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1 Introduction

Sets are all around us. A bag of potato chips, for instance, is a set containing
certain number of individual chip’s that are its elements. University is another
example of a set with students as its elements. By elements, we mean members.
But sets should not be confused as to what they really are. A daughter of
a blacksmith is an element of a set that contains her mother, father, and her
siblings. Then this set is an element of a set that contains all the other families
that live in the nearby town. So a set itself can be an element of a bigger set.

In mathematics, axiom is defined to be a rule or a statement that is accepted
to be true regardless of having to prove it. In a sense, axioms are self evident.
In set theory, we deal with sets. Each time we state an axiom, we will do so
by considering sets. Example of the set containing the blacksmith family might
make it seem as if sets are finite. In truth, they are not! The set containing
all the natural numbers {1, 2, 3, · · · } is an infinite set. Our main goal for this
paper will be the discussion of Axiom of Choice (AC) and its equivalents.

2 Some Logical and Set Theoretic Symbols

Before we begin our discussion, it is important that we list and define some of
the symbols that will be used in this paper.

• ∀ and ∃ are quantifiers to denote “for all” and “there exists,” respectively

• ∧ and ∨ abbreviates “and” and “or,” respectively

• ¬ abbreviates “not”

• → abbreviates “if, then”

• ↔ abbreviates “if and only if”

• dom(f) is the domain of the function f

• ran(f) is the range of the function f
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• {a, b} is a set containing two elements

• {a1, a2, · · · , an} is a set with n elements, namely, a1, a2, · · · , an
These symbols are not the only ones that we encounter as we proceed. New

symbols will be defined as they are introduced.

3 Axioms of Set Theory

An important notion in set theory is the concept of belonging. Some x belongs
to A would be the same as saying that x is an element that is contained in set A.
Using the familiar notation “ ∈ ”, we write x ∈ A to denote belonging. If x does
not belong in A, then we write x /∈ A. But something even more elementary than
belonging is the notion of equality, which represents the relationship between
objects. To state x = y would imply that x and y is the same object. When
dealing with sets, how are we to tell if one set is equal to another set?

Axiom 1 (Axiom of Extension). ∀x(x ∈ A ↔ x ∈ B) → A = B

Any two given sets are equal if and only if they contain the same elements. It
is important to note that Axiom of Extension is essential in describing belonging.
So a set can be uniquely determined by its elements.

Definition 1. If A and B are sets, we write A ⊂ B if and only if for all x,
x ∈ A implies x ∈ B. If A ⊂ B, we say that A is a subset of B.

Stated another way, we would say B includes A whenever A ⊂ B. By
definition, it’s easy to see that A ⊂ A. If A ⊂ B and B ⊂ A, then A = B by
Axiom of Extension since both sets contain the identical elements. The term
”inclusion” is also used to mean subset.

Axiom 2 (Axiom of Specification). ∀A∃B∀x(x ∈ B ↔ x ∈ A ∧ S(x))

Axiom 2 states that for every set A and for every condition S(x), there
corresponds a set B whose elements are exactly those elements x of A for which
S(x) holds. By Axiom of Extension, set B is determined uniquely. To define
this set, we write

B = {x ∈ A : S(x)}.
Intuitive, but rather informal, explanation of the axiom is that for some

given arbitrary set, if we are able to make some intelligent assertion regarding
the elements of this set, then we can specify a subset of the given set for which
the assertion is true.

Lets consider our earlier example. Let A be the set which contains the
children of blacksmith. If x is an arbitrary element of A, then the formula ”x
is a daughter” is true for some of the elements of A and false for others. After
all, it would be illogical to assume the children of blacksmith are all boys. We
then generate a subset of A using the formula. So the following

{x ∈ A : x is a daughter}

is a set containing only the daughters of the blacksmith.
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As another example, consider

{x ∈ R : x2 = 5} = {−
√
5,
√
5}

which would be a set consisting of two members.
For both of the examples, we used the term “formula”. In the first example,

the formula was “x is a daughter” and in the second example, the formula was
“x2 = 5.” Lets define what is meant by “formula.” There are two underlying
type of formulas:

1. assertion of belonging, x ∈ A, and

2. assertion of equality, A = B.

Together, the two formulas are referred to as atomic formulas. Using the two
atomic formulas, we append the logical operators ∧,∨,¬,→,↔, ∃, ∀ to formulate
compound formulas. For example, appending the operator ∧ would give “If A
and B are formulas, then A ∧ B is a formula.” Lets note that “formula” is
another term for “condition.”

Axiom 3 (Axiom of Empty Set). ∃x∀y¬(y ∈ x)

By Axiom of Empty Set, there exists a set with no elements. Such set is
unique by Axiom of Extension and we denote the empty set by ∅. Lets note
that for any set A, ∅ ⊂ A. So, the empty set is a subset of every set.

Axiom 4 (Axiom of Pairing). ∀x∀y∃A∀v(v ∈ A ↔ v = x ∨ v = y)

To state the axiom plainly, if A and B are sets, then there exists a set X
such that A,B ∈ X.

If we’re given two sets, a natural desire could be to combine the elements
of the two into one set. So for A and B where a ∈ A and b ∈ B, might it be
possible to define some whole new set W such that W = {a, b}? Yes! We are
able to do so by the following axiom.

Axiom 5 (Axiom of Unions). ∀X∃Y ∀z(z ∈ Y ↔ ∃W (z ∈ W ∧W ∈ X)

Stated another way, for every collection C, there exists a set U such that if
x ∈ X for some X in C, then x ∈ U . Here, U is the union of the two sets and
we write ∪C where ∪ is used to denote the union of the collection. If a ∈ A and
b ∈ B, then ∪ {a, b} would simply translate to a ∪ b. A simple example would
be

∪{A} = A.

An equally simple, yet more concrete, example would be to consider the union
of the sets {a, b, c} and {c, d, e}, where

{a, b, c} ∪ {c, d, e} = {a, b, c, d, e}.

Axiom 6 (Axiom of Powers). ∀A∃P∀x[x ∈ P ↔ ∀y ∈ x(y ∈ A)]

To put more simply, Axiom of Powers states that if X is a set, then P (X)
is a set, where P (X) denotes the power set. Intuitively, we can think that for
each set, there exists a collection of sets that contain among its elements all the
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subsets of the given set. If we assume for a moment that there exists some set
E for which all the sets are subsets of E, then we write

P = {X : X ⊂ E}.

As a consequence, it is perfectly possible that P could contain other elements
than the ones that are in X. An easy fix would be to apply the Axiom of
Extension which would imply that the set is unique. An example would be the
power set of the empty set, which gives us

P (∅) = {∅}.

So the power set of the empty set is the singleton set which contains only one
element. The power set of a set containing only one element is

P ({a}) = {∅, {a}}.

The power set of a set containing two elements is

P ({a, b}) = {∅, {a}, {b}, {a, b}}.

Power set of a set containing three elements would give a set with eight elements
and a power set of a set containing four elements would give a set with sixteen
elements, and so on. In general, the power set of a set with n elements would
give a resulting set that contains 2n elements.

Definition 2. For every set x, successor x+ of x is x+ = x ∪ {x}.
As an example, we define 0 = ∅ since there are no elements in the empty

set. Then by definition, we define 1 and 2 as

1 = 0+(= {0})

2 = 1+(= {0, 1})
Continuing in relatively the same manner, we define 3, 4, 5, 6, · · · as we did
above. Having defined definition 2, we can state the following axiom.

Axiom 7 (Axiom of Infinity). ∃x(∅ ∈ x ∧ ∀y ∈ x∃z ∈ x(y ∈ z))

By axiom of infinity, there exists a set containing 0 and containing the suc-
cessor of each of its elements. Set A is a successor set if 0 ∈ A and if x+ ∈ A
whenever x ∈ A. Axiom of infinity implies that there is at least one infinite set.
The set of all the natural numbers, ω1, for example, is an infinite set. Few other
infinite sets include the set of real numbers, R, the set of rational numbers, Q,
and the set of integer numbers, Z. Aside from asserting that infinte sets exists,
Axiom of Infinity is also giving the description of the elements of the sets as

∅, ∅ ∪ {∅}, ∅ ∪ {∅} ∪ {∅ ∪ {∅}}, · · · .
1

1In set theory, ω denotes the set of natural numbers, N
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4 Axiom of Choice

Formulated by Ernst Zermelo in 1904, Axiom of Choice states that when we are
given a collection of sets, say C, there is some function that chooses an element
from each set. Such a statement begs for questions like “What is the function?”
or “Does such a function even exist?” to be asked. Before we delve into the
discussion of the axiom, we need some definitions to work with.

Definition 3. A function f : A → B is injective (or one-to-one) if and only if
for all a, b ∈ A, f(a) = f(b) implies a = b.

Definition 4. A function f : A → B is surjective (or onto), if for any b ∈ B,
there exists an a ∈ A for which f(a) = b.

Definition 5. A function f is bijective if and only if it is both injective and
sujective.

Definition 6. The cardinality of a finite set A is the number of elements that
the set contains and is denoted |A|.

For example, the set A = {0, 1, 2, 3} contains 4 elements and thus has a
cardinality |A| = 4. When there is no source of confusion, “size” may also be
used to refer to the cardinality of a set. At first, it may seem as if cardinality of
a set can only be considered when dealing with finite sets. Although it might be
simpler to deal with finite sets, it is perfectly possible to consider the cardinality
of infinte sets.

Definition 7. The ordered pair of a and b is denoted by the set (a, b) and defined
as

(a, b) = {{a}, {a, b}}.
Definition 8. If {Xi} is a family of sets (i ∈ I), the Cartesian Product of the
family is the set of all families {xi} with xi ∈ Xi for each i ∈ I.

Given two sets A and B, the Cartesian Product A× B is the unique set of
all ordered pairs (a, b) where a ∈ A and b ∈ B. If A = {0, 1} and B = {2, 3},
then A×B = {(0, 2), (0, 3), (1, 2), (1, 3)}.

Having defined Cartesian Product of a family of sets, we now formally state
Axiom of Choice.

Axiom 8 (Axiom of Choice). The Cartesian Product of a nonempty family of
nonempty sets is nonempty.

In other words, if {Xi} is a family of nonempty sets indexed by nonempty
set I, then there exists a family {xi}, i ∈ I, such that xi ∈ Xi for each i ∈ I.

Let C be the collection of nonempty sets. For the choice function f with
domain C, if A ∈ C, then f(A) ∈ A.

Example 4.1. We can define a choice function f on a collection C of all
nonempty subsets of {1, 2, 3, ...} by letting f(A) be defined to be the small-
est member of the set A.

Consider A = {1, 2}. Then
f(A) = f({1, 2}) = min(1, 2) = 1

is a choice function on C.
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Example 4.2. Given infinitely many pair of socks, we choose one sock from
each pair where our choice is arbitrary using AC. The choice function selects an
element of each family from infinite family of sets of size 2.

Example 4.2 is fairly interesting. We must choose one sock from each pair
at once. So the function f can be described as a simultaneous choice of a sock
from each of the infinitely many pair of socks. We are allowed to do this by AC
although the choice function is not clear as to how this might be done. If we
instead assume finitely many pair of socks, then AC would not be needed.

To further investigate this idea, lets assume that we are given infinitely many
pair of shoes. Unlike socks, we can choose one shoe from each pair because shoes
can be ordered for the left and right foot. So infinitely many pair of shoes makes
it possible to define the choice function explicitely. We may just pick left shoe
from each pair.

Axiom of Choice is different from the other axioms. From intuitive perspec-
tive, AC is true. However, it is not possible to prove AC from other axioms of
set theory. For that reason, we adopt it as an axiom. When first formulated,
AC was subject to controversy. Much of the controversy was whether AC should
be accepted as an axiom or not. Today, AC is accepted as a valid principle by
most mathematicians and used to prove other theorems.

5 Equivalents of Axiom of Choice

Now that we have some understanding of AC, we next look at two equivalents
and prove that they are consistent with AC. In particular, we consider Zorn’s
Lemma and the Well-Ordering (WO) Theorem. To begin with, we start by
defining partial ordering.

Let S be a set. A relation ≤ on S is said to be a partial order if the following
are satisfied:

1. ∀x ∈ S, x ≤ x (reflexive)

2. ∀x, y, z ∈ S, if x ≤ y and y ≤ z, then x ≤ z (transitive)

3. ∀x, y ∈ S, if x ≤ y and y ≤ x, then x = y (antisymmetric)

Definition 9. x is an upper bound of A if a ≤ x for each a ∈ A.

Definition 10. a ∈ A is a maximal element if a < x for no x ∈ A.

Lemma 1 (Zorn’s Lemma). If X is a partially ordered set such that every chain
in X has an upper bound, then X contains a maximal elements.

A chain is a totally ordered set. By totally ordered, we mean that ∀x, y ∈ S,
either x ≤ y or y ≤ x is true. If A is a chain in X, then upper bound for A in
X is guaranteed by the hypothesis of Zorn’s lemma.

Proof of Zorn’s Lemma. Let s̄ be a function from X to P (X) and define s̄(x) =
{y ∈ X : y ≤ x} where x is also an element of X and S = ran(s̄) be partially
ordered by inclusion. Then the function s̄ is one-to-one. Necessary and sufficient
condition for s̄(x) ⊂ s̄(y) is that x ≤ y. With this, the task of finding a maximal
element in X is the same as the task of finding a maximal element in S. The
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hypothesis about chains in X implies the corresponding statement about chains
in S.

Let X be the set of all chains in X. Then every member of X is included
in s̄(x) for some x ∈ X. The collection of X is a non-empty collection of
sets, partially ordered by inclusion, and such that if C is a chain in X , then
∪A belongs to X for A ∈ C. Since each set in X is dominated by some set
in S, the passage from S to X cannot introduce any new maximal elements.
One advantage of the collection X is the slightly more specific form that the
chain hypothesis assumes. Instead of saying that each chain in C has some
upper bound in S, we can say explicitly that the union of the sets of C, which
is clearly an upper bound of C, is an element of the collection X . Another
technical advantage of X is that it contains all the subsets of each of its sets.
This makes it possible to enlarge non-maximal sets in X slowly, one element at
a time.

Now we can forget about the given partial order in X. In what follows we
consider a non-empty collection X of subsets of a non-empty set X, which is
subject to two conditions:

1. every subset of each set in X is in X and,

2. the union of each chain of sets in X is in X .

The first condition implies that ∅ ∈ X . So now, our task is to prove that
there exists a maximal set in X .

Let f be a choice function for X. In other words, let f be a function from
the collection of all nonempty subsets of X to X such that f(A) ∈ A for all A
in the domain of f . For each set A ∈ X , let Â = {x ∈ X : A ∪ {x} ∈ X}. In
other words, we let Â be the set of all elements x of X whose adjunction to A
produces a set in X . Now, define a function g : X → X as follows: if Â−A �= ∅,
then g(A) = A ∪ {f(Â − A)}. So if Â − A = ∅, then g(A) = A. It follows
that from the definition of Â that Â − A = ∅ if and only if A is maximal. In
these terms, therefore, what we must prove is that there exists a set A in X
such that g(A) = A. It turns out that the crucial property of g is the fact that
g(A) contains at most one more element than A. Let’s note that g(A) always
includes A.

Now to facilitate the exposition, we introduce a temporary definition. We
shall say that a subcollection J of X is a tower if

1. ∅ ∈ J ,

2. if A ∈ J , then g(A) ∈ J and,

3. if C is a chain in J , then ∪A ∈ J for A ∈ C.

Towers surely exist. The whole collection X is one. Since the intersection of
a collection of towers is again a tower, it follows, in particular, that if J0 is the
intersection of all towers, then J0 is the smallest tower. So we must prove that
the tower J0 is a chain.

We say that a set C in J0 is comparable if it is comparable with every set in
J0. By this, we mean that if A ∈ J0, then either A ⊂ C or C ⊂ A. By saying
that J0 is a chain, we mean that all the sets in J0 are comparable. Comparable
sets do exists. ∅ is one of them.
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Now, let C be arbitrary (but temporarily) fixed comparable set. Suppose
that A ∈ J0 and A is a proper subset of C. We assert that g(A) ⊂ C because
since C is comparable, then we have that either g(A) ⊂ C or C is a proper
subset of g(A). If C is a proper subset of g(A), then A us a proper subset of a
proper subset of g(A). But this contradicts the fact that g(A) − A cannot be
more than a singleton.

Next, let’s consider the collection U of all sets A in J0 for which either A ⊂ C
or g(C) ⊂ A. The collection U is somewhat smaller than the collection of sets
in J0 comparable with g(C). If A ∈ U , then, since C ⊂ g(C), either A ⊂ g(C)
or g(C) ⊂ A. Now we assert that U is a tower. Since ∅ ⊂ C, the first condition
on towers is satisfied. Proving the second condition, that is, if A ∈ U , then
g(A) ∈ U , involves us to split the discussion into three cases.

Case 1: A is a proper subset of C. Then g(A) ⊂ C by the preceding
paragraph, and therefore g(A) ∈ U .

Case 2: A = C. So, we then g(A) = g(C), so that g(C) ⊂ g(A), and
therefore g(A) ∈ U .

Case 3: g(C) ⊂ A. Then g(C) ⊂ g(A), and therefore g(A) ∈ U . The third
condition on towers, which states that the union of chains in U belongs to U ,
is immediate from the definition of U . With this, we can conclude that U is
a tower included in J0, and therefore, since J0 is the smallest tower, we have
U = J0.

Our preceding considerations imply that for each comparable set C, the set
g(C) is also comparable. The is because for given C, form U as above. The fact
that U = J0, which means that if A ∈ J0, then either A ⊂ C (in which case
A ⊂ g(C)) or g(C) ⊂ A.

Now we know that ∅ is comparable and g maps comparable sets onto com-
parable sets. Since the union of a chain of comparable sets is comparable, it
follows that the comparable sets (in J0) constitute a tower, and hence they
exhaust J0. This is what we set out to prove about J0.

Since J0 is a chain, the union, syay A, of all the sets in J0 is itself a set in
J0. Since the union includes all the sets in J0, it follows that we have g(A) ⊂ A.
Since always A ⊂ g(A), it follows that A = g(A). With this, we have proved
Zorn’s lemma [2].

Having proved Zorn’s lemma, we next consider an application of the lemma.
In different fields of mathematics, Zorn’s lemma is sometimes the most crucial
part of a proof that involves using the lemma. For instance, in Functional Anal-
ysis, Zorn’s lemma is used to prove the Hahn–Banach Theorem. The lemma
is also used to prove Tychonoff’s Theorem in Topology. Another simple appli-
cation includes proving that every vector space has a basis in Linear Algebra,
which we will show.

Theorem 1. Every vector space V has a basis.

Proof. Let V be our vector space. Assume that V is nonzero. Ordered by
inclusion, let K be the set whose elements are the linealy independent subsets
of V . So K is a nonempty partially ordered set. Basis of V is the maximal
element of K. If T ⊂ K is a chain, then we have that ∪T where T is a linearly
independent subset of V , and hence is an upper bound for T . So by Zorn’s
Lemma, we conclude that every vector space V has a basis.
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Definition 11. A partially ordered set is called well ordered if every nonempty
subset of it has a smallest element.

One consequence of definition 11 is that every well ordered set is totally
ordered.

Definition 12. An ordinal number is a well ordered set α such that s(β) = β
for all β in α where s(β) is the initial segment {n ∈ α : n < β}.
Definition 13. We say that a well ordered set A is a continuation of a well
ordered set B, if, in the first place, B is a subset of A, if, in fact, B is an initial
segment of A, and if, finally, the ordering of the elements in B is the same as
their ordering in A.

Theorem 2. (Well-Ordering Theorem) Every set can be well ordered.

Note: To prove WO, we invoke Zorn’s lemma.

Proof. Let’s assume that we are given a set X. Then consider the collection W
of all well-ordered subsets of X. In other words, an element of W is a subset A
of X with a well ordering of A. Let’s partially order W by continuation.

The collection W is not empty, that is, ∅ ∈ W . If X �= ∅, then the less
annoying elements of W can be exhibited like {(x, x)} for any particular x of
X. If C is a chain in W , then the union of the sets in C has a unique well
ordering that makes the union of the sets larger than or equal to each set in C.
So we have verified the principle hypothesis of Zorn’s Lemma. In conclusion,
there exists a maximal well-ordered set B in W and this set must be equal to
the entire set X. With this, we have the proof of the Well-Ordering Theorem
[2].

Now that we have stated and proved two variants of AC, we next prove that
AC implies WO, WO implies Zorn’s Lemma, and Wo implies AC.

AC → WO

Proof. Let A be a set. Finding the well-ordering of A means for us to find an
ordinal number a and a a-sequence such that

r0, r1, · · · , rb
enumerates A where b < a. Then let C be a choice function on the family of
all nonempty subsets of A. Then for the above sequence, we construct it by
transfinite recursion as follows:

r0 = C(A),

rb = C(A− {rn : n < b}).
We continue until we have all the elements of A [5].

WO → Zorn’s lemma
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Proof. Let (P,<) be a nonempty partially ordered set and assume that every
chain in P has an upper bound. We find a maximal element of P . By as-
sumption, the set P can be well-ordered. By this, we mean that there is an
enumeration

P = {p0, p1, · · · , pb, · · · }
where b < a and a is some ordinal number. So then by transfinite recursion,
we let c0 = p0 and cb = py where y is the least ordinal such that py is an
upper bound of the chain Ch = {chn : n < b} and py /∈ Ch. Let’s note that
{chn : n < b} is always a chain and that py exists unless chb−1 is a maximal
element of P . As we keep going recursively, we will eventually get the maximal
element of P [5].

WO → AC

Proof. Let C be a set containing nonempty sets. Then A = ∪S∈CS is a set.
By WO, A is well-ordered under some relation <. Since each S is a nonempty
subset of A, then each S has a least member m with respect to the relation <.
We define f : C → A by f(S) = m where f is our choice function. With this,
we can conclude that AC holds.

Since we have shown that AC implies WO, WO implies AC, and WO implies
Zorn’s lemma, we assume that Zorn’s lemma implies AC is true.

6 Final Remark

Sets are quite interesting. Although a set can be thought of as being a basket,
the number of objects that this basket can hold might not be obvious. For
instance, if we consider the set of all the natural numbers N = {0, 1, 2, · · · } and
the set of all the even numbers E = {2, 4, 6, · · · }, then |N| = |E| since there is
a bijection from N to E for the function f(n) = 2n. One might easily think
|N| > |E| since N includes both the even and odd numbers. To consider another
example, let X be a set. Then |X| < |P (X)| where P (X) is the power set
consisting of all the possible subsets of X. Of course, this is completely obvious.
But still, it’s quite mind blowing!

Using sets, we stated and proved two variants of Axiom of Choice, namely
Zorn’s Lemma and the Well-Ordering Theorem. There is a large collection of
statements that are equivalent to AC. We only considered Zorn’s Lemma and
WO because the two are most widely used in proving other theorems. There
is one other variant of AC. Although not as popular as Zorn’s lemma or WO,
it is one of the few variants that are used by mathematicians. It’s also quite
fasinating. The statement is known as Tukey’s lemma.

Definition 14. Set A is said to have finite character if A �= ∅, and for each set
X, X is a member of A if and only if every finite subset of X is a member of
A.

Lemma 2 (Tukey’s Lemma). Let F be a nonempty family of sets. If F has finite
character, then F has a maximal element (maximal with respect to inclusion).

Using Zorn’s lemma, we can easily prove Tukey’s lemma. Conversely, we
now show Tukey’s lemma implies Axiom of Choice.

Tukey’s Lemma → AC
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Proof. Let F be a set containing family of nonempty sets. Our objective is to
find a choice function F . So then, we consider the family

G = {f : f is a choice function on some E ⊂ F}.

A subset of a choice function is a choice function and this it is easy to see that
G has finite character. By assumption, G has a maximal element F . A simple
appeal to the maximality of F shows that the domain of F is the whole family
F [5].
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