BrightRED Study Guide

MATHEMATICS

HIGHER

Answers to 'things to do And think about'

1 ALGEBRA

```
Quadratics: Completing the square
1. A
2. B
3. B
4. Method 1
    • 12(x^2 + 6x \dots stated or implied by
    \cdot^{2} 2[(x+3)^{2}-9]
      = 2(x + 3)^2 - 18 + 1
    a^{3} 2(x+3)^{2} - 17
    Method 2
    • ax^{2} + 2abx + ab^{2} + c
    • a = 2 2ab = 12 ab^2 + c = 1
    a^{3} 2(x+3)^{2} - 17
5. Method 1
                                               Method 1
     •<sup>1</sup> identify common factor
                                               • 1 - 1(x^2 - 2x) stated or implied by • 2
                                               a^2 - 1(x - 1)^2 + 16
     •<sup>2</sup> complete the square
                                               Method 2
     Method 2
                                               • px^{2} + 2pqx + pq^{2} + r and p = -1,
     •<sup>1</sup> expand completed square form
     and equate coefficients
     •<sup>2</sup> process for q and r and write in
                                               • ^{2} q = -1 and r = 16
     required form
```


ANSWERS TO 'THINGS TO DO AND THINK ABOUT'

```
Quadratics: Solving quadratic inequations
1. (a) 2x^2 + 5x - 12 < 0 \Rightarrow (2x - 3)(x + 4) < 0
        -4 < x < \frac{3}{2}
   (b) x \le -4, x \ge \frac{3}{2}
2. 9x^2 - 12x + 4 = (3x - 2)^2
   (3x - 2) > 0 for all x except x = \frac{2}{3} \cdot \left\{ x: x \in \mathbb{R}, x \neq \frac{2}{3} \right\}
3. C(3 + x)(4 - x) < 0
    solution is either
    -3 < x < 4 or x < -3, x > 4
   x = 0 is FALSE so
    x < -3 and x > 4
4. B
5. B
6. B
7. \bullet^1 x(x-2) < 15
    • x^2 - 2x - 15 < 0
    \bullet^3 (x-5)(x+3)
    • ^{4} 2 < x < 5
8. C
Quadratics: The discriminant
1. B
2. D
3. C
    (3 + x)(4 - x) < 0
4. B
Polynomials 1
1. x^3 + 3x^2 + 5x + 3 = (x + 1)(x^2 + 2x + 3)
```

For $(x^2 + 2x + 3)$, $b^2 - 4ac = 2^2 - 4 \times 1 \times 3 < 0$, so does factorise, is irreducible. Therefore the above expression is fully factorised.

ANSWERS TO 'THINGS TO DO AND THINK ABOUT'

Polynomials 2

- 1. •¹ If (x 2) is a factor of $f(x) = x^3 6x^2 + 4x + 8 = 0$ then f(2) = 0. •² $f(2) = 2^3 - 6(2)^2 + 4(2) + 8 = 8 - 24 + 8 + 8 = 0 \Rightarrow x = 2$ is a root and (x - 2) is a factor
- 2. $x^3 + 3x^2 + 2x + 3 = 2x + 3$ gives $x^3 + 3x^2 = 0 \Rightarrow x^2(x + 3) = 0$
- x = 0 (at A), x = -3 at B, when x = -3, y = 2x + 3 = 2(-3) + 3 = -3, B has coordinates (-3, -3)
- 3. (a) •¹ If (x 1) is a factor of $f(x) = 2x^3 + x^2 8x + 5 = 0$ then f(1) = 0.
 - $\bullet^2 2 + 1 8 + 5 = 0$
 - •³ (x 1) is a factor
 - $\bullet^4 (x-1)(2x^2+3x-5)$
 - $\bullet^5 (x-1)(x-1)(2x+5)$
 - (b) *x* = 1, (repeated root), *x* = $\frac{-5}{2}$
 - (c) $2x^3 + x^2 6x + 2 = 2x 3$ gives $2x^3 + x^2 8x + 5 = 0$ and since the line is a tangent at G there will be a repeated root so x = 1 and y = 2(1) 3 = -1. G is (1, -1).

Functions: Domain and range

- 1. A
- 2. (a) $-8 \le f(x) \le 6$; (remember $-1 \le \cos x \le 1$)
 - (b) $g(x) \le 5$; (c) $h(x) \le 10$ in both (b) and (c) a value is being taken from 5 or 10, the smallest this value can be in both cases is zero.
 - (d) $2 \le k(x) \le 5$, [here $0 \le \sin^2 x \le 1$]

Functions: Inverse functions

1. $f^{-1}(x) = \frac{x+7}{4}, g^{-1}(x) = \frac{1}{2x}$ 2. $y = \frac{2x-3}{4-x} \rightarrow y(4-x) = 2x-3 \rightarrow 4y+3 = 2x+yx \rightarrow 4y+3 = (2+y)x \rightarrow x = \frac{4y+3}{y+2}$ $\Rightarrow h^{-1}(x) = \frac{4x+3}{x+2}, x \neq 2.$

ANSWERS TO 'THINGS TO DO AND THINK ABOUT'

Functions: Composite functions

1. $g(f(x)) = g(x^2 + 1) = 3(x^2 + 1) - 4 = 3x^2 - 1$ 2. (a) $f(g(x)) = f(x + 4) = (x + 4)^2 + 3 = x^2 + 8x + 19$ (b) $g(f(x)) = g(x^2 + 3) = x^2 + 3 + 4 = x^2 + 7$ 3. $f(g(x)) = f(x + 3) = (x + 3)((x + 3) - 1) + q = (x + 3)(x + 2) + q = x^{2} + 5x + 6 + q$ 4. $g(\frac{\pi}{6}) = \frac{\pi}{6} + \frac{\pi}{6} = \frac{\pi}{3}, f(g(\frac{\pi}{6})) = f(\frac{\pi}{3}) = \cos \frac{\pi}{3} = \frac{1}{2}$ 5 (a) $g(f(x)) = g(x^3 - 1) = 3(x^3 - 1) + 1 = 3x^3 - 2$ (b) $g(f(x)) + xh(x) = 3x^3 - 2 + x(4x - 5) = 3x^3 + 4x^2 - 5x - 2$ 6. (a) $f(g(x)) = f(\frac{1}{x^2}) = 4(\frac{1}{x^2}) + 3 = \frac{4}{x^2} + 3$ (b) $y = \frac{4}{x^2} + 3 \Rightarrow y - 3 = \frac{4}{x^2} \Rightarrow x^2 = \frac{4}{y - 3} \Rightarrow x = \sqrt{\frac{4}{y - 3}}, f^{-1}(x) = \sqrt{\frac{4}{x - 3}}, x \neq 3$ Functions: Graphs of functions 1 Working anti-clockwise: $y = \frac{1}{-x} = -\frac{1}{x}$, $y = \frac{1}{x}$, $y = -\frac{1}{x}$ Functions: Graphs of functions 2 1. $y = \log_3(x - 3)$ Functions: Exponentials and logarithmic functions 1. • $\log_{5}[(3-2x)(2+x)] = 1$ stated or implied by •² $\bullet^2 (3-2x)(2+x) = 5^1$ $6 - x - 2x^2 = 5$ • $32x^2 + x - 1 = 0$ (2x-1)(x+1) = 0• $x = \frac{1}{2}, x = -1$

Functions: Exponentials and logarithmic graph transformations

The graph will be translated by 4 units left

The graph will get closer and closer to the line given by x = -4 (the new asymptote instead of x = 0, the *y*-axis)

The graph will be reflected in the *x*-axis

The graph will be translated by 3 units upwards

The graph will need to be annotated:

choose at least 2 points from (-3, 3),(-2, 2), (0, 1), (4, 0).

Recurrence relations 1

1. A $u_2 = 3 \times 2 + 4 = 10$ $\therefore u_3 = 3 \times 10 + 4 = 34$

ANSWERS TO 'THINGS TO DO AND THINK ABOUT

Recurrence relations 2

- 1. (a) L = kL + 5 so $4 = 4k + 5 \Rightarrow k = -\frac{1}{4}$
- 2. (a) let u_{n+1} be the height at end of year., then

 $u_{n+1} = 0.8u_n + 0.5$ A limit exists since -1 < 0.8 < 1Let limit be *L*, then L = 0.8L + 0.5 $\Rightarrow 0.2L = 0.5 \Rightarrow L = \frac{0.5}{0.2} = \frac{5}{2} = 2.5$ metres (b) The limit, *L* needs to be ≤ 2 metres So L = pL + 0.5 $\Rightarrow L - pL = 0.5$ L(1-p) = 0.5 $L = \frac{0.5}{1-p} \le 2$ $\Rightarrow 0.5 \leq 2(1-p)$

- $\Rightarrow 0.25 \le 1 p$
- $\Rightarrow p \leq 0.75$

0.75 represents the amount left, so a minimum of 25% must be trimmed.

2 CALCULUS

Differentiating functions

- 1. $\frac{dy}{dx} = -6x^{-4} + 4x^{\frac{1}{3}}$
- 2. $\frac{dV}{dr} = 4\pi r^2$. When r = 2, $\frac{dV}{dr} = 4\pi (2)^2 = 16\pi$
- 3. $f(x) = x^{-\frac{1}{5}}, f'(x) = -\frac{1}{5}x^{-\frac{6}{5}}$
- 4. s'(t) = 2t 5, s'(3) = 2(3) 5 = 1

5.
$$\frac{d}{dx}\left(\frac{1}{4}x^{-3}\right) = -\frac{3}{4}x^{-4} = \frac{-3}{4}x^{-4}$$

5. $\frac{d}{dx}\left(\frac{1}{4}x^{-3}\right) = -\frac{3}{4}x^{-4} = \frac{-3}{4x^4}$ 6. $\frac{dA}{dr} = 4\pi r + 6\pi$. When r = 2, $\frac{dA}{dr} = 4\pi(2) + 6\pi = 14\pi$

Differentiating using the chain rule

- 1. $\frac{d}{dx}\left((4-9x^4)^{\frac{1}{2}}\right) = \frac{1}{2}(4-9x^4)^{-\frac{1}{2}} \times -36x^3 = -18x^3(4-9x^4)^{-\frac{1}{2}}$
- 2. $f'(x) = -\frac{1}{2}(4 3x^2)^{-\frac{3}{2}} \times -6x = 3x(4 3x^2)^{-\frac{3}{2}}$

ANSWERS TO 'THINGS TO DO AND THINK ABOUT'

Differentiating: Nature and properties of functions 1

- 1. $\frac{dy}{dx} = 4x^3 15x^2$, $m = 4(-1)^3 15(-1)^2 = -19$, $y = (-1)^4 5(-1)^3 + 6 = 12$
- y 12 = -19(x + 1), y = -19x 7
- 2. $\frac{dy}{dx} = 2x 5, m = 2(3) 5 = 1$
- 3. $\frac{dy}{dx} = 3x^2 4$, $m = 3(2)^2 4 = 8$
- 4. $\frac{dy}{dx} = 20x^4 17, m = 20(1)^2 17 = 3$

Differentiating: Nature and properties of functions 2

1. Only statement (1) is correct.

f(x) < 0 for s < x < t, since f'(x) = 0 when x = 0.

2. C Only statement (2) is correct.

$$f'(1) = (1)^2 - 9 = -8, f'(-3) = (-3)^2 - 9 = 0$$

3. $f'(x) = 3x^2 + 6x + 18 = 3(x^2 + 2x + 9)$

 $b^2 - 4ac = (2)^2 - 4(1)(9) < 0$ so no real solutions and a ' \cup ' shaped graph which is always positive so function is strictly increasing.

4. (a) $f'(x) = x^2 + x - 12 = (x + 4)(x - 3)$

[f'(x) = 0 when x = -4 and when x = 3], ' \cup ' shaped graph so f is strictly decreasing (f'(x) < 0) when -4 < x < 3.

(b) $-4 \le x \le 3$.

Differentiating: Nature and properties of functions 3

1. (a) $\frac{dy}{dx} = 6x - 3x^2$, for stationary points $\frac{dy}{dx} = 0$, $6x - 3x^2 = 0 \rightarrow 3x(2 - x) = 0$, x = 0 or x = 2

stationary points (0, 0), (2, 4)

 $\frac{d^2y}{dx^2} = 6 - 6x, \text{ when } x = 0, \frac{d^2y}{dx^2} = 6 > 0 \Rightarrow \text{ a minimum turning point at } (0, 0)$ when $x = 2, \frac{d^2y}{dx^2} = -6 < 0 \Rightarrow \text{ a maximum turning point at } (2, 4).$ (b) $3x^2 - x^3 = 0 \rightarrow x^2(3 - x) = 0 \rightarrow x = 0, x^2(3 - x) = 0 \rightarrow x = 3. (0, 0) \text{ and } (3, 0)$

- The following gives the marking instructions for this question rather than just the solution, remember using the marking instructions is a useful tool for learning where the marks are allocated and what you need to include in your solutions. Marking instructions can be found on the SQA website and also on <u>http://maths777.</u> weebly.com
 - (a) In marking instructions you will sometimes see letters which identify the type of mark being given such as 'ss' for selecting a strategy. Interpretation, selecting a strategy, processing and communication are all part of your solutions so it is important that you clearly show your working.
 - •¹ ic interpret *x* intercept •¹ (2, 0) (minimum response "(i) 2")
 - •² ic interpret *y* intercept •² (0, -2) (minimum response "(ii) –2")

v

(2, 4)

х

ANSWERS TO 'THINGS TO DO AND THINK ABOUT'

Notes

1. Candidates who obtain extra *x*-axis intercepts lose \bullet^1 .

- 2. Candidates who obtain extra y-axis intercepts lose \bullet^2 .
- 3. Candidates who interchange intercepts can gain at most one mark.
- •³ ic write in differentiable form
- •⁴ ss know to and start to differentiate
- •⁵ pd complete derivative and equate to 0
- •⁶ pd factorise derivative
- •⁷ pd process for x
- •⁸ pd evaluate y-coordinates
- •⁹ ic justify nature of stationary points
- •¹⁰ ic interpret and state conclusions

 $x^3 - 2x^2 + x - 2$

• $4 3x^2$... or -4x...

This question may be marked vertically. The dotted rectangle shows what is required for \bullet^{10} .

Notes

- 4. •⁵ is only available if "= 0" appears at or before •⁶ stage.
- 5. •³, •⁴ and •⁵ are the only marks available to candidates who solve $3x^2 4x = -1$.
- 6. At •* the nature can be determined using the second derivative.
- 7. \bullet ⁹ is only available if the nature table is consistent with the candidate's derivative.
- 8. \bullet^{10} is awarded for correct interpretation of the candidate's nature table in words.

Notice that other methods for a solution are sometimes given in the notes such as here for using the second derivative for determining the nature of the stationary points – note 6.

ANSWERS TO 'THINGS TO DO AND THINK ABOUT'

- 3. $\frac{dy}{dx} = 3x^2 6x 9 = 3(x^2 2x 3) = 0$ for stationary points, $3(x 3)(x + 1) \Rightarrow x = 3, -1$ stationary points (-1, 17), (3, -15) $\frac{d^2y}{dx^2} = 6x - 6$ when $x = -1, \frac{d^2y}{dx^2} = -12 < 0 \Rightarrow$ a maximum turning point at (-1, 17), when $x = 3, \frac{d^2y}{dx^2} = 12 > 0 \Rightarrow$ a minimum turning point at (3, -15). Integrating functions
- 1. $\frac{1}{15}(5x+7)^3 + c$
- 2. $2x^2 x^3 + c$
- 3. $-\frac{1}{4}(1-8x)^{\frac{1}{2}}+c$
- 4. $\int \left(\frac{1}{6}x^{-2}\right) dx = -\frac{1}{6}x^{-1} + c = -\frac{1}{6x} + c$
- 5. $\frac{1}{3}(2x-1)^{\frac{3}{2}}+c$

Definite integrals and solving differential equations

1. •1 $\frac{1}{\frac{1}{2}}(...)^{\frac{1}{2}}$ •2 $... \times \frac{1}{3}$ •3 $\frac{2}{3}(3t+4)^{\frac{1}{2}} - \frac{2}{3}(3(4)+4)^{\frac{1}{2}} = 2 \rightarrow \frac{2}{3}(3t+4)^{\frac{1}{2}} = 2 + \frac{8}{3}$ •4 $(3t+4)^{\frac{1}{2}} = 7 \rightarrow 3t+4 = 49$ •5 t = 15

Differentiating and integrating trigonometric functions

- 1. $2x\cos(x^2 3)$
- 2. $-12\cos^3 x \sin x$
- 3. $f'(x) = 12\cos 3x, f'(0) = 12\cos 3(0) = 12$
- 4. $-\frac{2}{3}x^{-3} + \frac{1}{5}\sin 5x + c$

Differentiation: Mathematical modelling and problem solving

1. (a) L = 3x + 4y $A = xy, xy = 24, y = \frac{24}{2x}$ $L = 3x + 4 \times \frac{24}{2x}$ this line is essential $= 3x + \frac{48}{x}$ (b) $L = 3x + 48x^{-1}$ $\frac{dL}{dx} = 3 - 48x^{-2}$ $3 - \frac{48}{x^2} = 0 \rightarrow x = 4$ $\frac{d^2L}{dx^2} = 96x^{-3} = \frac{96}{x^3}$ when $x = 4, \frac{d^2L}{dx^2} > 0 \Rightarrow$ a minimum $L = 3(4) + \frac{48}{(4)} = 24$ Cost $24 \times \pounds 8.25 = \pounds 198$

ANSWERS TO 'THINGS TO DO AND THINK ABOUT'

Integration: Mathematical modelling and problem solving

1. •¹ss know to integrate •1 $\int \dots$ or attempt integration \bullet^2 ic know to deal with areas •² Evidence of attempting to interpret the diagram to left of *y*-axis separately from diagram to the right. on each side of y-axis • $^{3} \int_{-2}^{0}$ e.g. \int_{0}^{3} with no other •³ ic interpret limits of one area •⁴ $(x^3 - x^2 - 4x + 4) - (2x + 4)$ $(2x + 4) - (x^3 - x^2 - 4x + 4)$ •⁴ ic use "upper-lower" •⁵ $\frac{1}{4}x^4 - \frac{1}{3}x^3 - 3x^2$ •⁶ $\frac{1}{4}(-2)^4 - \frac{1}{3}(-2)^3 - 3(-2)^2 = -\frac{16}{3}$ $3(3)^2 + \frac{1}{3}(3)^3 - \frac{1}{4}(3)^4$ •5 pd integrate •⁶ ic substitute in limits Evidence for \bullet^6 may be implied by \bullet^7 , but •7 must be consistent with •5. •⁷ Hence area is $\frac{16}{3}$ \bullet^7 pd evaluate the area on one side •⁸ $\int_{0}^{3} (2x+4) - (x^{3}-x^{2}-4x+4)dx$ $\int_{-2}^{0} (x^{3}-x^{2}-4x+4) - (2x+4) dx$ •⁸ ss interpret integrand with limits of the other area •⁹ $\frac{63}{4}$ $\frac{16}{3}$ •¹⁰ $21\frac{1}{12}$ or $\frac{253}{12}$ or $21\cdot 1$ $21\frac{1}{12}$ or $\frac{253}{12}$ or $21\cdot 1$ • $9 \frac{63}{4}$ •⁹ pd evaluate the area on the other side •¹⁰ ic state total area 2. Area = $\int_{-2}^{2} ((14 - x^2) - (2x^2 + 2)) dx = \int_{-2}^{2} (12 - 3x^2) dx$ $[12x - x^3]^2 = [16] - [-16] = 32$ Rates of change: Mathematical modelling and problem solving 1 (a) \bullet^1 ss know to differentiate $e^1 \quad a = v'(t)$

1.	(a)	• 55	KIOW to unrerentiate	•	u = V(t)
		•² pd	differentiates trig. function	•2	$-8\sin\left(2t-\frac{\pi}{2}\right)$
		• ³ pd	applies chain rule	•3	$\dots \times 2$ and complete
					$a(t) = -16\sin\left(2t - \frac{\pi}{2}\right)$
	(b)	• ⁴ SS	know to and evaluate <i>a</i> (10)	•4	a(10) = 6.53
		• ⁵ ic	interpret result	•5	a(10) > 0 therefore increasing

ANSWERS TO 'THINGS TO DO AND THINK ABOUT'

3 GEOMETRY

Straight lines 1

- 1. Angle with positive direction of *x*-axis is $\frac{\pi}{3}$. $m_{_{GH}} = \tan \frac{\pi}{3} = \sqrt{3}$.
- 2. $m = \tan 150^\circ = -\frac{1}{\sqrt{3}}$.

Straight lines 2

- 1. $3y = 2x 9 \rightarrow y = \frac{2}{3}x 9 \Rightarrow m = \frac{2}{3} \Rightarrow \text{perp. grad.} = -\frac{3}{2}, m_L = -\frac{3}{2}.$ 2. $m_L = -\frac{5}{3}, y + 1 = -\frac{5}{3}(x + 2) \Rightarrow 3y + 5x + 13 = 0 \text{ or } y = -\frac{5}{3}x - \frac{13}{3}.$
- 3. (a) For line BD, we know a point (B) and can use gradient of AB to find gradient of BD:

$$m_{AB} = \frac{6-0}{-6+8} = \frac{6}{2} = 3$$

So $m_{BD} = -\frac{1}{3}$
Equation: $y - 6 = -\frac{1}{3}(x + 6)$
 $3y - 18 = -x - 6$
 $3y = 12 - x$ or $y = -\frac{1}{3}x + 4$.

(b) The diagonals bisect each other, so the point of intersection will be the midpoint of BD (or AC, but BD is easier to find). D lies on 3y = 12 - x and $y_D = 0$, so $x_D = 12$ (by substitution into the equation of the line).

The midpoint of BD: B(-6, 6) D(12, 0) so midpoint P is (3, 3)

(c) It's easy to find C in several ways, and you don't need any working written (but remember working is also for **your** benefit to avoid mistakes being made by carrying too much in your head).

You could use the midpoint formula with P and AC.

Or you could use the fact that BC is horizontal and equal in length to AD (20 units).

Or use vectors
$$\overrightarrow{DC} = \overrightarrow{AB} = \binom{2}{6}$$
 ... result C(14, 6)

- 4. (a) $m_{PQ} = -2$, $m_{QR} = \frac{1}{2}$, $y 6 = \frac{1}{2}(x 5) \rightarrow 2y = x + 7$ or $y = \frac{1}{2}x + \frac{7}{2}$
 - (b) solve x + 3y = 13 and $\rightarrow x 2y = -7$ simultaneously to get x = 1, y = 4, (1, 4).

(c) use vectors or stepping out
$$QT = \begin{pmatrix} -4 \\ -2 \end{pmatrix}$$
, $R(-3, 2)$, $S(-1, -2)$

5. (a) midpoint (1, 3), $m_{PQ} = -3$, $m_{perp} = \frac{1}{3}$, eqn, perp. bisector: $y - 3 = \frac{1}{3}(x - 1) \rightarrow 3y = x + 8$ or $y = \frac{1}{3}x + \frac{8}{3}$

(b)
$$m_{parallel} = -3, y - (-2) = -3(x - 1) \rightarrow y + 3x = 1 \text{ or } y = -3x + 1$$

(c) solve simultaneously to get $x = -\frac{1}{2}$, $y = \frac{5}{2}$, $\left(-\frac{1}{2}, \frac{5}{2}\right)$.

Straight lines 3

- 1. midpoint_{QR} = S(1, 5), $m_{PS} = \frac{5 (-2)}{1 (-3)} = \frac{7}{4}$.
- 2. (a) P = (-3, 0)

(b)
$$m_{QR} = -2$$
, $m_{alt} = \frac{1}{2}$, eqn. alt: $y - 0 = \frac{1}{2}(x + 3) \Rightarrow 2y = x + 3$ or $y = \frac{1}{2}x + \frac{3}{2}$
(c) eqn. QR : $y + 2 = -2(x - 8)$ or $y - 6 = -2(x - 4) \Rightarrow y + 2x = 14$

ANSWERS TO 'THINGS TO DO AND THINK ABOUT'

Circles 1

1. C(2, -1), $r = \frac{3}{2}$

- 2. $r = \sqrt{\text{negative number}}$ which is not possible.
- 3. C(2, 5), r = 5, distance_{AP} = $\sqrt{5^2 + 4^2} = \sqrt{41} > 5$, hence A lies outside the circle.

Alternatively, substitute A into the LHS of the circle equation

 $(-3)^2 + 1^2 - 4 \times (-3) - 10 \times 1 + 4 = 16$, > 0, so A lies outside the circle.

4. $\sqrt{p^2 + (2p)^2 - (2p+2)} > 0$

 $\Rightarrow p^{2} + (2p)^{2} - (3p + 2) > 0$ $\Rightarrow 5p^{2} - 3p - 2 > 0$ $\Rightarrow (5p + 2)(p - 1) > 0$ $\Rightarrow p < -2 / 5, p > 1$

(for more help on this final step see solving quadratic inequations)

Circles 2

1. (a) $2x - y + 5 = 0 \rightarrow y = 2x + 5$, substituting for *y* into the equation of the circle gives

 $x^{2} + (2x + 5)^{2} - 6x - 2(2x + 5) - 30 = 0$ $x^{2} + 4x^{2} + 20x + 25 - 6x - 4x - 10 - 30 = 0$

 $5x^2 + 10x - 15 = 0 \Rightarrow 5(x + 3)(x - 1) = 0$

giving x = -3, x = 1. Substituting into y = 2x + 5 gives P(-3, -1), Q(1, 7)

(b) Circle has centre (3, 1), $r = \sqrt{40}$, midpoint *PQ*(-1, 3).

 $\overrightarrow{Cmidpt}_{PQ} = {\binom{-1}{3}} - {\binom{3}{1}} = {\binom{-4}{2}}$ centre congruent circle: ${\binom{-1}{3}} + {\binom{-4}{2}} = {\binom{-5}{5}}$, C(-5, 5), $r = \sqrt{40}$ Equation: $(x + 5)^2 + (y - 5)^2 = 40$.

Vectors 1

1. One possible journey, $S \rightarrow R \rightarrow W = -\mathbf{u} - \mathbf{v} - \mathbf{v}$ giving $-\mathbf{u} - 2\mathbf{v}$

Vectors 2

1.
$$\overrightarrow{PQ} = \begin{pmatrix} 10\\ -5\\ 20 \end{pmatrix} \rightarrow \overrightarrow{PS} = \begin{pmatrix} 20\\ -10\\ 40 \end{pmatrix} \rightarrow S(19, -5, 40)$$

Vectors 3

- 1. $|\mathbf{u}| = \sqrt{(-3)^2 + 4^2} = 5$, the unit vector parallel to $\mathbf{u} = \begin{pmatrix} -3 \\ 0 \\ 0 \end{pmatrix}$ is $\frac{1}{5} \begin{pmatrix} -3 \\ 0 \\ 0 \end{pmatrix} or -\frac{3}{5}\mathbf{i} + \frac{4}{5}\mathbf{k}$
- 2. f + g = 5i + 4j + 5k
 - $|\mathbf{f} + \mathbf{g}| = \sqrt{5^2 + 4^2 + 5^2} = \sqrt{66}$

ANSWERS TO 'THINGS TO DO AND THINK ABOUT'

4 TRIGONOMETRY

Basics: Radians and trigonometric ratios

1. D

Basics: Exact values and basic trig graphs

1. B

Trigonometric graphs: Period, amplitude and graph transformations 1

1. A

Trigonometric graphs: Period, amplitude and graph transformations 2

1. B

2. A

The addition and double-angle formulae

1. A

Solving trigonometric equations 1

1. D, please note Option D should read $\frac{\pi}{6}$ and $\frac{11\pi}{6}$.

2. C

Solving trigonometric equations 2

1. (a) Method 1: Using factorisation •¹ ss know to use double angle formula • $2\cos^2 x^\circ - 1$... stated, or implied by •² •² $2\cos^2 x^\circ - 3\cos x^\circ + 1$ = 0 must appear at either •² ic express as a quadratic in $\cos x^{\circ}$ of these lines to gain \bullet^2 . •³ $(2\cos x^{\circ} - 1)(\cos x^{\circ} - 1)$ •³ ss start to solve Method 2: Using quadratic formula • $1 2\cos^2 x^\circ - 1...$ • $2\cos^2 x^\circ - 3\cos x^\circ + 1 = 0$ stated explicitly •³ $\underline{-(-3)} \pm \sqrt{(-3)^2 - 4 \times 2 \times 1}$ In both methods: •⁴ $\cos x^\circ = \frac{1}{2}$ and $\cos x^\circ = 1$ Candidates who •⁴ pd reduce to equations in $\cos x^\circ$ only include 360 lose •4 •⁵ 0, 60 and 300 •⁵ ic process solutions in given domain or • $\cos x^{\circ} = 1$ and x = 0Candidates who •⁵ $\cos x^{\circ} = \frac{1}{2}$ and x = 60 or 300 include 360 lose •4 • 6 2*x* = 0 and 60 and 300 (b) \bullet^6 ic interpret relationship with (a) interpret periodicity •⁷ 0, 30, 150, 180, 210 and 330 •⁷ic

ANSWERS TO 'THINGS TO DO AND THINK ABOUT'

2.			Metho	d 1		
	\bullet^1 SS	use correct double angle formulae	• ¹ $2\sin x \cos x$			
	• ² SS	form correct equation	• ² 2 si	$nx\cos x - 2\cos^2 x = 0$		
	• ³ SS	take out common factor	• ³ 2 co	$\cos x(\sin x - \cos x) = 0$		
	•4 ic	proceed to solve	•4 cos	sx = 0 and $sin x = cos x$		
				•5 •6		
	• ⁵ pd	find solutions	•5	$\frac{\pi}{2}$ $\frac{3\pi}{2}$		
	• ⁶ pd	find remaining solutions	•6	$\frac{\pi}{4}$ $\frac{5\pi}{4}$		
			Metho	od 2		
	• ¹ SS	use double angle formulae	• ¹ cos	52x + 1		
	• ² ss form correct equation		• ² sin	$2x - \cos 2x = 1$		
	• ³ SS	express as a single trig function	$\bullet^3 \sqrt{2}\sin\left(2x - \frac{\pi}{4}\right) = 1$			
	•4 ic	proceed to solve	• ⁴ sin	$\left(2x - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$		
				• ⁵ • ⁶		
	• ⁵ pd	find solutions	$\bullet^5 2x$	$-\frac{\pi}{4} = \frac{\pi}{4}, \frac{5\pi}{4} + \frac{5\pi}{4}, \frac{5\pi}{4}$		
• ⁶ pd find		find solutions	• ⁶ $x =$	$\frac{\pi}{4}, \frac{\pi}{2}$ $x = \frac{3\pi}{4}, \frac{3\pi}{2}$	_	
3.	• ¹ SS	use correct double angle formula		• $\sin x - 2(1 - 2\sin^2 x)$		
				stated or implied by	•2	
	• ² SS	arrange in standard quadratic form		• ² $4\sin^2 x + \sin x - 3 = 0$)	
	• ³ SS	start to solve		• ³ $(4\sin x - 3)(\sin x + 1)$	= 0	
				OR		
		 •⁴ ic reduce to equations in sin <i>x</i> only •⁵ pd process to find solutions in given domain 		$\frac{-1 \pm \sqrt{(1)^2 - 4 \times 4 \times (-3)}}{2 \times 4}$		
	•4 ic			•4 $\sin x = \frac{3}{4}$ and $\sin x = -\frac{3}{4}$	-1	
	• ⁵ pd			• 5 0.848, 2.29 and $\frac{3\pi}{2}$		
				OR		
				• $\sin x = \frac{3}{4}$ and $x = 0.84$	48, 2·29	
				• $\sin x = -1$, and $x = \frac{3\pi}{2}$	<u> </u>	
			1			
Th	e wav	re function 1				
1.	(a) •¹	ss use compound angle formula	• ¹ $R sir$	$nx\cos a + R\cos x\sin a$	stated explicitly	
	•2	ic compare coefficients	• ² R co	$a = 3$ and $R \sin a = -5$	stated explicitly	
	•3	pd process R	• ³ $\sqrt{34}$	(Accept 5.8)	with or without workin	

•⁴ 5·253 (Accept 5·3)

must be consistent with \bullet^2

•⁴ pd process a

ANSWERS TO 'THINGS TO DO AND THINK ABOUT'

	(b)	•5 pd	integrate given expression	• ⁵ $3\sin x - 5\cos x$			
		• ⁶ ic	substitute limits	• $(3\sin t - 5\cos t) - (3\sin 0 - 5\cos 0)$			
		• ⁷ pd	process limits	• $3\sin t - 5\cos t + 5$ to candidates who			
		• ⁸ SS	know to use wave equation	• ⁸ $\sqrt{34}\sin(t+5\cdot3)+5$ chose to write this integrand as now			
		• ⁹ ic	write in standard format	• $\sin(t + 5.3) = -\frac{2}{\sqrt{34}}$ wave function.			
		• ¹⁰ SS	start to solve equation	•10 $t + 5.3 = 3.5$ and 5.9			
		•11 pd	complete and state solution	•11 $t = 0.6$			
The wave function 2							
1.	(a)	• ¹ SS	use compound angle formula	• $k\cos x\cos a - k\sin x\sin a$ stated explicitly			
		• ² ic	compare coefficients	• $k\cos a = 1$ and $k\sin a = \sqrt{3}$ stated explicitly			
		• ³ pd	process k	• ³ 2 (do not accept $\sqrt{4}$)			
		\bullet^4 pd	process a	•4 $\frac{\pi}{3}$ but must be consistent with •2			
	(b)	● ⁵ ic	interpret y-intercept	•5 1			
		• ⁶ SS	strategy for finding roots	• e.g. $2\cos(x + \frac{\pi}{3}) = 0$ or $\sqrt{3}\sin x = \cos x$			
		• ⁷ ic	state both roots	$\bullet^7 \frac{\pi}{6}, \frac{7\pi}{6}$			
2.	(a)	• ¹ SS	use compound angle formula	• $k \sin x^{\circ} \cos a^{\circ} - k \cos x^{\circ} \sin a^{\circ}$ stated explicitly			
		•² ic	compare coefficients	• $k\cos a^\circ = \sqrt{3}$ and $k\sin a^\circ = 1$ stated explicitly			
		• ³ pd	process for <i>k</i>	• ³ 2 (do not accept $\sqrt{4}$)			
		•4 pd	process for <i>a</i>	•4 30			
	(b)	● ⁵ ic	interpret expression	• $5 4 - 5 \times 2\sin(x - 30)^{\circ}$			
		• ⁶ pd	state maximum	•6 14			
3.	D						

