DOUBLE-ANGLE, POWER-REDUCING, AND HALF-ANGLE FORMULAS

Introduction

- Another collection of identities called double-angles and half-angles, are acquired from the sum and difference identities in section 2 of this chapter.
- By using the sum and difference identities for both sine and cosine, we are able to compile different types of double-angles and half angles
- First we are going to concentrate on the double angles and examples.

Double-Angles Identities

- Sum identity for sine:

$$
\begin{aligned}
& \sin (x+y)=(\sin x)(\cos y)+(\cos x)(\sin y) \\
& \sin (x+x)=(\sin x)(\cos x)+(\cos x)(\sin x) \quad(\text { replace } y \text { with } x) \\
& \sin 2 x=2 \sin x \cos x
\end{aligned}
$$

Double-angle identity for sine.

- There are three types of double-angle identity for cosine, and we use sum identity for cosine, first:

$$
\begin{aligned}
& \cos (x+y)=(\cos x)(\cos y)-(\sin x)(\sin y) \\
& \cos (x+x)=(\cos x)(\cos x)-(\sin x)(\sin x) \quad(\text { replace } y \text { with } x) \\
& \cos 2 x=\cos ^{2} x-\sin ^{2} x
\end{aligned}
$$

First double-angle identity for cosine

- use Pythagorean identity to substitute into the first double-angle.

$$
\begin{aligned}
& \sin ^{2} x+\cos ^{2} x=1 \\
& \cos ^{2} x=1-\sin ^{2} x \\
& \cos 2 x=\cos ^{2} x-\sin ^{2} x \\
& \cos 2 x=\left(1-\sin ^{2} x\right)-\sin ^{2} x \quad \text { (substitute) } \\
& \cos 2 x=1-2 \sin ^{2} x
\end{aligned}
$$

Second double-angle identity for cosine.

Double-Angles Identities (Continued)

- take the Pythagorean equation in this form, $\sin ^{2} x=1-\cos ^{2} x$ and substitute into the First double-angle identity

$$
\begin{aligned}
& \cos 2 x=\cos ^{2} x-\sin ^{2} x \\
& \cos 2 x=\cos ^{2} x-\left(1-\cos ^{2} x\right) \\
& \cos 2 x=\cos ^{2} x-1+\cos ^{2} x \\
& \cos 2 x=2 \cos ^{2} x-1
\end{aligned}
$$

Third double-angle identity for cosine.

Summary of Double-Angles

- Sine:

$$
\sin 2 x=2 \sin x \cos x
$$

- Cosine:

$$
\begin{aligned}
\cos 2 \mathrm{x} & =\cos ^{2} \mathrm{x}-\sin ^{2} \mathrm{x} \\
& =1-2 \sin ^{2} \mathrm{x} \\
& =2 \cos ^{2} \mathrm{x}-1
\end{aligned}
$$

- Tangent:

$$
\begin{aligned}
\tan 2 \mathrm{x} & =2 \tan \mathrm{x} / 1-\tan ^{2} \mathrm{x} \\
& =2 \cot \mathrm{x} / \cot ^{2} \mathrm{x}-1 \\
& =2 / \cot \mathrm{x}-\tan \mathrm{x}
\end{aligned}
$$

tangent double-angle identity can be accomplished by applying the same methods, instead use the sum identity for tangent, first.

- Note: $\sin 2 x \neq 2 \sin x ; \cos 2 x \neq 2 \cos x ; \tan 2 x \neq 2 \tan x$

Example 1: Verify, $(\sin \mathrm{x}+\cos \mathrm{x})^{2}=1+\sin 2 \mathrm{x}$:
Answer

$$
\begin{array}{ll}
(\sin x+\cos x)^{2}=1+\sin 2 x & \\
(\sin x+\cos x)(\sin x+\cos x)=1+\sin 2 x & \\
\sin ^{2} x+\sin x \cos x+\sin x \cos x+\cos ^{2} x=1+\sin 2 x \\
\sin ^{2} x+2 \sin x \cos x+\cos ^{2} x=1+\sin 2 x & \text { (combine like terms) } \\
\sin ^{2} x+\sin 2 x+\cos ^{2} x=1+\sin 2 x & \text { (substitution: double-angle identity) } \\
\sin ^{2} x+\cos ^{2} x+\sin 2 x=1+\sin 2 x & \\
1+\sin 2 x=1+\sin 2 x & \text { (Pythagorean identity) }
\end{array}
$$

Therefore, $1+\sin 2 \mathrm{x}=1+\sin 2 \mathrm{x}$, is verifiable.

Half-Angle Identities

The alternative form of double-angle identities are the half-angle identities.

Sine

- To achieve the identity for sine, we start by using a double-angle identity for cosine

$$
\begin{array}{ll}
\cos 2 x=1-2 \sin ^{2} x & \\
\cos 2 m=1-2 \sin ^{2} m & \text { [replace } x \text { with } m] \\
\cos 2 x / 2=1-2 \sin ^{2} x / 2 & \text { [replace } m \text { with } x / 2] \\
\cos x=1-2 \sin ^{2} x / 2 & \\
\sin ^{2} x / 2=(1-\cos x) / 2 & {[\text { solve for } \sin (x / 2)]} \\
\sqrt{ } \sin ^{2} x / 2=\sqrt{ }[(1-\cos x) / 2] & \\
\sin x / 2= \pm \sqrt{ }[(1-\cos x) / 2] &
\end{array}
$$

Half-angle identity for sine

- Choose the negative or positive sign according to where the $\mathrm{x} / 2$ lies within the Unit Circle quadrants.

Half-Angle Identities (Continued)

Cosine

- To get the half-angle identity for cosine, we begin with another double-angle identity for cosine

$$
\begin{aligned}
& \cos 2 x=2 \cos ^{2} x-1 \\
& \cos 2 m=2 \cos ^{2} m-1[\text { replace } x \text { with } m] \\
& \cos 2 x / 2=2 \cos ^{2} x / 2-1[\text { replace } m \text { with } x / 2] \\
& \cos x=2 \cos ^{2} x / 2-1 \\
& \cos ^{2} x / 2=(1+\cos x) / 2[\text { solve for } \cos (x / 2)] \\
& \sqrt{ } \cos ^{2} x / 2=\sqrt{ }[(1+\cos x) / 2] \\
& \cos x / 2= \pm \sqrt{ }(1+\cos x) / 2]
\end{aligned}
$$

Half-angle identity for cosine

- Again, depending on where the $\mathrm{x} / 2$ within the Unit Circle, use the positive and negative sign accordingly.

Tangent

- To obtain half-angle identity for tangent, we use the quotient identity and the halfangle formulas for both cosine and sine:

$$
\begin{aligned}
\tan x / 2 & =(\sin x / 2) /(\cos x / 2) & & \text { (quotient identity) } \\
\tan x / 2 & = \pm \sqrt{ }[(1-\cos x) / 2] / \pm \sqrt{ }[(1+\cos x) / 2] & & \text { (half-angle identity) } \\
\tan x / 2 & = \pm \sqrt{ }[(1-\cos x) /(1+\cos x)] & & \text { (algebra) }
\end{aligned}
$$

Half-angle identity for tangent

- There are easier equations to the half-angle identity for tangent equation

$$
\begin{array}{ll}
\tan x / 2=\sin x /(1+\cos x) & 1^{\text {st }} \text { easy equation } \\
\tan x / 2=(1-\cos x) / \sin x & 2^{\text {nd }} \text { easy equation. }
\end{array}
$$

Summary of Half-Angles

- Sine

$$
0 \quad \sin x / 2= \pm \sqrt{ }[(1-\cos x) / 2]
$$

- Cosine
$0 \quad \cos x / 2= \pm \sqrt{ }[(1+\cos x) / 2]$

Summary of Half-Angles (Continued)

- Tangent

$$
\begin{aligned}
0 & \tan x / 2 & = \pm \sqrt{ }[(1-\cos x) /(1+\cos x)] \\
0 & \tan x / 2 & =\sin x /(1+\cos x) \\
0 & \tan x / 2 & =(1-\cos x) / \sin x
\end{aligned}
$$

- Remember, pick the positive and negative sign according to where the $\mathrm{x} / 2$ lies.
- Note: $\sin x / 2 \neq 1 / 2 \sin x ; \cos x / 2 \neq 1 / 2 \cos x ; \tan x / 2 \neq 1 / 2 \tan x$

Example 2: Find exact value for, $\tan 30$ degrees, without a calculator, and use the halfangle identities (refer to the Unit Circle).

$$
\begin{aligned}
& \text { Answer } \\
& \qquad \begin{aligned}
\tan 30 \text { degrees } & =\tan 60 \text { degrees } / 2 \\
& =\sin 60 /(1+\cos 60) \\
& =(\sqrt{3} / 2) /(1+1 / 2) \\
& =(\sqrt{3} / 2) /(3 / 2) \\
& =(\sqrt{3} / 2) \times(2 / 3) \\
& =\sqrt{3} / 3
\end{aligned}
\end{aligned}
$$

