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FUZZY GRADE OF THE COMPLETE HYPERGROUPS

C. ANGHELUŢĂ AND I. CRISTEA

Abstract. This paper continues the study of the connection between hyper-

groups and fuzzy sets, investigating the length of the sequence of join spaces
associated with a hypergroup. The classes of complete hypergroups and of

1-hypergroups are considered and analyzed in this context. Finally, we give a

method to construct a finite hypergroup with the strong fuzzy grade equal to
a given natural number.

1. Introduction

Hyperstructure theory and fuzzy set theory are two traditional fields of theo-
retical and applied mathematics. The study of the connections between them has
been an independent direction of research from the ’70 of the past century, when
Rosenfeld [31] introduced the notion of fuzzy group. Later on, this concept was
generalized to obtain hypergroups and join spaces induced by fuzzy sets [1, 5, 6, 9],
fuzzy hyperrings [18, 27] or fuzzy hypermodules [26], or fuzzy hypervector spaces[2],
fuzzy ideals of semirings [24, 32] or hemirings [34], or general fuzzy hypersystems
[36], ecc.

The starting point of this contribution is the connection between hypergroupoids
and fuzzy sets established by Corsini [5, 6]: he has associated a join space with a
fuzzy set [5] and then a fuzzy set with a hypergroupoid [6], constructing a sequence
of join spaces and fuzzy sets, that ends if two consecutive join spaces are isomorphic.
Its length is called the fuzzy grade. This sequence has been studied in the general
case [15, 33], for the direct product of two hypergroupoids [16], for some particular
classes of hypergroups: the hypergroups with partial identities of order less than
8 [7], the non complete 1-hypergroups [8], the complete hypergroups of order less
than 7 [14]. Besides, Corsini et al. studied the same sequence associated with a
hypergraph [11, 12], or with multivalued functions [13].

The complete hypergroups, studied for example in [19, 20, 29], represent a special
class of hypergroups (introduced in 1934 by Marty [28]) closed to groups: they can
be constructed starting from a group, as we will see in the next section. In this
paper, we will investigate the sequence of join spaces associated with some particular
complete hypergroups.

An outline of this paper follows. In section 2 we present some basic notions
concerning hypergroups and a short description of the complete hypergroups. In
section 3 we briefly recall the construction of the sequence of join spaces and fuzzy
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sets associated with a hypergroupoid. Section 4 includes the computation of the
length of the above sequence for some finite hypergroupoids, necessary to determine,
in the next section, the fuzzy grades of particular complete hypergroups. Section
6 is dedicated to a method to construct a finite hypergroup with the strong fuzzy
grade equals to a determined number. Finally, section 7 concludes the paper, giving
also some future lines of our research.

2. Complete Hypergroups and 1-hypergroups

We briefly recall some notions and results concerning complete hypergroups and
1-hypergroups; for a comprehensive overview of this theme, the reader is refereed
to [4].

Let H be a nonempty set and P∗(H) the set of all nonempty subsets of H. A set
H equipped with a hyperoperation ◦ : H2 −→ P∗(H) is called a hypergroupoid. The
image of the pair (a, b) ∈ H2 is denoted by a ◦ b and it is called the hyperproduct of

a and b. If A and B are nonempty subsets of H, then A ◦B =
⋃
a∈A
b∈B

a ◦ b.

A semihypergroup is a hypergroupoid (H, ◦) such that, for any (a, b, c) ∈ H3,
(a ◦ b) ◦ c = a ◦ (b ◦ c) (the associativity). A quasihypergroup is a hypergroupoid
(H, ◦) which satisfies the reproduction axiom: for any a ∈ H, a ◦H = H ◦ a = H.
A hypergroup is a semihypergroup which is also a quasihypergroup.

Notation. For each pair (a, b) ∈ H2, we denote:

a/b = {x | x ∈ H, a ∈ x ◦ b} and b\a = {y | y ∈ H, a ∈ b ◦ y}.
A commutative hypergroupoid (H, ◦) is called a join space if, for any (a, b, c, d) ∈

H4, the following implication holds:

a/b ∩ c/d 6= ∅ =⇒ a ◦ d ∩ b ◦ c 6= ∅.
A hypergroup H is regular if it has at least one identity and each element has

at least one inverse. A regular hypergroup (H, ◦) is called reversible if, for any
(x, y, a) ∈ H3, it satisfies the following conditions:

1) if y ∈ a ◦ x, then there exists an inverse a′ of a such that x ∈ a′ ◦ y;
2) if y ∈ x ◦ a, then there exists an inverse a′′ of a such that x ∈ y ◦ a′′.

Several fundamental relations may be defined on a hypergroupoid (see [4, 19, 20,
25]); here we recall one of them strongly related to the notion of completeness.

The relation β on a hypergroupoid (H, ◦) is defined as follows:

aβb⇐⇒ ∃n ∈ N∗,∃(x1, x2, . . . , xn) ∈ Hn : a ∈
n∏
i=1

xi 3 b.

Notice that β is a reflexive and a symmetric relation on H, but generally, not a
transitive one. Let us denote by β∗ the transitive closure of β.

It is well known that, if H is a hypergroup, then β∗ = β and H/β is a group [4].
One of the most important notions in hypergroup theory is the heart of a hyper-

group H. Studying its properties one determines completely the structure of the
hypergroup H.
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The heart of a hypergroup H is the set ωH = {x ∈ H | ϕH(x) = 1}, where
ϕH : H −→ H/β is the canonical projection and 1 is the identity of the group H/β.

Definition 2.1. A hypergroup H is called 1-hypergroup if the cardinality of its
heart equals 1.

Definition 2.2. A hypergroup (H, ◦) is complete if, for any x, y ∈ H, we have
x ◦ y = β∗(x ◦ y).

In the following we give a characterization of the complete hypergroups and
present some of their properties (see [4]).

Theorem 2.3. A hypergroup (H, ◦) is complete if H can be written as the union

of its subsets H =
⋃
g∈G

Ag, where

1) (G, ·) is a group;
2) for any (g1, g2) ∈ G2, g1 6= g2, we have Ag1 ∩Ag2 = ∅;
3) if (a, b) ∈ Ag1 ×Ag2 , then a ◦ b = Ag1g2 .

Theorem 2.4. If H is a complete hypergroup, then

(i) ωH is the set of all identities of H;
(ii) H is a regular reversible hypergroup.

Theorem 2.5. All complete commutative hypergroups are join spaces.

Theorem 2.6. [4]

(i) Let H be an 1-hypergroup. If |H| ≤ 4, then H is a group or it is a complete
hypergroup.

(ii) For every n ≥ 5, there exist 1-hypergroups of cardinality n which are not
complete.

Proposition 2.7. Let H be a complete hypergroup and H =
⋃
g∈G

Ag, with (G, ·) a

group with the identity element e. Then Ae = ωH .

Proof. We know that, for a complete hypergroup H, its heart is the set of all
identities of H.

First we prove that Ae ⊂ ωH . For any x ∈ Ae and for any a ∈ Ag, g ∈ G, we
have a ◦ x = Age = Ag 3 a and x ◦ a = Aeg = Ag 3 a, therefore x is an identity for
H and thereby x ∈ ωH .

Conversely, for any x ∈ ωH and for any a ∈ H, we have a ∈ a◦x∩x◦a. Assuming
that x ∈ Ag1 and a ∈ Ag2 , we obtain a ∈ Ag1·g2 ∩ Ag2·g1 and by the definition of a
complete hypergroup, g1 · g2 = g2 · g1, for any g2 ∈ G; thus g1 ∈ Z(G), the center
of the group G. More over, Ag2 ∩Ag1·g2 6= ∅ and then g1 · g2 = g2, for any g2 ∈ G,
which means g1 = e and x ∈ Ae. �

We conclude this section with a result about the number of non-isomorphic finite
complete hypergroups.
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Definition 2.8. [14] Let n be a positive integer, n ≥ 3. A m-decomposition of n,
2 ≤ m ≤ n− 1, is an ordered system of natural numbers (k1, k2, . . . , km) such that
ki ≥ 1, for any i, 1 ≤ i ≤ m, k1 + k2 + . . .+ km = n, k2 ≤ k3 ≤ . . . ≤ km.

We denote dm(n) the number of m-decompositions of n.

Theorem 2.9. [14] There are

n−1∑
m=2

smdm(n) non-isomorphic complete hypergroups

of order n, where sm denotes the number of the non-isomorphic groups of order m.

3. The Sequences of Join Spaces and Fuzzy Sets Associated
with a Hypergroupoid

Several connections between hypergroupoids and fuzzy sets or their generaliza-
tions (Atanassov’s intuitionistic fuzzy sets, soft sets, rough sets) have been defined
and investigated, giving the possibility to study fuzzy sets from an algebraic point
of view and to obtain new hyperstructures related to fuzzy sets. We recall here two
of them, which lead to a sequence of join spaces and fuzzy sets associated with a
hypergroupoid. In this paper H denotes a finite hypergroupoid.

Let X be a nonempty set. A fuzzy set A in X is characterized by a membership
function µA : X −→ [0, 1], where for any x ∈ X, the value µA(x) represents the
grade of membership of x in A. More generally, any function µ : X −→ [0, 1] is
called a fuzzy subset of X.

For any hypergroup (H, ◦), Corsini defined in [6] a fuzzy subset µ̃ of H in the
following way: for any u ∈ H, one considers:

µ̃(u) =

∑
(x,y)∈Q(u)

1

|x ◦ y|

q(u)
, (1)

where Q(u) = {(a, b) ∈ H2 | u ∈ a ◦ b}, q(u) = |Q(u)|. If Q(u) = ∅, set µ̃(u) = 0.
In other words, µ̃(u) is the average value of the reciprocals of the sizes of x ◦ y, for
all x ◦ y containing u.

On the other hand, with any hypergroupoid H endowed with a fuzzy set α, we
can associate a join space (H, ◦α) as follows (see [5]): for any (x, y) ∈ H2,

x ◦α y = {z ∈ H | α(x) ∧ α(y) ≤ α(z) ≤ α(x) ∨ α(y)}. (2)

Let (1H, ◦1) be the join space obtained as in (3) for the fuzzy subset µ̃. By
using the same procedure as in (3), from 1H we can obtain a membership function
µ̃1 and the associated join space 2H and so on. A sequence of fuzzy sets and join
spaces ((rH, ◦r), µ̃r)r≥1 is determined in this way. We denote µ̃0 = µ̃, 0H = H.
If two consecutive hypergroups of the obtained sequence are isomorphic, then the
sequence stops.

Let ((iH, ◦i), µ̃i(u))i≥1 be the sequence of fuzzy sets and join spaces associated
with H. Then, for any i, there are r, namely r = ri, and a partition π = {iCj}rj=1

of iH such that, for any j ≥ 1 and x ∈ iCj , iCj = µ̃−1
i−1(µ̃i−1(x)) (this means x, y ∈
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iCj ⇐⇒ µ̃i−1(x) = µ̃i−1(y)). On the set of classes {iCj}rj=1 we define the following

ordering relation : j < k if, for x ∈ iCj and y ∈ iCk, we have µ̃i−1(x) < µ̃i−1(y).
We will use some notations, for all j, s:

kj = |iCj |, sC =
⋃

1≤j≤s

i
Cj ,

sC =
⋃

s≤j≤r

i
Cj , sk = |sC|, sk = |sC|. (3)

With any ordered chain (iC1,
i C2, . . . ,

i Cr) we may associate an ordered r-tuple
(k1, k2, . . . , kr), where kl = |iCl|, for all l, 1 ≤ l ≤ r.

A general formula to compute the values of µ̃ is given in the following theorem.

Theorem 3.1. [6] For any z ∈ iCs, s = 1, 2, . . . , r,

µ̃i(z) =

2

i,j∑
i≤s≤j
i6=j

 kikj∑
i≤t≤j

kt

+ ks

2sksk − k2
s

.

It is important to know when two consecutive join spaces in the associated se-
quence of a hypergroupoid are isomorphic or not. In this direction we have the
following result.

Theorem 3.2. [9] Let iH and i+1H be the join spaces associated with H determined

by the membership functions µ̃i and µ̃i+1, where iH =

r1⋃
l=1

Cl,
i+1H =

r2⋃
l=1

C ′l and

(k1, k2, . . . , kr1) is the r1-tuple associated with iH, (k′1, k
′
2, . . . , k

′
r2) is the r2-tuple

associated with i+1H.
The join spaces iH and i+1H are isomorphic if and only if r1 = r2 and
(k1, k2, . . . , kr1) = (k′1, k

′
2, . . . , k

′
r1) or (k1, k2, . . . , kr1) = (k′r1 , k

′
r1−1, . . . , k

′
1).

The length of the sequence of join spaces associated with H is called the fuzzy
grade of the hypergroupoid H, more exactly we give the following definition.

Definition 3.3. [7] A hypergroupoid H has the fuzzy grade m, m ∈ N∗, and we
write f.g.(H) = m if, for any i, 0 ≤ i < m, the join spaces iH and i+1H associated
with H are not isomorphic (where 0H = H) and for any s, s > m, sH is isomorphic
with mH. We say that the hypergroupoid H has the strong fuzzy grade m and we
write s.f.g.(H) = m if f.g.(H) = m and for all s, s > m, sH =mH.

4. Computation of the Fuzzy Grade of a Hypergroupoid

Let (H, ◦) be a hypergroupoid and ((rH, ◦r), µ̃r)r≥1 be the sequence of fuzzy
sets and of join spaces associated with H. Let Rµ̃i

be the equivalence relation on
the join space (iH, ◦i) defined by

xRµ̃i
y ⇐⇒ µ̃i(x) = µ̃i(y).

Then, for all i ≥ 0, Rµ̃i
is a regular equivalence and a congruence on iH (see [6]).
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It would be useful to know which is the fuzzy grade of a hypergroupoid H on the
base of the type of the n-tuple associated with H. We give some results for several
types of n-tuples. More precisely, we determine the fuzzy grade of a hypergroupoid
H with the property that |H/Rµ̃| ∈ {2, 3} (recall that µ̃0 = µ̃).

Proposition 4.1. Let (H, ◦) be a hypergroupoid of cardinality n.

1) If |H/Rµ̃| = 2, that is with H we associate the pair (k1, k2), and
a) if k1 = k2, then we have s.f.g.(H) = 2.
b) if k1 6= k2, then we have f.g.(H) = 1.

2) If |H/Rµ̃| = 3, that is with H we associate the triple (k1, k2, k3), and
a) if k1 = k2 = k3, then we have f.g.(H) = 2.
b) for k1 = k3 6= k2 we have f.g.(H) = 2 if k2 6= 2k3 and s.f.g.(H) = 3

if k2 = 2k3.
c) if k1 < k2 = k3 we have f.g.(H) = 1.
d) for k1 = k2 < k3 we have f.g.(H) = 1 if P = 2k3

3−8k3
1−k2

1k3+5k1k
2
3 >

0 and f.g.(H) = 3 otherwise.
e) for k1 6= k2 6= k3, there is no precise order between µ̃1(x), µ̃1(y), µ̃1(z).

Proof. 1) If the hypergroupoid H has two classes of equivalence, i.e. H = C1

⋃
C2,

where |C1| = k1 and |C2| = k2, with k1 + k2 = n = |H|, then one distinguishes the
following two cases:

a) k1 = k2; by Theorem 3.1, one finds that µ̃1(x) = µ̃1(y), for any x ∈ C1 and
any y ∈ C2. It follows that the join space 2H is a total hypergroup and
therefore s.f.g.(H) = 2.

b) k1 < k2; by Theorem 3.1, µ̃1(x) =
k1 + 3k2

n(k1 + 2k2)
, for any x ∈ C1 and

similarly, µ̃1(y) =
k2 + 3k1

n(k2 + 2k1)
, for any y ∈ C2. It is easy to see that

µ̃1(x) > µ̃1(y) which means that with 1H one associates the pair (k2, k1).
Thereby, by Theorem 3.2, it follows that 2H is isomorphic with 1H, so
f.g.(H) = 1.

2) We suppose now that the hypergroupoid H has three classes of equivalence:
H = C1

⋃
C2

⋃
C3, where |C1| = k1, |C2| = k2 and |C3| = k3, with k1 +k2 +k3 = n.

There exist the following possibilities:

a) k1 = k2 = k3 = k; by Theorem 3.1 it follows, for any x ∈ C1, y ∈ C2,

z ∈ C3, that µ̃1(x) =
8

15k
, µ̃1(y) =

11

21k
and µ̃1(z) =

8

15k
. Therefore,

µ̃1(x) = µ̃1(z) > µ̃1(y) and thus with the join space 1H one associates the
pair (k, 2k). By the case 1)b), we conclude that f.g.(H) = 2.

b) k1 = k3 6= k2; using again Theorem 3.1, it results that µ̃1(x) = µ̃1(z) 6=
6= µ̃1(y) as in the previous case. If k2 6= 2k3, then f.g.(H) = 2; otherwise,
if k2 = 2k3, it follows that the join space 2H is a total hypergroup and thus
s.f.g.(H) = 3.
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c) k1 < k2 = k3; by Theorem 3.1 one obtains, for any x ∈ C1, y ∈ C2, z ∈ C3,

µ̃1(x) =

1 + 2k2

(
1

k1 + k2
+

1

k1 + 2k2

)
k1 + 4k2

,

µ̃1(y) =

2 + 2k1

(
1

k1 + k2
+

1

k1 + 2k2

)
4k1 + 3k2

,

µ̃1(z) =
2 +

2k1

k1 + 2k2

2k1 + 3k2
.

We verify whether µ̃1(x) > µ̃1(y); this is equivalent with

1 + 2k2

(
1

k1 + k2
+

1

k1 + 2k2

)
k1 + 4k2

>

2 + 2k1

(
1

k1 + k2
+

1

k1 + 2k2

)
4k1 + 3k2

⇐⇒

8k3
2 − 2k3

1 − 5k2
1k2 + k1k

2
2 > 0⇐⇒

5k2(k2
2 − k2

1) + 3k3
2 − 2k3

1 + k1k
2
2 > 0 which is obviously true for k1 < k2.

Now we check if µ̃1(x) > µ̃1(z); that is

1 + 2k2

(
1

k1 + k2
+

1

k1 + 2k2

)
k1 + 4k2

>
2 +

2k1

k1 + 2k2

2k1 + 3k2
⇐⇒

8k3
2 − 2k3

1 − 7k2
1k2 + k1k

2
2 > 0⇐⇒

(k2 − k1)(2k2
1 + 9k1k2 + 8k2

2) > 0 which is clearly true for k1 < k2.

Finally, we see if µ̃1(y) = µ̃1(z), that is

2 + 2k1

(
1

k1 + k2
+

1

k1 + 2k2

)
4k1 + 3k2

=
2 +

2k1

k1 + 2k2

2k1 + 3k2
⇐⇒

2k2
1 + k1k2 − 2k2

2 = 0.

Considering it as a second degree equation in k1 ∈ N∗, the solutions are
−k2 ±

√
17k2

2
, which are not natural numbers, so µ̃1(y) 6= µ̃1(z).

We conclude that µ̃1(x) > µ̃1(y) and µ̃1(x) > µ̃1(z), with µ̃1(y) 6= µ̃1(z);
therefore the triple associated with the join space 1H is (k2, k2, k1) and,
according to Theorem 3.2, the join spaces 2H and 1H are isomorphic and
thus f.g.(H) = 1.
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d) k1 = k2 < k3; again by the same theorem one obtains, for any x ∈ C1,
y ∈ C2, z ∈ C3,

µ̃1(x) =

2

(
1 +

k3

2k1 + k3

)
3k1 + 2k3

;

µ̃1(y) =

2

(
1 +

k3

k1 + k3
+

k3

2k1 + k3

)
3k1 + 4k3

;

µ̃1(z) =

1 + 2k1

(
1

k1 + k3
+

1

2k1 + k3

)
4k1 + k3

.

After a simple computation one finds µ̃1(x) 6= µ̃1(y) and µ̃1(x) > µ̃1(z).
Now we see when µ̃1(y) > µ̃1(z); this is equivalent to

P = P (k1, k3) = 2k3
3 − 8k3

1 − k2
1k3 + 5k1k

2
3 > 0.

Since k3 > k1, set k3 = k1 + l, with l ∈ N∗. Then P (k1, k3) = −2k3
1 +

2l3 + 15k2
1l + 11k1l

2. It is obvious that, for l ≥ k1, that is equivalent to
k3 ≥ 2k1, one finds P (k1, k3) > 0. For l < k1 the result is variable: there
are several values of (k1, k3) such that P (k1, k3) > 0 and several values such
that P (k1, k3) < 0.

If P > 0, then µ̃1(z) < µ̃1(y) and µ̃1(z) < µ̃1(x), with µ̃1(x) 6= µ̃1(y).
As in the previous case, it results that f.g.(H) = 1.

If P < 0, then µ̃1(y) < µ̃1(z) < µ̃1(x) and the triple associated with
the join space 1H is (k1, k3, k1). By the second case of 2), with the join
space 2H one associates the pair (2k1, k3), with 2k1 6= k3 (if 2k1 = k3, then
P > 0) and thus f.g.(H) = 3 (for example, if k1 = k2 = 10 and k3 = 11,
then P < 0 and f.g.(H) = 3).

e) k1 6= k2 6= k3; using Theorem 3.1, for any x ∈ C1, y ∈ C2, z ∈ C3, we
obtain

µ̃1(x) =
1 +

2k2

k1 + k2
+

2k3

k1 + k2 + k3

k1 + 2k2 + 2k3

µ̃1(y) =
k2 + 2

k1k2

k1 + k2
+ 2

k1k3

k1 + k2 + k3
+ 2

k2k3

k2 + k3

2k1k2 + 2k1k3 + k2
2 + 2k2k3

µ̃1(z) =
1 +

2k1

k1 + k2 + k3
+

2k2

k2 + k3

2k1 + 2k2 + k3
.

It is simple to verify that µ̃1(x) > µ̃1(y) and µ̃1(x) > µ̃1(z). We can not
say that for any triple (k1, k2, k3) there is the same relation between µ̃1(y)
and µ̃1(z). For example, if k1 < k2 < k3,

taking (k1, k2, k3) = (10, 11, 12) we have µ̃1(y) > µ̃1(z);
taking (k1, k2, k3) = (20, 21, 22) we have µ̃1(y) < µ̃1(z).
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Similarly, if k1 < k3 < k2, then
for (k1, k2, k3) = (1, 3, 2) we have µ̃1(y) < µ̃1(z);
for (k1, k2, k3) = (10, 20, 19) we have µ̃1(y) > µ̃1(z).

So, there is no order between µ̃1(x), µ̃1(y), µ̃1(z).

�
We conclude this section with a general result regarding the membership func-

tion µ̃ for a hypergroupoid with the associated r-tuple of a symmetric form. We
distinguish two cases, depending on the parity of r.

Proposition 4.2. Let r be an odd number and (k1, k2, . . . , ks−1, ks, ks−1, . . . , k2, k1),
with s = (r + 1)/2, be the r-tuple associated with a hypergroupoid H, that is
H =

⋃r
i=1 Ci, with |Ci| = ki, for any i = 1, 2, . . . , r as in Proposition 4.1. Then,

for any x ∈ Ci and y ∈ Cr−i+1, we have µ̃(x) = µ̃(y), whenever i = 1, 2, . . . , s− 1.

Proof. It follows directly from Theorem 3.1. �

Proposition 4.3. Let r be an even number and (k1, k2, . . . , ks−1, ks, ks, ks−1, . . . , k2, k1),
with s = r/2, be the r-tuple associated with a hypergroupoid H, that is H =

⋃r
i=1 Ci,

with |Ci| = ki, for any i = 1, 2, . . . , r as in Proposition 4.1. Then, for any x ∈ Ci
and y ∈ Cr−i+1, we have µ̃(x) = µ̃(y), whenever i = 1, 2, . . . , s.

Proof. It follows directly from Theorem 3.1. �

5. Fuzzy Grade of a Complete Hypergroup

In this section we determine the fuzzy grade of particular finite complete hyper-
groups.

Let (H, ◦) be a complete hypergroup, that is H can be partitioned as the union

H =
⋃
g∈G

Ag, as in Theorem 2.3.

If G is a commutative group, then H is a commutative complete hypergroup,
that is a join space.

If |H| = |G| = n, then Agi = {ai}, for all i = 1, 2, ..., n, ai ∈ H, and thus,
for any (a, b) ∈ H2, |a ◦ b| = 1. Therefore H is a group. Moreover, any group
is a complete hypergroup. In the following we will consider only finite complete
hypergroups which are not groups, so m = |G| < |H| = n.

Take G = {g1, g2, ..., gm}. By the definition, it results that the structure of any
complete hypergroup H of cardinality n is determined by an m-tuple, 2 ≤ m ≤
n − 1, denoted by [k1, k2, ..., km], where, for any i ∈ {1, 2, ...,m}, ki = |Agi | and
k2 ≤ k3 ≤ . . . ≤ km.

If H is a complete 1-hypergroup, then |Ag1 | = |ωH | = 1, where g1 is the identity
of the group G, and then H is of the type [1, k2, k3, ..., km].

Theorem 5.1. [4], [14] Let H be a complete hypergroup. Then, for any u ∈ H,

µ̃(u) =
1

|Agu |
.

Remark 5.2. If G1 and G2 are non isomorphic groups of the same cardinality m
and H1, H2 are the complete hypergroups obtained with G1 and G2, respectively,
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then f.g.(H1)=f.g.(H2). Consequently, the fuzzy grade of a complete hypergroup
H does not depend on the considered group G, but only on the m-decomposition
of n.

Now, we will calculate the fuzzy grade of a complete hypergroup H of cardinality
n, constructed from the group G with |G| ∈ {2, 3}.

Case 1: |G| = 2; H = Ag1 ∪Ag2 , with |Agi | = ki, i = 1, 2.
The structure of H is represented by [k1, k2], k1 6= k2, if n is an odd number
and thus µ̃(x) = 1/k1, µ̃(y) = 1/k2, for any x ∈ Ag1 and y ∈ Ag2 . By
Proposition 4.1 it follows that s.f.g.(H) = 1. On the other hand, if n is an
even number, H is represented by [k1, k2], k1 6= k2, and [n/2, n/2]. In both
situations, by Proposition 4.1 it follows that s.f.g.(H) = 1; in the last one,
the associated join space 1H is a total hypergroup.

Case 2: |G| = 3; H = Ag1 ∪Ag2 ∪Ag3 , with |Agi | = ki, i = 1, 2, 3.
The structure of H is represented by [k1, k2, k3], with n = k1 + k2 + k3,
k2 ≤ k3. We have to study four possibilities:

(i) k1 = k2 = k3 = k ≥ 2, then µ̃(x) =
1

k
, for any x ∈ H, so the associated

join space 1H is a total hypergroup and thus s.f.g.(H) = 1.
(ii) Two of the numbers ki are equal to the half of the third one; with the

hypergroup (H, µ̃) we associate the pair (k, k). Then the join space
2H is a total hypergroup and thus s.f.g.(H) = 2.

(iii) Two of the numbers ki are equal and different from the half of the third
one; then the pair associated with the hypergroup (H, µ̃) has the form
(k, l), k 6= l; therefore, by Proposition 4.1 it follows that f.g.(H) = 1;

(iv) k1 6= k2 6= k3; in this case with the hypergroup (H, µ̃) it is associated
the triple (ki, kj , kl), i 6= j 6= l ∈ {1, 2, 3}, with ki 6= kj 6= kl. Accord-
ing to Proposition 4.1, we have no general rule for determining the
fuzzy grade of a such hypergroup.

Cristea [14] has determined the fuzzy grade of all complete hypergroups of
order less than 7. We recall here this result.

Theorem 5.3. [14] Let H be a complete hypergroup of order n ≤ 6.

(i) For n = 3, s.f.g.(H) = 1.
(ii) For n = 4, there are three hypergroups with s.f.g.(H) = 1 and two hyper-

groups with s.f.g.(H) = 2.
(iii) For n = 5, s.f.g.(H) = 1.
(iv) For n = 6, there are seventeen hypergroups of s.f.g.(H) = 1 and four

hypergroups of s.f.g.(H) = 2.

Next we will determine the fuzzy grade of some finite complete 1-hypergroups.
Then we will generalize their structures, obtaining other complete hypergroups that
are no longer 1-hypergroups.

Proposition 5.4. If H is a complete 1-hypergroup of the type [1, 1, ..., 1︸ ︷︷ ︸
k times

, k], where

n = |H| = 2k, then s.f.g.(H)=2.
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More general, if the structure of the complete hypergroup H, that is no longer
an 1-hypergroup, is represented by [p, p, ..., p︸ ︷︷ ︸

k times

, kp], where n = |H| = 2kp, then

s.f.g.(H)=2.

Proof. We suppose that the structure of H is determined by the (k + 1)-tuple
[p, p, ..., p︸ ︷︷ ︸
k times

, kp]. By Theorem 5.1, it results that the pair associated with the hy-

pergroup (H, µ̃) is (kp, kp), therefore, by Proposition 4.1, we conclude that the
associated join space 2H is a total hypergroup and s.f.g.(H) = 2. �

Proposition 5.5. Let H be a complete 1-hypergroup of the following type:
[1, 1, ..., 1︸ ︷︷ ︸
l times

, k, k, ..., k︸ ︷︷ ︸
p times

, l], with 1 < k < l, p ≥ 1, n = |H| = kp+ 2l.

(i) If kp = 2l, then s.f.g.(H) = 3.
(ii) If kp 6= 2l, then f.g.(H) = 2.

Proof. We use again Theorem 5.1.

(i) If kp = 2l, then with the hypergroupoid (H, µ̃) it is associated the triple
(l, 2l, l) and thus, by Proposition 4.1, it follows that s.f.g.(H) = 3, with
the associated join space 3H a total hypergroup.

(ii) If kp 6= 2l, then the triple associated with the hypergroup (H, µ̃) is (l, kp, l).
According to Proposition 4.1, it follows that f.g.(H) = 2. �

Remark 5.6. Generalizing Proposition 5.5 for the complete hypergroups of the
type [p, p, . . . , p︸ ︷︷ ︸

s times

, k, k, . . . , k︸ ︷︷ ︸
t times

, ps], with 2 ≤ p < k < ps, n = |H| = 2ps+ kt, that are

no longer 1-hypergroups, we obtain, for n = 4ps, s.f.g.(H) = 3, and for kt 6= 2ps,
f.g.(H) = 2.

Proposition 5.7. Let H be a complete 1-hypergroup of the following type:
[1, 1, . . . , 1︸ ︷︷ ︸
l times

, k, k, . . . , k︸ ︷︷ ︸
p times

, p, p, . . . , p︸ ︷︷ ︸
k times

, l], with 1 < k < p < l, n = |H| = 2(l + pk).

(i) If pk = l, then s.f.g.(H) = 3.
(ii) If pk 6= l, then f.g.(H) = 2.

Proof. From Theorem 5.1, with the hypergroupoid (H, µ̃) it is associated the 4-tuple
(l, pk, pk, l) and then, from Proposition 4.3, with the join space 1H it is associated
the pair (2l, 2pk).

If l = pk then with the join space 2H it is associated (4l); thus 3H is a total
hypergroup and s.f.g.(H) = 3.

If pk 6= l, by Proposition 4.1, we have f.g.(H) = 2. �

Remark 5.8. Generalizing Proposition 5.7 for the complete hypergroups of the
type [k, k, . . . , k︸ ︷︷ ︸

l times

, p, p, . . . , p︸ ︷︷ ︸
s times

, s, s, . . . , s︸ ︷︷ ︸
p times

, l, l, . . . , l︸ ︷︷ ︸
k times

], ( which are not 1-hypergroups),
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with 2 ≤ k < p < s < l, n = |H| = 2(ps + kl), we obtain, for kl = ps, that
s.f.g.(H) = 3 and, for kl 6= ps, that f.g.(H) = 2.

6. A Method to Construct a Hypergroup H with s.f.g.(H) = s

In [15], the second author has investigated the fuzzy grade of a finite hyper-
groupoid verifying a certain property, obtaining a fundamental result, that we
summarize as it follows.

Theorem 6.1. Let H be the finite hypergroupoid H = {x1, x2, . . . , xn}, with n = 2s,
s ∈ N∗, which verifies the relation µ̃(x1) < µ̃(x2) < . . . < µ̃(xn), i.e. the n-tuple
associated with H is (1, 1, . . . , 1). Then the join space s+1H is a total hypergroup
and by consequence s.f.g.(H) = s+ 1.

In [15], it has proven that, µ̃1(xi) = µ̃1(xn+1−i), whenever i = 1, 2, . . . , n/2
and, for any i < j ≤ n/2, µ̃1(xi) > µ̃1(xj); therefore with the join space (1H, µ̃1)
is associated the r1-tuple (2, 2, . . . , 2), with r1 = 2s−1. Then with the join space
(2H, µ̃2) is associated the r2-tuple (4, 4, ..., 4), with r2 = 2s−2 and so on; with the
join space (s−1H, µ̃s−1) one associates the pair (2s−1, 2s−1); thereby the join space
s+1H is a total hypergroup. In conclusion, s.f.g.(H) = s+ 1.

The same procedure can also be used if with the hypergroup (H, µ̃) one associates
the r-tuple (k, k, ..., k), where r = 2s and n = |H| = 2sk. Similarly, we obtain
s.f.g.(H) = s + 1. A such hypergroup always exists; in particular, for k = 2,
that is n = 2s+1, we can consider the hypergroup H = {a1, a2, ..., an} with the
hyperproduct defined by

ai ◦ ai = ai, for any i ∈ {1, 2, ..., n},
ai ◦ aj = aj ◦ ai = {ai, ai+1, ..., aj}, for any i, j, 1 ≤ i < j ≤ n.

Now we construct a complete 1-hypergroup such that one associates with H the
m-tuple (k, k, ..., k), with m = 2s−1, so n = |H| = 2s−1k. For instance, let H be of
the type

[1, 1, . . . , 1︸ ︷︷ ︸
k times

, 2, 2, . . . , 2︸ ︷︷ ︸
k
2 times

, 3, 3, . . . , 3︸ ︷︷ ︸
k
3 times

, . . . ,m− 1,m− 1, . . . ,m− 1︸ ︷︷ ︸
k

m−1 times

, k],

where k = LCM(1, 2, . . . ,m− 1), i.e. the smallest natural number divisible by any
i, 1 ≤ i ≤ m− 1. It follows that with H one associates the 2s−1-tuple (k, k, . . . , k)
and by the previous method we have s.f.g.(H) = s.

7. Conclusions and Future Work

With any hypergroupoid H one may associate a numerical function that com-
putes the fuzzy grade of H. In the case of a complete hypergroup constructed
from a group G, its value does not depend on the group G, but only on the m-
decomposition of the cardinality of H. In this paper, we have concentrated our
study on the sequences of join spaces associated with finite complete hypergroups
with particular decomposition.

Since Cristea and Davvaz [17] have defined the notion of Atanassov’s intuition-
istic fuzzy grade of a hypergroup, it is interesting to study it in the context of the
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complete hypergroups, doing a comparison between the two grades. This theme
will be discussed in future works [3], [21], [22], [23].
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[33] M. Ştefănescu and I. Cristea, On the fuzzy grade of the hypergroups, Fuzzy Sets and Systems,

159(9) (2008), 1097-1106.
[34] Y. Yin, J. Zhan and X. Huang, A new way to fuzzy h-ideals of hemirings, Iranian Journal of

Fuzzy Systems, 8(5) (2011), 81-101.

[35] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
[36] J. Zhan and B. Davvaz, Study of fuzzy algebraic hypersystems from a general viewpoint, Int.

J. Fuzzy Syst., 12(1) (2010), 73-79.
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