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Figure 3.8: Examples of visual words histogram for different human actions
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We assume that the training samples from a single human action lie on a subspace

since the subspace model is with enough flexibility to capture the variation in the real

human action datasets. Therefore, we can try to represent the test sample as a sparse

linear combination of training samples. For instance, when enough training samples

from the ith class in a human action dataset are provided: Ai = [vi,1,vi,2, ...,vi,ni ] ∈

Rm×ni , any new test sample y ∈ Rm from the same action class would be approximately

represented as a linear weighted sum of the training samples:

y = αi,1vi,1 + αi,2vi,2 + ...+ αi,nvi,ni , (3.10)

for some coefficients, αi,j ∈ R, j = 1, 2, ..., ni. Since we cannot determine the actual

action class of one test sample y at the beginning of recognition, the matrix A has to

be rewritten to incorporate the n training samples from all the k action classes:

A = [A1, A2, ..., Ak] = [v1,1,v1,2, ...,vk,nk ]. (3.11)

Therefore, the linear representation of the test sample y can be rewritten in terms of

all the training samples which perform as a over-complete dictionary:

y = Ax0 ∈ Rm, (3.12)

where x0 = [0, ..., 0, αi,1, αi,2, αi,ni , 0, ..., 0]T ∈ Rm have zeros entries except those

coefficients associated with the ith class. Therefore, x can be derived by solving the

linear equations y = Ax0. Obviously, if m > n, the system of equation y = Ax0 is

overdetermined thus leading x0 to its unique correct solution. However, in our action

recognition scenario, the dimension of the feature vectors is usually less than 1000, and

the number of training samples are relatively large (more than 1500) due to the large
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size of the human action dataset, making the linear equation system under-determined.

Therefore, the solutions will not be unique. Conventionally, minimum `2-norm solution

is selected to resolve the non-uniqueness:

(`2) : x̂2 = arg min ‖ x ‖2 subject to Ax = y (3.13)

Although this optimization can be easily solved, the solution x̂2 is not discriminative

enough to recognize the test sample y since the non-zero entries of the derived

coefficients vector are dense. The ideal coefficients vector should be sparse since the

test sample only has high correlation with a few training samples in the same class.

Therefore, only a small amount of coefficients are large, the rest of the coefficients are

zero or approximately are zero. This motivates us to find the sparsest solution which

means the coefficients vector with smallest number of non-zero entries is the optimal

solution. The following optimization problem:

(`0) : x̂0 = arg min ‖ x ‖0 subject to Ax = y (3.14)

is the mathematical expression for finding the minimum `0-norm solution. However,

this problem of finding the sparsest solution of under-determined system of linear

equation is NP-hard and even very difficult to approximate. Alternatively, we solve

the following `1-norm minimization problem:

(`1) : x̂1 = arg min ‖ x ‖1 subject to Ax = y (3.15)

This problem can be solved via standard linear programming methods in polynomial

time. In practice, noise cannot be avoided in the real data. The equation 3.12 does
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not hold exactly. Equation 3.12 can be modified as:

y = Ax0 + z (3.16)

to incorporate the effect of dense noise. z ∈ Rm is a noise term with bounded energy

‖ z ‖< ε. The sparse solution can be approximately derived by solving the following

stable `1-minimization problem:

(`1s) : x̂1 = arg min ‖ x ‖1 subject to ‖ Ax− y ‖2≤ ε (3.17)

This problem can be solved via second-core programming[16]. However, since the

above optimization problem is usually solved by converting the primal problem to a

Lagrangian dual problem, the actually algorithm adopted in this thesis project is the

one that solves a `1-regularized least squares problem as indicated in Equation 2.5:

minimize ‖ Ax− y ‖22 +λ ‖ x ‖1.

After the sparse representation x̂1 is recovered via Equation 2.5, we perform

classification on the corresponding test sample y in terms of the closeness between y

and each reproduction of y that is derived by the coefficients associated with all the

training samples in each action class. Here we define δi : Rn → Rn as the function

to select the coefficients only associate with the class i. For x ∈ Rn, δi(x) ∈ Rn

represents the vector whose non-zero entries are the entries associated with the ith

class. Therefore, ŷi = Aδi(x̂1) is the approximation of y only using the coefficients

associated with the ith class. y is classified as an action instance in the class that has

the minimal residual between y and ŷi:

min
i
ri(y) =‖ y − Aδi(x̂1) ‖2 (3.18)



37

Algorithm 1 summarizes the complete SRC algorithm.

Algorithm 1 Sparse Representation-based Classification (SRC)

1: Input: a matrix of training samples A = [A1, A2, ..., Ak] ∈ Rm×n for k classes, a
test sample y ∈ Rm, (and an optional error tolerance ε > 0.)
2: Normalize the columns of A to have unit `2-norm.
3: Solve the `1-minimization problem:

x̂1 = arg min ‖ x ‖1 subject to Ax = y (3.19)

Or alternatively, solve

x̂1 = arg min ‖ x ‖1 subject to ‖ Ax− y ‖2≤ ε (3.20)

4: Compute the residuals ri(y) =‖ y − Aδi(x̂1) ‖2 for i = 1, ..., k.
5: Output: identify(y) = argminiri(y).

Figure 3.9 demonstrates the derived sparse coefficient vector after performing

SRC and the calculated residuals in terms of each action class for a boxing action

instance and a walking action instance. As can be observed from Figure 3.9, the

reconstructed two coefficient vectors are quite sparse in terms of the number of the

training samples. Only a small amount of entries in these coefficient vectors are non-

zero. The calculated residuals clearly indicate the correct recognition of corresponding

human action instances.
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Figure 3.9: Human action recognition based on sparse representation
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Chapter 4

System Implementation and

Experiment Results

4.1 KTH Human Action Dataset

The objective of this project is to recognize the categories of the human actions shown

in the video files of the public test dataset. The dataset that is used in the thesis

project is the KTH human motion dataset[31] (Figure 4.1) and can be obtained from

the website http://www.nada.kth.se/cvap/actions/. The KTH human motion

dataset contains six actions (walking, jogging, running, boxing, hand waving and

hand clapping), performed by 25 different actors. There are four different scenarios

for all the sequences in the dataset: outdoors, outdoors with variations, outdoors

with different clothing and indoors. The dataset contains 2391 sequences and all the

sequences were taken over homogeneous backgrounds with a static camera with 25fps

frame rate. Apart from the zooming scenario, the backgrounds are relatively static

with sometimes slight camera movement. The sequences have the spatial resolution of

160× 120 and have a length of four seconds in average. All sequences are stored using

http://www.nada.kth.se/cvap/actions/
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AVI file format. There are 600 video files in total corresponding to all the combination

of 25 performers, 6 action categories and 4 scenarios. Each file contains about four

subsequences, each of which is used as a sequence in the experiments. The subdivision

of each file into sequences in terms of start frame and end frame as well as the list of

all sequences can also be obtained from the website mentioned above.

4.2 Evaluation Methodology

The proposed human action recognition system is evaluated in two manners: Leave

One Out Cross Validation (LOOCV) and Leave Part Out Cross Validation (LPOCV).

In LOOCV, each action instance in the dataset is treated as the test sample, the rest

of the whole action dataset is the training set. The overall accuracy is calculated as the

percentage of right recognition for all the action instances in the dataset. In LPOCV,

the KTH dataset are divided into four groups according to the performing individuals;

Table. 4.1 shows the division of groups. One of the four groups is used as test set and

the rest three are used as training set. For each test set, the recognition accuracy

is calculated; then the overall accuracy is the result combined over all the test sets.

For conditions where there exist random components such as clustering, the accuracy

is the average value over several runs. The accuracies are then put into a confusion

matrix as the final results. To examine the effectiveness of SRC algorithm in the

human action recognition problem, we also perform the experiments with KNN and

SVM in the same conditions. In addition, the computational complexity of SRC, the

effects of the training set size and regularization parameter λ on the overall recognition

accuracy are also investigated.
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Group Performer
1 1 - 6
2 7 - 13
3 14 - 19
4 20 - 25

Table 4.1: The groups for evaluation

Figure 4.1: KTH human action dataset

4.3 Experimental Results and Analysis

4.3.1 Leave One Out Cross Validation

In the first experiment, the LOOCV strategy is adopted to evaluate the effectiveness

of SRC in human action recognition problem. In LOOCV, each action instance is

chosen as the test sample, and the rest action instances are chosen as the test set.

For SRC, the highest recognition accuracy is 96.65% which is achieved when

codebook size is 1000. The corresponding confusion matrix is shown in 4.2.

For KNN, the highest recognition accuracy is 96.16% which is achieved when the
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Figure 4.2: LOOCV recognition accuracy for SRC when codebook size is 1000

codebook size is 750. The corresponding confusion matrix is shown in 4.3.

Figure 4.4 demonstrates the changes of average recognition accuracy in LOOCV

with the variation of codebook size. The average recognition accuracy is examined for

the codebook size varying from 50 to 1000 with the interval set to be 50. As shown

in Figure 4.4, SRC outperforms KNN for most of codebook size. One thing worth

noting is that performing SVM algorithm on the human action recognition problem

in LOOCV is enormously time-consuming because one specific training model of

SVM has to be generated for each different combination of the training samples. The

number of different training models have to be generated is the same as the number

of actions instances in the human action dataset. Therefore, we do not evaluate the

performance of SVM in LOOCV.
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Figure 4.3: LOOCV recognition accuracy for KNN when codebook size is 750

0 100 200 300 400 500 600 700 800 900 1000
0.86

0.88

0.9

0.92

0.94

0.96

0.98
Recognition Accuracy Comparisons (LOOCV)

Visual Codebook Size

Av
er

ag
e 

Re
co

gn
itio

n 
Ac

cu
ra

cy

 

 
KNN
SRC

Figure 4.4: Comparison of LOOCV recognition accuracy for KNN and SRC with

variable codebook size



44

4.3.2 Leave Part Out Cross Validation

In this experiment, the performance of LPOCV is examined. Each group is regarded

as the test set, the remaining three groups are regarded as the training set. The

overall recognition accuracy is derived by combining the results from the four different

scenarios. Still, the average recognition accuracy is examined for the codebook size

varying from 50 to 1000 with the interval set to be 50. We also compare the performance

among SRC, SVM and KNN.

The highest recognition accuracy for SRC is 89.01% which is achieved when

the codebook size is 1000. The corresponding matrices for the four scenarios are

demonstrated in Figure 4.5.

The highest recognition accuracy for SVM is 87.98% which is achieved when

the codebook size is 950. The corresponding matrices for the four scenarios are

demonstrated in Figure 4.6.

The highest recognition accuracy for KNN is 81.91% which is achieved when

the codebook size is 300. The corresponding matrices for the four scenarios are

demonstrated in Figure 4.7.

The direct comparisons of average recognition accuracy derived from SRC, SVM,

KNN along with the variations of codebook size is shown in Figure 4.8.
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Figure 4.5: Confusion matrices derived from SRC on four different scenarios
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Figure 4.8: Average recognition accuracy comparison for SRC, SVM and KNN.
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Figure 4.6: Confusion matrices derived from SVM on four different scenarios

As shown in Figure 4.8, although SRC achieves lower recognition rate when the

codebook size is very small, SRC demonstrates overall higher recognition rate than

SVM and KNN for most codebook sizes. SRC demonstrates an overall increasing

trend of recognition accuracy with the increase of codebook size. There is obvious

fluctuation of recognition accuracy for SVM when the codebook size increases. For

KNN, the average recognition accuracy decreases a little bit when the codebook

size increase. Therefore, SRC demonstrates better robustness with the variation of

codebook size compared with SVM and KNN. By observing the confusion matrix of



47

.93 .06 .01 .00 .00 .00

.07 .93 .00 .00 .00 .00

.06 .16 .78 .00 .00 .00

.00 .00 .00 .57 .32 .11

.00 .00 .00 .19 .75 .06

.00 .00 .00 .03 .02 .95

boxing

handclapping

handwaving

jogging

running

walking
boxing

handclapping

handwaving

jogging
running

walking

(a) Scenario 1

.89 .10 .01 .00 .00 .00

.09 .87 .04 .00 .00 .00

.08 .06 .86 .00 .00 .00

.00 .00 .00 .49 .44 .07

.01 .00 .00 .09 .89 .01

.00 .00 .00 .10 .08 .82

boxing

handclapping

handwaving

jogging

running

walking
boxing

handclapping

handwaving

jogging
running

walking

(b) Scenario 2

.95 .04 .01 .00 .00 .00

.02 .96 .02 .00 .00 .00

.00 .07 .93 .00 .00 .00

.00 .00 .00 .56 .42 .02

.00 .00 .00 .17 .82 .01

.00 .00 .00 .13 .11 .76

boxing

handclapping

handwaving

jogging

running

walking
boxing

handclapping

handwaving

jogging
running

walking

(c) Scenario 3

.84 .08 .04 .01 .03 .00

.07 .91 .02 .00 .00 .00

.04 .05 .91 .00 .00 .00

.00 .00 .00 .53 .44 .03

.00 .00 .00 .14 .85 .01

.00 .00 .00 .04 .03 .93

boxing

handclapping

handwaving

jogging

running

walking
boxing

handclapping

handwaving

jogging
running

walking

(d) Scenario 4

Figure 4.7: Confusion matrices derived from KNN on four different scenarios

SRC, the performance of SRC algorithm on different human action classes can be

analyzed. SRC derive very impressive recognition accuracy on the action class boxing,

handclapping, handwaving and walking with average recognition accuracy over 95%.

However, the recognition accuracy on action classes jogging and running are relative

low. There are more miss classifications between these two action categories. This is

mainly due to the great similarities shared between these two human actions classes.

Sometimes, it is even difficult for human individuals to discriminate one from the

other since the definitions of jogging and running are not quite clear to some extent.
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4.3.3 Computational complexity analysis with different

visual codebook sizes

The computational complexity of SRC is investigated in terms of the variation of visual

codebook size. The average running time for recognizing one test sample is calculated

based on the total running time for recognizing the whole test dataset. The human

action recognition system is implemented in Matlab and runs on a PC with Dual Core

3.33GHz CPU and 4GB RAM. Figure 4.9 demonstrates the corresponding result. The

average running time shown in Figure 4.9 does not take the computational cost of

video sequence preprocessing into consideration. It is all about the computational

complexity of the classification algorithms. Based on the results shown in Figure

4.9, we can tell that the running time for SRC increases when the visual codebook

size grows. It is approximately a linear relationship between the running time and

the codebook size. When the codebook size is 1000, SRC achieves its maximal

computational complexity, which requires about 3.5 seconds in average to recognize a

test sample. In addition, the direct comparison of the computational complexity for

different algorithms is also demonstrated in Figure 4.9. The KNN and SVM algorithms

indicate similar relationships between the running time and the codebook size as SRC.

However, these two algorithms have much smaller computational complexity than

SRC since SRC needs to do iterations containing the PCG steps many times to finish

the optimization problem which is quite time consuming. Therefore, SRC derives

overall better performance in recognition rate at the cost of increasing computational

complexity.
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Figure 4.9: Comparisons of Average running time for recognizing one test sample with
different codebook sizes

4.3.4 The effect of training sample size on recognition

accuracy

The effect of training set size on average recognition accuracy is also investigated for

SRC and SVM. Since SRC and SVM outperform KNN a lot in LPOCV according

to the experimental results presented in the previous subsection, we do not compare

SRC and SVM with KNN in this experiment. In this experiment, Group 3 is adopted

as the test set. All the possible combination of the remaining three groups are chosen

as the training set. Therefore, there are 7 possible training set combinations which

are shown in Table 4.2.
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Test Set Training Set

Group 3 Group 1

Group 3 Group 2

Group 3 Group 4

Group 3 Group 1, 2

Group 3 Group 1, 4

Group 3 Group 2, 4

Group 3 Group 1, 2, 4

Table 4.2: Different combinations of training set

The codebook size is set to be 500. The average recognition accuracy for SRC and

SVM is shown in Table 4.3.

Test Set Training Set SRC SVM

Group 3 Group 1 84.15% 82.68%

Group 3 Group 2 85.99% 82.54%

Group 3 Group 4 85.85% 79.23%

Group 3 Group 1, 2 88.68% 86.69%

Group 3 Group 1, 4 86.17% 85.57%

Group 3 Group 2, 4 90.24% 87.46%

Group 3 Group 1, 2, 4 89.34% 87.60%

Table 4.3: Comparison of recognition accuracy for SRC and SVM with different

combination of training samples
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To compare the performance of SRC and SVM in terms of the variation of training

set, the mean and standard deviation are calculated for the two groups of recognition

accuracy. For SRC, the mean recognition accuracy is 87.2%, the standard deviation is

2.22%; for SVM, the mean recognition accuracy is 84.54%, the standard deviation is

3.14%. Thus, SRC does not only demonstrate higher average recognition accuracy

than SVM, but also show more robustness with regard to variation of training set

than SVM.

4.3.5 The effect of regularization parameter on recognition

accuracy

The sparse representation based classification (SRC) result is actually derived by

solving an `1-regularized least squares (an extension of `1-minimization problem),

whose mathematical representation is denoted in Equation 2.5.

The term λ in Equation 2.5 is the regularization parameter. The relative tolerance

of the above problem is set to be 0.001, which means that the derived solution would

never be worse than 0.1% suboptimal. We want to investigate the effect of the value

change in regularization parameter on the average recognition accuracy. The average

recognition accuracy is evaluated using the same methodology introduced above,

however, with regularization parameter λ being set to a series of different values from

0.001 to 10. Figure 4.10 demonstrates the corresponding result.

Table 4.4 demonstrates the detailed recognition accuracy with different regulariza-

tion parameters. Through the observation from Figure 4.10 and Table 4.4, we can

draw the conclusion that the overall recognition accuracy does not vary a lot across a

vast range of regularization parameter values. In other words, the performance of SRC

is close to parameter-independent and demonstrates great robustness on the variation
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Figure 4.10: Average recognition accuracy with different regularization parameters

of regularization parameters. Smaller λ results in longer execution time in solving the

`1-regularized least squares. Therefore, larger λ can achieve accelerated running time

and acceptable recognition accuracy without obvious compromise.

λ 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10

Result 88.67% 88.43% 89.01% 88.65% 88.46% 89.02% 88.84% 88.63% 87.78%

Table 4.4: Average recognition accuracy with different regularization parameters
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Chapter 5

Conclusion and Future Work

In this thesis, the human action recognition problem is first examined by investigating

the previously established solutions and then solved from a novel sparse represen-

tation perspective. In this sparse representation framework, each action instance

is represented as a collection of spatial-temporal words. First a large number of

spatial-temporal interest points are extracted in the video sequence. Then, a cuboid is

extracted centered at each spatial-temporal interest points. The histogram of oriented

gradients (HOG) and histogram of flow (HOF) descriptor for the cuboid are computed

and concatenated into a one-dimensional vector. The K-Means clustering algorithm

is used to cluster these cuboid feature vectors into only a few cuboid prototypes

which are called visual codewords. After all the processing, each action instance is

represented as a histogram of the visual codewords. Sparse representation can achieve

great efficiency and performance in classification problems and can be embedded into

machine learning frameworks. We apply this technique in the human action recognition

problem. Each action instance in the test set is represented approximately as a linear

weighted sum of all the action instances in the training set. Since the linear weight

vector is sparse, we can use the convex optimization technique called `1-minimization
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which is widely used in compressed sensing and sparse representation problems to

derive the result. The action category of the test instance is recognized by calculating

the residual between the test instance itself and its corresponding representation using

the action instances in each action class. The test action instance falls into the action

class with the smallest residual. Our proposed human action recognition system is

tested and evaluated on the famous and challenging KTH human motion dataset. The

derived experimental results using our method are compared with the results derived

using conventional machine learning techniques such as K-Nearest Neighbor (KNN)

and Support Vector Machines (SVM) and show that the proposed framework yield

considerable performance improvement in many aspects. In addition to comparison

with SVM and KNN, the computational complexity of SRC, the effects of training set

size and regularization parameters on the performance of SRC are also investigated

thoroughly.

Some future work could be performed to further improve the performance and

results. For instance, better results may be obtained by further tuning the parameters.

Although the HOGHOF descriptor is adopted in the thesis project, the algorithm

gives a framework of action recognition thus making it possible to incorporate other

image descriptors into the framework to investigate the performance of SRC with

regard to different image descriptors. It is also possible to combine more than one

descriptor at the same time and see how they perform. In this project we used

the k-means algorithm to build the visual codebook. It is a relative simple and

straightforward clustering algorithm. More sophisticated clustering algorithms such as

spectral clustering could be utilized to perform the visual codewords clustering. Also,

other extensions of `1-minimization algorithms can be adopted to improve the overall

performance of the human action recognition system.
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