA)
2040
Kington Pl.,
Santa Clara,
CA 95051,
USA.
Fax: (1408)
4902729
http://www.
aptronix.com/

Byte Craft
(Canada)
421 King Str
N. Waterloo,
Ontario
N2J4E4
Canada
Fax: (1519)
746 6751
http://www.
bytecraft.com/

INSIGHT

AL220

NLX110

NLX230

FIDE

Fuzz-C
C6805

An easy-to-
use interface
for design,
development,
simulation,
real-time
emulation,
and
debugging of
fuzzy
microcontroller
AL220
Fuzzy
microcontroller

Fuzzy pattern
comparator
Single chip
fuzzy
microcontroller
8- and 16-bit
VLSI core
elements for
fuzzy
processing

Fuzzy
inference
development
environment

A stand-alone
C preproces-
sor for fuzzy
logic

IBM PC
compat-
ible

IBM PC
compat-
ible

IBM PC
compat-
ible

MS-
Windows

MS
Windows

MS-DOS
or PC-
DOS

Design entry
is performed
using select-
and-click,
pull-down
menus, results
are viewed
graphically

See Chapter 7

Chips
described as
fuzzy devices
but probably
are not
actually
realising
fuzzy
technology

Allows to
edit, simulate,
debug and
tune the
membership
functions and
rules for
fuzzy system
applications.
The debug
tools allow
time domain
simulation,
3D surface
displays

Accepts fuzzy
logic rules,
membership
functions and
consequence
functions and
produces C-
code
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Table 8.6 continued

Company Products Goal Platform Environ- Features
ment

Bell
Helicopter
Textron (USA)
TSIE, Inc.
P.O. Box
14155
Albuquerque
NM 87191
USA
http://www.
bellhelicopter.
textron.com/
home.html

CICS
Automation
(Australia)
P.O. Box 570
Wallsend,
NSW 2287,
Australia
Fax: (612)
7965 6705
http://www.
cicsanto.
com.au

Flexible
Intelligence
Group, LLC
(USA)
P.O. Box
1477
Tuscaloosa
AL 35486
USA
http://www.
flextool.com/
ftfs.html

FRIL
Systems Ltd
(UK)
Bristol
Business
Centre,
Maggs
House, 78
Queens Rd.
Bristol BS8
1QX UK

FULDEK

UNAC

FlexTool
A modular
software
tool which
provides an
environ-
ment for
applying
fuzzy
systems to
diverse
domains.

FRIL

Fuzzy logic
development
kit – a CAD
package
written in
visual BASIC

Prototyping
and imple-
menting
advanced
process control
algorithms,
diagnostic
studies and
signal analysis

A Version
M2.2 is a
MATLAB
version which
provides an
environment
for design in
MATLAB

Logic-
programming
language for
solving
uncertainty
problems

IBM PC
compat-
ible

Includes
a
software
package
and a
hardware
control-
ler

Various

Various

MS-DOS
or PC-
DOS

MATLAB
environ-
ment

Allows the
user to execute
the resulting
fuzzy
inferences.
Many options of
defuzzification
and encoding
are provided
so that the
user can find
the best fit for
an application

Fuzzy control
toolbox provides
a graphic user
interface,
simulation and
testing of the
fuzzy control
systems. When
completed, the
design is
implemented
directly on the
process

Combines the
uncertainty
handling
capabilities,
qualitative
reasoning
capabilities of
fuzzy systems
with the
evolutionary
learning
capabilities of
genetic
algorithms

Includes an
opportunity to
manipulate
fuzzy and
probabilistic
uncertainties,
enabling
different forms
of uncertainty
to be integrated
within a single
framework
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Table 8.6 continued

Company Products Goal Platform Environ- Features
ment

Fuzzy
Systems
Engineering
(USA)
12223
Wilsey Way,
Poway CA
92064 USA
Fax: (1619)
748 7384

FUZZYSOFT
AG and
GTS
Trautzel
GmbH
(Germany)
Gottlieb-
Daimler-Str.
9 D-24568
Kaltenkirchen,
Germany
Fax: (49)
4191 88665

FuzzyWare
(USA)
P.O. Box
11287
Knoxville
Tn 37939
USA
Fax: (1-615)
588 9487

HIWARE
(Switzer-
land)
Tel: (41-61)
331 7151

HyperLogic
Corp. (USA)
P.O. Box
300010
Escondido,
CA 92030
USA
Fax:(1619)
746 4089

Fuzzy
Knowl-
edge
Builder,
Fuzzy
Decision
Maker, and
Fuzzy
Thought
Amplifier

 FS-
FUZZY-
SOFT

FuziCalc

HI-FLAG

CubiCalc,
CubiCalc
RTC,
CubiCalc
RuleMaker,
CubiCard,
and
CubiQuick

Support and
assistance in
design fuzzy
systems,
modelling real
systems,
generating and
tuning fuzzy
rules

A complete
fuzzy logic
based
operating
system which
assists in
developing
complex
software

A spreadsheet
which deals
with fuzzy
uncertain
numbers while
retaining a
conventional
spreadsheet
use

Fuzzy
development
environment

Generating,
writing, and
verifying fuzzy
rules

IBM PC
compat-
ible

IBM PC
compat-
ible

IBM PC
compat-
ible

IBM PC
compat-
ible

IBM PC
compat-
ible

MS-
Windows

MS-
Windows
and MS
C/C++
or
Borland
C/C++

MS-
Windows

MS-
Windows

MS-
Windows

Helps in
making the
decisions,
provides an
interface for
capturing
expert’s
judgements

Includes:
graphic
simulation
without the
need for
compilation,
system
integration,
structural and
modular
editing,
efficient C-code
generation

Allows to put
in any cell a
precise
number, a
fuzzy number,
or a range of
values.
Includes
financial and
mathematical
functions

Supports most
of the
MOTOROLA’s
microcontrollers

Provides cost-
effective
programming
support for
popular C and
C++ compilers
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Table 8.6 continued

Company Products Goal Platform Environ- Features
ment

Grymer
Worm
Tongue Inc.
(UK)
199 Askew
Rd. London
UK
http://
www.compu-
link.co.uk/
~the-zone/
assist.html

ICCT
Technologies
(Canada)
Suite
205,500
Alden Rd.
Markham,
Ontario L3R
5H5 Canada
Fax: (905)
475 5350
http://www.
stria.ca/icct

Indigo
Software
(UK)
25 Clarence
Sq.
Chelthenham
Gloucester-
shire GL5O
4JP UK
Fax: (44-
01242)
243225
http://www.
indigo.co.uk

Inform
(Germany)
Pascalstrasse
23 D-5100
Aachen
Germany
Fax:(49
2408) 6090
http://www.
fuzzytech.com

Assist
Visual
Designer

FuzzyC++

FuzzyShell

FuzzyExpert–
a C++
source
code
library for
embedded
fuzzy
applica-
tions

fuzzyTECH

Fuzzy
knowledge
based system
generator

A software
package
including a
fuzzy
language,
compiler
A software
design and
development
pakage

Includes all
code one needs
to delay fuzzy
reasoning in
one’s
application

Development
and design
tools for fuzzy
system design

IBM PC
compat-
ible

IBM PC
compat-
ible

Various
plat-
forms

Various

MS-
Win-
dows

MS-
Win-
dows

C++

GUI design,
code
generation for
C/C++ and
Hex,
self-
organisation of
fuzzy rules
and sets,
adaptive fuzzy
computational
algorithms,
support for
fuzzy FPGA/
ASIC chips

Features the
library of C++
codes to create
applications
with fuzzy
logic. Includes
ultra-fast fuzzy
expert system

Provides all
tools for fuzzy
system design:
online
technology for
modifications
of the running
system,
all-graphical
and other
editors,
multiple
graphical
analyser and
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tracers,
NeuroFuzzy
and
DataAnalyser
modules, etc.

Easy-to-
develop online
applications,
possibility of
producing
embedded
applications
with the C-
code
generation,
rapid
prototyping of
the control
systems

Three
powerful
graphical
tools: fuzzy
rule editor,
fuzzy
membership
processor and
fuzzy
graphical
analyser;
fuzzy rules
and member-
ship functions
can be
modified
interactively in
real-time
implementa-
tion to tune a
system
response

Table 8.6 continued

Company Products Goal Platform Environ- Features
ment

Integrated
Systems
(USA)
3260 Jay Str.
Santa Clara,
CA 95054
http://www.
isi.com

KentRidge
Instruments
(Singapore)
Blk 51 Ayer
Rajah Ind
Est
Ayer Rajah
Cres.
Singapore
0513
Fax:(65)
7744695

RT/Fuzzy
in
MATRIXx

FlexControl

Practical tool
for fuzzy
systems
modelling and
simulation in
an integrated
environment

Rapid
prototyping
software for
fuzzy control
systems

MS-
Win-
dows

UNIX
work-
stations

IBM PC
compat-
ible
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Table 8.6 continued

Company Products Goal Platform Environ- Features
ment

Logic
Program-
ming
Associates
Ltd. (UK)
St.4, RVPB,
Trinity Rd,
London
SW18 3SX,
UK
Fax: (44
181) 874
0449
http://
www.lpa.co.uk

Management
Intelligenter
Technologien
(MIT)
GmbH
(Germany)
Promenade 9
52076
Aachen
Germany
Fax: (49
2408) 945
82

The Math
Works
(USA)
24 Prime
Park Way
Natick, MA
01760 USA
Fax: (1508)
653-6284
http://www.
mathworks.
com/iee

FLINT

DataEngine

PENSUM

Fuzzy
Logic Tool
Box for
MatLab

Fuzzy logic
inferencing
system that
makes fuzzy
technology
(fuzzy
variables,
modifiers,
rules,
defuzzification)
within a
sophisticated
programming
environment
(PROLOG)

Fuzzy and
neuro data
analysis and
process control
Modelling
complex
control
systems using
fuzzy Petri
nets

A powerful
tool for fuzzy
system design,
analysis, and
simulation in
an integrated
environment

IBM
compat-
ible PC
or
UNIX
stations

IBM
compat-
ible PC
or
SUN-
Sparc
stations
UNIX-
station

Various

Applied to
program fuzzy
expert systems
Allows the
inclusion of
fuzzy rules,
modifiers,
variables and
defuzzifiers
into an expert
system

Family
includes:
• DataEngine

– develop-
ment tool for
data analysis

• DataEngine
ADL –
library for the
integration
of data
analysis
solutions
into existing
software

• DataEngine
V.i. – virtual
instrument
for
LabVIEW,
has the
advantage of
more
human-like
control

Allows
creation and
editing of
fuzzy inference
systems either
by hand, with
interactive
graphical tools
or command-
line functions,
or by
generating
automatically
with clustering
or adaptive
neuro-fuzzy
techniques

MS-
Win-
dows,
Mac or
DOS +
PROLOG

MS-
Windows

Various
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Table 8.6 continued

Company Products Goal Platform Environ- Features
ment

MentaLogic
Systems
(Canada)
145 Renfrew
Dr.
Markham,
Ontario L3R
9R6 Canada
Fax: (1-905)
940 0321

Metus
Systems
Group
(USA)
1 Griggs
Lane
Chappaqua
NY 10512
USA

MODiCO,
Inc. (USA)
P.O. Box
8485
Knoxville
TN 37996-
0002 USA
Fax;(1-423)
584 4934
http://www.
modico.com

Quick-
Fuzz,
Auto-Fuzz,
Multi-
Fuzz,
Flex-Fuzz,
Process-
Fuzz, Auto
Sim-Fuzz,
Fuzz-
Drive, F-
MTOS,
CT-FLC

Metus
library

FUZZLE –
fuzzy
systems
develop-
ment shell
which
generates
programs
in different
languages
and has its
own
execution
module

A large
number of
different
products
aiming at:
fuzzy
controller
design,
applications
development,
fuzzy
knowledge
generating,
simulating, and
implementing

A library of
fuzzy
processing
modules for C/
C++

Software
allowing the
programming
of an inference
engine,
execution,
output in C or
FORTRAN
code, editing
and analysis.
Able to create
rules from data

IBM PC
compat-
ible

MS- or
NT-
Win-
dows

Various
lan-
guages

Specialises in
the develop-
ment of
advanced
fuzzy logic
technologies

Module that
executes
inference
engines in a
graphical
environment
without
compiling or
linking source
code
Mixed input
processing
capability that
allows
numerical
input data
entry as well
as linguistic
Analyse
performance of
the rules
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Table 8.6 continued

Company Products Goal Platform Environ- Features
ment

Motorola
Inc.
Apply to the
nearest
dealer

National
Semicon-
ductor
(USA)
2900 Semi-
conductor Dr.
PO Box
58090 Santa
Clara, CA
95052 USA
http://
www.nsc.com

Omron
Corp.
(Japan)
4-7-35
Kitashinagawa,
Shinagawa-
ku, Tokyo
140 Japan
Fax: 03-
5488-3273
http://
202.32.89.iy

Parallel
Performance
Group
(USA)
Fax: (1-520)
774-0896
http:/www.
ppgsoft.com/
ppgsoft/oi
fin.html

Fuzzy
Logic
educa-
tional kit

NeuFuz4

Fuzzy
Inference
Software
FS-30AT,
FP-1000,
FP-3000,
FP-5000,
E5AF

O’INKA

IBM PC
compat-
ible

IBM PC
compat-
ible, FP-
3000,
FB-30AT

Various
plat-
forms

MS-
Win-
dows

MS-
DOS

A new version
includes
FUDGE which
generates
assembler or
ANSI C code
for Motorola’s
microcontrollers

Includes
learning kits
and develop-
ment systems
and software
packages for
design and
developing
neuro-fuzzy
systems, fuzzy
rules and
membership
functions

Definable rules
and member-
ship functions,
simulations,
training
exercises
Fuzzy
microcontrollers
and chips,
temperature
process
controller

Allows for
integration of
fuzzy logic,
neural
networks and
user-defined
modules in a
single
framework.
Combines
graphic user
interface,
design
validation,
simulation and
debugging, C-
code
generation and
design
documentation

The computer-
based tutorial
set includes:
fuzzy logic and
control
fundamentals,
fuzzy system
design and
implementation

Neural-fuzzy
technology for
control
applications
which uses
backpropagation
to select fuzzy
rules and
memberships

Comprehensive
fuzzy inference
tools

Design
framework for
building
intelligent
systems
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Table 8.6 continued

Company Products Goal Platform Environ- Features
ment

SGS-
Thomson
Microelec-
tronics
http://www.
st.com
contact a
dealer

Siemens AG
(Germany)
Attn: W.Keim
Siemens AG
ANL 441-VE
G.Scharowsky
Str. 2  91052
Erlangen
Germany
Fax: (49
9131)
732127
E-mail:
siefuzzy@zfe.
siemens.de

Syndesis Ltd
(Greece)
Iofondos 7
Athens GR-
116 34,
Greece
Fax: (30-1)
7257829
E-mail:
syndesis@-
hol.gr

WARP
processor
and
software
develop-
ment tools

SieFuzzy

FLDE – an
application
generator
which
allows a
designer to
develop
and test
embedded
fuzzy
applica-
tions

Development
software tools
for WARP
fuzzy
processor

Software
development
tool for
designing,
simulation,
testing fuzzy
systems,
compiling any
resulting C-
code

Fuzzy logic
design tool
producing an
ANSI C-code
for embedded
applications

IBM PC
compat-
ible

Various
plat-
forms

IBM PC
compat-
ible

Includes
editor,
compiler,
debugger,
simulator and
exporter for
designing
fuzzy
controller,
generating
code and
testing
applications

Interfacing
with standard
software
packages
(Matlab and
Mathematica),
automatic
optimisation
of fuzzy
systems,
user exten-
sions (for
version 2.0)

Ability for a
user to achieve
an optimal
code
generation in
terms of
memory and
precision by
choosing from
a wide range
of C data
types. The C-
code generated
is self-
contained

MS-
Win-
dows

MS-
Win-
dows
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Table 8.6 continued

Company Products Goal Platform Environ- Features
ment

TecQuipment
Ltd (UK)
Bonsall Str.
Long Eaton,
Nottingham
NG10 2AN
England
Fax: 44(0)
1159731520
E-mail:
sales@tec
quip.co.uk

Togai
InfraLogic
(USA)
18
Technology
Dr. Suite
146 Irvine
CA 92718
USA
Fax: (1714)
588 3808

Wolfram
Research
Inc. (USA)
100 Trade
Center Dr.
Champaign
IL 61820-
723 USA
Tel: 1-217-
398-0700
Fax: 1-217-
398-0747

CE124
Fuzzy
Logic
System – a
combined
hardware
and
software
tool for
learning
about and
imple-
menting
fuzzy
systems

TILShell+
and other
products

Fuzzy
Logic Pack

Self-contained
teaching aid
for students to
explain fuzzy
logic using
analogue fuzzy
system
elements
complemented
by fuzzy
software

Software
development
tool which
provides a way
to describe
fuzzy systems,
test them
through
simulation and
compile an
implementation
code

Creating,
modifying, and
visualising
fuzzy sets and
systems

IBM PC
compat-
ible

Various

Available
for all
plat-
forms
that run
Mathe-
matica
2.2

Various

Mathe-
matica
2.2 or
later

Includes
software
package
enabling fuzzy
control to be
implemented
on an IBM
compatible PC.
The open
design allows a
wide range of
fuzzy logic and
control
experiments to
be developed
and extended to
suit the user’s
needs

Includes fuzzy
programming
language,
object editors
and compilers
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9 PROBLEMS AND
ASSIGNMENT TOPICS

Chapter 1
Choose any one of the following topics and write a short (10–15
pages) essay.

1. What I like in fuzzy logic is ...
2. What I do not like in fuzzy logic is ...
3. Fuzzy sets theory was introduced by Lotfi Zadeh in 1965.

Why not earlier or later?
4. Probability vs fuzziness: Which is the winner?
5. In 1975, William Kahan pointed out some contentions to

fuzzy logic:

● I cannot think of any problem that could not be solved
better by ordinary logic.

● What Zadeh (and fuzzy logic) is saying is the same sort
of thing as: ‘Technology got us into this mess and now
it cannot get us out.’

● What we need is more logical thinking not less. The
danger of fuzzy theory is that it will encourage the sort
of imprecise thinking that has brought us so much trouble.

Choose any of these statements and try to prove or refute it.

6. What is wrong in fuzzy sets theory?
7. Present your understanding of the concepts of complexity,

uncertainty, ambiguity, imprecision, vagueness. Where is the
place for fuzziness among these concepts?

8. Fuzzy theory is often determined as an instrument to model
uncertainties. Do you agree with this statement? Why?

9. Historically, a long time before fuzzy theory was put
forward by L. Zadeh, a probability theory had been
considered as a primary tool for representing uncertainties,
which is why some researchers look at fuzzy theory as a
rival to probability. What is your position in this argument?

10. Propose a new device or a method where fuzzy technology
could be implemented.
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11. Propose a plan and ideas for a fuzzy systems laboratory.
12. A fuzzy logic educational kit: ideas, proposals, realisation.
13. Fuzzy control and classical control: what is the advantage

of fuzzy control?
14. What I do not understand in fuzzy logic is ...
15. What do you consider as the most important part of fuzzy

theory and technology?
16. Describe a possible application of fuzzy technology in car

design.
17. Propose some ideas for an automatic car driver

implementation based on fuzzy technology.
18. Propose a brief plan of an intelligent superhighway imple-

mentation based on fuzzy technology.

Chapter 2
1. Give some examples of crisp sets.
2. In the examples given in problem 1, is it easy to determine

for any element of the universal set whether it belongs to
a particular set or not?

3. For the sets A and B, pictured in Fig. 2.3, determine

      A B A B A B, , ,∩ ∪
4. Determine the complement:

● to the set of all odd numbers;
● to the set of all numbers which are multipliers by 5.

5. Determine the intersections of:

● the multipliers by 4 and the multipliers by 3;
● the multipliers by 5 and the multipliers by 6;
● the multipliers by 2 and the multipliers by 8;
● the multipliers by 4 and the multipliers by 6.

6. Right or wrong?

● the set of horses which won the races is a subset of all
racing horses;

● the set of white cats is a subset of all cats older than two
years;

● the set of all values for room temperature is a subset of
all possible values for room temperature.

7. What is the universal set for the subset of pens?
8. What is more general, a crisp set or a fuzzy set? Can you

consider a crisp set as a special case of a fuzzy set or, vice
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versa, a fuzzy set as a special case of a crisp one?
9. Right or wrong?

● if the universal set has a finite number of elements, its
crisp subset has a finite number of the elements;

● if the universal set has a finite number of elements, its
fuzzy subset has a finite number of the elements.  

10. Right or wrong?

● every fuzzy set can be considered as a subset of the
universal set;

● the universal set is another fuzzy set;
● a fuzzy set is completely determined by its membership

function;
● a fuzzy set is the union of all its level sets;
● a membership function is the union of all its membership

degrees;
● a fuzzy set is a crisp set of pairs (u, µ(u)), where u ∈ U

is an element of the universe and µ(u) is its membership
degree.

11. Determine the intersection and the union of the sets of:

● all men taller than1.8 m and all men shorter than 1.9 m;
● all women older than 25 and all men younger than 18;
● of red pencils and blue pencils;
● of green pencils and all pencils longer than10 cm.

12. Draw the membership functions for the fuzzy sets of:

● high indoors temperatures;
● good indoors temperatures.

13. Based on the results of Problem 12, construct the
membership functions for:

● not high indoors temperatures;
● good or high indoors temperatures;
● 0.5-level set of the fuzzy set of high indoors

temperatures.

14. Right or wrong?

● the height of a fuzzy set is determined by the element
on its crossover level;

● 0.2-level set has more elements than 0.5-level set.

15. Draw the membership functions for the fuzzy sets of:
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● low atmospheric pressure;
● high blood pressure.

16. Based on the results of Problem 15, construct the
membership functions for:

● not high blood pressure,
● low atmospheric pressure and high blood pressure.

17. Propose membership functions to determine fuzzy sets of
ultrasonic sounds and infrasonic sounds. What universe can
be used to determine these fuzzy sets?

18. Depending on age, a person can be called a baby, a child,
a teenager, an adult. Determine membership functions to
describe these fuzzy sets.

19. After a traffic accident, the witnesses have described the
speed of one vehicle involved as ‘very high’ and of another
one as ‘rather high’. Propose the membership functions to
determine these fuzzy sets.

20. In the graphic presentation of the membership functions
describing fuzzy sets of ‘well educated people’ and ‘poor
educated people’, which unit would you propose to scale
the universe?

21. α-cut can be considered as an example of a way to convert
a fuzzy set into a crisp one. What is this conversion
necessary for?

22. Right or wrong?

● operations on fuzzy sets can be determined in any way
one wants;

● operations on fuzzy sets have one strict definition;
● both the union and the intersection operations can be

determined through the triangular norm;
● the triangular norm is a two-place function.

23. Based on Definition 2.8, propose a new function to realise
t norm.

24. Propose another problem similar to the one considered in
Section 2.2 (see Fig. 2.11)  to illustrate a possibility of using
different ways to calculate the t norm.

25. Consider two fuzzy sets:

long pencils = {pencil1/0.1, pencil2/0.2, pencil3/0.4,
pencil4/0.6, pencil5/0.8, pencil6/1},

medium pencils = {pencil1/1, pencil2/0.6, pencil3/0.4,
pencil4/0.3, pencil5/0.1}.
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Use two methods to calculate t norms. Determine the results
of the union and the intersection of these fuzzy sets.
Compare these results.

26. Apply two fuzzy sets with the membership functions given
in Fig. 2.4b. Use two methods to calculate t norms.
Determine the results of the union and the intersection of
these fuzzy sets. Compare these results. What can you say
about the dependence of the result membership function
shapes on the t norm calculation method used?

27. Which ones of the following functions could be
recommended as the membership functions for the fuzzy
sets ‘about 5’, ‘much higher than 10’, ‘low’:

28 Let the fuzzy sets A, B and C be the subsets of the universe
{1,2,3, . . . , 199, 200}.

Let A = {1/0.1,2/0.3,3/0.3,4/0.4,5/0.5,6/0.7,7/0.8,8/0.9,
9/1,10/1} and
B = {1/0.1,2/0.3,3/0.5,4/0.7,5/0.9,6/1,7/0.8,8/0.5,9/0.2,
10/0}. Find out the fuzzy sets

C = A + B;
C = A * B;
C = (A + B)*A;
C = A*(A + B).

29. Under the conditions of problem 28, find the fuzzy sets

C = A2;
C = 1/B.

30. Calculate the results of the following operations with the
intervals:

● [1,2] + [2,4]
● [–3,4] – [5,6]
● [–3,4] × [–2,3]
● [7,8] / [2,4]
● [7,8] / [–4,–2]

31. Which of the functions below could be considered
reasonable to serve as a membership function for the fuzzy
set ‘medium’ in control applications?
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32. Actual resistance values of any real resistors are known to
be different from nominal ones. Can this actual value be
considered as a fuzzy set?

33. Propose membership functions to describe ‘a fuzzy resistor’
with a nominal value of 1 MΩ and another one of 5.6 kΩ.

34. Determine a fuzzy equivalent resistance for the circuit given
below where R1 and R2 are fuzzy resistors described in
Problem 33.

Chapter 3
1. What is the difference between Mamdani-type fuzzy

controller and Sugeno-type fuzzy controller?
2. Which method of reasoning is the most appropriate model

of human thinking?

● Boolean logic;
● fuzzy logic;
● semantic networks.

3. Right or wrong?

● fuzzy controller operation is based on rules processing;
● fuzzy rules processing results in a crisp output, which is

applied to an object or process under control;
● a rules table uses measured physical variables as its

inputs;
● fuzzy processing consists of choosing one of the rules

and calculating the output corresponding to this rule.

4. Describe fuzzy processing and calculate its output for
Example 3.1 considered in Section 3.2.3  with the pressure
error of –7 kPa and temperature 12°.

5. Suppose the fuzzy rule has two conditions in its antecedent part.
Two real inputs match the membership functions corresponding
to these conditions with the degrees of 0.3 and 0.7. Calculate
the applicability degree of these inputs to this rule.

6. Let the fuzzy controller have three rules. Each rule has two
conditions in the antecedent parts and two inputs. Two real
inputs match the membership functions corresponding to the
conditions of the first rule with the degrees of 0.3 and 0.7,
of the second one,  0 and 0.9, and of the third one, 0.4 and
0.5. The antecedent parts of the rules are:

R1

R2
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● y = 0.4x
1
 + 0.8 x

2
;

● y = 0.1x
1
 + 0.9 x

2
;

● y = 0.2x
1
 + 0.5 x

2
;

where y is the controller output. Calculate the controller output
corresponding to these inputs.
7. What stages can fuzzy controller operation be divided into?
8. What does a knowledge base of a fuzzy controller contain?
9. What scales can be proposed for vacuum cleaner fuzzy

controller inputs? What scale can be used to describe a
surface type? What scale can be used for the output if a
possible sucking force range is up to 100 N?

10. What are the typical inputs and outputs:

● for a PD-like fuzzy controller?
● for a PI-like fuzzy controller?
● for a PID-like fuzzy controller?

11. Table 9.1 contains rules for a PD-like fuzzy controller. Fill
in empty places.

Table 9.1

NB NM NS Z PS PM PB

NB NB NS Z

NM NM

NS NS Z

Z Z

PS Z PS

PM Z PM

PB Z PS PB

12. Suppose Table 9.2 contains rules for a PI-like fuzzy
controller. Fill in empty places.

Table 9.2

NB NM NS Z PS PM PB

NB PB PB PS Z

NM PM

NS PS Z NS

Z Z

PS Z

PM NM

PB Z NS NB

∆∆∆∆∆e
e

∆∆∆∆∆e
e
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13. Right or wrong?
The structural difference between PD-like fuzzy controllers
and PI-like fuzzy controllers is concentrated mainly in:

● choice of inputs;
● choice of outputs;
● choice of rules.

14. If all the rules are to be formulated by experts, what type
of  fuzzy processing can be recommended?

15. What functions are usually applied in the consequent part
of the rules in Sugeno fuzzy processing?

16. What type of fuzzy processing should be chosen for the
fuzzy controller designed for a robot mobile application?

17. Which defuzzification method can be recommended for the
Sugeno-type fuzzy controller with two inputs and 25 rules
designed for a process control system?

18. Give the definition of controller stability. How does a stable
controller differ from an unstable one?

19. What is the advantage of a hierarchical fuzzy controller over
a simple one?

20. Determine which ones of the rules given below represent a
fuzzy rules base.

● If temperature is below 15o then switch on a heater for
5 minutes.

● If temperature is low  then switch on a heater for 5
minutes.

● If temperature is below 15o then switch on a heater for
a few minutes

● If temperature is low then switch on a heater for a few
minutes

where  Low means below 16° and a few means between 3 and
5.

21. In a multilevel hierarchical structure, which level works
under more uncertain conditions, high or low?

22. Do you agree with the statement that a fuzzy controller is
an applied fuzzy expert system?

23. Formulate some rules for the fuzzy controller controlling the
movement of a car approaching a stop sign. What inputs
should this controller have?

24. What type does the controller designed in Problem 23 have?
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Chapter 4
Fuzzy control has the potential to change the way people and
goods are moved around a factory, a neighbourhood, city, country.
Steering a moving vehicle, controlling the speed at which a
vehicle travels, avoiding obstacles and target tracking are key
aspects where fuzzy logic could be implemented to reduce the
work on humans. By removing the need for humans to worry
about breaking the speed limit, they can concentrate more on
where they are going and what is in their way, and hopefully that
will reduce the number of deaths and accidents on the roads each
year. This set of problems tends to help in developing fuzzy
controllers for an intelligent super highway.

1. We know that when a set of traffic lights is green, the car can
travel through the intersection, if the light is yellow, then the
driver must either stop or hurry through the intersection.
Write down the corresponding rules set for a fuzzy controller.

2. Take into account the time, how long the current light has
been fired. How should the previous set be modified?

3. Now try to design a fuzzy controller for traffic lights. Which
inputs should be used for this controller?

4. Now design a fuzzy controller to stop a car at the traffic
lights. Which inputs should you use? How should you
formulate the rules?

5. Parking is some drivers’ worst nightmare. Write down the
rules for a fuzzy controller performing reverse parking.

6. On the future intelligent superhighway, all cars will be
separated into different palettes, which are groups of cars
travelling with the same speed. The distance between
palettes as well as the distance between cars within a palette
should be kept constant during travelling. Determine the
main difference between two fuzzy controllers: the first one
controlling the distance between the palettes and the second
one controlling the distance between cars within a palette.

7. What sensors will be required to realise the fuzzy controllers
mentioned above?

8. Propose a rules table for a PI-like fuzzy controller for a
room temperature control.

9. Take a manual for any control device. Design a rules table
based on this manual.

10. The fuzzy control system developed for an automatic flight
control of the X-29 aircraft consists of three PID-like fuzzy
controllers: for pitch, roll and yaw control [Luo95]. What
is the main difference between these controllers?
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11. In each fuzzy controller described in Problem 10, the rules
set consists of coarse and fine rules. The coarse rules are
designed to supply fast response with a large control input,
while the fine rules are designed to make a fine adjustment
to improve a dynamic stability. Is it a hierarchical structure?
If so, what is a lower level?

12. Table 9.3 contains the protocol results for some computer
communication sessions. The fuzzy system to be designed
has to evaluate the communication quality. It may consist
of rules like:

If errors are seldom and repeats are seldom then quality is
high.

Which inputs and outputs would you like to apply to this
fuzzy system?

Table 9.3

Session A B C D E F

Packets sent 551 52 37 187 50 1185

Packets 1861 1234 97 34 129 4717
received

CRC errors 0 0 2 1 0 1

Retransmits 153 48 232 194 232 141

Timeouts 50 98 68 435 68 42

Failed sanity 1 0 0 0 0 0
checks

Incomplete 1 1 1 2 1 1
packets

Bytes 608 305 894 567 640 195 427 456 648 979 1584 727
received

Bytes 0 0 0 0 0 0
discarded

13. Can a number of retransmits in Problem 12 be applied as
an input?

14. Add some other rules to the fuzzy system of Problem 12.
15. A control engineer often evaluates a controller quality by

analysing its response. What inputs for this fuzzy evaluation
system could you propose?
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16. Develop some rules for the fuzzy evaluation system of
Problem 15.

17. Which membership functions, Fig. 9.1a, b, c or d would you
prefer to apply to model a fuzzy controller error input and
why?

18. The fuzzy controller has two inputs: error (e) and change
of error (∆e), and its membership functions are presented
in Fig. 4.25. This controller is given by the rules set of Table
9.4. Is this rules set complete? Why?

Table 9.4

NB NS Z PS PB

NB PB PB Z

NS PB PB Z

Z Z NB

PS PS NS NB

PB Z NS NB

Chapter 5
1. What are conventional and non-conventional methods for

fuzzy controller parameter adjustment?
2. What is the main reason for an ANN application in a fuzzy

controller design?

NB NS Z PS PB

0-1-2

Error
NB NS Z PS PB

0-1-2

Error

NB NS Z PS PB

0-1-2

Error

NB NS Z PS PB

0-1-2

Error

b)a)

c) d)
Fig. 9.1. Membership
functions

∆e
e
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3. What are the similarities and differences between neural
network and genetic algorithms techniques?

4. What is the difference between genetic algorithms and
evolutionary algorithms?

5. Which one of the methods, genetic or evolutionary
algorithms, could be recommended for the following:

● an initial formulation of the rules;
● an adjustment of the membership function widths;
● tuning of the fuzzy controller output scaling factors.

6. ANN operation depends on nonlinear activation functions.

● Show that a step function is a special case of a sigmoid
function.

● Is a ramp function a special case of the sigmoid
function?

● How do you approximate a Gaussian function? Can it be
considered as a combination of two sigmoid functions?
If so, in which case?

7. According to [Kung93] the most popular neural model is a
two-layer back propagation network. Give two reasons why.

8. The response of a system controlled by a fuzzy controller
demonstrates a large overshoot. Which of the fuzzy
controller scaling factors should be adjusted and how?

9. If the steady state error value is unacceptable, how would
you adjust the parameters of the fuzzy controller?

10. Will the adjustment recommended in Problem 9 change
other fuzzy controller characteristics?

11. In the process of choosing the scaling factors for the X29
aircraft flight fuzzy controller [Luo95], the scaling factors
are first estimated by evaluating the largest possible value
of each variable and are then adjusted to give a better
performance in terms of  quick response and small tracking
errors. What do you think of this procedure? What does the
stage of an initial choice include?

12. In an ANFIS system [Jang95], which part of the fuzzy
controller is realised by the ANN?

13. [Wu96] starts with the statement that ‘fuzzy control is a
direct method for controlling a system without the need of
a mathematical model, in contrast to the classical control
which is an indirect method with a mathematical model.’ Do
you agree with this definition?
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Chapter 6
1. How would you propose to improve a fuzzy controller

design package which you applied?
2. How many ‘bugs’ have you discovered working with the

design package?
3. What are the main features of the fuzzy controller design

package?
4. What was the main reason for including the neuro-fuzzy

module into a fuzzy design package?
5. Why did large companies wish to produce their own fuzzy

design packages? What did these packages include?
6. How is a typical fuzzy design package organised?
7. What level of a human–machine interface is usually

achieved in a fuzzy design package? How can you prove
your conclusion?

8. What type of programming is required from a user of a
design package?

Chapter 7
1. In a hardware implementation,

● when are analog circuits preferred over digital circuits?
● when are digital circuits preferred over analog circuits?
● when are hybrid circuits preferred over either analog or

digital circuits?

2. Can you propose a way to improve the performance of a
fuzzy processor?

3. Which stages of a fuzzy controller operation must be
optimised first of all? Why?

4. Can a fuzzy controller work in a real-time regime? What
does it depend on?

5. What is a fuzzy coprocessor applied for?
6. How is the joint operation of a general purpose digital

processor and a fuzzy coprocessor organised? Which
operations should be performed by each processor?

7. Briefly describe the design of any fuzzy coprocessor chip
available on the market. What are the performance
characteristics of this chip?

8. What is a fuzzy processor development system for? How is
it applied?

9. Which types of membership functions are usually applied
in fuzzy system hardware implementation? How do you
explain this choice?
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10. In Fig. 7.8, an electrical circuit diagram for Z-type
membership function realisation is given. What can be
modified in this circuit to make it realise the S-type?

11. Propose an electrical circuit to realise a P-type membership
function.

12. What precision can be achieved in an analog
implementation of fuzzy controllers?
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10 DESIGN PROJECTS

This chapter discusses some possible topics for student projects.
Consider the following topics as examples only. The topics
presented here could be useful for specialists and students with
various backgrounds: engineering (electrical, computer,
mechanical, aerospace), information technology, computer and
mathematical sciences.

Projects 1 and 2
The problem description is given in Section 4.1. The plant
simulation model is given on Fig. 4.1. Change initial conditions
in blocks 7, 16 to zero. At the starting point, these initial
conditions set the vessel heading directed straight to the
destination point.

1. Design a fuzzy controller to move the vessel along the straight
line with as small a deviation as possible. Simulate its operation
and the vessel movement with a design package. Observing a
vessel trajectory, evaluate the controller quality.
Try two versions of the controller:

● using a deviation from the straight line as an input;
● using the deviation angle from the target direction as the input.

Try two inputs PI-like and PD-like fuzzy controllers. Compare the
trajectories with the previously observed ones.

Suggest a possible further improvement of the controller
quality.

2. Design a fuzzy controller to make a vessel perform a U-turn
and then move along a straight line. The required time for
completing a turn should be as small as possible. To simulate this
vessel movement, change the initial condition in block 16 of the
plant model (See Fig. 4.1) to 180.
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Project 3. Temperature-compensated VCO
In Section 3.6.4 (Example 3.7) a fuzzy controller design for
power system synchronisation and stabilisation was considered.
A similar problem is typical for signal generators of all types,
which must compensate for the frequency drifts caused by
temperature changes. Usually discrete solutions combined with
voltage controlled oscillators (VCOs) are used. VCOs provide
variable frequency control by varying the excitation voltage
level. However, a discrete circuitry with a temperature sensor
input is required to provide a DC voltage offset to compensate
for frequency drift. This circuitry, composed of a variety of
potentiometers and variable capacitors, requires calibration, a
process in which just one system can often take hours to
calibrate.

The AL220 PAICTM (Programmable Analog IC, manufactured
by Adaptive Logic) can replace discrete compensation circuitry
used with VCOs. The circuit diagram designed is given in Fig.
10.1.   In the temperature compensation application, the AL220
operates as a look-up table. Voltage regions are defined for the
temperature sensor input and are used to control the voltage
offset level output. The voltage regions are variable and can
change in size from region to region and from system to system.
Each voltage region maps to a specific voltage offset value for
each output through the rule set. The offset values are based on
the temperature characteristics of the circuitry being
compensated.

The example algorithm developed by Adaptive Logic is in Fig. 10.2.

Fig.  10.1 Temperature-
compensated VCO.
Example circuit
schematic developed by
Adaptive Logic, Inc.
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The controller has just one input and one output.

Inputs: TEMP
Outputs: VCO

Inputs regions:
TEMP is –30...–25
TEMP is –25...–20
TEMP is –20...–15
TEMP is –15...5
TEMP is 5...20
TEMP is 20...30
TEMP is 30...35
TEMP is 35...45
TEMP is 45...60
TEMP is 60...70
TEMP is < 62
TEMP is < 63.5
TEMP is 64...66
TEMP is > 66.5

The following rules have been proposed.
Rules:

If TEMP is –30...–25 then VCO = 137.
If TEMP is –25...–20 then VCO = 133.
If TEMP is –20...–15 then VCO = 130.
If TEMP is –15...5    then VCO = 128.
If TEMP is 5...20     then VCO = 127.
If TEMP is 20...30   then VCO = 129.
If TEMP is 30...35   then VCO = 132.
If TEMP is 35...45   then VCO = 130.
If TEMP is 45...60   then VCO = 136.
If TEMP is 60...70  and TEMP is < 62   then VCO = 141.
If TEMP is 60...70 and TEMP is < 63.5 then VCO = 147.
If TEMP is 60...70 and TEMP is > 68.5 then VCO = 174.
If TEMP is 60...70 and TEMP is > 66.5 then VCO = 161.
If TEMP is 60...70 and TEMP is 64...66 then VCO = 153.

The proposed temperature compensation algorithm is an open
loop control. It operates as a look-up table. One rule adjusts the
output voltage for each voltage region defined from the
temperature sensor input. Voltage region selection is based on
the temperature characteristics of the VCO and the frequency
deviation limits.

Fig.  10.2 An algorithm
for temperature drift
compensation
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Determine if the proposed controller is a fuzzy controller?
What should one do to redesign it as a fuzzy controller? Make
necessary changes to get a fuzzy controller. Could the same circuit
be used to realise this controller?

Project 4. Sewer level control
In 1992, a sewer in the main street of the Melbourne suburb of
Kensington (Australia) collapsed leaving a large hole in the
middle of the road. For a few weeks, untreated sewage went into
the bay causing much public concern. The old sewer was made
of bricks. Over time, as the sewer level went up and down, the
mortar between bricks was loosened, which caused the collapse.
To prevent further damage to the sewer, it was important to keep
the level in the sewer constant.

Four 45 kW pumps and piping were installed to bypass the
collapsed part of the sewer. Two of the pumps were driven by a
variable speed drive (VSD) while the other two were fixed speed.
Initially operators adjusted the frequency of the VSD to try to keep
the sewer level constant. However, due to the fluctuating flow of
sewage into the sewer, this was unsatisfactory. The human
operators did not have a quick enough response.

The Hartmann & Braun PID controller was applied then. A
4–20 mA level signal was looped into the controller. A level set-
point was entered into the controller by an operator. The controller
acted to increase the frequency of the VSD if the level went above
the set-point and to decrease the frequency of the VSD if the level
fell below it. During commissioning, the self-tuning function was
tried, but it did not work properly. At first just proportional control
was applied. The proportional gain was adjusted until the response
was more or less satisfactory. Integral control was then added to
decrease the steady-state error. Derivative control was tried but this
made the response worse.

Design a fuzzy controller to control the VSD. Determine the
structure of the controller, its inputs and the rules table. What
type of a fuzzy controller should be chosen?

Project 5. A pumping station control
Fresh water must be pumped from a reservoir to an elevated tank
several kilometres away. Three pumps are to be installed and
controlled by a fuzzy controller. The control strategy includes
the rule that if the water level in the elevated tank drops below
7.9 m, a pump would start. If the level drops below 7.5 m, a
second pump would start and if the level dropped below 7.0 m,
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a third pump would start. Once the level reaches 8.7 m, a pump
would stop. At 9.0 m, a second pump would stop, and at 9.2 m,
all pumps would stop.

As the water pressure varies over a large range, it is necessary
for each pump to have a variable speed drive to achieve the
desired flow rate. The water pressure varies due to changes in:

● reservoir water level;
● elevated tank water level;
● consumer demand for water in the region.

The last influence can be modelled as a random variable
depending on time of the day and season.

Design a fuzzy controller and simulate its work. How many
fuzzy controllers should be applied in this system? Can a fuzzy
controller be applied for solving this control problem despite crisp
limits for the levels?

Project 6. A tank level control
A controller has to keep a constant level in the second tank (see
Fig. 10.3). The system is nonlinear with a dead time, so it is not
easy to design a conventional controller. Let us denote the levels
in the tank 1 and tank 2 as h

1
 and h

2
, respectively, the cross-

sectional areas as D
1
 and D

2
 and the cross-sectional areas of each

pipe as A
1 
and A

2
. L corresponds to the dead time. Then the plant

model can be described with the following equations:
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Fig. 10.3 The two-level
tank plant model
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The controller goal is to keep the level h
2
 at a constant value

of the setpoint. In [Tan95] a fuzzy phase-lead compensator is
proposed to control this plant.

Design a fuzzy PI-like controller. Choose some parameters
initially and then adjust them with some adjustment technique.
Try a fuzzy PD-like controller. Compare the results.

Project 7. Control of gas and air supply to a
temperature control system
 The problem of keeping a constant temperature in a single room
(thermostatic chamber) has been investigated for a very long
time. The standard solution includes an application of a heater
with a regulated gas burner (Fig. 10.4) for a water boiler. The
amount of heat is controlled by a regulation of gas and air supply.
The thermostatic chamber is equipped with a temperature sensor.
The control goal is not only to keep the given temperature but also
to provide a highly efficient operation of the heater. That means
the control strategy has to aim at energy saving and environment
protection by reducing the amount of gas and air supplied to the
minimum quantities required for a perfect combustion in the
burner. So the problem is the multicriterial control problem.

The proposed solution was developed by Omron Corp. The
burner is equipped with the oxygen sensor which measures the
rate of the oxygen produced in the exhaust gas. Based on expert
knowledge, this rate can be calculated for any given situation. In
the project version A, this ideal percentage is supposed to be given
by the expert. In the project version B, the fuzzy rules (fuzzy
inference system) must be designed to derive it. Both gas and air
valve drives are to be controlled with separate fuzzy controllers
which are proposed to be designed as PD-like fuzzy controllers
(Fig. 10.5).

Fig.  10.4 Fuzzy control
for a heater burner
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Design two PD-like fuzzy controllers controlling valve drives. The
inputs for the controllers should be the differences between the
desired and actual temperature in the chamber and the ideal and
actual percentage of oxygen in the exhaust gas.

Project 8. Camcorder with image stabiliser
problem description
 In a video camcorder (see Fig. 10.6) one of the main control
problem is an image stabilisation against trembling. Here the
problem of separating large changes in the image obtained (which
could be classified as intended deviations) from small changes
(which could be classified as unintended vibration) is very
important. That is why a fuzzy classifier can be used as a part of
a control system. To solve this problem, the following procedure
has been developed (see Fig. 10.7).

Design a fuzzy controller for an image stabilisation. To compare
the new shot with the previous one, any picture is divided into
four parts with 30 points each and the signals received at these

Fig. 10.6 JVC
Matsushita camcorder
employing fuzzy control
for image stabilisation

Fig.  10.5  Proposed
structure for a burner
control system
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points are saved. Develop the rules set. Include in the set rules
like:

If there are small, equally oriented deviations (= vibrations)
then  transmit the saved shot.
If there are big (= intended) or unequally oriented deviations (=
movements) then transmit and save the new shot.

Determine the type of a fuzzy controller to be developed, its inputs
and output.

Project 9. Crane operational control
In an unmanned crane operational control system, the main
problem is to transport the container to the target location without
sway. To solve the problem several approaches have been
investigated such as control methods with nonlinear feedback and
the numerical methods for constrained nonlinear optimisation.
However, all of them result in some performance decrease because
of the sway rejection. Fuzzy control is supposed to be robust
enough and can be applied here.

The mechanical model for no-sway crane operation is shown
in Fig. 10.8.

Fig. 10.8 Schematic
crane model [Baek95]

Fig. 10.7 Procedure for
image stabilisation
control in a camcorder
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The Euler–Lagrange motion equations can be described as:

where:

where J
1
 and J

2
 are the momentum inertia for trolley and hoist

motor, M and m are the masses of the load including the spreader
and the trolley including the operation room. T

1
 and T

2
 are the

torques, b
1
 and b

2
 are the drum radiuses, θ

1
 and θ

2
 are the rotation

angles for the trolley and the hoist, ψ is the sway angle and g is
the gravity acceleration constant.

Design a fuzzy controller to keep the sway angle as small as
possible. The sway angle is supposed to be measured.

Project 10. Control of jacks for building
construction
 In building and constructing, the problem of level lifting is quite
typical, e.g. while restumping. In lifting, a few jacks distributed
under the bottom of a construction are applied. The level of the
surface should be left flat while moving the construction up or
down to prevent damage. It requires the adjustment of the jack
operational speeds, which is not simple especially when the
construction weight is distributed unevenly around the area and
several people are looking after them while they are being
operated manually.

The control system (Fig. 10.9) is offered to operate the servo
motors controlling the ascent and descent speeds of jacks. The
construction bottom surface is equipped with level sensors S

1
 and

S
2
. The control decision can be based on the following:
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If S
1
 and S

2
 detect the base is level, then speeds of all servo

drivers should not change.
If S

1
 detects that the left side is higher than the right, then the

speed of M
1
 should be reduced while the speeds of M

2
 and M

3

remain unchanged.
If S

2
 detects that the right side is higher than the left, then the

speed of M
3
 should be reduced while the speeds of M

1
 and M

2

remain unchanged.
If S

1
 detects that the left side is lower than the centre and S

2

detects that the right side is lower than the centre, then the
speed of M

2
 should be reduced while the speeds of M

1
 and M

3

remain unchanged.

Design a fuzzy inference system (fuzzy rules) for a fuzzy
controller. When does this set of rules work: in getting the
construction up or down? What rules should be added to the given
above? How can they be modified?

Project 11. Car movement control on an intelli-
gent superhighway
On the future intelligent superhighway, all cars will be separated
into different palettes: groups of cars travelling with the same
speed. The distance between palettes as well as the distance
between cars within a palette should be kept constant during
travelling. In the design of the fuzzy controller, keeping a constant
distance within the palette, the following car model is
recommended [Dick94]:

Fig. 10.9 The control
system for keeping the
flat level
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The term miξ i 
 is the tractive engine force that the wheels apply.

The variables a
i 
and v

i 
stand for the acceleration and velocity.

K vd ii

2
and dmi

are the aerodynamic and mechanical drag forces.
m

i
 is the total mass of the car and cargo.  τ

i
 is the engine time lag.

The term m
i
g sin β stands for acceleration due to gravity g. The

controller should be able to control the movement in up- or
downhill driving when the inclination of the hill from horizontal
is β

i . 
The control input u

i
 is the throttle angle of the car.

Design a fuzzy controller to control the platoon movement
consisting of five cars with the parameters given in the Table 10.1.
The control goal is to keep a distance deviation as small as
possible.  Should fuzzy controller parameters depend on the
parameters of cars involved?

Table 10.1

Car parameters Car number

1 2 3 4 5

Curb mass, kg 1175 1760 1020 1600 4000

Cargo mass, kg 270 200 150 400 1000

Mass total, kg 1445 1960 1170 2000 5000

τ, sec 0.2 0.25 0.3 0.2 0.3

K
d
, kg/m 0.44 0.47 0.5 0.52 0.55

d
m
, N 352 390 360 407 423

Project 12. Control of snack baking system
This project illustrates an ability of a combination of fuzzy
control and expert control methods. The fuzzy control system
which was developed by Omron Corp. should provide the
production of high quality snacks. In this system (Fig. 10.10)
some operational parameters in the oven (temperatures
throughout the oven, density of the gas vapoured, colour of
snacks) are measured with the sensors. The values of these
parameters are specified and should be maintained while
producing snacks by controlling the heaters. However, only
keeping the specified parameters is not enough to produce a high
quality product. The quality depends on some other parameters
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which cannot be measured but may be evaluated by a human
expert (operator). These data includes information about
cracking, tough and thickness of products. The necessity for
these estimates, followed by their application in control process,
requires the presence of highly qualified and experienced
operators. The operators change the operational mode (heater
control) of baking depending on their evaluations of the product.

The rules applied by operators in control can be formulated and
added to other ‘conventional’ rules if a control system is designed
with fuzzy methods. E.g., if thickness is too small then increase
the power for heater No. 3 a little bit. The source for these rules
can be the technological process knowledge.

Design a fuzzy controller providing the specified values for the
product parameters measured and include some rules formulated
on the base of the supposed technological process knowledge.

Project 13. Fuzzy  GA controller for a refrigerator
A refrigerator with a structure that includes a fuzzy controller was
developed at Samsung Electronics in 1991. This controller
estimates the food temperature with the help of some fuzzy rules
based on measurement results of the inside temperature, the
outside temperature and the door opening/closing time. The goal
of the fuzzy controller is to adjust the fan and the compressor to
extend the percentage of time when the refrigerator works without
consuming electricity, providing the required temperature mode.
The food temperature mode is specified with fuzzy terms.

Design a fuzzy controller to solve this problem. Apply genetic
algorithms (GA) to learn the fuzzy inference rules for temperature
derivation based on the data supplied.

Fig. 10.10 Fuzzy-expert
control of the baking
process
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Project 14. Fuzzy GA controller for inverted
pendulum control
This problem is so famous that it does not need any description.
It has become a test design for fuzzy control. A fuzzy PD-like
fuzzy controller is supposed to be designed with the angle error
and the changing rate of it as the controller inputs. The rule table
is similar to the one given in Section 3.5.3. GA are to be applied
for the adjustment of the membership functions. The triangular
membership functions are proposed, with any one determined by
the set of three parameters (P,Q,R), see Fig. 10.12.

This set determines the shape of the membership function for
each linguistic variable. They have to be adjusted with GA to
improve the overall system response. Based on the experience in
[Huang95] the parameters of GA could be advised as following:

Population size: 100
Number of generations: 5
Crossover rate: 0.8
Mutation rate: 0.001

Fig. 10.11 Fuzzy
controlled fridge

Fig. 10.12. Three-
parameter membership
function
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Project 15. Flip-flop electronic circuit for fuzzy
operation realisation
Fuzzy logic can be characterised as an extension of two-valued
Boolean logic, where NOT, AND and OR operators are extended
to fuzzy negation, t norm and s norm, respectively. In this case,
the fundamental fuzzy logical circuits can be considered as one
of the fuzzy extensions of a combinatorial circuit in two-valued
Boolean logic. In such a situation, the concept of a fuzzy
extension of a sequential circuit, which is the complex of a
combinatorial circuit and memory modules in two-valued Boolean
logic should be discussed. So the concept of fuzzy flip-flop
appears. It is a fuzzy extension of two-valued J–K flip-flop.

Design a fuzzy logic circuit for implementing fuzzy operations
like negation, t norm, and s norm based on a conventional flip-
flop circuit.
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Adaptive Controller changing the control signal and
controller the parameters of itself depending on the

changeable plant and environment model

Antecedent An initial part of a rule which determines
part of a rule the conditions under which the rule is fired

Applicability A degree in which all antecedent parts of a
degree rule correspond to it

Backpropagation A method of recalculating the weight factors
method in ANN, based on propagation of the error

value from the output level back to the input
levels and analysis of any weight influence
on the error value

Boolean logic A binary-type logic where any variable may
have two values only: true or false

Characteristic The function which determines a set having
function the value of unity for all elements of the set

and zero for all others

Consequent part A final part of the rule which determines
of a rule what will happen if the rule is fired

Control surface A plot (usually three-dimensional) which
virtually presents how the controller output
depends on the inputs. Frequently used to
estimate the controller quality

Clipping a fuzzy Cutting the degree of all the elements on the
set  specified level
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Crisp A collection of objects of any kind. In fuzzy
(conventional) set set theory, it can be considered a specific

type of the fuzzy set with a membership
function having the value of unity for the
elements of the crip set and zero for others

Defuzzification A process of producing a crisp output on the
base of a fuzzy input. Different defuzzification
methods have been developed and applied

Extension principle The rule defining the fuzzy set on the
universe which has functional relationship
with the initial universes. Serves as a base for
the determination of the algebraic operations
with fuzzy sets (see Definitions 2.11 and 2.12)

Feedback structure The structure which assumes the application
of the output signal at the structure input
together with the input signals. The most
frequently applied in control systems, allows
a comparison of the real value of the output
with the specified one

Fuzzification A process of producing a fuzzy input on the
base of a crisp one.

Fuzzy (logic) A control  sys tem which impl ies  the
controller methodology of fuzzy logic. This type of

controller includes a knowledge-based
system consisting of fuzzy rules and a
special mechanism of their processing (see
Inference engine) as its main parts

Fuzzy logic There is a narrow and a broad sense of this
term. In its narrow sense, fuzzy logic is a
system of logical operators defined by a
calculus of interaction, that attempts to
construct a model for the various modes of
human reasoning, which are approximate
rather than exact.  In its broad sense, fuzzy
logic refers to a general class of fuzzy set
theories, describing a family of classes with
unsharp fuzzy boundaries
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Fuzzy number A fuzzified real number. See Definition 2.13

Fuzzy relation A relation of two (or in a general case n)
fuzzy sets (see Definition 2.16). Applied in
rules processing

Fuzzy rule A rule of the If ... then structure with vague
predicates

Fuzzy set A set of ordered pairs, consisting of an
element of the universe of discourse and the
membership degree. Any element of the
universe belongs to a fuzzy set with some
degree only

Inference engine The specified process transforming fuzzy
(mechanism) inputs into a fuzzy output by dealing with

fuzzy rules, as a result of which the response
corresponding to the inputs is produced.
Different types of inference processing have
been developed and applied

Level set (α-cut-set) The set containing all the elements
belonging to the fuzzy set with some degree
not lower than α (see Definition 2.4)

Linguistic hedge A modifier (e.g., very, rather) which is
applied to change the membership function
of the primary term

Linguistic label The name of the specified fuzzy set on the
universe of discourse (e.g., short, long,
medium)

Linguistic variable A variable, with a (linguistic) value that is a
word or a word sentence (see Section 2.4)

Mamdani-type A type of fuzzy inference in which the
inference consequent of each rule is a linguistic

statement assigning a linguistic value to the
variable. Supposes a defuzzification of the
output produced
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Membership A number between 0 and 1, characterising
degree the degree to which the element of the

universe belongs to the fuzzy set

Membership A function which corresponds a real number
function between 0 and 1 (which is called the

membership degree) to any generic element
of the universe of discourse. The
membership function determines a fuzzy set
(see Definition 2.1)

Overshoot One of the performance indicators
traditionally used in control engineering,
especially while observing the controller unit
step response. Calculated as the increase of
the response during the transient period over
its final value

PID-controller The controller with an output that consists of
three parts, with the first one proportional to
the input, the second one to the integral of
the input, and the third one to the input
derivative. This controller type is the most
widely applied in  industry. It can be realised
as a PI-controller (when the derivative part
is zero) or a PD-controller (when the integral
part is zero)

Range of values Several fuzzy sets would be defined within
associated with a universe of discourse, each with its own
a fuzzy variable domain which overlaps with the domains of

its neighbouring fuzzy sets

s norm See t conorm

Scaling a fuzzy set Scaling a membership degree of all the
elements of the fuzzy set by multiplying it
by a factor less than a unity

Scaling factors Coefficients by which the fuzzy controller
inputs and outputs are multiplied in order to
use the normalised universe of discourse for
inputs and outputs, that is the universe which
coincides with the closed interval [–1,1]
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Self-organising Controller of which parameters are changed
controller (tuned) without any changes in the plant model

Settling (settle) One of the performance indicators traditionally
time used in control engineering especially while

observing the controller unit step response.
Calculated as the time period necessary for
the transient response to settle within the
specified strip around its final value

Singleton function A function which is unity at one particular
point and zero everywhere else

Steady-state error One of the performance indicators traditionally
used in control engineering, especially while
observing the controller unit step response.
Calculated as the difference between the
desired final value of the response after the
transient period and the actual one

Sugeno-type A type of fuzzy inference, in which the
inference consequent part of each rule is a linear

combination of the inputs. Does not involve
a defuzzification process with the output
being calculated as a linear combination of
the consequents. Sometimes is referred to as
the Takagi–Sugeno–Kang (TSK) method

Support The crisp subset of the universe, containing all
the elements belonging to the fuzzy set with
some non-zero degree (see Definition 2.2)

t conorm (also A two-input function with special features
known as s norm) (see Definition 2.10). Applied to determine

the union of two fuzzy sets

t norm (triangular A two-input function with special features
norm) (see Definition 2.8). Applied to determine

the intersection of two fuzzy sets

Transfer function A mathematical model which completely
describes any element of the control system.
Widely applied in controller analysis and
synthesis
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Truth value of a On a single-rule level, rule strength is
rule usually determined by the truth of

antecedents of the rule. On a multiple-rule
level, the rule strength of all rules bearing the
consequent is determined by the rule
evaluation process.

Tuning Changing some parameters and/or structure
in order to improve some performance
indicators

Universe of The set which contains all the elements
discourse considered in the problem

Trademarks
Some products that are referred to in the text and their
corresponding companies are given below:

AL220, INSIGHT IIe Adaptive Logic
CubiCalc DataEngine HyperLogic

Management Intelligenter
Technologien (MIT) GmbH

FIDE Aptronix
fuzzyTECH, NeuroFuzzy, fuzzy PLC Inform GmbH
FuzzyCalc FuzzyWare
FlexFuzz MentaLogic Systems
FP-3000 Omron
GIAC,SAAC,UNAC CICS Automation
MATLAB The MathWorks
MATRIXx, SystemBuild, RT/Fuzzy Integrated Systems
MS-Windows, MS-Excel Microsoft Corp.
TIL FPL, TILShell, FC110 Togai InfraLogic
WARP SGS-Thomson
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Index

Terms marked with an asterisk are included in the Glossary (see Chapter 11)

Adaptive control*, 73, 156–158, 176
Adjustment, see Tuning
ANN, see Neural network
Antecedent, 65–67, 78, 146, 212
Applicability degree*, 67–69, 72–73
Arithmetic fuzzy, 41–43, 203–204

Boolean*, 5, 21, 24

Characteristic function*, 20, 23
Clipping*, 65, 68, 69, 147
Closed loop, see Feedback
Code, program, 191, 196, 197, 200
Complement, 22–24, 29, 45
Consequent*, 65–67, 78, 212
Control conventional, limitations, 4, 15, 16, 59
Crisp set*, 19, 37, 193

definition, 21
Crossover point, 26, 180, 182
Cut set, see Level set

Defuzzification*, 74, 147–152, 211
Discrimination, 21–22
Disturbance (noise), 108–111, 134

Educational tools, 190, 193
Evolutionary algorithms, 182–183
Extension principle*, 34–36, 39

Feedback*, 79, 117, 123, 129, 159, 176
Fuzzification*, 67
Fuzzy associative memory, 198
Fuzzy control application, 64

airspace engineering, 11, 13–15, 91–93,
129–130, 184–185

automotive engineering, 9, 11, 12, 145
bioengineering, 137–139
consumer products, 9, 11, 75–77, 177–179

engine and boiler, 60–62
environment engineering, 176
financial, 18
heater, 112–116
induction motor, 142–143, 160–162
power engineering, 100–101, 163–166
servo drive, 102
steam turbine, 88
telecommunication engineering, 117–121
temperature control, 135
transport engineering, 11, 16–18, 107–111,

135, 141–144
Fuzzy control benefits, 5, 15, 60, 89
Fuzzy controller,

combined fuzzy – PID, 91–93
design, 74, 115, 121–123, 127

CAD packages, 132, 187–200
features, 190–200

hierarchical, 99–100
operation, 15, 73–74, 92, 113–116, 163–165
implementation, 15, 201–216
learning, 157–160
neuro-fuzzy, 174–179
performance, 94–97, 101, 141, 144,

154–155, 159
robustness, 154–155
self-organising, 138, 154, 156–158,

160–166
stability, 94–95, 98, 101, 126
structure, 75–77, 79, 84, 85, 88, 100, 126,

155, 157
supervisory, 99–101

Fuzzy coprocessor, 208
Fuzzy inference, see Fuzzy processing
Fuzzy logic*, 3, 5, 10, 11
Fuzzy number*, 37–43
Fuzzy processing*,

Mamdani type, 61–73, 213
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Fuzzy processing*(continued)
Sugeno type, 70–73, 147

Fuzzy processor, 196, 202–214
analog, 202, 211–214
digital general purpose, 202–204

increasing performance, 203–204
specialised, 202, 205–209

AL220 by Adaptive logic, 206–207
FC110 by Togai InfraLogic, 203–205,

210
WARP by SGS-Thomson, 207–208
development system, 209–210

Fuzzy relation*, see Relation, fuzzy
Fuzzy rule*, see Rule, fuzzy
Fuzzy set*, 3, 25, 40, 63

convex, 38
definition, 25
normal, 38

General Motors, 11, 12
Genetic algorithms, 180–185

Hardware tools, 199–216
Hedge,

approximation, 46–50
concentration, 46–50
linguistic*, 46–50
dilution, 46–50

Height, fuzzy set, 29, 151

Inference engine*, see Fuzzy processing
Intersection, 22–24, 29, 31–34, 45, 55, 141
Interval, 37–40

Kahaner, David, 12

Language, natural, 5, 10, 44–51
Level set*, 28, 38
Liapunov, 96
Linguistic label*, 29–30, 77
Linguistic value, 44, 63, 68, 75, 79, 80
Linguistic variable*, 63, 68, 75, 137, 143
List method of set definition, 29

Mamdani, Ebrahim, 8, 60–62
MATRIXx*, 108–111, 135–136, 160, 187,

189, 192
Matsushita, 9, 10, 177–178
Membership degree*, 25, 35, 72
Membership function*, 25, 37, 48, 56, 63–65,

88, 140, 197, 212–213
choice, 131–135, 182

gaussian, 27, 43, 133, 135
quadratic, 27
shape, 26–28, 46, 126, 183
trapezoidal, 27, 42–43
triangular, 27, 42, 134

Mitsubishi, 9, 12
Modelling, 4, 16, 51, 60, 108–111, 135, 136,

142, 160, 176, 187, 191, 196, 197, 199
Motorola, 8, 187, 189
Multirelational composition, 54

Neural network, 167–180
back propagation*, 172–173
layer, 170, 175, 177
processing element, 168–170
threshold, 168–169

Neuro-fuzzy, 174–179, 198
ANFIS, 175–176

Nonlinearity, 4, 15, 60, 61, 88, 155, 170

Omron, 8, 11, 207–208
Operations on fuzzy sets, 22, 29, 41, 52
Overshoot*, 96, 134, 161

Panasonic, see Matsushita
Performance indicator, 96–97, 164, 165
PID control*, 5, 16, 78, 90–91, 107, 127,

131
PD-like fuzzy controller, 79–83, 123,

138–139
PI-like fuzzy controller, 84–86, 127–128
PID-like fuzzy controller, 86, 87, 88, 160
PLC, fuzzy, 196, 214–216
Predictive fuzzy control, 16–19, 90

Relation, fuzzy, 51–57
Rule, fuzzy, 51, 54, 61, 64–66, 69, 87, 92,

113–115, 139, 143
formulation, 136–139, 182

Rules table, 61, 76, 81–83, 85, 86, 89, 93, 102,
114, 120, 139, 144, 165

Scaling factors*, 103, 124–130, 160–166
Scaling fuzzy set*, 69, 147
Set point, 61, 79–83
Settling time*, 96, 134, 161
Siemens, 8, 145, 189
S-norm, 33–34, 67
Software tools, 187–200
Steady-state error, 134, 161
Sugeno processing*, see Fuzzy processing

Sugeno-type support*, 26
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Terano, Toshiro, 3, 7
Togai, Masaki, 8, 193, 203–205, 209
Transfer function*, 168–169
T-norm, 30–34, 53, 68, 175
Triangular norm, see T-norm
Triangular conorm, see S-norm
Tuning*, 97, 126, 153, 159–185

Uncertainty, 4, 155
Union, 22–24, 31–34, 45, 56, 70

Universal set, see Universe of discourse
Universe of discourse*, 19–21, 52, 124–126, 131

Watanabe, Hiroyuke, 8
Whole overlap, index of, 133–136

Yamakawa, Takeshi, 8, 211

Zadeh, Lotfi, 4–8
Zimmermann, Hans, 8, 191
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