A Tutorial on Stacks in Java

What is a Stack?
If you've ever put something on top of something else of the same type (e.g. sheets of paper), you have created a stack! In terms of programming, stacks mean just that. Stacks are practically identical to Queues (with one major difference – queues use first in first out and stacks use last in first out).

Basic operations of Stacks
The following is a list of operations that can generally be performed on a stack. This of course will depend on your implementation.

```
Method names for my implementation are in blue.
Descriptions are in green.
Examples are in red.
push(object)  - Adds the object to the top of the stack.
               (Putting another sheet of paper on top of the pile)
pop()        - Removes the object from the top of the stack and returns
               it to the caller.
               (Taking a piece of paper from the top of the pile)
peek()       - Returns the object at the top of the stack without
               removing it.
               (Only reading the sheet of paper at the top of the pile)
```

Example of using Stacks
The current state of the stack is highlighted in green.
Note: The top of the stack is at the right of the green boxes.
The operation being performed is in blue.
Comments are in green.

We begin with an empty stack.
peek(); would return null.

```
push(A);
  A
A is placed on top of the empty stack.
push(B);
  A
  B
B is placed on top. A is now under B, not on top.
peek();
  A
peek() does not change the stack itself, it only returns
the reference to the object on top, which is B.
pop();
  A
B is removed from the stack and returned to the caller.
pop();
  A
A is removed from the stack and returned to the caller.
The stack is now empty.
```
Java Example of a Stack class
This implementation of the stack uses linked lists. For consistency use the linked list code from the Linked Lists Tutorial. Copy the code from there into a file and name it LinkedList.java.

Below is an implementation of the Stack class. If you've looked at the code in the Queues tutorial, you would notice that the only difference is that 1s are changed to list.size(). Instead of returning the first element in the list, we return the last element in the list. In this implementation, the first element is the bottom and the last element is the top of the stack.

```java
public class Stack {
    private LinkedList list;
    // Stack constructor
    public Stack() {
        // Create a new LinkedList.
        list = new LinkedList();
    }
    public boolean isEmpty() {
        // Post: Returns true if the stack is empty. Otherwise, false.
        return (list.size() == 0);
    }
    public void push(Object item) {
        // Post: An item is added to the back of the stack.
        list.add(item);
    }
    public Object pop() {
        // Pre: this.isEmpty() == false
        // Post: The item at the front of the stack is returned and
        //        deleted from the stack. Returns null if precondition
        //        not met.
        Object item = list.get(list.size());
        // Remove the item from the list.
        // My implementation of the linked list is based on the
        // J2SE API reference. In both, elements start at 1,
        // unlike arrays which start at 0.
        list.remove(list.size());
        // Return the item
        return item;
    }
    public Object peek() {
        // Pre: this.isEmpty() == false
        // Post: The item at the front of the stack is returned and
        //        deleted from the stack. Returns null if precondition
        //        not met.
        return list.get(list.size());
    }
}
```

Assignment: Create a program that reverses a word using a stack.