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Abstract 

In many computer vision applications, segmenting and extraction of moving 

objects in video sequences is an essential task. Background subtraction, by which 

each input image is subtracted from the reference image, has often been used for 

this purpose. In this paper, we offer a novel background-subtraction technique for 

real-time dynamic background generation using color images that are taken from 

a static camera. The new algorithm, which is based on „temporal median filter 

with exponentially weighted moving average (EWMA) filtering‟, is presented that 

effectively implements a temporal mode operation. The proposed method has the 

advantage that the parameters of the algorithm are computed automatically. In 

addition, the new method could start its operation for a sequence of images in 

which moving objects are included. The efficiency and robustness of the new 

algorithm is confirmed by the results obtained on a number of outdoor image 

sequences. 
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1. Introduction 

In the recent years many algorithms for moving 

object detection in applications such as video 

surveillance, human detection, traffic monitoring and 

human-machine interaction have been proposed [1-11, 

13]. The first step in most of these algorithms is to find 

a background or a reference image. For this purpose a 

background subtraction technique is used which 

distinguishes moving objects (e.g., humans in a parking 

lot or cars on a freeway) from the background scene. In 

order to find the objects‟ regions, the current image is 

then subtracted from the reference image. Hence non-

stationary objects are left over. 

In a typical approach for background estimation, the 

reference image is obtained when the scene is static 

(i.e., there is no background motion). However, since 

there are variations in lighting conditions caused by 

changes in the environment light level (due to changing 

position of the sun light, clouds, shadows), updating 

techniques should be applied to reference image in 

order to keep it up-to-date [10]. 

In a realistic situation, it may sometimes be 

impractical for a surveillance system to acquire a 

background image with no moving objects (e.g., for a 

traffic surveillance system which monitors scene of a 
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street or highway) and sometimes stationary objects are 

moved away from the scene (e.g., a parked car is taken 

out or a gate is opened and then left opened). To 

overcome these problems a dynamic background 

generation technique should be used [11]. 

The rest of the paper is organized into six sections 

and one appendix. Section 2 deals with three existing 

methods for background generation. Section 3 describes 

the proposed algorithm. In section 4, the selection of 

parameters is discussed. Speed-up techniques for the 

computation of two parameters of the algorithm are 

described in section 5. Section 6 deals with the 

experimental results and analysis of our proposed 

method applied to several video sequences. In section 7, 

we provide conclusions and some suggestions for future 

work of the algorithm. Finally, in the appendix an 

EWMA filter based on an adaptive-control smoothing 

method is described. 

2. Existing Methods of Background Generation 

We shall now take a look at three different methods 

for background generation [9]. The first method is 

almost impossible to implement. The second technique 

needs a large amount of memory and its results are 

poor. The proposed algorithm is an extension of the 

third method and it uses an EWMA filter to reduce the 

effect of noise and residues of foreground objects. 

2.1. Snapshot Method 

“The first technique, termed the „snapshot‟ method, 

simply involves waiting until there has been no 

movement in the scene for a period of time, and then 

recording the image as the background frame. 

However, there is no guarantee that there will be a 

period when the entire image is stationary. The 

snapshot method is readily expandable to color images, 

as we should wait until the R, G, B channels are all 

steady” [9]. 

2.2. Temporal Averaging 

“If it is assumed that movement occurs only for a 

tiny proportion of the time, we can construct a 

background frame by simply taking the average 

(throughout time) of the sequence of images. If a pixel 

was only covered by a moving object for, say, 0.01% of 

its time, then the average pixel value over time would 

(to 8-bit resolution) equate to the background. 

Temporal averaging produces poor results when 

movement occurs for long periods of time, or if an 

object lingers in a position for a long period of time. As 

a consequence of the averaging, a „motion blurring‟ 

effect occurs” [9]. See temporal averaging effect in Fi-

gure 2 in comparison with the input image in Figure 1. 

2.3. Temporal Median Filter 

“We can extend the principal of the snapshot method 

to look instead at individual pixels that are steady in 

value for a specified time, rather than waiting for the 

entire image to stabilize. The background frame is then 

created only from pixels that have been stable for more 

than the specified time. Note that our specification of 

„stable‟ must allow for some small variation in value to 

accommodate effects due to noise” [9]. 

3. The New Background Algorithm 

In this section a new algorithm for background 

generation is proposed. Firstly, a new method based on 

temporal median filter is explained in section 3.1. Then 

a pseudo code is presented in section 3.2. In section 3.3, 

it will be shown how some parts of the pseudo code 

should be modified in order to make the method noise 

tolerant. 

3.1. The Method Description 

“The algorithm utilizes two bitmaps, BL and BS. BL 

holds the background bitmap that will develop as the 

algorithm processes the incoming frames, and BS holds 

the last frame from the camera. 

Each pixel in BL has two timers associated with it, TL 

and TS. TL is called the long term timer, and counts the 

number of frames that a pixel in BL has been steady in 

value. Thus as each new pixel value arrives, it is 

compared to the existing one in BL. If it is within a 

tolerance  of BL then TL is incremented and the pixel in 

BL is replaced with the value of the new pixel. 

TS, the short term timer, counts the number of frames 

for which the pixel differed from the value in BL. Thus if 

a pixel is suddenly covered by a new object, TS will 

increase and TL will remain the same. When TS > TL the 

pixel has been at the „new‟ value for longer than the 

value in BL, and so we may assume that the new value is 

part of the background. In this case the pixel is copied 

to BL and BS, and TS is reset to zero. 

A few additional constraints are required since a 

limit  should be imposed on TL, as the latter could 

increase in size over several days, requiring a newly 

positioned object to be present in the scene for several 

days before it is accepted into the background image. A 

typical value for  might be 7500 (5 min ×60 s/min ×25 

frames/s), requiring an object to be present for 5 min 
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before it appears in the background. 

 

Figure 1.  Image taken by camera (Fld350.bmp). 

 

 

One further restriction is that TS must be reset to zero 

whenever a pixel in the incoming frame is not within  

of BS . Hence continually changing pixels will not be 

incorporated into the background. 

The algorithm slowly adapts to changes in the 

background image (for example the onset of dawn or 

dusk) as such changes will be within  of BL, so BL will 

exactly track the slowly changing scene regardless of 

the value of ” (this method description is from a 

presentation by Alistair E. May [9]). 

3.2. The Pseudo Code of the Algorithm 

The algorithm description in section 3.1 can also be 

presented in pseudo code format as follows: 

 

//  The lines preceded by numbers, need some 

//  modifications as will be explained in section 3.3 

 

if (input pixel value  [BL − , BL + ] ) { 

      inc (TL); 

1:   BL   input pixel value;      

}                                                 

else 

      if  (input pixel value  [BS − , BS + ] ){ 

           TS   0; 

           BS   input pixel value; 

      } 

      else{ 

2:          BS   input pixel value; 

             inc (TS ); 

      } 

if  (TS > TL) { 

3:        BL   input pixel value; 

4:        BS   input pixel value; 

 

Figure 2.  Temporal Mean (Mean420.bmp). 

 

 

           TS   0; 

} 

if  (TL > ) 

      TL  ; 

3.3. Temporal Median Filter with Exponentially 

Weighted Moving Average Filtering 

“One advantage of the temporal averaging technique 

is that noise (which manifests itself as high frequencies) 

is greatly reduced by the low-pass filter inherent in the 

method. Reducing the noise in the background image 

will improve results when we come to perform 

segmentation. 

The temporal median filter cannot reduce noise in 

this way, but it is easy to rectify it so it does. 

At the points in the code of section 3.2 where there is 

a new incoming pixel, instead of copying it to BS or BL, 

we should only add a proportion (e.g., 10%) of the new 

pixel to a proportion (e.g., 90%) of the existing one. The 

only exception to this rule is when TS = 0 (and thus 

there is a pixel value in BS, which is not the one we wish 

to re-use, as it has just changed significantly)” [9]. This 

effect is called a „simple exponential smoothing filter‟ 

as it is introduced in [14, chapter 4] and has an 

updating equation of the form: 

BL (x, y, t)    (1 − ) BL (x, y, t − 1) +  I(x, y, t) 

where BL (x, y, t), BL (x, y, t−1) are present and previous 

background bitmaps at position (x, y), I(x, y, t) is the 

current input image at position (x, y) and  is called the 

smoothing constant (0 ≤  ≤ 1). T = 1/ is the time 

constant that shows the length of time (or the number of 

frames, if every second is considered as 25 frames), 
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before which the input images are ignored and have no 

effect on updating of the background image. In fact, it 

shows how many recent frames should be considered in 

the updating of the reference image. 

Following the above statements, in the pseudo code 

of section 3.2, the lines preceded by numbers 1 and 3 

are replaced by “BL    (1 − ) . BL +  . input pixel 

value” and the lines numbered 2 and 4 are replaced by 

“BS    (1 − ) . BS +  . input pixel value” to reduce 

the effect of noise. 

4. Automatic Parameters Selection 

The selection of parameters has a great effect on the 

performance of the algorithm. In section 4.1 to 4.3 it 

will be shown how three parameters of the method the 

exponential smoothing constant , the threshold  and 

the upper limit on TL, i.e., ) should be selected. 

4.1. The Selection of  

The exponentially weighted moving average (EWMA) 

is a filter that is used for reduction of the amount of 

noise in dynamic systems. This filter gives more 

importance to more recent data by ignoring older data 

in an exponential manner. The operating characteristics 

of an EWMA filter are determined by the value of the 

smoothing constant  (0 ≤  ≤ 1). If the value of  is 

large, the smoothing filter output quickly tracks the 

changes and the fluctuations of input signals. However, 

if  is small, the filter slowly responds to the signal 

changes. Thus the correct choice of smoothing constant 

 has an important role on the efficiency of an EWMA 

filter. 

We are interested in choosing the value of  

depending on the changes of input pixels. “Several 

techniques have been developed to monitor and 

modify automatically the value of the smoothing 

constant in exponential smoothing. These techniques 

are usually called adaptive-control smoothing 

methods, because the smoothing parameter modifies 

or adapts itself to changes in the underlying time 

series. Trigg and Leach [15] have described a 

procedure for adaptive control of a single exponential 

smoothing constant, such as, for example, simple 

smoothing ST =  xT + (1 − ) ST−1 for a constant 

process. Trigg and Leach automatically adjust the 

value of the smoothing constant by setting: 

(T) = | Q(T) / ̂ (T) | 

Their method is based on the smoothed error 

tracking signal Q(T)/ ̂ (T) where Q(T) is the smoothed 

forecast error and ̂ (T) is the smoothed mean absolute 

deviation, both computed at the end of period T” [14, 

chapter 9]. The details of the computation of (T) for 

each pixel are lengthy and are given in the Appendix. 

4.2. The Selection of Threshold  

“The choice of  should be slightly higher than the 

perturbations in pixel value due to noise. The algorithm 

is fairly noise tolerant, as a noise impulse on a pixel will 

temporarily increase TS but not too much so it will rise 

above TL. At worst a noise impulse could stop a piece of 

the scene from being incorporated into the background. 

Consider the situation where TS is close to TL, so that BS 

contains a pixel that is a good candidate for the 

background. If a new pixel arrives for this position that 

deviates by more than  from BS due to noise, then TS is 

reset and we must wait for  frames before the pixel 

ever has a chance of being incorporated into the 

background again. 

If the value chosen for  is too low, then noise will 

cause problems due to the aforementioned effect. If  is 

too high, then we start to see parts of moving objects 

appearing in the background, as the algorithm is too 

insensitive to movement” [9]. Figures 3 to 6 illustrate 

these effects. 

Since the selection of  has a great effect on the 

behavior of the algorithm, a technique is presented here 

which we will call „noise estimation‟. Thus based on the 

contents of the images the system can automatically 

determine a suitable value for  and for each color 

channel separately. 

As stated above,  should be slightly higher than the 

noise level. If it is assumed that the noise in the image is 

of type additive zero mean Gaussian noise, then the 

standard deviation of noise is an estimate of the noise 

level for each frame and it is an appropriate choice for 

the threshold . 

A fast estimation of the noise variance for each 

image can easily be obtained as presented in the paper 

by John Immerkær [12]. Noise is estimated by using a 

mask operator N of the form in Figure 7. The mask 

operator N has zero mean and variance 36n
2
 assuming 

that the noise at each pixel has a standard deviation of 

n. If the mask N is applied to 

 

 1 -2 1 

N = -2 4 -2 

 1 -2 1 
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Figure 7.  Noise estimation mask operator. 

 

Figure 3.  Temporal Median (Tm350.bmp), =1. 

 

 

 

Figure 5.  Temporal Median (Tm350.bmp), =10. 

 

 

all pixels of the input image, then the variance of the 

noise can be computed as: 

2 2

image I

1
( ( , ) * N)

36 ( 2)( 2)
n I x y

W H
 

 
  

where I(x, y) denotes the position (x, y) of the input 

image, and W and H stand for the image width and 

height, respectively. The standard deviation of the noise 

should be computed for each color channel separately. 

The threshold levels are integer values, thus the results 

obtained are rounded up. 

4.3. Choice of  

For the choice of , if the video surveillance system 

is going to operate in indoor or outdoor scenes  

 

Figure 4.  Temporal Median (Tm350.bmp), =5. 

 

 

 

Figure 6.  Temporal Median (Tm350.bmp), =30. 

 

 

permanently, then any value in the range of a few 

minutes will work well. Thus the value of 7500 frames 

(for 5 min) is a reasonable and suitable default value 

for . However, if the algorithm is being tested offline 

on a sequence of images consisting of several hundred 

frames (e.g. 400 to 600 frames), then  should be set at 

least to 10 to 15 percent of the number of frames (i.e., 

40 to 60 frames as the minimum value for ). 

5. Speed-Up Techniques for Computing  
the Parameters 

5.1. A Speed-Up Technique for the Computation of  

The selection of the smoothed constant  is based on 

the approach presented in section 4.1 (and in the 

Appendix). In order to alleviate the complexity of the 
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computations of smoothed constant (T) for each pixel, 

we use the following technique: 

 If the absolute difference between the input pixel 

intensities and the previous pixel intensities is less 

then or equal to 2, use the previous values of (T) for 

the new input pixel (i.e., all those computations for 

Q(T) and ̂ (T) that lead to the computation of (T) 

for each color channel are not needed to be 

accomplished). 

Since many pixels have almost the same intensities in 

two or three successive frames, a significant reduction 

in the number of calculations for (T) could be 

achieved. 

For implementing this technique, we just need to 

keep a previous image in memory. For each input pixel, 

we compare the pixel intensities in three color-channels 

with its corresponding pixel intensities in the previous 

image. If for either color channel, the absolute 

difference between input pixel intensity and the previous 

pixel intensity is greater than 2, the computation of (T) 

is done for all three channels and the input pixel 

intensities are copied to the previous image. Thus, after 

processing several frames, previous image pixel 

intensities would be obtained from different frames. 

The quality of background images using this speed-

up technique is very similar to the quality of reference 

images obtained based on the full computation of (T) 

for all the pixels. However, the experiments show this 

technique reduces on the average about 20 percent the 

processing time of computation of (T) for each frame 

(e.g. 60 ms is reduced to 50 ms). 

5.2. A Speed-Up Technique for the Computations of 

the Thresholds 

We use „noise estimation‟ method to compute the 

noise level for three color channels and each frame 

separately. However, the noise level is often due to 

camera noise that is fixed for all frames. Thus one of the 

following techniques can be used for speeding up the 

computation of threshold  for each color channel: 

 „Noise estimation‟ can be applied to a number of 

initial images to compare the threshold levels for 

three color channels of successive frames. If the 

threshold levels of corresponding color channels are 

the same, we can use those threshold levels for all 

the input images. In this case, no time is spent for the 

computation of threshold  for the remaining input 

images. 

 If the threshold levels change but very rarely (e.g. 

due to rounding up) or if we want to be more 

conservative by assuming that the camera noise level 

may change suddenly, for example, by fluctuating the 

environment lighting condition, we can still apply 

„noise estimation‟ method first to red channel for 

frame „i‟, then to green channel for frame „i + 1’ and 

finally to blue channel for frame „i + 2’. This process 

can be repeated for all the succeeding frames and 

previous values of threshold levels are utilized for 

the other two channels. This speed-up technique can 

reduce the computation time for at least 5 to 10% in 

comparison with the computation of threshold levels 

for all three channels. 

6. Experimental Results and Analysis 

Using an adaptive-control smoothing method for the 

computation of  is justified in section 6.1. In section 

6.2 the results of applying the algorithm to several 

sequences of images are shown and the results are 

analyzed. 

6.1. Justification for Using an Adaptive-Control 

Smoothing Method for the Computation of  

In section 4.1 and in the Appendix, the Trigg and 

Leach‟s adaptive-control smoothing method [15] was 

explained. In addition, in section 5.1, a speed-up 

technique for the computation of (T) was offered. A 

possible question that may be asked is the reason for 

using such lengthy computations for  rather than using 

a fixed  (e.g.  = 0.1). There are two main reasons 

that justify the application of adaptive-control method 

as pointed out below: 

1. The adaptive-control smoothing method has the 

capability of removing the effect of simulated noise 

faster than the best fixed- value provided that after 

a specified number of frames including simulated 

Gaussian noise, there are a number of succeeding 

frames containing no simulated noise. 

2. The foreground objects‟ residues are removed more 

quickly and the background image is obtained more 

rapidly using adaptive-control smoothing method in 

comparison with the best fixed- value for the same 

number of frames. 

In order to show point 1, the following experiments 

were accomplished: 

 To a sequence of frames Fld80 to Fld180 containing 

no moving objects, we added simulated Gaussian 

noise with standard deviations of  = 0.1, 0.2,…, 1.0 

(we call the noisy frames Fld′80 to Fld′180). Then 

the proposed background generation algorithm was 

run with =0.01,0.02,…,0.99 to find out which value 
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Figure 8.  Back_Img212.bmp, Differ1 = 7993114. 

 

 

of fixed  minimizes | Back_Img180 – Fld180 | 

where Back_Img180 is the generated background 

image for Fld′180 and Fld180 is the real background 

image. The value of  = 0.96 was obtained for all the 

simulated noisy frames regardless of the standard 

deviation of the simulated noise. 

It means that if a fixed value of  (e.g. the optimal 

value) is used, the same result is yielded independent of 

the standard deviation of the simulated noise. Of course, 

it is easy to show mathematically that in the following 

formula 

BL (x, y, t)  (1 − ) BL (x, y, t − 1)+  I (x, y, t) 

if we assume that the camera noise plus simulated 

Gaussian noise in BL (x, y, t − 1) and I (x, y, t) are 

almost the same, then regardless of the value of , the 

same total amount of noise is produced in BL (x, y, t). 

 After Fld′80 to Fld′180 containing simulated 

Gaussian noise with standard deviation of  = 4.0, 

we added Fld181 to Fld212, a number of input 

frames from the background scene including no 

moving objects. The previous experiment was 

performed but on the total sequence Fld′80 to Fld212 

for the optimal value of fixed  that minimizes 

difference1  | Back_Img212 − Fld212 | where 

Back_Img212 (Fig. 8) is the generated background 

image after operating on the total sequence and 

Fld212 is the real background image. The value of  

= 0.25 was obtained as the result. Then the 

algorithm was run with the adaptive-control 

smoothing method on the same total sequence and 

difference2  | Adaptive_Back_Img212 – Fld212 | 

was also computed where Adaptive_Back_Img212 is 

the generated background image using adaptive-

control smoothing method (see Fig. 9). The 

experiment showed that difference2 is smaller than 

difference1. 

Therefore, if the camera noise is changed suddenly due  

 

Figure  9.  Adaptive_Back_Img212.bmp, Differ2 = 7201674. 

 

 

to any unknown reason almost rarely and after some 

number of frames the camera noise gets back to its 

normal level, the adaptive-control smoothing method is 

more capable to remove the effect of the extra noise 

with a fewer number of frames than with the fixed  

value. The reason is that, although this is an important 

feature of the exponentially weighted moving average 

(EWMA) filter to place more emphasis on most recent 

data, however, selection of larger smoothing constant  

automatically gives even more importance to the 

current input data than with the fixed  and thus better 

results are yielded. 

If the camera noise is never changed, there is still an 

even more important feature of the adaptive-control 

smoothing method as mentioned in the case 2 above. To 

demonstrate this feature, the following experiment was 

done: 

 Consider a sequence of input images Fld250 to 

Fld350 containing a moving object. We repeated the 

algorithm on this sequence to find the optimal fixed  

that minimizes difference1  | Back_Img350 –

 Fld212 | where Back_Img350 (Fig. 10) is the 

generated background image for Fld350 and Fld212 

is the closest and most recent real background image 

available for image Fld350, since Fld350 includes a 

moving object. The result  = 0.50 was obtained. 

Then adaptive-control smoothing method was also 

run on the same sequence and difference2  

| Adaptive_Back_Img350 – Fld212 | was also 

computed where Adaptive_Back_Img350 is the 

generated background image using adaptive-control 

smoothing method for Fld350 (Fig. 11). The 

experiment showed that difference2 is smaller than 

difference1. 

Thus the answer to the question is that utilizing the 

above adaptive-control method has a significant effect 
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on the quality of background images. In fact, if an 

 

Figure 10.  Back_Img350.bmp, Differ1 = 3102308. 

 

 

 

Figure 12.  Field Noise Estimation (Fld_Ne248.bmp) Red- = 

3, Green- = 3, Blue- = 3 (size: 384 × 288) Computation 

Time = 57 ms. 

 

 

 

Figure 14.  Field Noise Estimation (Fld_Ne315.bmp) Red- = 

3, Green- = 3, Blue- = 3 (size: 384 × 288) Computation 

Time = 58 ms. 

 
adaptive-control smoothing method is not used, the 

reference images will not be obtained in such a few 

numbers of frames with most of the foreground pixels 

removed. 

 

Figure 11.  Adaptive_Back_Img350.bmp, Differ2 = 2732747. 

 

 

 

Figure 13.  Field Noise Estimation (Fld_Ne275.bmp) Red- = 

3, Green- = 3, Blue- = 3, (size: 384 × 288) Computation 

Time = 56 ms. 

 

 

 

Figure 15.  Field Noise Estimation (Fld_Ne375.bmp) Red- = 

3, Green- = 3, Blue- = 3 (size: 384 × 288) Computation 

Time = 55 ms. 
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6.2. Analysis of Results 

Figures 12 to 15 show how rapidly the foreground 

object pixels are removed from the reference frames 

while there is a moving object. In fact, the algorithm 

usually needs 6 to 10 s (less than 250 frames, based on 

25 frames/s) to find the background frame where there 

are moving objects included and it needs less than 2 s 

(50 frames) if the algorithm starts with 40 to 50 images 

that demonstrate the environment‟s lighting condition is 

changing (i.e., not static images) but there isn‟t any 

moving object in them. Thus, these numbers of frames 

are enough for the algorithm to find the background 

images from that frame on although there are a number 

of moving objects appearing in the succeeding input 

images. 

At the present time, 17 to 18 color images (with the 

resolution of 384 × 288 pixels and processing time of 55 

to 56 ms. on the average for each image) are processed 

on a 1.7 GHz Pentium 4 PC with 1GB of RAM running 

Windows 2000 Professional Edition (the images shown 

above are almost half of the size of the original images 

in order to take less space). If standard images (i.e., 320 

× 240 pixels) are used, processing time can at least be 

reduced by the value of 1.44 (384 × 288 / 320 × 240), 

yielding processing rate of 25.7 to 26.2 Hz (38.2 to 38.9 

ms. for each frame). This shows that the algorithm can 

run in real time on a Pentium 4 PC for standard images 

(due to 25 input frames/s, the processing time for every 

frame should be less than 40 ms). Meanwhile, upon 

appearing faster PCs (with higher CPU speeds) at the 

market, more processing rate is readily feasible. Thus, 

in the near future, the algorithm can run in real time 

even for images with relatively high resolutions (such as 

384 × 288 pixels). 

We have examined the proposed algorithm on 

different sequences of images and almost in all the 

cases it has performed quite fast and well with 

encouraging results confirming the robustness of the 

algorithm for color images (see Figs. 16 to 23). 
 

7. Conclusions and Future Work 

A new real-time dynamic background generation 

technique for color images taken from a static camera 

was presented. Initially, three existing methods called 

snapshot, temporal averaging and temporal median 

filtering were evaluated. Then based on the strengths 

and the weaknesses of these methods, the final 

algorithm called „temporal median filter with 

exponentially weighted moving average (EWMA)‟ was 

introduced. 

One of the advantages of the new algorithm is that 

two of its parameters are computed automatically. In 

contrast to some other background generation 

techniques, the new algorithm does not need to have any 

training period for initializing the parameters [5]. In 

fact, after the first input frame that is used for the long-

term bitmap (i.e., BL), the dynamic background image is 

generated for the second and all the succeeding frames. 

In addition, the method could start its operation for a 

sequence of images in which moving objects are 

included. Finally, from the results obtained, the 

algorithm was shown to be fast, robust and efficient 

(from the Figs. 12 to 23, it is obvious that all moving 

pixels have been removed thus the algorithm is robust 

and it takes less than 125 frames (for Figs. 20 to 23 

about 50 frames) for background generation). 

We have found that about 70% of the computation 

time of the new algorithm is spent calculating  (the 

constant of EWMA). It is possible to find some shortcuts 

such as lookup tables so that the value of  is found 

using a table rather than performing lengthy 

computations (of course, interpolations might be used 

for the values not listed in the lookup table). 

 

 

 

Figure 16.  Car_Park3 Input Image (Cp3_50.bmp) (size: 352 

× 288). 
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Figure 17.  Car_Park3 Input Image (Cp3_115.bmp) (size: 352 

× 288). 

 

Figure 18.  Car_Park3 Noise Est. (Cp3_Ne70.bmp) Red- = 

5, Green- = 5, Blue- = 6, (size: 352 × 288) Computation 

Time = 51 ms. 

 

 

 

 

Figure 20.  Car_Park1 Input Image (Cp1_333.bmp) (size: 352 

× 288). 

 

 

 

 

Figure 22.  Car_Park1 Noise Est. (Cp3_Ne345.bmp) Red- = 

6, Green- = 5, Blue- = 6 (size: 352 × 288) Computation 

Time = 53 ms. 

 

 

Figure 19.  Car_Park3 Noise Est. (Cp3_Ne115.bmp) Red- = 

5, Green- = 5, Blue- = 6 (size: 352 × 288) Computation 

Time = 52 ms. 

 

 

 

 

Figure 21.  Car_Park1 Input Image (Cp1_383.bmp) (size: 352 

× 288). 
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Figure 23.  Car_Park1 Noise Est. (Cp3_Ne383.bmp) Red- = 

6, Green- = 5, Blue- = 6 (size: 352 × 288) Computation 

Time = 52 ms. 

 

As for future work, more research should be done so 

that a separate threshold level is computed for each 

pixel with very short computation time and efficient 

result. An individual threshold for each pixel is more 

robust than using a single threshold for all the pixels in 

each color channel. 

Finally, if the system needs to operate continuously, 

the value of  might be chosen dynamically based on the 

contents of images. However, more investigations 

should be done to determine whether changing the value 

of  might have a positive effect in the efficiency of the 

algorithm when it is used for long periods of time. 
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Appendix 

As stated in section 4.1, “Trigg and Leach [15] 

automatically adjust the value of the smoothing constant 

by setting: 

(T) = | Q(T) / ̂ (T) | (9.4)
1
 

their method is based on the smoothed error tracking 

signal 

Q(T) / ̂ (T) (9.1) 

where Q(T) is the smoothed forecast error and ̂ (T) is 

 
1 The equation numbers used here are according to those used 

in the reference [14]. 
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the smoothed mean absolute deviation, both computed 

at the end of period T. The smoothed error is computed 

according to 

Q(T) =  e1(T) + (1 – ) Q(T – 1) (9.2) 

where Q(0)  0 and the smoothed mean absolute 

deviation is 

̂ (T) =  | e1(T) | + (1 – ) ̂ (T – 1) (9.3) 

where e1(T) is the forecast error in period T and  is 

smoothing constant such that 0 <  < 1.” [14, chapter 

9]. 

“In contrast to Q(0) that is zero, ̂ (0)  0. However, 

̂ (T) can be obtained based on an estimate of the 

standard deviation of the single-period-ahead forecast 

error, i.e., e(T), where e
2
  Var [e1(T)]

2
 as follows: 

̂ (T) = e (T) / 1.25 (8.9) 

An estimate of the variance of the single-period-ahead 

forecast error can be computed using the sample 

variance of the last N forecast errors: 

 
2

1 1

2  = +1

e (t) e (T)

σ (T)=
1N








T

t T N
e  (8.7) 

where e1(T) is the average of the last N errors and is 

defined as follows” [14, chapter 8, with some sentences 

modified]: 

1 1

 = +1

1
e (T) e (t)

N


 
T

t T N

 (8.5) 

“The 1-period-ahead forecast error for the period T is 

defined as: 

e1 (T) = xT – X̂ (T – 1) (7.6) 

where xT is the input value and X̂ (T – 1) is the forecast 

value for period T computed at the end of period T – 1” 

[14, chapter 7, with a sentence modified]. 

“Suppose we know that the average level of the input 

values do not change over time or it changes very 

slowly. In this case, a simple exponential smoothing for 

a constant process can be developed and it might be 

modeled as: 

x t = b +  t 

where b is the expected input value in any period and  t 

is a random component having mean 0 and variance 


2
. Thus it can be shown that the forecast for input 

value in any future period T +  would be 

xT+ = ST (4.6) 

where ST is an estimator for the unknown parameter b 

in the constant process. ST is shown to obtain using the 

following equation: 

ST =  xT + (1 – ) ST – 1 (4.1) 

by assuming S0 = x0. Equation (4.1) is called „simple 

exponential smoothing‟ and ST is called smoothed 

statistic. The fraction  is also called the smoothing 

constant.” [14, chapter 4, with some sentences 

modified]. 

In the background algorithm, for the first 5 to 6 

initial frames, a fixed value is used for  in equation 

(4.1) (e.g.  = 0.1). Then  is replaced by (T) as 

computed using equation (9.4) stated above for all the 

succeeding frames. 


