
9.1 SOLUTIONS 523

CHAPTER NINE

Solutions for Section 9.1

Exercises

1. We draw a graph of y = cos t for −� ≤ t ≤ 3� and trace along it on a calculator to find points at which y = 0.4. We

read off the t-values at the points t0, t1, t2, t3 in Figure 9.1. If t is in radians, we find t0 = −1.159, t1 = 1.159, t2 = 5.124,

t3 = 7.442. We can check these values by evaluating:

cos(−1.159) = 0.40, cos(1.159) = 0.40, cos(5.124) = 0.40, cos(7.442) = 0.40.

Notice that because the cosine function is periodic, the equation cos t = 0.4 has infinitely many solutions. The symmetry

of the graph suggests that the solutions are related.

t0 t1 t2 t3−� � 2� 3�

y = cos t

y = 0.4

t

y

Figure 9.1: The points t0, t1, t2, t3 are solutions to the equation cos t = 0.4

2. (a) Tracing along the graph in Figure 9.2, we see that the approximations for the two solutions are

t1 ≈ 1.88 and t2 ≈ 4.41.

Note that the first solution, t1 ≈ 1.88, is in the second quadrant and the second solution, t2 ≈ 4.41, is in the third

quadrant. We know that the cosine function is negative in those two quadrants. You can check the two solutions by

substituting them into the equation:

cos 1.88 ≈ −0.304 and cos 4.41 ≈ −0.298,

both of which are close to −0.3.

t1 � t2 2�

−1

1
y = cos t

y = −0.3

t

y

Figure 9.2: The angles t1 and t2 are the two solutions to cos t = −0.3 for 0 ≤ t ≤ 2�

(b) If your calculator is in radian mode, you should find

cos−1(−0.3) ≈ 1.875,

which is one of the values we found in part (a) by using a graph. Using the cos−1 key gives only one of the solutions

to a trigonometric equation. We find the other solutions by using the symmetry of the unit circle. Figure 9.3 shows

that if t1 ≈ 1.875 is the first solution, then the second solution is
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t2 = 2� − t1

≈ 2� − 1.875 ≈ 4.408.

Thus, the two solutions are t ≈ 1.88 and t ≈ 4.41.

t1

t2 = 2� − t1

t1

−t1

✙

❨

❥

Figure 9.3: By the symmetry of the unit circle, t2 = 2� − t1

3. Graph y = sin � on 0 ≤ � ≤ 2� and locate the two points with y-coordinate 0.65. The �-coordinates of these points are

approximately � = 0.708 and � = 2.434. See Figure 9.4.

0.708 2.434 �

2�

−1

0.65

1

�

y

Figure 9.4

4. Graph y = tan x on 0 ≤ x ≤ 2� and locate the two points with y-coordinate 2.8. The x-coordinates of these points are

approximately x = 1.228 and x = 4.369. See Figure 9.5.

1.228 4.369� 2�

−4

0

2.8

4

x

y

Figure 9.5

5. Graph y = cos t on 0 ≤ t ≤ 2� and locate the two points with y-coordinate −0.24. The t-coordinates of these points are

approximately t = 1.813 and t = 4.473. See Figure 9.6.

1.813 4.473� 2�
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Figure 9.6
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6. We have

5 sin(3�) = 4

sin(3�) =
4

5

(3�) = sin−1
(

4

5

)

3� = 53.130◦

� = 0.3091 = 17.710◦.

7. We have

9 tan(5�) + 1 = 10

9 tan(5�) = 9

tan(5�) = 1

5� = tan−1(1)

5� = 45◦

� = 0.1571 = 9◦.

8. We have

2
√

3 tan(2�) + 1 = 3

2
√

3 tan(2�) = 2

tan(2�) =
2

2
√

3

tan(2�) =
1
√

3

2� = tan−1

(

1
√

3

)

2� = 30◦

� = 0.2618 = 15◦.

9. We have

3 sin � + 3 = 5 sin � + 2

1 = 2 sin �
1

2
= sin �

sin−1
(

1

2

)

= �

0.5236 = 30◦ = �.

10. We have

6 cos(3�) + 3 = 4 cos(3�) + 4

2 cos(3�) = 1

cos(3�) =
1

2

3� = cos−1
(

1

2

)

3� = 60◦

� = 0.3491 = 20◦.
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11. We have

5 tan(4�) + 4 = 2(tan(4�) + 5)

5 tan(4�) + 4 = 2 tan(4�) + 10

3 tan(4�) = 6

tan(4�) = 2

4� = tan−1(2)

4� = 63.435◦

� = 0.2768 = 15.859◦ .

12. Since the cosine function always has a value between −1 and 1, there are no solutions.

13. We use the inverse tangent function on a calculator to get 5� + 7 = −0.236. Solving for �, we get � = −1.447.

14. We divide both sides by 2, giving us sin(4�) = 0.3335. We then use the inverse sine function on a calculator to get

4� = 0.340, so � = 0.085.

Problems

15. (a) We know that cos(�∕3) = 1∕2. From the graph of y = cos t in Figure 9.7, we see that t = �∕3, t = 5�∕3, t = −�∕3,

and t = −5�∕3 are all solutions, as are any values of t obtained by adding or subtracting multiples of 2� to these

values.

2�

−2�

−
�

3

�

3
5�

3
−

5�

3

−1

1

t

y

y = 1

2

y = cos t

Figure 9.7: y = cos t has an infinite number of t-values for y = 1∕2

(b) If we restrict our attention to the interval 0 ≤ t ≤ 2�, we find two solutions, t = �∕3 and t = 5�∕3. To see why this is

so, look at the unit circle in Figure 9.8. During one revolution around the circle, there are always two angles with the

same cosine (or sine, or tangent), unless the cosine is 1 or −1. Therefore, we expect the equation cos t = 1∕2 to have

two solutions in the interval 0 ≤ t ≤ 2�.

1∕2

t =
�

3

t =
5�

3

❨

✯

1

Figure 9.8: During one revolution around the unit circle, the

two angles �∕3 and 5�∕3 have the cosine value of 1∕2

16. We know that one solution to the equation cos t = 0.4 is t = cos−1(0.4) = 1.159. From Figure 9.9, we see by the symmetry

of the unit circle that another solution is t = −1.159. We know that additional solutions are given each time the angle t

wraps around the circle in either direction. This means that

1.159 + 1 ⋅ 2� = 7.442 wrap once around circle



9.1 SOLUTIONS 527

1.159 + 2 ⋅ 2� = 13.725 wrap twice around circle

1.159 + (−1) ⋅ 2� = −5.124 wrap once around circle the other way

and

−1.159 + 1 ⋅ 2� = 5.124 wrap once around circle

−1.159 + 2 ⋅ 2� = 11.407 wrap once around circle

−1.159 + (−1) ⋅ 2� = −7.442. wrap once around circle the other way

t = 1.159

t = −1.159

✲✛
0.4

x

y

Figure 9.9: Two solutions to the

equation cos t = 0.4

17. We have x = cos−1(0.6) = 0.927. A graph of cos x shows that the second solution is x = 2� − 0.927 = 5.356.

18. Collecting the sin x terms on the left gives

2 sin x = 1 − sin x

3 sin x = 1

sin x = 1∕3

x = sin−1(1∕3) = 0.340.

A graph of sin x shows the second solution is x = � − 0.340 = 2.802.

19. Multiplying both sides by cos x gives

5 cos x = 1∕ cos x

5 cos2 x = 1

cos2 x = 1∕5

cos x = ±

√

1

5
.

Thus x = cos−1
√

1∕5 = 1.107 or x = cos−1
(

−
√

1∕5
)

= 2.034. A graph of cos x shows that there are other solutions

with cos x =
√

1∕5 given by x = 2� − 1.107 = 5.176 and with cos x = −
√

1∕5 given by x = 2� − 2.034 = 4.249. Thus

the solutions are

1.107, 2.034, 4.249, 5.176.

20. Looking at the graph of y = sin(2x) in Figure 9.10, we see it crosses the line y = 0.3 four times between 0 and 2�, so there

will be four solutions. Since 2x = sin−1(0.3) = 0.30469, one solution is

x =
0.30469

2
= 0.1523.
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The period of y = sin(2x) is �, so the other solutions in 0 ≤ x ≤ 2� are

x = 0.1523 + � = 3.294

x = �∕2 − 0.1523 = 1.418

x = 3�∕2 − 0.1523 = 4.560.

�∕2 � 3�∕2 2�

−1

0.3

1
sin(2x)

x

y

Figure 9.10

21. Since sin(x − 1) = 0.25, we know

x − 1 = sin−1(0.25) = 0.253.

x = 1.253.

Another solution for x − 1 is given by

x − 1 = � − 0.253 = 2.889

x = 3.889.

22. Since 5 cos(x + 3) = 1, we have

cos(x + 3) =
1

5
= 0.2

x + 3 = cos−1(0.2) = 1.3694

x = 1.3694 − 3 = −1.6306.

This value of x is not in the interval 0 ≤ x ≤ 2�. To obtain values of x in this interval, we find values of x + 3 in the

interval between 3 and 3 + 2�, that is between 3 and 9.283. These values of x + 3 are

x + 3 = 2� − 1.369 = 4.914

x + 3 = 2� + 1.369 = 7.653.

Thus

x = 1.914, 4.653.

23. See Figure 9.11. The solutions to the equation cos � = −0.4226 are the angles corresponding to the points P and Q on

the unit circle with x = −0.4226.

Since cos−1(−0.4226) = 115◦, point P corresponds to 115◦. Since P and Q both have reference angles of 65◦, Q

corresponds to 180◦ + 65◦ = 245◦. Thus the solutions of the equation are

� = 115◦ and � = 180◦ + 65◦ = 245◦,

� = 360◦ + 115◦ = 475◦ and � = 360◦ + 245◦ = 605◦.
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✮

65◦

65◦

P

Q

115◦

x

y

Figure 9.11: Points corresponding to angles with cos � = −0.4226

24. (a) Since cos(65◦) = 0.4226, a calculator set in degrees gives cos−1(0.4226) = 65◦. We see in Figure 9.12 that all the

angles with a cosine of 0.4226 correspond either to the point P or to the point Q. We want solutions between 0◦ and

360◦ , so Q is represented by 360◦ − 65◦ = 295◦. Thus, the solutions are

� = 65◦ and � = 295◦.

(b) A calculator gives tan−1(2.145) = 65◦. Since tan � is positive in the first and third quadrants, the angles with a tangent

of 2.145 correspond either to the point P or the point R in Figure 9.13. Since we are interested in solutions between

0◦ and 720◦, the solutions are

� = 65◦, 245◦ , 65◦ + 360◦, 245◦ + 360◦.

That is

� = 65◦, 245◦ , 425◦ , 605◦.

−65◦

65◦

P = (cos 65◦, sin 65◦)

Q = (0.4226,−0.9063)

x

y

Figure 9.12: The angles 65◦ and −65◦

65◦245◦

P = (0.4226, 0.9063)

R = (−0.4223,−0.9063)

x

y

Figure 9.13: The angles 65◦ and 245◦

25. By sketching a graph, we see that there are four solutions (see Figure 9.14). The first solution is given by x = cos−1(0.6) =

0.927, which is equivalent to the length labeled “b" in Figure 9.14. Next, note that, by the symmetry of the graph of the

cosine function, we can obtain a second solution by subtracting the length b from 2�. Therefore, a second solution to the

equation is given by x = 2� − 0.927 = 5.356. Similarly, our final two solutions are given by x = 2� + 0.927 = 7.210 and

x = 4� − 0.927 = 11.639.

✲ ✛

b
2� 4�

0.6

x

y

Figure 9.14
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26. By sketching a graph, we see that there are two solutions (see Figure 9.15). The first solution is given by x = sin−1(0.3) =

0.305, which is equivalent to the length labeled “b" in Figure 9.15. Next, note that, by the symmetry of the graph of the

sine function, we can obtain the second solution by subtracting the length b from �. Therefore, the other solution is given

by x = � − 0.305 = 2.837.

✲ ✛b
� 2�

0.3
x

y

Figure 9.15

27. By sketching a graph, we see that there are two solutions (see Figure 9.16). The first solution is given by x = cos−1(−0.7) =

2.346, which corresponds to the leftmost point in Figure 9.16. To find the second solution, we first calculate the distance

labeled “b" in Figure 9.16 to obtain b = � − cos−1(−0.7) = 0.795. Therefore, by the symmetry of the cosine function, the

second solution is given by x = � + b = 3.937.

✲✛
b

� 2�

−0.7

x

y

Figure 9.16

28. By sketching a graph, we see that there are four solutions (see Figure 9.17). To find the four solutions, we begin by

calculating sin−1(−0.8) = −0.927. Therefore, the length labeled “b" in Figure 9.17 is given by b = − sin−1(−0.8) = 0.927.

Now, using the symmetry of the graph of the sine function, we can see that the four solutions are given by x = � + b =

4.069, x = 2� − b = 5.356, x = 3� + b = 10.352, and x = 4� − b = 11.639.

−
�

2
� 2� 3�

4�✲ ✛b

−0.8

x

y

Figure 9.17

29. One solution is � = sin−1(−
√

2∕2) = −�∕4, and a second solution is 5�∕4, since sin(5�∕4) = −
√

2∕2. All other solutions

are found by adding integer multiples of 2� to these two solutions. See Figure 9.18.
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−
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−
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4
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4
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y = −

√

2

2

1

�

y

Figure 9.18
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30. One solution is � = cos−1(
√

3∕2) = �∕6, and a second solution is 11�∕6, since cos(11�∕6) =
√

3∕2. All other solutions

are found by adding integer multiples of 2� to these two solutions. See Figure 9.19.

−
11�
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�

6

�

6
11�
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Figure 9.19

31. One solution is � = tan−1(−
√

3∕3) = −�∕6, All other solutions are found by adding integer multiples of � to −�∕6. See

Figure 9.20.

−
7�

6
−

�

6

5�

6

�

11�

6

5�

2

−2

y = −

√

3

3

2

�

y

Figure 9.20

32.

sec2 � + 3 tan � = tan �

1 + tan2 � + 3 tan � = tan �

tan2 � + 2 tan � + 1 = 0

(tan� + 1)2 = 0

tan � = −1

� =
3�

4
,
7�

4

33. From Figure 9.21 we can see that the solutions lie on the intervals
�

8
< t <

�

4
,
3�

4
< t <

7�

8
,
9�

8
< t <

5�

4
and

7�

4
< t <

15�

8
.

Using the trace mode on a calculator, we can find approximate solutions t = 0.52, t = 2.62, t = 3.67 and t = 5.76.

�

4

�

2
3�

4

� 5�

4

3�

2

7�

4
2�

−1

−0.5

0.5

1

0.5 y =
1

2

y = cos(2t)

t

y

Figure 9.21

For a more precise answer we solve cos(2t) =
1

2
algebraically, giving 2t = arccos(1∕2). One solution is 2t = �∕3.

But 2t = 5�∕3, 7�∕3, and 11�∕3 are also angles that have a cosine of 1∕2. Thus t = �∕6, 5�∕6, 7�∕6, and 11�∕6 are the

solutions between 0 and 2�.
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34. To solve

tan t =
1

tan t

we multiply both sides of the equation by tan t. Multiplication gives us

tan2 t = 1 or tan t = ±1.

From Figure 9.22, we see that there are two solutions for tan t = 1, and two solutions for tan t = −1; they are approximately

t = 0.79, t = 3.93, and t = 2.36, t = 5.50.

�

2

�

4
3�

4

� 5�

4

3�

2

7�

4
2�

−1

1 y = 1

y = −1

y = tan t

t

y

Figure 9.22

To find exact solutions, we have t = arctan(±1) = ±�∕4. There are other angles that have a tan of ±1, namely ±3�∕4.

So t = �∕4, 3�∕4, 5�∕4, and 7�∕4 are the solutions in the interval from 0 to 2�.

35. From Figure 9.23, we see that 2 sin t cos t − cos t = 0 has four roots between 0 and 2�. They are approximately t = 0.52,

t = 1.57, t = 2.62, and t = 4.71.

�

2
� 3�

2
2�

t

y

y = 2 sin t cos t − cos t

Figure 9.23

To solve the problem symbolically, we factor out cos t:

2 sin t cos t − cos t = cos t(2 sin t − 1) = 0.

So solutions occur either when cos t = 0 or when 2 sin t− 1 = 0. The equation cos t = 0 has solutions �∕2 and 3�∕2. The

equation 2 sin t − 1 = 0 has solution t = arcsin(1∕2) = �∕6, and also t = � − �∕6 = 5�∕6. Thus the solutions to the

original problem are

t =
�

2
,
3�

2
,
�

6
and

5�

6
.

36. The solutions to the equation are at points where the graphs of y = 3 cos2 t and y = sin2 t cross. From Figure 9.24, we

see that 3 cos2 t = sin2 t has four solutions between 0 and 2�; they are approximately t = 1.05, t = 2.09, t = 4.19, and

t = 5.24.
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�

3

�

2
2�

3

� 4�

3

3�

2

5�

3
2�

0

1

2

3 y = 3 cos2 t

y = sin2 t

t

y

Figure 9.24

To solve 3 cos2 t = sin2 t we divide both sides by cos2 t and rewrite the equation as

3 = tan2 t or tan t = ±
√

3.

(Dividing by cos2 t is valid only if cos t ≠ 0. Since t = �∕2 and t = 3�∕2 are not solutions, cos t ≠ 0.)

Using the inverse tangent and reference angles, we find that the solutions occur at the points

t =
�

3
,
4�

3
,
2�

3
and

5�

3
.

37. Graph y = 12−4 cos(3t) on 0 ≤ t ≤ 2�∕3 and locate the two points with y-coordinate 14. (See Figure 9.25.) These points

have t-coordinates of approximately t = 0.698 and t = 1.396. There are six solutions in three cycles of the graph between

0 and 2�.

0.698 1.396 2�

3

4�

3
2�

8

14

16

y = 12 − 4 cos(3t)

t

y

Figure 9.25

38. (a) Graph y = 3 − 5 sin 4t on the interval 0 ≤ t ≤ �∕2, and locate values where the function crosses the t-axis. Alterna-

tively, we can find the points where the graph 5 sin 4t and the line y = 3 intersect. By looking at the graphs of these

two functions on the interval 0 ≤ t ≤ �∕2, we find that they intersect twice. By zooming in we can identify these

points of intersection as roughly t1 ≈ 0.16 and t2 ≈ 0.625. See Figure 9.26.
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t1 t2

�

4

�

2
−2

8
y = 3 − 5 sin(4t)

t

y

Figure 9.26

(b) Solve for sin(4t) and then use arcsine:

5 sin(4t) = 3

sin(4t) =
3

5

4t = arcsin
(

3

5

)

.

So t1 =
arcsin(3∕5)

4
≈ 0.161 is a solution. But the angle � − arcsin(3∕5) has the same sine as arcsin(3∕5). Solving

4t = � − arcsin(3∕5) gives t2 =
�

4
−

arcsin(3∕5)

4
≈ 0.625 as a second solution.

39. (a) The maximum is $100,000 and the minimum is $20,000. Thus in the function

f (t) = A cos(B(t − ℎ)) + k,

the midline is

k =
100, 000 + 20, 000

2
= $60,000

and the amplitude is

A =
100, 000 − 20, 000

2
= $40,000.

The period of this function is 12 since the sales are seasonal. Since

period = 12 =
2�

B
,

we have

B =
�

6
.

The company makes its peak sales in mid-December, which is month −1 or month 11. Since the regular cosine curve

hits its peak at t = 0 while ours does this at t = −1, we find that our curve is shifted horizontally 1 unit to the left. So

we have

ℎ = −1.

So the sales function is

f (t) = 40,000 cos
(

�

6
(t + 1)

)

+ 60,000 = 40,000 cos
(

�

6
t +

�

6

)

+ 60,000.

(b) Mid-April is month t = 3. Substituting this value into our function, we get

f (3) = $40,000.

(c) To solve f (t) = 60,000 for t, we write

60,000 = 40,000 cos
(

�

6
t +

�

6

)

+ 60,000

0 = 40,000 cos
(

�

6
t +

�

6

)

0 = cos
(

�

6
t +

�

6

)

.
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Since the cosine function takes on the value 0 at �∕2 and 3�∕2, the angle (
�

6
t +

�

6
) equals either

�

2
or

3�

2
. Solving for

t, we get t = 2 or t = 8. So in mid-March and mid-September the company has sales of $60,000 (which is the average

or midline sales value).

40. (a) Let t be the time in hours since 12 noon. Let d = f (t) be the depth in feet in Figure 9.27.

6 12 18 24

5.6

11.4

17.2

✛

✠

✲

❘

Low tide

High tide

✲✛ 6.2 ✲✛ 6.2

t (hours)

d (feet)

Figure 9.27

(b) The midline is d =
17.2 + 5.6

2
= 11.4 and the amplitude is 17.2 − 11.4 = 5.8. The period is 12.4. Thus we get

d = f (t) = 11.4 + 5.8 cos
(

�

6.2
t
)

.

(c) We find the first t value when d = f (t) = 8:

8 = 11.4 + 5.8 cos
(

�

6.2
t
)

Using the cos−1 function, we have

−3.4

5.8
= cos

(

�

6.2
t
)

cos−1
(

−3.4

5.8

)

=
�

6.2
t

t =
6.2

�
cos−1

(

−3.4

5.8

)

≈ 4.336 hours.

Since 0.336(60) ≈ 20 minutes, the latest time the boat can set sail is 4:20 pm.

41. The curve is a sine curve with an amplitude of 5, a period of 8 and a vertical shift of −3. Thus the equation for the curve

is y = 5 sin
(

�

4
x
)

− 3. Solving for y = 0, we have

5 sin
(

�

4
x
)

= 3

sin
(

�

4
x
)

=
3

5
�

4
x = sin−1

(

3

5

)

x =
4

�
sin−1

(

3

5

)

≈ 0.819.

This is the x-coordinate of P . The x-coordinate of Q is to the left of 4 by the same distance P is to the right of O, by the

symmetry of the sine curve. Therefore,

x ≈ 4 − 0.819 = 3.181

is the x-coordinate of Q.

42. (a) The value of sin t will be between −1 and 1. This means that k sin t will be between −k and k. Thus, t2 = k sin t will

be between 0 and k. So

−
√

k ≤ t ≤
√

k.

(b) Plotting 2 sin t and t2 on a calculator, we see that t2 = 2 sin t for t = 0 and t ≈ 1.40.

(c) Compare the graphs of k sin t, a sine wave, and t2, a parabola. As k increases, the amplitude of the sine wave increases,

and so the sine wave intersects the parabola in more points.

(d) Plotting k sin t and t2 on a calculator for different values of k, we see that if k ≈ 20, this equation will have a negative

solution at t ≈ −4.3, but that if k is any smaller, there will be no negative solution.



536 Chapter Nine /SOLUTIONS

43. (a) In Figure 9.28, the earth’s center is labeled O and two radii are extended, one through S, your ship’s position, and

one through H , the point on the horizon. Your line of sight to the horizon is tangent to the surface of the earth. A line

tangent to a circle at a given point is perpendicular to the circle’s radius at that point. Thus, since your line of sight is

tangent to the earth’s surface at H , it is also perpendicular to the earth’s radius at H . This means that triangle OCH

is a right triangle. Its hypotenuse is r + x and its legs are r and d. From the Pythagorean theorem, we have

r2 + d2 = (r + x)2

d2 = (r + x)2 − r2

= r2 + 2rx + x2 − r2 = 2rx + x2.

Since d is positive, we have d =
√

2rx + x2.

C

H

d

Line of sight

S

x

O

r

l

�

r

Figure 9.28

(b) We begin by using the formula obtained in part (a):

d =
√

2rx + x2

=
√

2(6,370,000)(50) + 502

≈ 25,238.908.

Thus, you would be able to see a little over 25 kilometers from the crow’s nest C .

Having found a formula for d, we will now try to find a formula for l, the distance along the earth’s surface from

the ship to the horizon H . In Figure 9.28, l is the arc length specified by the angle � (in radians). The formula for arc

length is

l = r�.

In this case, we must determine �. From Figure 9.28 we see that

cos � =
adjacent

hypotenuse
=

r

r + x
.

Thus,

� = cos−1
(

r

r + x

)

since 0 ≤ � ≤ �∕2. This means that

l = r� = r cos−1
(

r

r + x

)

= 6,370,000 cos−1
(

6,370,000

6,370,050

)

≈ 25,238.776 meters.
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There is very little difference—about 0.13 m or 13 cm—between the distance d that you can see and the distance

l that the ship must travel to reach the horizon. If this is surprising, keep in mind that Figure 9.28 has not been drawn

to scale. In reality, the mast height x is significantly smaller than the earth’s radius r so that the point C in the crow’s

nest is very close to the ship’s position at point S. Thus, the line segment d and the arc l are almost indistinguishable.

Solutions for Section 9.2

Exercises

1. No, these expressions are not equal everywhere. They have different amplitudes (1 and 3) and different periods (2�∕3 and

2�).

The value of the two functions are different at t = �∕2, since sin(3�∕2) = −1 and 3 sin(�∕2) = 3.

2. No, these expressions are not equal everywhere. (In fact, cos2 t = −(sin2 t − 1).)

The value of the two functions are different at t = 0, since cos2 0 = 1 and sin2 0 − 1 = −1.

3. Yes, these expressions are equal everywhere. Expanding the first expression, we get

(cos t − sin t)(cos t + sin t) = cos2 t − sin2 t.

4. Yes, these expressions are equal everywhere they are defined. (They are both defined for all t except where cos t = 0.) We

use sec t = 1∕ cos t, giving

sec t sin t =
1

cos t
sin t =

sin t

cos t
= tan t.

5. We use the relationship sin2 � + cos2 � = 1 to find cos �. Substitute sin � = 1∕4:

(

1

4

)2

+ cos2 � = 1

1

16
+ cos2 � = 1

cos2 � = 1 −
1

16
=

15

16

cos � = ±

√

15

16
= ±

√

15

4
.

Because � is in the first quadrant, cos � is positive, so cos � =
√

15∕4. To find tan �, use the relationship

tan � =
sin �

cos �
=

1∕4
√

15∕4
=

1
√

15
.

6. We use the relationship sin2 � + cos2 � = 1 to find cos �. Substitute sin � = 3∕5:

(

3

5

)2

+ cos2 � = 1

9

25
+ cos2 � = 1

cos2 � = 1 −
9

25
=

16

25

cos � = ±
4

5
.

Because � is in the second quadrant, cos � is negative, so cos � = −4∕5. To find tan �, use the relationship

tan � =
sin �

cos �
=

3∕5

−4∕5
= −

3

4
.
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7. We use the relationship sin2 � + cos2 � = 1 to find sin �. Substitute cos � = −2∕5:

sin2 � +
(

−
2

5

)2

= 1

sin2 � +
4

25
= 1

sin2 � = 1 −
4

25
=

21

25

sin � = ±

√

21

5
.

Because � is in the third quadrant, sin � is negative, so sin � = −
√

21∕5. To find tan �, use the relationship

tan � =
sin �

cos �
=

−
√

21∕5

−2∕5
=

√

21

2
.

8. We use the relationship sin2 � + cos2 � = 1 to find sin �. Substitute cos � = 1∕3:

sin2 � +
(

1

3

)2

= 1

sin2 � +
1

9
= 1

sin2 � = 1 −
1

9
=

8

9

sin � = ±

√

8

3
.

Because � is in the fourth quadrant, sin � is negative, so sin � = −
√

8∕3. To find tan �, use the relationship

tan � =
sin �

cos �
=

−
√

8∕3

1∕3
= −

√

8.

9. We have:

tan t cos t −
sin t

tan t
=

sin t

cos t
⋅ cos t −

sin t
(

sin t

cos t

)
because tan t =

sin t

cos t

= sin t − sin t ⋅
cos t

sin t

= sin t − cos t.

10. We have:

2 cos t (3 − 7 tan t) = 6 cos t − 14 cos t ⋅ tan t

= 6 cos t − 14 cos t ⋅
sin t

cos t

= 6 cos t − 14 sin t.

11. We have:

2 cos t − cos t (1 − 3 tan t) = 2 cos t − cos t + 3 cos t ⋅ tan t

= cos t + 3 cos t ⋅
sin t

cos t

= cos t + 3 sin t.
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12. We have:

2 cos t (3 sin t − 4 tan t) = 6 sin t cos t − 8 tan t ⋅ cos t

= 6 sin t cos t − 8
sin t

cos t
⋅ cos t

= 6 sin t cos t − 8 sin t.

13. Writing sin 2� = 2 sin � cos �, we have
sin 2�

cos �
=

2 sin � cos �

cos �
= 2 sin �.

14. Writing cos2 � = 1 − sin2 �, we have

cos2 � − 1

sin �
=

1 − sin2 � − 1

sin �
=

−sin2 �

sin �
= − sin �.

15. Writing cos 2t = cos2 t − sin2 t and factoring, we have

cos 2t

cos t + sin t
=

cos2 t − sin2 t

cos t + sin t
=

(cos t − sin t)(cos t + sin t)

cos t + sin t
= cos t − sin t.

16. Adding fractions gives

1

1 − sin �
+

1

1 + sin �
=

1 + sin � + 1 − sin �

(1 − sin �)(1 + sin �)
=

2

1 − sin2 �
=

2

cos2 �
.

17. Combining terms and using cos2 � + sin2 � = 1, we have

cos� − 1

sin�
+

sin�

cos� + 1
=

(cos� − 1)(cos� + 1) + sin2 �

sin�(cos� + 1)
=

cos2 � − 1 + sin2 �

sin�(cos� + 1)
=

0

sin�(cos� + 1)
= 0

18. Using tan t = sin t∕ cos t, we have

1

sin t cos t
−

1

tan t
=

1

sin t cos t
−

1

sin t∕ cos t

=
1

sin t cos t
−

cos t

sin t

=
1 − cos2 t

sin t cos t

=
sin2 t

sin t cos t

=
sin t

cos t
= tan t.

19. We have:
sin

√

�

cos
√

�
= tan

√

�.

20. We have:

2 sin
�

2

cos
�

2

= 2 ⋅
sin

�

2

cos
�

2

= 2 tan
�

2
.
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21. We have:

3 sin(� + 1)

4 cos(� + 1)
=

3

4
⋅

sin(� + 1)

cos(� + 1)

=
3

4
tan(� + 1).

22. We have:

1
(

cos
(

r2 − s2
)

sin
(

r2 − s2
)

) =
sin

(

r2 − s2
)

cos
(

r2 − s2
) = tan

(

r2 − s2
)

.

23. We have

2 sin
(

2

k + 3

)

⋅

5

3 cos
(

2

k + 3

)
=

10

3
⋅

sin
(

2

k + 3

)

cos
(

2

k + 3

)

=
10

3
tan

(

2

k + 3

)

.

24. We have:

2

cos
(

1 −
1

z

)
⋅

sin
(

1 −
1

z

)

3
=

2

3

sin
(

1 −
1

z

)

cos
(

1 −
1

z

)

=
2

3
tan

(

1 −
1

z

)

.

25. We solve the Pythagorean identity for sin �.

sin2 � + cos2 � = 1

sin2 � = 1 − cos2 �

(sin �)2 = 1 − cos2 �.

If sin � ≥ 0,

sin � =
√

1 − cos2 �.

If sin � < 0,

sin � = −
√

1 − cos2 �.

26. The relevant identities are cos2 � + sin2 � = 1 and cos 2� = cos2 � − sin2 � = 2 cos2 � − 1 = 1 − 2 sin2 �. See Table 9.1.

Table 9.1

� in rad. sin2 � cos2 � sin 2� cos 2�

1 0.708 0.292 0.909 −0.416

�∕2 1 0 0 −1

2 0.827 0.173 −0.757 −0.654

5�∕6 1∕4 3∕4 −
√

3∕2 1∕2
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Problems

27. Since cos 2t has period � and sin t has period 2�, if the result we want holds for 0 ≤ t ≤ 2�, it holds for all t. So let’s

concentrate on the interval 0 ≤ t ≤ 2�.

Solving cos 2t = 0 gives t = �∕4, 3�∕4, 5�∕4, 7�∕4.

From the graph in Figure 9.29, we see cos 2t > 0 for 0 ≤ t < �∕4, 3�∕4 < t < 5�∕4, 7�∕4 < t ≤ 2�.

Solving 1 − 2 sin2 t = 0 gives

sin2 t =
1

2

sin t = ±
1
√

2
,

so t = �∕4, 3�∕4, 5�∕4, 7�∕4.

From the graph of y = sin t and the lines y = 1∕
√

2 and y = −1∕
√

2 in Figure 9.30, we see that −1∕
√

2 < sin t <

1∕
√

2 on the same intervals that cos 2t > 0.

Now if −1∕
√

2 < sin t < 1∕
√

2, then

sin2 t <
1

2

1 − 2 sin2 t > 0.

Thus, cos 2t and 1 − 2 sin2 t have the same sign for all t.

�

4
�

2

3�

4

�

5�

4

3�

2

7�

4

2�

−1

1 y = cos 2t

t

y

Figure 9.29

�

4

�

2
3�

4

�

5�

4

3�

2

7�

4

2�

−
1
√

2

1
√

2

y = sin t
t

y

Figure 9.30

28. (a) cos 2� = 1 − 2 sin2 � = 1 − 2(1 − cos2 �) = 1 − 2 + 2 cos2 � = 2 cos2 � − 1 = 2(cos �)2 − 1.

(b) cos 2� = 1 − 2 sin2 � = (1 − sin2 �) − sin2 � = cos2 � − sin2 � = (cos �)2 − (sin �)2.

29. We have

tan 2� =
sin 2�

cos 2�
=

2 sin � cos �

cos2 � − sin2 �
.

Dividing both top and bottom by cos2 � gives

tan 2� =

2 sin � cos �

cos2 �

cos2 � − sin2 �

cos2 �

=
2 tan �

1 − tan2 �
.

30. We know that cos2 � = 1−sin2 � = 1−(3∕5)2 = 16∕25, and since � is in the second quadrant, cos � = −
√

16∕25 = −4∕5.

Thus sin 2� = 2 sin � cos � = 2(3∕5)(−4∕5) = −24∕25. Furthermore, cos 2� = 1 − 2 sin2 � = 1 − 2(3∕5)2 = 7∕25, and

tan 2� = sin 2�

cos 2�
= −24

25
⋅
25

7
= −24

7
.

31. Multiply the denominator by 1 + cos t to get sin2 t:

sin t

1 − cos t
=

sin t

(1 − cos t)

(1 + cos t)

(1 + cos t)

=
sin t(1 + cos t)

1 − cos2t

=
sin t(1 + cos t)

sin2 t

=
1 + cos t

sin t
.
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32. Get a common denominator:

cos x

1 − sin x
− tan x =

cos x

1 − sin x
−

sin x

cos x

=
cos2 x − sin x(1 − sin x)

(1 − sin x)(cos x)

=
cos2 x − sin x + sin2 x

(1 − sin x)(cos x)

=
1 − sinx

(1 − sin x) cos x
=

1

cos x
.

33. In order to get tan to appear, divide by cos x cos y:

sin x cos y + cos x sin y

cos x cos y − sin x sin y
=

sinx cos y

cos x cos y
+

cos x sin y

cos x cos y

cos x cos y

cos x cos y
−

sin x sin y

cos x cos y

=
tan x + tan y

1 − tan x tan y

34. Using the trigonometric identity cos2 � = 1 − sin2 �, we have

sin2 � − cos2 � = sin �

sin2 � − (1 − sin2 �) = sin �

2 sin2 � − sin � − 1 = 0

(2 sin � + 1)(sin � − 1) = 0

sin � = −
1

2
or sin � = 1.

If sin � = 1, then � = �∕2. On the other hand, if sin � = −1∕2, we first calculate the associated reference angle, which

is sin−1(1∕2) = �∕6. Using a graph of the sine function on the interval 0 ≤ � ≤ 2�, we see that the two solutions to

sin � = −1∕2 are given by � = � + �∕6 = 7�∕6 and � = 2� − �∕6 = 11�∕6. Combining the above observations, we see

that there are three solutions to the original equation: �∕2, 7�∕6, and 11�∕6.

35. Using the trigonometric identity sin(2�) = 2 sin � cos �, we have

sin(2�) − cos � = 0

2 sin � cos � − cos � = 0

cos �(2 sin � − 1) = 0

cos � = 0 or sin � =
1

2
.

If cos � = 0, then we have two solutions: � = �∕2 and � = 3�∕2. On the other hand, if sin � = 1∕2, we first calculate

the associated reference angle, which is sin−1(1∕2) = �∕6. Using a graph of the sine function on the interval 0 ≤ � ≤ 2�,

we see that the two solutions to sin � = 1∕2 are given by � = �∕6 and � = � − �∕6 = 5�∕6. Combining the above

observations, we see that there are four solutions to the original equation: �∕2, 3�∕2, �∕6 and 5�∕6.

36. Using the trigonometric identity sec2 � = tan2 � + 1, we have

sec2 � = 1 − tan �

tan2 � + 1 = 1 − tan �

tan2 � + tan � = 0

tan �(tan � + 1) = 0

tan � = 0 or tan � = −1.

If tan � = 0, then we have three solutions: � = 0 and � = � and � = 2�. On the other hand, if tan � = −1, we first calculate

the associated reference angle, which is tan−1(1) = �∕4. Using a graph of the tangent function on the interval 0 ≤ � ≤ 2�,

we see that the two solutions to tan � = −1 are given by � = � − �∕4 = 3�∕4 and � = 2� − �∕4 = 7�∕4. Combining the

above observations, we see that there are five solutions to the original equation: 0, �, 2�, 3�∕4, and 7�∕4.
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37. Using the trigonometric identity tan(2�) = 2 tan �∕(1 − tan2 �), we have

tan(2�) + tan � = 0

2 tan �

1 − tan2 �
= − tan �

2 tan � = − tan � + tan3 �

tan3 � − 3 tan � = 0

tan �(tan2 � − 3) = 0

tan � = 0 or tan � = ±
√

3.

If tan � = 0, then we have three solutions: � = 0 and � = � and � = 2�. On the other hand, if tan � =
√

3, we

first calculate the associated reference angle, which is tan−1(
√

3) = �∕3. Using a graph of the tangent function on the

interval 0 ≤ � ≤ 2�, we see that the two solutions to tan � =
√

3 are given by � = �∕3 and � = � + �∕3 = 4�∕3.

Finally, if tan � = −
√

3, we again have a reference angle of �∕3, and the two solutions to tan � = −
√

3 are given by

� = � − �∕3 = 2�∕3 and � = 2� − �∕3 = 5�∕3. Combining the above observations, we see that there are seven solutions

to the original equation: 0, �, �∕3, 4�∕3, 2�∕3, 5�∕3, and 2�.

38. Not an identity. False for x = 2.

39. Not an identity. False for x = 2.

40. Not an identity. False for x = 2.

41. Not an identity. False for x = �∕2.

42. Not an identity. False for x = 2.

43. If we let x = 1, then we have

sin(x2) = sin(12) = 0.841 ≠ 1.683 = 2 sin 1 = 2 sinx.

Therefore, since the equation is not true for x = 1, it is not an identity.

44. Identity.
sin 2x

1 + cos 2x
=

2 sin x cos x

1 + 2 cos2 x − 1
=

2 sinx cos x

2 cos2 x
=

sin x

cos x
= tan x.

45. If we let A = 1, then we have

sin(2A)

cos(2A)
=

sin 2

cos 2
= −2.185 ≠ 3.115 = 2 tan 1 = 2 tanA.

Therefore, since the equation is not true for A = 1, it is not an identity.

46. We have

sin2 � − 1

cos �
=

−(1 − sin2 �)

cos �

=
− cos2 �

cos �
= − cos �.

Therefore, the equation is an identity.

47. Not an identity. False for x = 0.

48. Identity. sin x tan x = sin x ⋅

sin x

cos x
=

sin2 x

cos x
=

1 − cos2 x

cos x
.

49. Working on the left side, we have

tan t +
1

tan t
=

sin t

cos t
+

1

sin t∕ cos t

=
sin t

cos t
+

cos t

sin t

=
sin2 t + cos2 t

cos t sin t

=
1

sin t cos t
.

Therefore, the left side equals the right side and the equation is an identity.
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50. If we let x = 1, then we have

sin
(

1

x

)

= sin 1 = 0.841 ≠ 0 = sin 1 − sin 1 = sin 1 − sin x.

Therefore, since the equation is not true for x = 1, it is not an identity.

51. Identity.
2 tan x

1 + tan2 x
⋅

cos2 x

cos2 x
=

2 sin x cos x

cos2 x + sin2 x
=

sin 2x

1
= sin 2x.

52. If we let � = 1, then we have

sin �

cos �
−

cos �

sin �
=

sin 1

cos 1
−

cos 1

sin 1
= 0.915 ≠ −0.458 =

cos 2

sin 2
=

cos(2�)

sin(2�)
.

Therefore, since the equation is not true for � = 1, it is not an identity.

53. Identity.
1 − tan2 x

1 + tan2 x
⋅

cos2 x

cos2 x
=

cos2 x − sin2 x

cos2 x + sin2 x
=

cos 2x

1
= cos 2x.

54. (a) We can rewrite the equation as follows:

0 = cos 2� + cos � = 2 cos2 � − 1 + cos �.

Factoring, we get

(2 cos � − 1)(cos � + 1) = 0.

Thus the solutions occur when cos � = −1 or cos � =
1

2
. These are special values of cosine. If cos � = −1 then we

have � = 180◦. If cos � =
1

2
we have � = 60◦ or 300◦. Thus the solutions are

� = 60◦, 180◦, and 300◦.

(b) Using the Pythagorean identity, we can substitute cos2 � = 1 − sin2 � and get

2(1 − sin2 �) = 3 sin � + 3.

This gives

−2 sin2 � − 3 sin � − 1 = 0.

Factoring, we get

−2 sin2 � − 3 sin � − 1 = −(2 sin � + 1)(sin � + 1) = 0.

Thus the solutions occur when sin � = − 1

2
or when sin � = −1. If sin � = − 1

2
, we have

� =
7�

6
and

11�

6
.

If sin � = −1, we have

� =
3�

2
.

55. Note the hypotenuse of the triangle is
√

1 + y2.

(a) y =
y

1
= tan �.

(b) cos� = sin(�∕2 − �) = sin �.

(c) Since cos � =
1

√

1 + y2
, we have

√

1 + y2 =
1

cos �
, or 1 + y2 =

(

1

cos �

)2

. (Alternatively, 1 + y2 = 1 + tan2 �.)

(d) Triangle area =
1

2
(base)(height) =

1

2
(1)(y). But y = tan �, so the area is

1

2
tan �.

56. (a) By the Pythagorean theorem, the side adjacent to � has length
√

1 − y2. So

cos � =
√

1 − y2∕1 =
√

1 − y2.

(b) Since sin � = y∕1, we have

tan � =
y

√

1 − y2
.
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(c) Using the double-angle formula,

cos(2�) = 1 − 2 sin2 � = 1 − 2y2.

(d) Supplementary angles have equal sines:

sin(� − �) = sin � = y.

(e) Since cos(�∕2 − �) = y, we have sin(cos−1(y)) = sin(�∕2 − �) =
√

1 − y2. So

sin2(cos−1(y)) = 1 − y2.

57. We have cos � = x∕3, so sin � =
√

1 − (x∕3)2 =
√

9−x2

3
. Therefore,

sin 2� = 2 sin � cos � = 2

(
√

9 − x2

3

)

(

x

3

)

=
2x

9

√

9 − x2.

58. We have sin � = x+1

5
, so cos 2� = 1 − 2 sin2 � = 1 − 2

(

x+1

5

)2

= 1 − 2(x+1)2

25
.

59. (a) Let � = cos−1 x, so cos � = x. Then, since 0 ≤ � ≤ �, sin � =
√

1 − x2 and tan � =
√

1−x2

x
, and tan(2 cos−1 x) =

tan 2� =
2 tan �

1−tan2 �
. Now 1 − tan2 � = 1 −

1−x2

x2
=

2x2−1

x2
, so tan 2� =

2
√

1−x2

x
⋅

x2

2x2−1
=

2x
√

1−x2

2x2−1
.

(b) Let � = tan−1 x, so tan � = x. Then sin � =
x

√

1+x2
and cos � =

1
√

1+x2
, so sin(2 tan−1 x) = sin 2� = 2 sin � cos � =

2
(

x
√

1+x2

)(

1
√

1+x2

)

=
2x

1+x2
.

60. We will use the identity cos(2x) = 2 cos2 x − 1, where x will be 2�.

cos 4� = cos(2x)

= 2 cos2 x − 1 (using the identity for cos(2x))

= 2(2 cos2 � − 1)2 − 1 (using the identity for cos(2�))

61. First use sin(2x) = 2 sin x cos x, where x = 2�. Then

sin(4�) = sin(2x) = 2 sin(2�) cos(2�).

Since sin(2�) = 2 sin � cos � and cos(2�) = 2 cos2 � − 1, we have

sin 4� = 2(2 sin � cos �)(2 cos2 � − 1).

62. (a) Since �∕2 < t ≤ � we have 0 ≤ � − t < �∕2 so the double-angle formula for sine can be used for the angle � = �− t.

Therefore sin 2� = 2 sin � cos � tells us that

sin 2(� − t) = 2 sin(� − t) cos(� − t).

(b) By periodicity, sin 2(� − t) = sin(2� − 2t) = sin(−2t). By oddness, sin(−2t) = − sin 2t. Thus

sin 2(� − t) = − sin 2t.

(c) We have cos(�−t) = − cos(−t) = − cos t, where the first equality is by what was given and the second by the evenness

of cosine.

Similarly, we have sin(� − t) = − sin(−t) = −(− sin t) = sin t where the first equality is by what was given and

the second by the oddness of sine.

(d) Substitution of the results of parts (b) and (c) into part (a) shows that

− sin 2t = 2 sin t(− cos t).

Multiplication by −1 gives

sin 2t = 2 sin t cos t.
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63. (a) Since −� ≤ t < 0 we have 0 < −t ≤ � so the double-angle formula for sine can be used for the angle � = −t.

Therefore sin 2� = 2 sin � cos � tells us that

sin(−2t) = 2 sin(−t) cos(−t).

(b) Since sine is odd, we have sin(−2t) = − sin 2t. Since sine is odd and cosine is even, we have

2 sin(−t) cos(−t) = 2(− sin t) cos t = −2 sin t cos t.

Substitution of these results into the results of part (a) shows that

− sin(2t) = −2 sin t cos t.

Multiplication by −1 gives

sin 2t = 2 sin t cos t.

64. (a) Since �∕2 < t ≤ � we have 0 ≤ � − t < �∕2 so the double-angle formula for cosine can be used for the angle

� = � − t. Therefore cos 2� = 1 − 2 sin2 � tells us that

cos 2(� − t) = 1 − 2 sin2(� − t).

(b) By periodicity, cos 2(� − t) = cos(2� − 2t) = cos(−2t). By evenness, cos(−2t) = cos 2t. Thus

cos 2(� − t) = cos 2t.

(c) We have 1−2 sin2(�− t) = 1−2(− sin(−t))2 = 1−2(sin t)2 where the first equality is by what is given and the second

by the oddness of sine.

(d) Substitution of the results of parts (b) and (c) into part (a) gives

cos 2t = 1 − 2 sin2 t.

65. (a) Since −� ≤ t < 0 we have 0 < −t ≤ � so the double-angle formula for cosine can be used for the angle � = −t.

Therefore cos 2� = 1 − 2 sin2 � tells us that

cos(−2t) = 1 − 2 sin2(−t).

(b) Since cosine is even we have cos(−2t) = cos 2t. Since sine is odd we have

−2 sin2(−t) = 1 − 2(− sin t)2 = 1 − 2 sin2 t.

Substitution of these results into the results of part (a) gives

cos 2t = 1 − 2 sin2 t.

66. By graphing we can see which expressions appear to be identically equal. The graphs all show the same window, −2� ≤

x ≤ 2�, −4 ≤ y ≤ 4. The following pairs of expressions look identical:

a and i;

b and l;

c and d and f ;

e and g;

ℎ and j.

We can check the identities algebraically. For example, for a and i:

2 cos2 t + sin t + 1 = 2(1 − sin2 t) + sin t + 1 = −2 sin2 t + sin t + 3.

−2� −� � 2�

−4
−3
−2
−1

1
2
3
4(a)

−2� −� � 2�

−4
−3
−2
−1

1
2
3
4(b)

−2� −� � 2�

−4
−3
−2
−1

1
2
3
4(c)
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−2� −� � 2�

−4
−3
−2
−1

1
2
3
4(d)

−2� −� � 2�

−4
−3
−2
−1

1
2
3
4(e)

−2� −� � 2�

−4
−3
−2
−1

1
2
3
4(f)

−2� −� � 2�

−4
−3
−2
−1

1
2
3
4(g)

−2� −� � 2�

−4
−3
−2
−1

1
2
3
4(h)

−2� −� � 2�

−4
−3
−2
−1

1
2
3
4(i)

−2� −� � 2�

−4
−3
−2
−1

1
2
3
4(j)

−2� −� � 2�

−4
−3
−2
−1

1
2
3
4(k)

−2� −� � 2�

−4
−3
−2
−1

1
2
3
4(l)

−2� −� � 2�

−4
−3
−2
−1

1
2
3
4(m)

Solutions for Section 9.3

Exercises

1. Applying the sum-of-angles formula for sine, we have

sin(A + B) = sinA cosB + cosA sinB

= (0.84)(0.39) + (0.54)(0.92) = 0.8244.

2. Applying the difference-of-angles formula for sine, we have

sin(A − B) = sinA cosB − cosA sinB

= (0.84)(0.39) − (0.54)(0.92) = −0.1692.

3. Applying the sum-of-angles formula for cosine, we have

cos(A + B) = cosA cosB − sinA sinB

= (0.54)(0.39) − (0.84)(0.92) = −0.5622.
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4. Applying the difference-of-angles formula for cosine, we have

cos(A − B) = cosA cosB + sinA sinB

= (0.54)(0.39) + (0.84)(0.92) = 0.9834.

5. Applying the sum-of-angles formula for sine, we have

sin(S + T ) = sinS cos T + cosS sin T

=
(

7

25

)(

8

17

)

+
(

24

25

)(

15

17

)

=
416

425
.

6. Applying the difference-of-angles formula for sine, we have

sin(S − T ) = sinS cos T − cosS sinT

=
(

7

25

)(

8

17

)

−
(

24

25

)(

15

17

)

= −
304

425
.

7. Applying the sum-of-angles formula for cosine, we have

cos(S + T ) = cosS cos T − sinS sin T

=
(

24

25

)(

8

17

)

−
(

7

25

)(

15

17

)

=
87

425
.

8. Applying the difference-of-angles formula for cosine, we have

cos(S − T ) = cosS cos T + sinS sin T

=
(

24

25

)(

8

17

)

+
(

7

25

)(

15

17

)

=
297

425
.

9. Write sin 15◦ = sin(45◦ − 30◦), and then apply the appropriate trigonometric identity.

sin 15◦ = sin(45◦ − 30◦)

= sin 45◦ cos 30◦ − sin 30◦ cos 45◦

=

√

6

4
−

√

2

4

Similarly, sin 75◦ = sin(45◦ + 30◦).

sin 75◦ = sin(45◦ + 30◦)

= sin 45◦ cos 30◦ + sin 30◦ cos 45◦

=

√

6

4
+

√

2

4

Also, note that cos 75◦ = sin(90◦ − 75◦) = sin 15◦, and cos 15◦ = sin(90◦ − 15◦) = sin 75◦.

10. Since 345◦ is 300◦ + 45◦, we can use the sum-of-angle formula for sine and say that

sin 345 = sin 300 cos 45 + sin 45 cos 300 = (−
√

3∕2)(
√

2∕2) + (
√

2∕2)(1∕2) = (−
√

6 +
√

2)∕4.

11. Since 105◦ is 60◦ + 45◦, we can use the sum-of-angle formula for sine and say that

sin 105 = sin 60 cos 45 + sin 45 cos 60 = (
√

3∕2)(
√

2∕2) + (
√

2∕2)(1∕2) = (
√

6 +
√

2)∕4.
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12. Since 285◦ is 240◦ + 45◦, we can use the sum-of-angle formula for cosine and say that

cos 285 = cos 240 cos 45 − sin 240 sin 45 = (−1∕2)(
√

2∕2) − (−
√

3∕2)(
√

2∕2) = (−
√

2 +
√

6)∕4.

13. (a) We have sin(15◦ + 42◦) = sin 15◦ cos 42◦ + sin 42◦ cos 15◦ = 0.839.

(b) See Figure 9.31.

−360◦ −180◦ 180◦ 360◦

−1

1

x (degrees)

Figure 9.31

14. (a) We have sin(15◦ − 42◦) = sin 15◦ cos 42◦ − sin 42◦ cos 15◦ = −0.454.

(b) See Figure 9.32.

−360◦ −180◦ 180◦ 360◦

−1

1

x (degrees)

Figure 9.32

15. (a) We have cos(15◦ + 42◦) = cos 15◦ cos 42◦ − sin 15◦ sin 42◦ = 0.545.

(b) See Figure 9.33.

−360◦ −180◦ 180◦ 360◦

−1

1

x (degrees)

Figure 9.33

16. (a) We have cos(15◦ − 42◦) = cos 15◦ cos 42◦ + sin 15◦ sin 42◦ = 0.891.

(b) See Figure 9.34.

−360◦ −180◦ 180◦ 360◦

−1

1

x (degrees)

Figure 9.34
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Problems

17. First, we note that the unlabeled side of the triangle has length
√

4 − y2.

(a) Using an angle difference formula, we have

cos(� − �) = cos � cos� + sin � sin�

=

√

4 − y2

2
⋅

y

2
+

y

2
⋅

√

4 − y2

2

=
y
√

4 − y2

2
.

(b) Using an angle difference formula, we have

sin(� − �) = sin � cos� − cos � sin�

=
y

2
⋅

y

2
−

√

4 − y2

2
⋅

√

4 − y2

2

=
y2 − (4 − y2)

4

=
y2 − 2

2
.

(c) We have

cos � − cos� =

√

4 − y2

2
−

y

2

=

√

4 − y2 − y

2
.

(d) Since � + � = �∕2, we have

sin(� + �) = sin
(

�

2

)

= 1.

18. (a) cos(t − �∕2) = cos t cos �∕2 + sin t sin�∕2 = cos t ⋅ 0 + sin t ⋅ 1 = sin t.

(b) sin(t + �∕2) = sin t cos �∕2 + sin �∕2 cos t = sin t ⋅ 0 + 1 ⋅ cos t = cos t.

19. For the sine, we have sin 2t = sin(t + t) = sin t cos t + sin t cos t = 2 sin t cos t. This is the double-angle formula for sine.

For cosine, we have cos 2t = cos(t+ t) = cos t cos t− sin t sin t = cos2 t− sin2 t. This is the double-angle formula for

cosine.

20. (a) Applying the sum-of-angles formula for sine, we have

sin(A + B) = sinA cosB + cosA sinB

= (0.67)(0.48) + (0.74)(0.87) = 0.9654.

(b) Applying the sum-of-angles formula for cosine, we have

cos(A + B) = cosA cosB − sinA sinB

= (0.74)(0.48) − (0.67)(0.87) = −0.2277.

(c) Since tan � = sin �∕ cos �, we have

tan(A + B) =
sin(A + B)

cos(A + B)
=

0.9654

−0.2277
= −4.2398.
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21. We have

cos 3t = cos(2t + t)

= cos 2t cos t − sin 2t sin t

= (2 cos2 t − 1) cos t − (2 sin t cos t) sin t

= cos t((2 cos2 t − 1) − 2 sin2 t)

= cos t(2 cos2 t − 1 − 2(1 − cos2 t))

= cos t(2 cos2 t − 1 − 2 + 2 cos2 t)

= cos t(4 cos2 t − 3)

= 4 cos3 t − 3 cos t,

as required.

22. We are to prove that

cos((n + 1)�) = (2 cos �)(cos(n�)) − cos((n − 1)�).

This holds if, and only if,

cos((n + 1)�) + cos((n − 1)�) = (2 cos �)(cos(n�)).

Using the sum-of-cosines formula,

cos u + cos v = 2 cos
u + v

2
cos

u − v

2
,

with u = (n + 1)� and v = (n − 1)� gives the result:

cos((n + 1)�) + 2 cos((n − 1)�) = 2 cos
(n + 1)� + (n − 1)�

2
cos

(n + 1)� − (n − 1)�

2
= 2 cos(n�) cos �.

23. We manipulate the equation for the average rate of change as follows:

cos(x + ℎ) − cos x

ℎ
=

cos x cosℎ − sin x sinℎ − cos x

ℎ

=
cos x cosℎ − cos x

ℎ
−

sin x sinℎ

ℎ

= cos x
(

cosℎ − 1

ℎ

)

− sinx
(

sinℎ

ℎ

)

.

24. We manipulate the equation for the average rate of change as follows:

sin(x + ℎ) − sinx

ℎ
=

sin x cosℎ + sinℎ cos x − sin x

ℎ

=
sin x cosℎ − sinx

ℎ
+

sinℎ cos x

ℎ

= sin x
(

cosℎ − 1

ℎ

)

+ cos x
(

sinℎ

ℎ

)

.

25. We manipulate the equation for the average rate of change as follows:

tan(x + ℎ) − tan x

ℎ
=

tan x + tanℎ

1 − tan x tanℎ
− tan x

ℎ

=
(tanx + tanℎ − tan x + tan2 x tanℎ)∕(1 − tan x tanℎ)

ℎ

=
tanℎ + tan2 x tanℎ

(1 − tan x tanℎ) ⋅ ℎ
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=

sinℎ

cosℎ
+ tan2 x ⋅

sinℎ

cosℎ
(

1 − tan x ⋅

sinℎ

cosℎ

)

⋅ ℎ

=

(1 + tan2 x)
sinℎ

cosℎ
(

1 − tan x
sinℎ

cosℎ

)

⋅ ℎ

=

(

1

cos2 x

)

⋅

sinℎ

cosℎ
(

1 − tan x ⋅

sinℎ

cosℎ

)

⋅ ℎ

=

1

cos2 x
⋅ sinℎ

(cosℎ − tan x sinℎ) ⋅ ℎ

=

1

cos2 x
⋅ sinℎ

cosℎ − sinℎ tan x
⋅

(

1

ℎ

)

=
1

cos2 x

sinℎ

ℎ
⋅

1

cosℎ − sinℎ tan x
.

26. (a) From cos 2u = 2 cos2 u − 1, we obtain cos u = ±

√

1 + cos 2u

2
and letting u =

v

2
, cos

v

2
= ±

√

1 + cos v

2
.

(b) From tan
1

2
v =

sin
1

2
v

cos
1

2
v

=

±

√

1 − cos v

2

±

√

1 + cos v

2

we simplify to get tan
1

2
v = ±

√

1 − cos v

1 + cos v
.

(c) The sign of sin
1

2
v is +, the sign of cos

1

2
v is −, and the sign of tan

1

2
v is −.

(d) The sign of sin
1

2
v is −, the sign of cos

1

2
v is −, and the sign of tan

1

2
v is +.

(e) The sign of sin
1

2
v is −, the sign of cos

1

2
v is +, and the sign of tan

1

2
v is −.

27. (a) Since ΔCAD and ΔCDB are both right triangles, it is easy to calculate the sine and cosine of their angles:

sin � =
c1

b

cos � =
ℎ

b

sin� =
c2
a

cos� =
ℎ

a
.

(b) We can calculate the areas of the triangles using the formula Area =
1

2
Base ⋅ Height:

Area ΔCAD =
1

2
c1 ⋅ ℎ

=
1

2
(b sin �)(a cos�),

Area ΔCDB =
1

2
c2 ⋅ ℎ

=
1

2
(a sin�)(b cos �).

(c) We find the area of the whole triangle by summing the area of the two constituent triangles:

Area ΔABC = Area ΔCAD + Area CDB
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=
1

2
(b sin �)(a cos�) +

1

2
(a sin�)(b cos �)

=
1

2
ab(sin � cos� + sin� cos �)

=
1

2
ab sin(� + �)

=
1

2
ab sinC.

28. (a) IfB andC are acute angles, draw the altitude fromA, dividing side a into two pieces, a1 and a2, as shown in Figure 9.35.

Then a1 = b cosC and a2 = c cosB, so a = a1 + a2 = b cosC + c cosB.

C B

A

b c

a1 a2

Figure 9.35

C B

A

b
c

a1a

�

✲✛ a2

Figure 9.36

If one of the angles B or C (say B) is obtuse, draw the altitude from A as shown in Figure 9.36. Let a1 be the

extension of side a, so a2 = a1+a, and let� be the exterior angle atB, so that� = 180◦−B. Therefore cos� = −cosB.

Then a2 = b cosC and a1 = c cos� = −c cosB. Thus a = a2 − a1 = b cosC − (−c cosB) = b cosC + c cosB.

(b) From the Law of Sines,
a

sinA
=

b

sinB
, so b =

a

sinA
⋅ sinB, and similarly c =

a

sinA
⋅ sinC . Substituting these expressions

into the result of part (a), we have

a = b cosC + c cosB =
a

sinA
sinB cosC +

a

sinA
sinC cosB,

or

a =
a

sinA
(sinB cosC + sinC cosB) .

Thus sinA = sinB cosC+sinC cosB. But A+B+C = 180◦, so A = 180◦−(B+C), and hence sinA = sin(B+C).

Therefore,

sin(B + C) = sinB cosC + sinC cosB.

29. (a) The coordinates of P1 are (cos �, sin �); for P2 they are (cos(−�), sin(−�)) = (cos�,− sin�); for P3 they are (cos(� +

�), sin(� + �)); and for P4 they are (1, 0).

(b) The triangles P1OP2 and P3OP4 are congruent by the side-angle-side property because ∠P1OP2 = � +� = ∠P3OP4.

Therefore their corresponding sides P1P2 and P3P4 are equal.

(c) We have

(P1P2)
2 = (cos � − cos�)2 + (sin � + sin�)2

= cos2 � − 2 cos � cos� + cos2 � + sin2 � + 2 sin � sin� + sin2 �

= cos2 � + sin2 � + cos2 � + sin2 � − 2 cos � cos� + 2 sin � sin�

= 2 − 2(cos � cos� − sin � sin�)

We also have

(P3P4)
2 = (cos(� + �) − 1)2 + (sin(� + �) − 0)2

= cos2(� + �) − 2 cos(� + �) + 1 + sin2(� + �)

= 2 − 2 cos(� + �)

The distances P1P2 and P3P4 are the square roots of these expressions (but we will use the squares of the distances).

(d) (P3P4)
2 = (P1P2)

2 by part (b), so

2 − 2 cos(� + �) = 2 − 2(cos � cos� − sin � sin�)

cos(� + �) = cos � cos� − sin � sin�.
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Solutions for Section 9.4

Exercises

1. We have A =
√

82 + (−6)2 =
√

100 = 10. Since cos� = 8∕10 = 0.8 and sin� = −6∕10 = −0.6, we know that � is in

the fourth quadrant. Thus,

tan� = −
6

8
= −0.75 and � = tan−1(−0.75) = −0.644,

so 8 sin t − 6 cos t = 10 sin(t − 0.644).

2. We have A =
√

82 + 62 =
√

100 = 10. Since cos� = 8∕10 = 0.8 and sin� = 6∕10 = 0.6 are both positive, � is in the

first quadrant. Thus,

tan� =
6

8
= 0.75 and � = tan−1(0.75) = 0.644,

so 8 sin t + 6 cos t = 10 sin(t + 0.644).

3. Since a1 = −1 and a2 = 1, we have

A =
√

(−1)2 + 12 =
√

2

and

cos� = −
1
√

2
and sin� =

1
√

2
and tan� = −1.

From the signs of cos� and sin�, we see that � is in the second quadrant. Since

tan−1(−1) = −
�

4
,

and the tangent function has period �, we take

� = � −
�

4
=

3�

4
.

Thus

−sin t + cos t =
√

2 sin
(

t +
3�

4

)

.

4. Since a1 = −2 and a2 = 5, we have

A =
√

(−2)2 + 52 =
√

29

and

cos� =
−2
√

29
and sin� =

5
√

29
and tan� = −

5

2
.

The signs of cos� and sin� show that � must be in the second quadrant. Since

tan−1
(

−
5

2

)

= −1.190

and the tangent function has period �, we take

� = � − 1.190 = 1.951.

Thus,

−2 sin 3t + 5 cos 3t =
√

29 sin(3t + 1.951).
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5.

� 2��

3

6

t

y

For the graphs to intersect, t + 5 sin t = t. So sin t = 0, or t = any integer multiple of �.

6.

1

3

1

2

x

y

f (x) = e−x(2 cos x + sinx)

The maximum value of f (x) is 2, which occurs when x = 0. The minimum appears to be y ≈ −0.094, at x ≈ 2.820.

7. The function y = 10e−t∕2 cos 2�t matches graph (I). We see that the oscillation is damped less and less each period, so the

amplitude (the function multiplying the cosine) must be decreasing and concave up. Only e−t∕2 has that characteristic.

8. The function y = 10(1 − 0.01t2) cos 2�t matches graph (IV). We see that the oscillation is damped more and more each

period, so the amplitude (the function multiplying the cosine) must be decreasing and concave down. Only 10(1 − 0.01t2)

has that characteristic.

9. The function y = (10 − t) cos 2�t matches graph (II). We see that the oscillation is damped equally each period, so the

amplitude (the function multiplying the cosine) must be decreasing and linear. Only 10 − t has that characteristic.

10. The function y = (10 − t) cos t matches graph (III). It is hard to see how the oscillation is damped, but the period is very

clearly not 1 as in the other graphs. If we draw y = ±(10 − t) on the graph very accurately, we can see that it just touches

the peaks and troughs of the oscillating function.

11. (a) Substituting into f , we have

f (3) − f (2) =
(

10,000 − 5000 cos
(

�

6
⋅ 3

))

−
(

10,000 − 5000 cos
(

�

6
⋅ 2

))

= −5000 cos
�

2
+ 5000 cos

�

3

= 0 + 5000
(

1

2

)

= 2500.

This means that the rabbit population increases by 2500 rabbits between March 1 (at t = 2) and April 1 (at t = 3).

(b) Using a graphing calculator to zoom in, or using the inverse cosine function, we see that f (t) = 12,000 for t = 3.786

and t = 8.214. This means that the rabbit population reaches 12,000 sometime during late April (at t = 3.786) and

falls back to 12,000 sometime during early September (at t = 8.214).

Problems

12. Looking at the graph, which appears to be a damped oscillation, we first see that it starts at zero and goes up, so we begin

with sin t. Since there are 3 complete periods of oscillation from 0 to 6�, the period is 2�, and so we need only account

for the changed amplitude of sin t. The function y = 3e−t∕10 on the graph is the amplitude function, so we multiply it by

sin t to get

y = 3e−t∕10 sin t.
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13. (a) This is linear growth: P = 5000 + 300t.

(b) This is exponential growth: P = 3200(1.04)t .

(c) The population is oscillating, so we can use a trigonometric model. Since the population starts at its lowest value, we

use a reflected cosine function of the form

P (t) = −A cos(Bt) + k.

Low = 1200; High = 3000.

Midline k =
1

2
(3000 + 1200) = 2100.

Amplitude A = 3000 − 2100 = 900.

The period is 5, so 5 = 2�∕B, and we have B = 2�∕5. Thus,

P (t) = −900 cos
(

2�

5
t
)

+ 2100.

14. (a) We start the time count on Jan 1, so substituting t = 0 into f (t) gives us the value of b, since both mt and A sin
�t

6
are

equal to zero when t = 0. Thus, b = f (0) = 20. We see that in the 12-month period between Jan 1 and Jan 1 (a whole

period of the periodic component), the value of the stock rose by $30.00. Therefore, the linear component grows at

the rate of $30.00/year, or in terms of months, 30∕12 = $2.50/month. So m = 2.5. Thus we have

P = f (t) = 2.5t + 20 + A sin
�t

6
.

At an arbitrary data point, say (Apr 1, 37.50), we can solve for A. Since January 1 corresponds to t = 0, April 1 is

t = 3. We have

37.50 = f (3) = 2.5(3) + 20 + A sin
3�

6
= 7.5 + 20 + A sin

�

2
= 27.5 +A.

Simplifying gives A = 10, and the function is

f (t) = 2.5t + 20 + 10 sin
�t

6
.

(b) The stock appreciates the most during the months when the sine function climbs the fastest. By looking at Figure 9.37

we see that this occurs roughly when t = 0 and t = 11, January and December.

3 6 9 123

25

50

t

Figure 9.37

(c) Again, we look to Figure 9.37 to see when the graph actually decreases. It seems that the graph is decreasing roughly

between the fourth and eighth months, that is, between May and September.

15. (a) We know that the minimum of f (t) is 40 and that the maximum is 90. Thus the midline height is

90 + 40

2
= 65

and the amplitude is

90 − 65 = 25.

We also know that f (t) has a period of 24 hours and is at a minimum when t = 0. Thus a formula for f (t) is

f (t) = 65 − 25 cos
(

�

12
t
)

.
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(b) The amplitude is 30. The period is 24 hours, so the pattern repeats itself each day. The midline value is 80. So g(t)

goes up to a maximum of 80 + 30 = 110 and down to a low of 80 − 30 = 50 megawatts.

(c) From the graph in Figure 9.38, we can find that t1 ≈ 4.160 and t2 ≈ 13.148. Thus, the power required in both cities is

the same at approximately 4 am and 1 pm.

6 12 18t1 t2 24

110

40

50

90

t (hours)

y (megawatts)

g(t)

f (t)

Figure 9.38

6 12 1815.346 24

100

200

ℎ(t)

t

y (megawatts)

Figure 9.39: ℎ(t) = f (t) + g(t)

(d) The function ℎ(t) in Figure 9.39 tells us the total amount of electricity required by both cities at a particular time of

day. Using the trace key on a calculator, we find the maximum occurs at t = 15.346. So at 3:21 pm (since 0.346 hours

is about 21 minutes) each day the most total power will be needed. The maximum power is 184.051 mw.

(e) Add the two functions to obtain

ℎ(t) = 145 −
(

30 sin
(

�

12
t
)

+ 25 cos
(

�

12
t
))

which can be written in the form

ℎ(t) = 145 − A sin
(

�

12
t + �

)

where A =
√

302 + 252 =
√

1525 ≈ 39.051 and � = tan−1(25∕30) ≈ 0.6947. Thus

ℎ(t) ≈ 145 − 39.051 sin
(

�

12
t + 0.6947

)

.

The function has an exact maximum of 145 +
√

1525 (about 184).

16. (a) As t → −∞, et gets very close to 0, which means that cos(et) gets very close to cos 0 = 1. This means that the

horizontal asymptote of f as t → −∞ is y = 1.

(b) As t increases, et increases at a faster and faster rate. We also know that as � increases, cos � varies steadily between

−1 and 1. But since et is increasing faster and faster as t gets large, cos(et) will vary between −1 and 1 at a faster

and faster pace. So the graph of f (t) = cos(et) begins to wiggle back and forth between −1 and 1, faster and faster.

Although f is oscillating between −1 and 1, f is not periodic, because the interval on which f completes a full cycle

is not constant.

(c) The vertical axis is crossed when t = 0, so f (0) = cos(e0) = cos 1 ≈ 0.540 is the vertical intercept.

(d) Notice that the least positive zero of cos u is u = �∕2. Thus the least zero t1 of f (t) = cos(et) occurs where et1 = �∕2

since et is always positive. So we have

et1 =
�

2

t1 = ln
�

2
.

(e) We know that if cos u = 0, then cos(u + �) = 0. This means that if cos(et1) = 0, then cos
(

et1 + �
)

= 0 will be the

first zero of f coming after t1. Therefore,

f (t2) = cos(et2) = cos
(

et1 + �
)

= 0.

This means that et2 = et1 + �. So

t2 = ln
(

et1 + �
)

= ln(eln(�∕2) + �) = ln
(

�

2
+ �

)

= ln
(

3�

2

)

.

Similar reasoning shows that the set of all zeros is {ln(
�

2
), ln(

3�

2
), ln(

5�

2
)...}.
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17. (a) As x → ∞,
1

x
→ 0 and we know sin 0 = 0. Thus, y = 0 is the equation of the asymptote.

(b) As x → 0 and x > 0, we have
1

x
→ ∞. This means that for small changes of x the change in

1

x
is large. Since

1

x
is a

large number of radians, the function will oscillate more and more frequently as x becomes smaller.

(c) No, because the interval on which f (x) completes a full cycle is not constant as x increases.

(d) sin
(

1

x

)

= 0 means that
1

x
= sin−1(0) + k� for k equal to some integer. Therefore, x =

1

k�
, and the greatest zero of

f (x) = sin 1

x
corresponds to the smallest k, that is, k = 1. Thus, z1 =

1

�
.

(e) There are an infinite number of zeros because z =
1

k�
for all k > 0 are zeros.

(f) If a =
1

k�
then the largest zero of f (x) less then a would be b =

1

(k+1)�
.

18. Use the sum-of-angles identity for cosine on the second term to get

I cos(!c + !d)t = I cos!ct cos!d t − I sin!ct sin!dt

and factor the term cos!ct to show the equality.

19. (a) Types of video games are trendy for a length of time, during which they are extremely popular and sales are high,

later followed by a cooling-down period as the users become tired of that particular game type. The game players then

become interested in a different game type—and so on.

(b) The sales graph does not fit the shape of the sine or cosine curve, and we would have to say that neither of those

functions would give us a reasonable model. However, from 1979–1989 the graph does have a basic negative cosine

shape, but the amplitude varies.

(c) One way to modify the amplitude over time is to multiply the sine (or cosine) function by an exponential function,

such as ekt. So we choose a model of the form

s(t) = ekt(−a cos(Ct) +D),

where t is the number of years since 1979. Note the −a, which is due to the graph looking like an inverted cosine

at 1979. The average value starts at about 1.6, and the period appears to be about 6 years. The amplitude is initially

about 1.4, which is the distance between the average value of 1.6 and the first peak value of 3.0. This means

s(t) = ekt
(

−1.4 cos
(

2�

6
t
)

+ 1.6
)

.

By trial and error on your graphing calculator, you can arrive at a value for the parameter k. A reasonable choice is

k = 0.05, which gives

s(t) = e0.05t
(

−1.4 cos
(

2�

6
t
)

+ 1.6
)

.

(d)

0 3 6 9 12

1

2

3

4

5

t (years
after 1979)

retail sales
(billions of $)

Sales

s(t)

Notice that even though multiplying by the exponential function does increase the amplitude over time, it does

not increase the period. Therefore, our model s(t) does not fit the actual curve all that well.

(e) The predicted 1993 sales volume is f (14) = 4.632 billion dollars.

20. (a) We have � =
2�

k
=

2�

2�
= 1. Thus, the wavelength is 1 meter.

(b) The time for one wavelength to pass by is
2�

!
=

2�

4�
=

1

2
of a second. Thus, two wavelengths pass by each second.

The number of wavelengths which pass a point in a given unit of time is referred to as the frequency. It is sometimes

written as 2 hertz (Hz), which equals 2 cycles per second.

(c) The shape of the rope at the instant when t = 0 is described by the sinusoidal function y(x, 0) = 0.06 sin(2�x)
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0.5 1 1.5

−0.06

−0.04

−0.02

0.02

0.04

0.06

x

y

Figure 9.40

(d) Having the same graph means that 0.06 sin(2�x) = 0.06 sin(2�x− 4�t) for all x. In order for this to happen, 2�x and

2�x−4�t must describe the same angle. This is the case any time 4�t is a multiple of 2�. Thus, 4�t = 2�k whenever

t = k∕2 for any integer k.

21. (a) We have:
Average change in C(t)

over Dec’05–Jun’06 =
C(6) − C(0)

6 − 0
=

382 − 381

6
=

1

6
ppm/month.

Also,
Average change in C(t)

over Dec’10–Jun’11 =
C(66) − C(60)

66 − 60
=

392 − 391

6
=

1

6
ppm/month.

And lastly,
Average change in C(t)

over Mar–Sep’12 =
C(81) − C(75)

81 − 75
=

391 − 397

6
= −1 ppm/month.

So, on average, the concentration of carbon dioxide increased by 0.167 parts per million per month during the first

half of 2006 and 2011. It also decreased, on average, by 1 ppm per month during the middle months of 2012.

(b) S(t) is a periodic function which measures the variation in the concentration of carbon dioxide due to the seasons. It

does not take into account the long-term changes in the concentration of carbon dioxide.

(c) We have:
Average change in S(t)

over Dec’05–Jun’06 =
S(6) − S(0)

6 − 0
=

0 − 0

6
= 0 ppm/month.

Also,
Average change in S(t)

over Dec’10–Jun’11 =
S(66) − S(60)

66 − 60
=

0 − 0

6
= 0 ppm/month.

And lastly,
Average change in S(t)

over Mar–Sep’12 =
S(81) − S(75)

81 − 75
=

−3.5 − 3.5

6
=

−7

6
ppm/month.

So, on average, there was no change in the concentration of carbon dioxide due to seasonal variations during the first

half of 2006 and 2011. This makes sense, because the carbon dioxide concentration grows and decays by 3.5 ppm

during these periods. (Note that 3.5 ppm is the amplitude of S(t).)

Also, seasonal changes caused an average decrease in carbon dioxide of about −1.167 ppm per month during the

middle months of 2012.

(d) We have:
Average change in C(t)

over Dec’05–Jun’06 −
Average change in S(t)

over Dec’05–Jun’06 =
1

6
− 0 =

1

6
ppm/month.

Also,
Average change in C(t)

over Dec’10–Jun’11 −
Average change in S(t)

over Dec’10–Jun’11 =
1

6
− 0 =

1

6
ppm/month.

And lastly,
Average change in C(t)

over Mar–Sep’12 −

Average change in S(t)

over Mar–Sep’12 = −1 +
7

6
=

1

6
ppm/month.
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So, the difference between the average concentration and average the seasonal variation is 1∕6 ppm/month over each

of these common periods.

(e) The common difference between the two averages calculated in part (d), 1∕6 ppm/month, gives the average increase

in the concentration of carbon dioxide per month. This value is the slope of the rising midline,

M(t) = 381 + t∕6,

the portion of the concentration model y = C(t) = S(t) + M(t) that captures the variation in the concentration of

carbon dioxide not due to the seasons.

The slope of the rising midline tells us that, independently of seasonal changes, the concentration of carbon

dioxide has been increasing by about 1∕6 ppm per month, on average, during the last few years.

Solutions for Section 9.5

Exercises

1. Though we could use the sum-of-angle and difference-of-angle formulas for cosine on each of the two parts, we can also

use the formula for the sum of cosines:

cos 165◦ − cos 75◦ = −2 sin
165 + 75

2
sin

165 − 75

2
= −2 sin 120 sin 45 = −2

√

3

2

√

2

2
= −

√

6

2
.

2. Though we could use the sum-of-angle and difference-of-angle formulas for cosine on each of the two parts, we can also

use the formula for the sum of cosines:

cos 75◦ + cos 15◦ = 2 cos
75 + 15

2
cos

75 − 15

2
= 2 cos 45 cos 30 = 2

√

2

2

√

3

2
=

√

6

2
.

3. These cosine functions have the same amplitude and we use the relationship

cos u + cos v = 2 cos
u + v

2
cos

u − v

2
.

Letting u = 5t and v = 3t, we have

cos(5t) + cos(3t) = 2 cos
5t + 3t

2
cos

5t − 3t

2
= 2 cos(4t) cos t.

4. These cosine functions have the same amplitude and we use the relationship

cos u + cos v = 2 cos
u + v

2
cos

u − v

2
.

Letting u = 4t and v = 6t, we have

cos(4t) + cos(6t) = 2 cos
4t + 6t

2
cos

4t − 6t

2
= 2 cos(5t) cos t.

Notice that cos(−t) = cos t.

5. These sine functions have the same amplitude and we use the relationship

sin u + sin v = 2 sin
u + v

2
cos

u − v

2
.

Letting u = 7t and v = 3t, we have

sin(7t) + sin(3t) = 2 sin
7t + 3t

2
cos

7t − 3t

2
= 2 sin(5t) cos(2t).



9.5 SOLUTIONS 561

6. These sine functions have the same amplitude and we use the relationship

sin u − sin v = 2 cos
u + v

2
sin

u − v

2
.

Letting u = 7t and v = 3t, we have

sin(7t) − sin(3t) = 2 cos
7t + 3t

2
sin

7t − 3t

2
= 2 cos(5t) sin(2t).

7. cos 35◦ + cos 40◦ = 2 cos
(

35◦ + 40◦

2

)

cos
(

35◦ − 40◦

2

)

= 1.585. See Figure 9.41.

−360◦ −180◦ 180◦ 360◦

−1

1

x (degrees)

Figure 9.41

8. cos 35◦ − cos 40◦ = −2 sin
(

35◦ + 40◦

2

)

sin
(

35◦ − 40◦

2

)

= 0.053. See Figure 9.42.

−360◦ −180◦ 180◦ 360◦

−1

1

x (degrees)

Figure 9.42

9. sin 35◦ + sin 40◦ = 2 sin
(

35◦ + 40◦

2

)

cos
(

35◦ − 40◦

2

)

= 1.216. See Figure 9.43.

−360◦ −180◦ 180◦ 360◦

−1

1

x (degrees)

Figure 9.43

10. sin 35◦ − sin 40◦ = 2 cos
(

35◦ + 40◦

2

)

sin
(

35◦ − 40◦

2

)

= −0.069. See Figure 9.44.

−360◦ −180◦ 180◦ 360◦

−1

1

x (degrees)

Figure 9.44
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Problems

11. We can use the sum-of-angle identities

cos(� + �) = cos � cos� − sin � sin�

cos(� − �) = cos � cos� + sin � sin�

and subtract to obtain

cos(� + �) − cos(� − �) = −2 sin � sin�.

We put u = �+� and v = �−� on the left side of the equation. Solving these simultaneous equations, we get � = (u+v)∕2

and � = (u − v)∕2. We put � = (u + v)∕2 and � = (u − v)∕2 on the right side to get

cos u − cos v = −2 sin
(

u + v

2

)

sin
(

u − v

2

)

.

12. We can use the sum-of-angle identities

sin(� + �) = sin � cos� + sin� cos �

sin(� − �) = sin � cos� − sin� cos �

and add to get

sin(� + �) + sin(� − �) = 2 sin � cos�.

We put u = �+� and v = �−� on the left side of the equation. Solving these simultaneous equations, we get � = (u+v)∕2

and � = (u − v)∕2. We put � = (u + v)∕2 and � = (u − v)∕2 on the right side to get

sin u + sin v = 2 sin
(

u + v

2

)

cos
(

u − v

2

)

.

13. We start with

sin u + sin v = 2 sin
(

u + v

2

)

cos
(

u − v

2

)

.

Since − sin v = sin(−v), we can write

sin u − sin v = sin u + sin(−v)

= 2 sin

(

u + (−v)

2

)

cos

(

u − (−v)

2

)

= 2 sin
(

u − v

2

)

cos
(

u + v

2

)

= 2 cos
(

u + v

2

)

sin
(

u − v

2

)

.

14. We can use the identity sin u + sin v = 2 sin((u + v)∕2) cos((u − v)∕2). If we put u = 4x and v = x then our equation

becomes

0 = 2 sin
(

4x + x

2

)

cos
(

4x − x

2

)

= 2 sin
(

5

2
x
)

cos
(

3

2
x
)

The product on the right-hand side of this equation will be equal to zero precisely when sin(5x∕2) = 0 or when cos(3x∕2) =

0. We will have sin(5x∕2) = 0 when 5x∕2 = n�, for n an integer, or in other words for x = (2�∕5)n. This will occur in the

stated interval for x = 2�∕5, x = 4�∕5, x = 6�∕5, and x = 8�∕5. We will have cos(3x∕2) = 0 when 3x∕2 = n� + �∕2,

that is, when x = (2n + 1)�∕3. This will occur in the stated interval for x = �∕3, x = �, and x = 5�∕3. So the given

expression is solved by

x =
2�

5
,
4�

5
,
6�

5
,
8�

5
,
�

3
, �, and

5�

3
.
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15. (a) First consider the height ℎ = f (t) of the hub of the wheel that you are on. This is similar to the basic Ferris wheel

problem. Therefore f1(t) = 25+15 sin
(

�

3
t
)

, because the vertical shift is 25, the amplitude is 15, and the period is 6.

Now the smaller wheel will also add or subtract height depending upon time. The difference in height between your

position and the hub of the smaller wheel is given by f2(t) = 10 sin
(

�

2
t
)

because the radius is 10 and the period is

4. Finally, adding the two together, we get:

f1(t) + f2(t) = f (t) = 25 + 15 sin(
�

3
t) + 10 sin(

�

2
t)

(b)

1.2 12 24

50

t (minute)

ℎ (meters)

f (t)

Figure 9.45

Looking at the graph shown in Figure 9.45, we see that ℎ = f (t) is periodic, with period 12. This can be verified

by noting

f (t + 12) = 25 + 15 sin
(

�

3
(t + 12)

)

+ 10 sin
(

�

2
(t + 12)

)

= 25 + 15 sin
(

�

3
t + 4�

)

+ 10 sin
(

�

2
t + 6�

)

= 25 + 15 sin
(

�

3
t
)

+ 10 sin
(

�

2
t
)

= f (t).

(c) ℎ = f (1.2) = 48.776 m.

Solutions for Section 9.6

Exercises

1. 5ei�

2. e
i3�
2

3. 0ei� , for any �.

4. 2e
i�
2

5. We have (−3)2 + (−4)2 = 25, and arctan(4∕3) ≈ 4.069. So the number is 5ei4.069.

6.
√

10ei� , where � = arctan(−3) ≈ −1.249 + � = 1.893 is an angle in the second quadrant.

7. −5 + 12i

8. −11 + 29i

9. −3 − 4i

10.
1

4
−

9i

8

11. We have (ei�∕3)2 = ei2�∕3 , thus cos
2�

3
+ i sin

2�

3
= −

1

2
+ i

√

3

2
.

12. 3 − 6i
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13. We have
√

ei�∕3 = e(i�∕3)∕2 = ei�∕6, thus cos
�

6
+ i sin

�

6
=

√

3

2
+

i

2
.

14.
4
√

10 cos �

8
+ i

4
√

10 sin �

8
is one solution.

Problems

15. One value of
√

4i is
√

4ei�∕2 = (4ei�∕2)1∕2 = 2ei�∕4 = 2 cos
�

4
+ i2 sin

�

4
=
√

2 + i
√

2

16. One value of
√

−i is

√

ei
3�
2 = (ei

3�
2 )

1
2 = ei

3�
4 = cos

3�

4
+ i sin

3�

4
= −

√

2

2
+ i

√

2

2

17. One value of
3
√

i is
3
√

ei
�
2 = (ei

�
2 )

1
3 = ei

�
6 = cos

�

6
+ i sin

�

6
=

√

3

2
+

i

2

18. One value of
√

7i is
√

7ei
�
2 = (7ei

�
2 )

1
2 =

√

7ei
�
4 =

√

7 cos
�

4
+ i

√

7 sin
�

4
=

√

14

2
+ i

√

14

2

19. One value of
4
√

−1 is
4
√

ei� = (ei�)1∕4 = ei�∕4 = cos
(

�

4

)

+ i sin(
�

4
) =

√

2

2
+ i

√

2

2
.

20. One value of (1 + i)2∕3 is (
√

2ei
�
4 )2∕3 = (2

1
2 ei

�
4 )

2
3 =

3
√

2ei
�
6 =

3
√

2 cos
�

6
+ i

3
√

2 sin
�

6
=

3
√

2 ⋅
√

3

2
+ i

3
√

2 ⋅
1

2

21. One value of (
√

3 + i)1∕2 is

(2ei
�
6 )1∕2 =

√

2ei
�
12 =

√

2 cos
�

12
+ i

√

2 sin
�

12
≈ 1.366 + 0.366i

22. One value of (
√

3 + i)−1∕2 is

(2ei
�
6 )−1∕2 = 1

√

2
ei(−

�
12

) = 1
√

2
cos(− �

12
) + i 1

√

2
sin(− �

12
) ≈ 0.683 − 0.183i

23. Since
√

5 + 2i = 3ei� , where � = arctan
2
√

5
≈ 0.730, one value of (

√

5 + 2i)
√

2 is (3ei�)

√

2
= 3

√

2ei
√

2� = 3
√

2 cos
√

2� +

i3
√

2 sin
√

2� ≈ 3
√

2(0.513) + i3
√

2(0.859) ≈ 2.426 + 4.062i

24. Substituting A1 = 2 − A2 into the second equation gives

(1 − i)(2 − A2) + (1 + i)A2 = 0

so

2iA2 = −2(1 − i)

A2 =
−(1 − i)

i
=

−i(1 − i)

i2
= i(1 − i) = 1 + i

Therefore A1 = 2 − (1 + i) = 1 − i.

25. Substituting A2 = i − A1 into the second equation gives

iA1 − (i −A1) = 3,

so

iA1 + A1 = 3 + i

A1 =
3 + i

1 + i
=

3 + i

1 + i
⋅

1 − i

1 − i
=

3 − 3i + i − i2

2

= 2 − i

Therefore A2 = i − (2 − i) = −2 + 2i.

26. If the roots are complex numbers, we must have (2b)2 − 4c < 0 so b2 − c < 0. Then the roots are

x =
−2b ±

√

(2b)2 − 4c

2
= −b ±

√

b2 − c

= −b ±
√

−1(c − b2)

= −b ± i
√

c − b2 .

Thus, p = −b and q =
√

c − b2.
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27. (a) The polar coordinates of i are r = 1 and � = �∕2, as in Figure 9.46. Thus, the polar form of i is i = rei� = 1ei�∕2 = ei�∕2.

(b) Since z = rei� and i = ei�∕2, we have iz = ei�∕2 ⋅ rei� = rei(�+�∕2). The polar coordinates of z are (r, �), while the polar

coordinates of iz are (r, � + �∕2). The points z and iz are related as in Figure 9.47.

i

�∕2

x

y

Figure 9.46

iz

z

�∕2

�

r

r

x

y

Figure 9.47

28. Using Euler’s formula, we have:

ei(2�) = cos 2� + i sin 2�

On the other hand,

ei(2�) = (ei�)
2
= (cos � + i sin �)2 = (cos2� − sin2�) + i(2 cos � sin �)

Equating imaginary parts, we find

sin 2� = 2 sin � cos �.

29. Using Euler’s formula, we have:

ei(2�) = cos 2� + i sin 2�

On the other hand,

ei(2�) = (ei�)
2
= (cos � + i sin �)2 = (cos2� − sin2�) + i(2 cos � sin �)

Equating real parts, we find

cos 2� = cos2 � − sin2 �.

30. Since e−i� = cos(−�) + i sin(−�), we want to investigate e−i� . By the definition of negative exponents,

e−i� =
1

ei�
=

1

cos � + i sin �
.

Multiplying by the conjugate cos � − i sin � gives

e−i� =
1

cos � + i sin �
⋅

cos � − i sin �

cos � − i sin �
=

cos � − i sin �

cos2 � + sin2 �
= cos � − i sin �.

Thus

cos(−�) + i sin(−�) = cos � − i sin �,

so equating real parts, we see that cosine is even: cos(−�) = cos �.

31. Since e−i� = cos(−�) + i sin(−�), we want to investigate e−i� . By the definition of negative exponents,

e−i� =
1

ei�
=

1

cos � + i sin �
.

Multiplying by the conjugate cos � − i sin � gives

e−i� =
1

cos � + i sin �
⋅

cos � − i sin �

cos � − i sin �
=

cos � − i sin �

cos2 � + sin2 �
= cos � − i sin �.

Thus

cos(−�) + i sin(−�) = cos � − i sin �,

so equating imaginary parts, we see that sine is odd: sin(−�) = − sin �.
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32. The number z = e2i is given in polar form with (r, �) = (1, 2). Two more sets of polar coordinates for z are (1, 2 + 2�),

and (1, 2 + 4�). Three cube roots of z are given by

(

1e2i
)1∕3

= 11∕3e1∕3⋅2i = e2i∕3 = cos(2∕3) + i sin(2∕3)

= 0.786 + 0.618i.
(

1e(2+2�)i
)1∕3

= 11∕3e1∕3⋅(2+2�)i = e(2+2�)i∕3 = cos((2 + 2�)∕3) + i sin((2 + 2�)∕3)

= −0.928 + 0.371i.
(

1e(2+4i)i
)1∕3

= 11∕3e1∕3⋅(2+4�)i = e(2+4�)i∕3 = cos((2 + 4�)∕3) + i sin((2 + 4�)∕3)i

= 0.143 − 0.909i.

33. One polar form for z = −8 is z = 8ei� with (r, �) = (8, �). Two more sets of polar coordinates for z are (8, 3�), and (8, 5�).

Three cube roots of z are given by

(

8e�i
)1∕3

= 81∕3e1∕3⋅�i = 2e�i∕3 = 2 cos(�∕3) + i2 sin(�∕3)

= 1 + 1.732i.
(

8e3�i
)1∕3

= 81∕3e1∕3⋅3�i = 2e�i = 2 cos � + i2 sin �

= −2.
(

8e5�i
)1∕3

= 81∕3e1∕3⋅5�i = 2e5�i∕3 = 2 cos(5�∕3) + i2 sin(5�∕3)

= 1 − 1.732i.

34. Three polar forms for z = 8 have (r, �) equal to (8, 0), (8, 2�), and (8, 4�). Three cube roots of z are given by

(

8e0i
)1∕3

= 81∕3e1∕3⋅0i = 2e0i = 2 cos 0 + i2 sin 0

= 2.
(

8e2�i
)1∕3

= 81∕3e1∕3⋅2�i = 2e2�i∕3 = 2 cos(2�∕3) + i2 sin(2�∕3)

= −1 + 1.732i.
(

8e4�i
)1∕3

= 81∕3e1∕3⋅4�i = 2e4�i∕3 = 2 cos(4�∕3) + i2 sin(4�∕3)

= −1 − 1.732i.

35. One polar form of the complex number z = 1 + i has (r, �) = (
√

2, �∕4). Two more sets of polar coordinates for z are

(
√

2, �∕4 + 2�) = (
√

2, 9�∕4) and (
√

2, �∕4 + 4�) = (
√

2, 17�∕4). Three cube roots of z are given by

(
√

2e�i∕4
)1∕3

=
(

21∕2
)1∕3

e1∕3⋅�i∕4 = 21∕6e�i∕12 = 21∕6 cos(�∕12) + i21∕6 sin(�∕12)

= 1.084 + 0.291i.
(
√

2e9�i∕4
)1∕3

=
(

21∕2
)1∕3

e1∕3⋅9�i∕4 = 21∕6e9�i∕12 = 21∕6 cos(9�∕12) + i21∕6 sin(9�∕12)

= −0.794 + 0.794i.
(
√

2e17�∕i4
)1∕3

=
(

21∕2
)1∕3

e1∕3⋅17�i∕4 = 21∕6e17�i∕12 = 21∕6 cos(17�∕12) + i21∕6 sin(17�∕12)

= −0.291 − 1.084i.

36. By de Moivre’s formula we have

(cos �∕4 + i sin �∕4)4 = cos(4 ⋅ �∕4) + i sin(4 ⋅ �∕4) = −1 + i0 = −1.

37. By de Moivre’s formula we have

(cos 2�∕3 + i sin 2�∕3)3 = cos(3 ⋅ 2�∕3) + i sin(3 ⋅ 2�∕3) = 1 + i0 = 1.
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38. By de Moivre’s formula we have

(cos 2 + i sin 2)−1 = cos(−2) + i sin(−2) = cos 2 − i sin 2.

39. By de Moivre’s formula we have

(cos �∕4 + i sin�∕4)−7 = cos(−7�∕4) + i sin(−7�∕4) =

√

2

2
+ i

√

2

2
.

40. From the exponent rules, we know

ei� ⋅ e−i� = ei�−i� = e0 = 1.

Using Euler’s formula, we rewrite this as

(cos � + i sin �)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

ei�

(cos � − i sin �)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

e−i�

= 1.

Multiplying out the left-hand side gives

(cos � + i sin �) (cos � − i sin �) = cos2 � − i sin � cos � + i sin � cos � − i2 sin2 � = 1.

Since −i2 = +1, simplifying the left side gives the Pythagorean identity

cos2 � + sin2 � = 1.

41. Using the exponent rules, we see from Euler’s formula that

ei(�+�) = ei� ⋅ ei�

= (cos � + i sin �)(cos� + i sin�)

= cos � cos� + i cos � sin� + i sin � cos�
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

i(cos � sin�+sin � cos�)

+ i2 sin � sin�
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

−sin � sin�

= cos � cos� − sin � sin�
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Real part

+i (sin � cos� + cos � sin�)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Imaginary part

.

But Euler’s formula also gives

ei(�+�) = cos(� + �)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Real part

+i sin(� + �)
⏟⏞⏞⏟⏞⏞⏟

Imaginary part

.

Two complex numbers are equal only if their real and imaginary parts are equal. Setting real parts equal gives

cos(� + �) = cos � cos� − sin � sin�.

Setting imaginary parts equal gives

sin(� + �) = sin � cos� + sin� cos �.

Solutions for Chapter 9 Review

Exercises

1. We have:

(1 − sin t) (1 − cos t) − cos t sin t = 1 − cos t − sin t + sin t cos t
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(1−sin t)(1−cos t)

− cos t sin t multiply out

= 1 − cos t − sin t.
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2. We have:

2 cos t − 3 sin t − (2 sin t − 3 cos t) = 2 cos t − 3 sin t − 2 sin t + 3 cos t

= 5 cos t − 5 sin t.

3. We have:

sec t sin t + 3 tan t =
1

cos t
⋅ sin t + 3 tan t

=
sin t

cos t
⏟⏟⏟

tan t

+3 tan t

= 4 tan t.

4. We have:

cot t tan t sin t =
(

cos t

sin t

)

⏟⏟⏟
cot t

⋅

(

sin t

cos t

)

⏟⏟⏟
tan t

⋅ sin t

= sin t.

5. We have:

sec t

csc t
=

(

1

cos t

)

(

1

sin t

)

=
1

cos t
⋅ sin t

= tan t.

6. We have:

cot t

csc t
=

(

cos t

sin t

)

(

1

sin t

)

=
cos t

sin t
⋅ sin t

= cos t.

7. We have:

(sec t cot t − csc t tan t) sin t cos t = sec t cot t sin t cos t − csc t tan t sin t cos t multiply out

=
(

1

cos t

)

⏟⏟⏟
sec t

(

cos t

sin t

)

⏟⏟⏟
cot t

sin t cos t −
(

1

sin t

)

⏟⏟⏟
csc t

(

sin t

cos t

)

⏟⏟⏟
tan t

sin t cos t

= cos t − sin t.

8. We have:

1

2 csc t cos t − 3 cot t
=

1

2
(

1

sin t

)

⏟⏟⏟
csc t

cos t − 3 cot t

=
1

2
cos t

sin t
− 3

(

cos t

sin t

)

⏟⏟⏟
cot t

=
1

−
(

cos t

sin t

) = −
sin t

cos t
= − tan t.
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9. Using 1 − cos2 � = sin2 �, we have

1 − cos2 �

sin �
=

sin2 �

sin �
= sin �.

10. Writing cot x = cos x∕ sinx and csc x = 1∕ sin x, we have

cot x

csc x
=

cos x

sin x
⋅

1

1∕ sinx
= cos x.

11. Writing cos 2� = 2 cos2 � − 1, we have

cos 2� + 1

cos�
=

2 cos2 � − 1 + 1

cos�
=

2 cos2 �

cos�
= 2 cos�.

12. Multiplying out and using the fact that 1 − tan2 � = 1∕ cos2 �, we have

cos2 �(1 + tan �)(1 − tan �) = cos2 �(1 − tan2 �) = cos2 � ⋅
1

cos2 �
= 1.

13. 8 − 5i

14. (2 + 3i)(3 + 5i) = 6 + 9i + 10i − 15 = −9 + 19i.

15. We have (2)2 + (−4)2 = 20, and arctan(−2) ≈ −1.107. So the number is
√

20e−1.107i.

16. We have (3)2 + (5)2 = 34, and arctan(5∕3) ≈ 1.030. So the number is
√

34e1.030i.

Problems

17. We first solve for cos �,

2 cos � = 1

cos � =
1

2

� =
�

3
,
5�

3
.

18. We first solve for tan �,

tan � =
√

3 − 2 tan �

3 tan � =
√

3

tan � =

√

3

3

� =
�

6
,
7�

6

19. We first solve for tan �,

4 tan � + 3 = 2

4 tan � = −1

tan � = −
1

4
� = 2.897, 6.038.
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20. We first solve for sin �,

3 sin2 � + 4 = 5

3 sin2 � = 1

sin2 � =
1

3

sin � = ±

√

1

3

sin � =
√

1

3
sin � = −

√

1

3

� = 0.616, 2.526 � = 3.757, 5.668

21. (a) The graph resembles a cosine function with midline k = 8, amplitude A = 10, and period p = 60, so

y = 10 cos
(

2�

60
x
)

+ 8.

(b) We find the zeros at x1 and x2 by setting y = 0. Solving gives

10 cos
(

2�

60
x
)

+ 8 = 0

cos
(

2�

60
x
)

= −
8

10
2�

60
x = cos−1(−0.8)

x =
60

2�
cos−1(−0.8)

= 23.8550.

Judging from the graph, this is the value of x1. By symmetry, x2 = 60 − x1 = 36.1445.

22. (a) The midline, D = 10, the amplitude A = 4, and the period 1, so

1 =
2�

B
and B = 2�.

Therefore the formula is

f (t) = 4 sin(2�t) + 10.

(b) Solving f (t) = 12, we have

12 = 4 sin(2�t) + 10

2 = 4 sin(2�t)

sin 2�t =
1

2

2�t =
�

6
,
5�

6
,
13�

6
,
17�

6

t =
1

12
,

5

12
,
13

12
,
17

12

The spring is 12 centimeters from the ceiling at 1∕12 sec, 5∕12 sec, 13∕12 sec, 17∕12 sec.

23. (a) The average monthly temperature in Fairbanks is shown in Figure 9.48.

(b) These data are best modeled by a vertically reflected cosine curve, which is reasonable for something like temperature

that oscillates with a 12-month period.

(c) The midline temperature is (61.3 + (−11.5))∕2 = 24.9. The amplitude is 61.3 − 24.9 = 36.4 Since the period is 12,

we have B = 2�∕12 = �∕6. There is no horizontal shift, so C = 0. Hence our function is

f (t) = 24.9 − 36.4 cos
(

�

6
t
)

.
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(d) To solve f (t) = 32, we must solve the equation

32 = 24.9 − 36.4 cos
(

�

6
t
)

7.1 = −36.4 cos
(

�

6
t
)

cos
(

�

6
t
)

= −0.1950.197

�

6
t = cos−1(−0.195) = 1.767

�

6
t = 2� − 1.767 = 4.516

t = 3.375 t = 8.625

The temperature in Fairbanks reaches the freezing point in the middle of April and the middle of September.

(e) See Figure 9.49.

−1 12

−15

75

month

temperature (◦F )

Figure 9.48

−1 4 8

f (t) = 24.9 − 36.4 cos
(

�

6
t
)

12
−15

32

75

month

temperature (◦F )

Figure 9.49

(f) The amplitude, period, and midline would be the same, but the function would be reflected vertically:

y = 24.9 + 36.4 cos
(

�

6
t
)

.

24. They are both right. The first student meant that sin 2� = 2 sin � is not an identity, meaning that it is not true for all �. The

second student had found one value for � for which it was true.

25. Graphs of the four functions are in Figures 9.50 –9.53. The graphs in Figures 9.51 and 9.52 suggest that (tan2 x)(sin2 x)

and tan2 x − sin2 x may be identical.

−2� 2�

−1

1

2

x

Figure 9.50: tan2 x + sin2 x

−2� 2�

−1

1

2

x

Figure 9.51: (tan2 x)(sin2 x)

−2� 2�

−1

1

2

x

Figure 9.52: tan2 x − sin2 x

−2� 2�

−1

1

2

x

Figure 9.53: tan2 x∕ sin2 x
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To prove the identity, use tan x = sin x∕ cos x to rewrite each side in terms of sine and cosine. We have

(tan2 x)(sin2 x) =
(

sin x

cos x

)2

(sin2 x) =
sin4 x

cos2 x
.

In addition,

tan2 x − sin2 x =
(

sinx

cos x

)2

− sin2 x

=
sin2 x

cos2 x
− sin2 x

= sin2 x
(

1

cos2 x
− 1

)

=
sin2 x(1 − cos2 x)

cos2 x

=
sin2 x(sin2 x)

cos2 x

=
sin4 x

cos2 x
.

Since both expressions equal
sin4 x

cos2 x
, they are identical.

26. (a) tan � =
opp

adj
=

y

1
= y.

(b) cos � =
opp

hyp
=

y
√

1 + y2
.

(c) Since tan � = y, we have � = tan−1 y. Other answers are possible.

(d) cos(2�) = 2 cos� sin� = 2

(

y
√

1 + y2

)(

1
√

1 + y2

)

=
2y

1 + y2
.

27. Since csc � = 1∕ sin �, we have csc � = 1∕(8∕11) = 11∕8. Since cos2 � + sin2 � = 1,

cos2 � +
(

8

11

)2

= 1

cos2 � = 1 −
64

121

cos � = ±

√

57

121
.

Since 0 ≤ � ≤ �∕2, we know that cos � ≥ 0, so cos � =
√

57∕121. Since tan � = sin �∕ cos �, we have tan � =

(8∕11)∕
√

57∕121 = 8
√

121∕11
√

57 = 8∕
√

57.

28. Since sin � = 1∕ csc �, we have sin � = 1∕94. Using the Pythagorean identity, cos2 � + sin2 � = 1, we have

cos2 � +
(

1

94

)2

= 1

cos2 � = 1 −
1

942

cos � = ±

√

8835

8836
= ±

√

8835

94
.

Since 0 ≤ � ≤ �∕2, we know that cos � ≥ 0, so cos � =
√

8835∕94.

Using the identity tan � = sin �∕ cos �, we see that tan � = (1∕94)∕(
√

8835∕94) = 1∕
√

8835.

29. By the Pythagorean identity, we know that cos2 � + sin2 � = 1, so

0.272 + sin2 � = 1

sin2 � = 1 − 0.272

sin � = ±
√

0.927 ≈ ±0.963.

However, we only need one value, so we take sin � = 0.963, Since tan � = sin �∕ cos �, we have tan � =
√

0.927∕0.27 ≈

3.566.
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30. No. Since sin � cannot be greater than 1, sin � = 3 is impossible. The problem is that
sin �

cos �
is a ratio, so sin � could be 0.3

and cos � could be 0.4. We only know the ratio is 3∕4.

31. We have 2∕7 = cos 2� = 2 cos2 � − 1. Solving for cos � gives

2 cos2 � =
9

7

cos2 � =
9

14

Since � is in the first quadrant, cos � = +
√

9∕14 = 3∕
√

14.

32. We will use one of the three double-angle formulas for cosine to solve this equation algebraically. Since the equation

involves sin �, we will try the double-angle formula for cosine which involves the sine:

cos 2� = 1 − 2 sin2 �.

This gives

1 − 2 sin2 � = sin �,

and we can rewrite this equation as follows:

2(sin �)2 + sin � − 1 = 0.

Factoring, we have

(2 sin � − 1)(sin � + 1) = 0.

The fact that the product (2 sin � − 1)(sin � + 1) equals zero implies that

2 sin � − 1 = 0 or sin � + 1 = 0.

Solving sin � + 1 = 0, we have sin � = −1. This means � = 3�∕2. Solving the other equation, we have

2 sin � − 1 = 0

sin � =
1

2
.

This gives

� =
�

6
or � = � −

�

6
=

5�

6
.

In summary, there are three solutions for 0 ≤ � < 2� ∶ � = �∕6, 5�∕6, and 3�∕2. Figure 9.54 illustrates these solutions

graphically as the points where the graphs of cos 2� and sin � intersect.

�

6
5�

6

3�

2

2�

−1

1

�

y

y = cos 2�

y = sin �

Figure 9.54: There are three solutions to the equation cos 2� = sin �, for 0 ≤ � < 2�

33.

cos(2�) = − sin �

1 − 2 sin2 � + sin � = 0

−2 sin2 � + sin � + 1 = 0

2 sin2 � − sin � − 1 = 0

(2 sin � + 1)(sin � − 1) = 0
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2 sin � + 1 = 0 sin � − 1 = 0

2 sin � = −1 sin� = 1

sin � = −
1

2
� =

�

2

� =
7�

6
,
11�

6

34. Let � = cos−1(
5

13
). We can use the Pythagorean theorem and create a triangle with sides 5, 12, and 13 as in Figure 9.55. We

see that sin � =
12

13
. However we want sin(2�), so we use the double-angle identity sin(2�) = 2 sin � cos � = 2(

12

13
)(

5

13
) =

120

169
. You can check this on a calculator by finding that sin(2 cos−1(5∕13)) ≈ 0.7100591716, which is 120∕169 in decimal

form.

5

13

12

�

Figure 9.55

35. Start with the right side, which is more complex. Use a double-angle identity, so both sides are expressed as trigonometric

functions of �.

1 − cos 2�

2 cos � sin �
=

1 − (2 cos2 � − 1)

2 cos � sin �

=
2(1 − cos2 �)

2 cos � sin �

=
2(sin2 �)

2 cos � sin �

=
sin2 �

cos � sin �

=
sin �

cos �
= tan �.

36. Start with the left side, which is more complex, and reduce it using the Pythagorean identity:

(sin2 2�t + cos2 2�t)3 = (1)3 = 1.

37. Start with the expression on the left and factor it as the difference of two squares, and then apply the Pythagorean identity

to one factor.

sin4 x − cos4 x = (sin2 x)2 − (cos2 x)2

= (sin2 x − cos2 x)(sin2 x + cos2 x)

= (sin2 x − cos2 x)(1)

= (sin2 x − cos2 x).

38. Because both sides are equally complicated, many different approaches are possible. We multiply the right side by (1 +

sin �)∕(1 + sin �) in order to introduce a factor of 1 + sin � to the numerator (the left side already has one) and to simplify
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the denominator. In the calculation which follows, we work only on the right side:

cos �

1 − sin �
=

cos �

1 − sin �
⋅

1 + sin �

1 + sin �

=
cos �(1 + sin �)

1 − sin2 �

=
cos �(1 + sin �)

cos2 �

=
1 + sin �

cos �
.

39. (a) cos � = x.

(b) cos
(

�

2
− �

)

= sin � =
√

1 − cos2 � =
√

1 − x2.

(c) tan2 � =
(

sin �

cos �

)2

=

(
√

1 − x2

x

)2

=
1 − x2

x2
.

(d) sin(2�) = 2 sin � cos � = 2
√

1 − x2(x).

(e) cos(4�) = 1 − 2 sin2(2�). Now we use part (d):

cos(4�) = 1 − 2(2x
√

1 − x2)2 = 1 − 8x2(1 − x2).

(f) Using part (a), we see that cos−1(x) = �, so sin(cos−1 x) = sin(�) =
√

1 − x2.

40. We first solve for cos �,

3 cos2 � + 2 = 3 − 2 cos �

3 cos2 � + 2 cos � − 1 = 0

(3 cos � − 1)(cos � + 1) = 0

3 cos � − 1 = 0 cos � + 1 = 0

cos � =
1

3
cos � = −1

� = 1.231, 5.052 � = �

41. We first solve for sin �,

3 sin2 � + 3 sin � + 4 = 3 − 2 sin�

3 sin2 � + 5 sin � + 1 = 0

sin� =
−5 ±

√

25 − 12

6

sin� =
−5 ±

√

13

6

sin� =
−5+

√

13

6
sin � =

−5−
√

13

6

� = 3.376, 6.049 No solution (−1 ≤ sin� ≤ 1)

42. Using the formula for cos(A + B) with A = 2� and B = �:

cos 3� = cos(2� + �) = cos 2� cos � − sin 2� sin �

= (2 cos2 � − 1) cos � − (2 sin � cos �) sin �

= 2 cos3 � − cos � − 2 cos �(sin2 �)

= 2 cos3 � − cos � − 2 cos �(1 − cos2 �)

= 4 cos3 � − 3 cos �
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43. Start with the double-angle identity

cos(2x) = 2 cos2 x − 1.

Next, solve for cos x:

2 cos2 x = 1 + cos(2x)

cos2 x =
1

2
(1 + cos(2x))

cos x =

√

1

2
(1 + cos(2x)).

Note that we chose the positive square root. We made this choice because we assumed that 0 ≤ � ≤ �∕2 which implies

that cos x ≥ 0. Now we substitute x = �∕2:

cos
(

�

2

)

=

√

1

2
(1 + cos �).

44. Since 0 < ln x <
�

2
and 0 < ln y <

�

2
, the angles represented by ln x and ln y are in the first quadrant. This means that both

their sine and cosine values will be positive. Since ln(xy) = lnx + ln y, we can write

sin(ln(xy)) = sin (ln x + ln y) .

By the sum-of-angle formula we have

sin (ln x + ln y) = sin(lnx) cos(ln y) + cos(lnx) sin(ln y).

Since cosine is positive, we have

cos(lnx) =

√

1 − sin2(lnx) =

√

1 −
(

1

3

)2

=

√

8

3

and

cos(ln y) =

√

1 − sin2(ln y) =

√

1 −
(

1

5

)2

=

√

24

5
.

Thus,

sin (ln x + ln y) = sin(ln x) cos(ln y) + cos(ln x) sin(ln y)

=
(

1

3

)

(
√

24

5

)

+

(
√

8

3

)

(

1

5

)

=

√

24 +
√

8

15
≈ 0.515.

45. (a) The graph of g(�) = sin � − cos � is shown in Figure 9.56.

� 2�
−1

1

�

y

Figure 9.56
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(b) We know a1 sin t+ a2 cos t = A sin(t+�), where A =
√

a2
1
+ a2

2
and tan� = a2∕a1. We let a1 = 1 and a2 = −1. This

gives A =
√

2 and � = tan−1(−1) = −�∕4, so

g(�) =
√

2 sin
(

� −
�

4

)

.

Note that we have chosen B = 1 and k = 0. We can check that this is correct by plotting the original function and
√

2 sin(� − �∕4) together.

We know that sin t = cos(t−�∕2), that is, the sine graph may be obtained by shifting the cosine graph �∕2 units

to the right. Thus,

g(�) =
√

2 cos
(

� −
�

4
−

�

2

)

=
√

2 cos
(

� −
3�

4

)

.

46. (a) The population P2 swings from a low of 3a − 2a = a to a high of 3a + 2a = 5a, whereas P1 swings from a low of

7a − a = 6a to a high of 7a + a = 8a. Thus, P2 has larger swings.

(b) The period of P2 is b + 2, and the period of P1 is b. Since P2 has the longer period, it makes slower swings from low

to high.

(c) At its smallest, P1 = 6a, while at its largest, P2 = 5a, so this statement describes P1.

(d) The population P2 reaches a low of a, where as P1 reaches a low of 6a, so P2 appears more vulnerable to extinction.

47. See Figure 9.57. They appear to be the same graph. This suggests the truth of the identity cos t = sin(t +
�

2
).

−2� 2�
t

y

Figure 9.57: Graphs showing cos(t) = sin
(

t + �

2

)

48. (a) z1z2 = (−3 − i
√

3)(−1 + i
√

3) = 3 + (
√

3)2 + i(
√

3 − 3
√

3) = 6 − i2
√

3.

z1
z2

=
−3 − i

√

3

−1 + i
√

3
⋅

−1 − i
√

3

−1 − i
√

3
=

3 − (
√

3)2 + i(
√

3 + 3
√

3)

(−1)2 + (
√

3)2
=

i ⋅ 4
√

3

4
= i

√

3.

(b) We find (r1, �1) corresponding to z1 = −3 − i
√

3.

r1 =

√

(−3)2 + (
√

3)2 =
√

12 = 2
√

3.

tan �1 =
−
√

3

−3
=

√

3

3
, so �1 =

7�

6
.

Thus −3 − i
√

3 = r1e
i�1 = 2

√

3 ei
7�
6 .

r1
z1

�1

−
√

3

−3

We find (r2, �2) corresponding to z2 = −1 + i
√

3.

r2 =

√

(−1)2 + (
√

3)2 = 2;

tan �2 =

√

3

−1
= −

√

3, so �2 =
2�

3
.

Thus, −1 + i
√

3 = r2e
i�2 = 2ei

2�
3 . −1

r2

z2

�2

√

3
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We now calculate z1z2 and
z1
z2

.

z1z2 =
(

2
√

3ei
7�
6

)(

2ei
2�
3

)

= 4
√

3ei(
7�
6
+

2�
3
) = 4

√

3ei
11�
6

= 4
√

3
[

cos
11�

6
+ i sin

11�

6

]

= 4
√

3

[
√

3

2
− i

1

2

]

= 6 − i2
√

3.

z1
z2

=
2
√

3ei
7�
6

2ei
2�
3

=
√

3ei(
7�
6
−

2�
3
) =

√

3ei
�
2

=
√

3
(

cos
�

2
+ i sin

�

2

)

= i
√

3 .

These agree with the values found in (a).

49. (a) Since z = 3 + 2i, we have iz = i(3 + 2i) = 3i + 2i2 = −2 + 3i. See Figure 9.58.

l1

l2

iz = −2 + 3i

z = 3 + 2i

x

y

Figure 9.58

(b) The slope of the line l1 in Figure 9.58 is 2∕3, and the slope of the line l2 is −3∕2. Since the product (2∕3)(−3∕2) = −1

of these two slopes is −1, the lines are perpendicular.

STRENGTHEN YOUR UNDERSTANDING

1. True, because the factor e−t decreases the oscillations of cos t as t grows.

2. True. Substitute in tan� = sin�∕ cos� and simplify to see that this is an identity.

3. True. This is the definition of an identity.

4. False. An odd function would require f (−�) = −f (�), but f (−
�

4
) = f (

�

4
) =

√

2

2
.

5. True. This is an identity. Substitute using tan2 � = sin2 �∕ cos2 � and simplify to obtain 2 = 2 sin2 � + 2 cos2 �. Divide by

2 to reach the Pythagorean identity.

6. False. This is not the Pythagorean identity, since the square is on the variable �. As a counterexample, let � = 1. Note that

cos �2 ≠ (cos �)2 and cos2 � = (cos �)2.

7. True. First find sin � and then use the double-angle formula. Since cos2 �+sin2 � = 1, we have sin2 � = 1−
4

9
=

5

9
. Because

� is in the third quadrant, its sine is negative, so sin � = −
√

5

3
. We find sin(2�) = 2 sin � cos � = 2(−

√

5

3
)(−

2

3
) =

4
√

5

9
.

8. False. Although true for the value � = 45◦, it is not true for all values of �. A counterexample is sin 0◦ ≠ cos 0◦.

9. True. There are many ways to prove this identity. We use the identity cos 2� = cos2 �−sin2 � to substitute in the right side

of the equation. This becomes
1

2
(1−(cos2 �−sin2 �)). Now substitute using 1−cos2 � = sin2 � (a form of the Pythagorean

identity.) The right side then simplifies to sin2 �, which is the left side.

10. False. A counterexample is cos(4 ⋅ 0◦) = 1 ≠ −cos(−4 ⋅ 0◦) = −1.

11. False. For a counterexample, let � = � = 90◦. Then sin(� + �) = sin 180◦ = 0, but sin � + sin� = sin 90◦ + sin 90◦ =

1 + 1 = 2.

12. False. For a counterexample let � = 90◦. Then sin(2�) = sin 180◦ = 0, but 2 sin � = 2 sin 90◦ = 2.
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13. True. Start with the sine sum-of-angle identity:

sin(� + �) = sin � cos� + sin� cos �

and let � = �∕2, so

sin(� + �∕2) = sin � cos(�∕2) + sin(�∕2) cos �.

Simplify to

sin(� + �∕2) = sin � ⋅ 0 + 1 ⋅ cos � = cos �.

14. False. We have f (t) = sin t cos t = (1∕2) sin 2t which is periodic with period �.

15. True. We have sin(t − �) = sin((t − �) + 2�) = sin(t + �) where the first equality is by periodicity of the sine function.

16. False. For example, t = �∕2 gives cos(t − �∕2) = 1 and cos(t + �∕2) = −1. The correct identity is cos(t − �∕2) =

− cos(t + �∕2).

17. True. Since A cos(Bt) = A sin(Bt+ �∕2) = A sin(B(t+ �∕(2B))), the graph of A cos(Bt) is a shift of A sin(Bt) to the left

by �∕(2B).

18. True. We have

f (x + 2�) = sin 2(x + 2�) + sin 3(x + 2�)

= sin(2x + 4�) + sin(3x + 6�)

= sin 2x + sin 3x = f (x)

which shows that f (x) is periodic. The period is 2�.

19. False. The sum of two nonzero sinusoidal functions with different periods is not a sinusoidal function. A graph of f (x) on

the interval 0 ≤ x ≤ 4� shows a more complicated shape that the graphs of a sinusoid.

20. False. If the periods are different the sum may not be sinusoidal. As a counterexample, graph f (t) = sin t + sin 2t, to see

that f (t) is not sinusoidal.

21. True. We use the assumption that a1 and a2 are nonzero. The amplitude of the single sine function is A =
√

a2
1
+ a2

2
. Thus,

A is greater than either a1 or a2.

22. True. We have f (t) = A sin(2�t + �) where A =
√

32 + 42 = 5, cos� =
3

5
and sin� =

4

5
.

23. False. The amplitude of g increases exponentially.

24. True. The maximum of g occurs when sin(�t∕12) = −1, so the maximum value of the function is 55 + 10 = 65.

25. True. Hertz is a measure of cycles per second and so a single cycle will take 1/60th of a second.

26. True. The zeros occur when cos(�t) + 1 = 0, so cos(�t) = −1. Hence, �t = n�, where n is an odd integer. Thus, t = n is

an odd integer.

27. False. The variable B affects the period; the variable A affects the amplitude.

28. True; divide by et, which is never zero, and obtain tan t = 2∕3.

29. True. Since 0 ≤ cos−1(x) ≤ �, we have 0 ≤ sin(cos−1 x) ≤ 1. Thus, cos−1(sin(cos−1 x)) is an angle � whose cosine is

between 0 and 1. In addition, we have 0 ≤ � ≤ �, as this is part of the definition of cos−1 x. Hence 0 ≤ � ≤ �∕2.

30. True; we need a + b sin t to be positive for the natural logarithm to be defined. Since sin t ≥ −1, we have a + b sin t ≥

a − b > 0.

31. True, since
√

a is real for all a ≥ 0.

32. True, since (x − iy)(x + iy) = x2 + y2 is real.

33. False, since (1 + i)2 = 2i is not real.

34. False. Let f (x) = x. Then f (i) = i but f (ī) = ī = −i.

35. True. We can write any nonzero complex number z as rei� , where r and � are real numbers with r > 0. Since r > 0, we

can write r = ec for c = ln r. Therefore, z = rei� = ecei� = ec+i� = ew where w = c + i� is a complex number.

36. False, since (1 + 2i)2 = −3 + 4i.

37. True. This is Euler’s formula, fundamental in higher mathematics.

38. True. (1 + i)2 = 12 + 2 ⋅ 1 ⋅ i + i2 = 1 + 2i − 1 = 2i.

39. True. Since i4 = 1, we have i101 = (i4)25i = 1 ⋅ i = i.


