Unit S Student Success Sheet (SSS)

Trigonometric Identities Part 3 (section 5.5)

Standards: Trig 11.0
Segerstrom High School -- Math Analysis Honors

Reminders:

- \quad Practice Problems (PQ \& PT) are completed in spiral bound notebook only.
- All pages in spiral notebook should be labeled accordingly

Unit \qquad Concept \qquad - (title of assignment) Examples: Unit S Concept 1 - Practice Quiz Unit S Concept 1-4 - Practice Test

Need Help? Support is available!

- Website with all video links and resources:
kirchmathanalysis.blogspot.com
- Edmodo Group Codes for class communication:
http://bit.ly/edmodo2013
"If you want to achieve excellence, you can get there today. As of this second, quit doing less-than-excellent work." Thomas J Watson

Concept \#	What we will be learning...	Mandatory Practice	Optional Extra practice from textbook
1	Writing products as sums	Practice quiz 1	
2	Writing sums as products	Practice quiz 2	
3	Using power-reducing formulas	Practice quiz 3	
4	using half-angle formulas	Practice quiz 4	
5	Finding function values with double angles and half angles (right triangles)	Practice quiz 5	
6	Solving multiple angle equations (using multiple-angle identities)	Practice quiz 6	
7	solving equations with half-angle formulas	Practice quiz 8	

IN THIS UNIT...
We will conclude our study of trigonometric identities by looking at five more types of formulas: double-angle, halfangle, product to sum, sum to product, and power-reducing.
Like last unit, these formulas expand our usage of the unit circle from the main angles of $0,30,45,60$, and 90 to many more.

Double-Angle Formulas (See the proofs on page 405.)
$\sin 2 u=2 \sin u \cos u$
$\tan 2 u=\frac{2 \tan u}{1-\tan ^{2} u}$

$$
\begin{aligned}
\cos 2 u & =\cos ^{2} u-\sin ^{2} u \\
& =2 \cos ^{2} u-1 \\
& =1-2 \sin ^{2} u
\end{aligned}
$$

Half-Angle Formulas

$$
\begin{array}{ll}
\sin \frac{u}{2}= \pm \sqrt{\frac{1-\cos u}{2}} & \cos \frac{u}{2}= \pm \sqrt{\frac{1+\cos u}{2}} \\
\tan \frac{u}{2}=\frac{1-\cos u}{\sin u}=\frac{\sin u}{1+\cos u} &
\end{array}
$$

The signs of $\sin \frac{u}{2}$ and $\cos \frac{u}{2}$ depend on the quadrant in which $\frac{u}{2}$ lies.

Product-to-Sum Formulas

$$
\begin{aligned}
& \sin u \sin v=\frac{1}{2}[\cos (u-v)-\cos (u+v)] \\
& \cos u \cos v=\frac{1}{2}[\cos (u-v)+\cos (u+v)] \\
& \sin u \cos v=\frac{1}{2}[\sin (u+v)+\sin (u-v)] \\
& \cos u \sin v=\frac{1}{2}[\sin (u+v)-\sin (u-v)]
\end{aligned}
$$

$$
\begin{aligned}
& \sin ^{2} u=\frac{1-\cos (2 u)}{2} \\
& \cos ^{2} u=\frac{1+\cos (2 u)}{2} \\
& \tan ^{2} u=\frac{1-\cos (2 u)}{1+\cos (2 u)}
\end{aligned}
$$

Sum-to-Product Formulas (See the proof on page 406.)

$$
\begin{aligned}
& \sin u+\sin v=2 \sin \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right) \\
& \sin u-\sin v=2 \cos \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right) \\
& \cos u+\cos v=2 \cos \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right) \\
& \cos u-\cos v=-2 \sin \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right)
\end{aligned}
$$

Writing products as sums

1. ${ }^{6 \sin \frac{\pi}{3} \cos \frac{\pi}{3}} ; \mathrm{u}=$ \qquad $\mathrm{V}=$ \qquad
2. $5 \sin 3 \alpha \sin 4 \alpha ; u=$ \qquad $\mathrm{v}=$ \qquad

Additional Problems on "extra videos"

Extra video \#10 covers the following problems. Use these as extra practice and the videos as a guide if you need help.
m: m:
3. $4 \sin \frac{\pi}{3} \cos \frac{5 \pi}{6} \quad$ 4. $10 \cos 75^{\circ} \cos 15^{\circ}$

PQ problems:

5. $\sin 5 \theta \cos 3 \theta$
6. $6 \sin 45^{\circ} \cos 15^{\circ}$

PT problems:

7. $5 \cos (-5 \beta) \cos 3 \beta_{8}{ }^{\cos 2 \theta \cos 4 \theta}$ 9. $\frac{\sin (x+y) \sin (x-y)}{}$
8. 10. $\sin (x+y) \cos (x-y)$ 11. $\cos (\theta-\pi) \sin (\theta+\pi)$ 12. $\sin (\theta+\pi) \sin (\theta-\pi)$

W2 Writing sums as products

1. $\sin 5 \theta-\sin \theta ; u=$ \qquad $\mathrm{v}=$ \qquad
2. $\sin 195^{\circ}+\sin 105^{\circ} ; \mathrm{u}=$ \qquad $\mathrm{v}=$ \qquad

Additional Problems on "extra videos"

Extra video \#11 covers the following problems. Use these as extra practice and the videos as a guide if you need help.
3. $\sin 3 \theta+\sin \theta$
4. $\cos 165^{\circ}-\cos 75^{\circ}$

PQ problems:
5. $\cos 6 x+\cos 2 x_{6}$. $^{\cos \frac{5 \pi}{12}+\cos \frac{\pi}{12}}$ 7. $\sin \frac{11 \pi}{12}-\sin \frac{7 \pi}{12}$

PT problems:

$$
\text { 8. } \sin ^{\sin x+\sin 7 x} g^{\cdot \sin (\alpha+\beta)-\sin (\alpha-\beta)} 10 . \cos (\phi+2 \pi)+\cos \phi
$$

$$
\cos \left(\theta+\frac{\pi}{2}\right)-\cos \left(\theta-\frac{\pi}{2}\right)_{12} \sin \left(x+\frac{\pi}{2}\right)+\sin \left(x-\frac{\pi}{2}\right)
$$

Using power-reducing formulas

1. $\cos ^{4} x=\cos ^{2} x \cos ^{2} x$
using power reducing formulas $=\frac{1+\cos (2 x)}{2} \frac{1+\cos (2 x)}{2}=$
FOILing the numerator $=\frac{1+2 \cos (2 x)+\cos ^{2}(2 x)}{4}$

Still not in the first power!

Let $m=2 x$
$\frac{1+2 \cos (2 x)+\cos ^{2}(m)}{4}$
$\cos ^{2} m=\frac{1+\cos (2 m)}{2} ;$ therefore $=\frac{1+\cos (4 x)}{2}$
Our whole equation of:
$\frac{1+2 \cos (2 x)+\cos ^{2}(2 x)}{4}$ now becomes: $\frac{1+2 \cos (2 x)+\frac{1+\cos (4 x)}{2}}{4}$
Now, we must make it look nicer... make all of the numerator have a denominator of 2
$\frac{\frac{2+4 \cos (2 x)+1+\cos (4 x)}{2}}{4}=$

Add like terms in the numerator and multiply top and bottom by $1 / 4$ to get rid of the 4 in the denominator
$\frac{3+4 \cos (2 x)+\cos (4 x)}{8}$
2. Try it with $\sin ^{4} x=$

Additional Problems on "extra videos"
Extra video \#8 covers the following problems. Use these as extra practice and the videos as a guide if you need help.
3. $\sin ^{4} x$ 4. $\sin ^{2} x \cos ^{4} x$

PQ problems:

5. $\sin ^{2} x \cos ^{2} x$
6. $\sin ^{4} x \cos ^{2} x$

PT problems:

7. $\sin ^{2} 2 x$
8. $\cos ^{2} 2 x$
9.

$\sin ^{2} 2 x \cos ^{2} 2 x$
$2 x \quad 8$
$2 x \cos ^{2} 2 x$

畀』 using half-angle formulas

1. $15^{\circ} ; \mathrm{u}=\ldots$, $\mathrm{u} / 2 \mathrm{is} \mathrm{in} \mathrm{quadrant}$
2. $\frac{\pi}{8}$; u= \qquad ; $u / 2$ is in quadrant \qquad , so sine is \qquad cosine is \qquad
\qquad
3. 112.5°; $u=$ \qquad $; u / 2$ is in quadrant \qquad so sine is \qquad cosine is \qquad

4. $\frac{3 \pi}{8}$ $\frac{3 \pi}{8}$;u= \qquad ; u/2 is in quadrant \qquad so sine is \qquad cosine is \qquad

Additional Problems on "extra videos"
Extra video \#9 covers the following problems. Use these as extra practice and the videos as a guide if you need help.
5. $\frac{\pi}{12}$

PQ problems:

6. $165^{\circ} \quad 7 . \frac{7 \pi}{8}$

PT problems:

8.

$\frac{7 \pi}{12}$
9.

Finding function values with double angles and half angles (right triangles)

0 to 90 - Half angle - $\mathbf{0}$ to 45 still 1st quadrant! 90 to 180 Half angle -45 to 901 st quadrant!	180 to 270 Half angle - 90 to 135 2nd quadrant! 270 to 360 Half angle - $\mathbf{1 3 5}$ to $\mathbf{1 8 0}$ - 2 nd quadrant!
$\begin{aligned} & \sin \theta=-\frac{5}{13} \text { and } \pi<\theta<\frac{3 \pi}{2} \\ & \text { Find } \sin \frac{\theta}{2} \\ & \text { 1. } \end{aligned}$ $\frac{\theta}{2}$ is in Quadrant \qquad II ; \sin is \qquad positive You are identifying the quadrant for the HALF ANGLE $\frac{\theta}{2}$ from the information they give you about the REAL ANGLE θ	$\begin{aligned} & +\sqrt{\frac{1-\cos u}{2}}=+\sqrt{\frac{1--\frac{12}{13}}{2}} \\ & =+\sqrt{\frac{25}{26}}=+\frac{5}{\sqrt{26}}=+\frac{5 \sqrt{26}}{26} \end{aligned}$
$\tan \theta=-\frac{7}{24}$ and $\frac{3 \pi}{2}<\theta<2 \pi$ Find $\sin \frac{\theta}{2}$ 2. Quadrant \qquad ; \sin is \qquad	$\cot \theta=\frac{\sqrt{21}}{2}$ and $0<\theta<\frac{\pi}{2}$ Find $\cos \frac{\theta}{2}$ 3. Quadrant \qquad ; \cos is \qquad
$\cos \theta=-\frac{\sqrt{105}}{19} \text { and } \frac{\pi}{2}<\theta<\pi$ Find $\sin \frac{\theta}{2}$ 4. Quadrant \qquad ; \sin is \qquad	$\sec \theta=-\frac{5}{4}$ and $\pi<\theta<\frac{3 \pi}{2}$ Find $\tan \frac{\theta}{2}$ 5. Quadrant \qquad ; \tan is \qquad

0 to 90 - Double angle - 0 to 180 - in 1st or 2nd quadrant	90 to 180 Double angle - 180 to 360 (3rd or 4th quadrant)	180 to 270 Double angle - 360 to 540-1st or 2nd quadrant	270 to 360 Double angle - 540 to 720 - 3rd or 4th quadrant
6. $\csc \theta=\frac{5}{3}$ and $\frac{\pi}{2}<\theta<\pi$ Find $\cos 2 \theta$		$\begin{aligned} & \cos ^{2} u-\sin ^{2} u \\ & \left(\frac{4}{5}\right)^{2}-\left(\frac{3}{5}\right)^{2}=\frac{16}{25} \end{aligned}$	$-\frac{9}{25}=\frac{7}{25}$

$$
\begin{aligned}
& \tan \theta=\frac{5}{12} \text { and } \pi<\theta<\frac{3 \pi}{2} \\
& \text { Find } \sin 2 \theta
\end{aligned}
$$

7.

Quadrant \qquad _;

$$
\sin \theta=\frac{7}{25} \text { and } \frac{\pi}{2}<\theta<\pi
$$

Find $\tan 2 \theta$

8.

Quadrant \qquad ;
$\tan \theta=\frac{3}{4}$ and $0<\theta<\frac{\pi}{2}$
Find $\cos 2 \theta$
9.

Quadrant \qquad _;
$\csc \theta=-\frac{25}{7}$ and $\frac{3 \pi}{2}<\theta<2 \pi$
Find $\tan 2 \theta$
10.

Quadrant \qquad ;

Additional Problems on "extra videos"
Extra video \#12 covers the following problems. Use these as extra practice and the videos as a guide if you need help.

```
11.
\(\cos u=-\frac{2}{7}, \quad \pi / 2<u<\pi\)
```

12.
```
sec u=-\frac{5}{2},\quad\pi/2<u<\pi
```

```
sec u=-\frac{5}{2},\quad\pi/2<u<\pi
```

PQ problems: Find the half angle and double angle values for all three trig functions (6 parts per problem). In addition, once you find the original three trig functions, find the reciprocal trig functions as well.
13. $\tan u=\frac{1}{2}, \quad \pi<u<3 \pi / 2$ 14. $\csc u=3, \quad \pi / 2<u<\pi$

PT problems: Find the half angle and double angle values for all three trig functions (6 parts per problem). In addition, once you find the original three trig functions, find the reciprocal trig functions as well.
15. $\sin u=\frac{3}{5}, \quad 0<u<\pi / 2$
16. $\cot u=-6, \quad 3 \pi / 2<u<2 \pi$

睤 6 Solving multiple angle equations (using multiple-angle identities)

*Please note to graph, mode must be in radians!

1. $\sin 2 x-\sin x=0 \quad$ algebraically
2. $\sin 2 x \sin x=\cos x$ algebraically
3. $(\sin 2 x+\cos 2 x)^{2}=1$ graphically
4. $\sin 6 x+\sin 2 x=0 \quad$ graphically

Additional Problems on "extra videos"
Extra video \#13 covers the following problems. Use these as extra practice and the videos as a guide if you need help.
5.
$\sin 2 x+\cos x=0$
6.
$\cos 2 x-\cos x=0$
$\cos 2 x+\sin x=0$

PQ problems:

8. $4 \sin x \cos x=1$
9. $\tan 2 x-\cot x=0$
$\tan 2 x-2 \cos x=0$

PT problems:

$\cos 2 x$
11.
$\sin 4 x=-2 \sin 2 x$
12.
$\sin 3 x-\sin x$
$1=0$
$\sin ^{2} 3 x-\sin ^{2} x=0$
13.

単7 solving equations with half-angle formulas

1.

$\sin \frac{x}{2}-\cos x=0$
2. $\frac{1-\cos x}{2}=\cos ^{2} x$

DON'T FORGET TO CHECK FOR EXTRANEOUS SOLUTIONS ANYTIME YOU "square both sides" IN THE PROCESS OF SOLVING!

Additional Problems on "extra videos"
Extra video \#14 covers the following problems. Use these as extra practice and the videos as a guide if you need help.

- - - =-=-
$\sin \frac{x}{2}+\cos x-1=0$PQ problems:

4.

$\cos \frac{x}{2}-\sin x=0$

PT problems:
5.

$$
\tan \frac{x}{2}-\sin x=0
$$

|AOSWQSR K®N \quad See kirchmathanalysis.blogspot.com for answer key to most problems in this packet!

