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Abstract
A stochastic probing problem consists of a set of elements
whose values are independent random variables. The algo-
rithm knows the distributions of these variables, but not
the actual outcomes. The only way to learn the actual out-
comes is to probe these elements. However, there are con-
straints on which set of elements may be probed. (E.g.,
we may have to travel in some metric to probe elements
but have limited time.) These constraints are called outer
constraints. We want to develop an algorithm that picks
some set of elements to maximize the (expected) value, sub-
ject to the picked subset of elements satisfying some other
set of constraints, called the inner constraints. In the past,
probing problems were studied for the case when both inner
and outer constraints were intersections of matroids; these
modeled kidney matching and Bayesian auctions applica-
tions. One limitation of past work was their reliance on
linear-programming-like techniques, which made going be-
yond matroid-like structures difficult.

In this work, we give a very general adaptivity gap re-
sult that holds for all prefix-closed outer constraints, as long
as the inner constraints are intersections of matroids. The
adaptivity gap is O(logn) for any constant number of inner
matroid constraints. The prefix-closedness captures most
“reasonable” outer constraints, like orienteering, connectiv-
ity, and precedence. Based on this we obtain the first ap-
proximation algorithms for a number of stochastic probing
problems, which have applications, e.g., to path-planning
and precedence-constrained scheduling.

1 Introduction

Consider the following problem: we are given a set U
of elements. Each element e has a random value Ve
drawn from a known probability distribution πe. (The
element values are independent of each other.) Our goal
is to output a set S, which satisfies some constraints
described below, so as to maximize the expected value
E[
∑
e∈S Ve] of the set. The problem is: we do not know

the element values (i.e., the random outcomes); we only
know the underlying probability distributions, and have
to probe the elements to find out their realized values.
Moreover, the set S can only contain elements that we
have probed. There are two kinds of constraints (given
by two set systems Fout and Fin):
• Outer constraints: these tell us which sequences

of elements we can probe during the run of the
algorithm. If we probe some ordered set P , then we
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require P ∈ Fout. Crucially, the outer constraints
do not depend on the outcomes of the probes. 1

• Inner constraints: these tell us which subsets of
elements can be finally output. If S is the final
output, then we must have S ∈ Fin.

Finally, we work in an online decision-making model:
once we probe an element to find out its value, we
must immediately make an irrevocable decision about
its fate; i.e., we must either add it to the chosen set
S, or discard it forever. Thus we want a strategy to
adaptively probe and select elements so as to maximize
the expected value. Such a strategy can be described
by a decision tree where nodes correspond to probed
elements and branches correspond to observed random
outcomes (see Section 2 for a formal definition).

To make things vivid, consider the following
stochastic version of the orienteering problem. We are
given a metric space (U, d), where each location i ∈ U
either contains a reward vi (with probability pi) or not
(i.e., it has reward 0 with the remaining probability
1 − pi), and this is independent of the reward at other
locations. Say the inner constraint is that we can col-
lect the reward from at most K locations (a cardinality
constraint). The outer constraint is that the probed
locations must be visited by a tour of total length at
most B that starts and ends at a “root” location r in
the metric space.

This arises, e.g., in a path-planning application
where a robot has to plan a route starting from the
home base r, picking up packages distributed over the
metric space and bringing them back to r. The robot
can only carry K packages at a time (hence the inner
constraint), and has a total battery life of B time units
(hence the outer constraint). Not all packages are
present every day: the robot merely knows the chance
that the package at location i will be present (hence the
stochasticity); for simplicity we assume that if there is
a package at location i it has a fixed value. Finally,
when the robot reaches a location i and finds that the
package is indeed present, it must immediately decide
whether to pick it or not — hence the online decision-
making model. Finally, the goal is to find a strategy that

1Formally, we will generalize Fout to be constraints on se-
quences of elements that are probed, not just sets.



maximizes the expected value of the elements collected.
Observe that if every probability pi = 1 then we get
the classical orienteering problem for which a 2 + ε-
approximation algorithm is known [11, 15].

One can imagine other kinds of inner or outer
constraints, of course. Here are some examples.

• Inner constraints: instead of picking at most K
elements (which is a uniform matroid constraint),
the elements may have some k different matroids
defined on them, and the inner constraint may
require us to output a set S that is independent
in all k of these matroids. In other words, we now
want to maximize the weighted “rank function” of
the intersection of k matroids.
We can even handle a slight generalization to
the case of maximizing sums of weighted rank
functions. This allows us to capture, e.g., the
practically interesting case of coverage functions:
given a set system (U,F) and random elements,
pick a subset S ⊆ U of elements to maximize the
expected weight of sets hit by S, subject to the
outer constraints.

• Outer Constraints: Similarly, instead of the probed
elements lying on a tour of length at most B (which
is an orienteering constraint), one can imagine
other outer constraints — say the probed elements
need to belong to some other matroids. Or we may
have precedence (some elements can be probed only
after others have been probed), or other packing
constraints.

With suitable inner/outer constraints, we can cap-
ture a rich class of stochastic optimization problems in-
cluding stochastic matching [18, 7] and sequential pric-
ing in Bayesian auctions [14, 32].

In previous work on stochastic probing prob-
lems [27, 3], approximation algorithms were obtained
for cases where both the inner and outer constraints are
intersections of matroids.2 One reason for considering
matroid constraints was their rich polyhedral structure.
In general, the optimal strategies for these stochastic
problems may be exponential-sized decision trees, and
hence difficult to argue about. However, if we only con-
sider matroid constraints, we can capture these optimal
adaptive strategies using good LP relaxations, and then
round the LP solutions to get “non-adaptive” strategies
that compare favorably with the optimal strategies. (A
non-adaptive strategy is just an a priori fixed probing
order satisfying the outer constraints.) This gives good
approximation algorithms, and also shows non-adaptive
strategies that are close to the best adaptive ones (i.e.,

2One could generalize these results slightly to k-systems,
knapsack constraints etc.

bounds the “adaptivity gap”). This approach breaks
down once we broaden the set of outer constraints to
allow, say, orienteering constraints, for which we do not
know any good LP relaxations. We can no longer rely on
the crutch of LP techniques to compare to the adaptive
optimal. What can we do in such cases?

A natural and ideal goal would be to prove an
adaptivity gap result: to show that the gap between the
best adaptive and non-adaptive policies is small. This
would allow us to reduce the search space considerably
at a small loss in performance. To complement this, we
would like to obtain algorithms that find approximately
optimal non-adaptive strategies for these problems.
These are precisely the questions we address in this
paper.

1.1 Our Results Our main result is a very general
adaptivity gap result for arbitrary outer constraints
(satisfying a minimal “prefix closed” condition—see
Section 2) and matroid-intersection inner constraints.

Theorem 1.1. The adaptivity gap of any stochastic
probing problem where the outer constraints are prefix-
closed and the inner constraints are intersections of k
matroids is at most αad = O(k4 log(nk)), where n is the
number of elements.

We obtain a better result for partition matroids.

Theorem 1.2. For stochastic probing problems with
prefix-closed outer constraints and inner constraints
given by intersections of k partition matroids, the adap-
tivity gap is at most O(k4 log k).

Note that this implies a constant adaptivity gap
for k = O(1) partition matroids, improving over the
O(log n) bound from Theorem 1.1. Moreover, both
these results extend to the case where the objective
is to maximize the sum of different weighted matroid
rank functions. Appendix B.1 gives a simple example
showing that the adaptivity gap is at least 7

6 even with
k = 1 partition matroid.

Our techniques allow us to derive the following
useful result from the proof of Theorem 1.2.

Corollary 1.1. For stochastic probing problems with
prefix-closed outer constraints (and no inner con-
straints), the problem of maximizing a weighted coverage
function has adaptivity gap at most 3.51.

By the above theorems, it suffices to solve the non-
adaptive versions of these problems up to a small loss
in the objective function. The actual outer constraints
play a role only in solving these non-adaptive versions,
the results above just rely on the outer constraints



being prefix-closed. For some interesting classes of
outer constraints, we show that existing algorithms
for deterministic optimization can be used to obtain
algorithms for non-adaptive (and hence, by the above
theorems, for adaptive) stochastic probing. Here are
two examples (more appear in Section 6).
Stochastic Probing on Metrics. This is a generalization
of the orienteering-type problem discussed in the intro-
duction. The elements U lie in a metric with root node
r, and the chosen elements must be visited via a path
of length B and must satisfy a k-matroid intersection
constraint. The goal is to compute an adaptive route
(originating from r) that maximizes the expected value
of selected elements. Using Theorem 1.1 and a slight
extension of an algorithm for “submodular orienteer-
ing” [16], we obtain:

Theorem 1.3. There is a quasi-polynomial time
O(k5 log2 n)-approximation algorithm for stochastic
probing on metrics with k-matroid intersection inner
constraints.

Interestingly, this result also partially answers an
open question from [29] on approximating the stochas-
tic minimum latency submodular cover (StocMLSC)
problem: we defer details to Section 6. In partic-
ular Theorem 1.3 leads to a quasi-polynomial time
O(log3 n)-approximation algorithm for the special case
of StocMLSC with matroid rank functions.

Stochastic Connected Dominating Set. In the bud-
geted connected dominating set (BCDS) problem, we
are given an undirected graph G = (V,E) and budget
k, and the goal is to choose a set of k connected vertices
that maximize the number of dominated vertices. [31]
obtained an O(1)-approximation for this problem. In
its stochastic version that we consider, each edge e ∈ E
is active for the purpose of dominating one end-point by
the other, only with some independent probability pe.
The status of an edge is only known when we “probe”
one of its end points. The goal is to find an adaptive
strategy for probing a sequence of at most k vertices
that are connected in the (deterministic) graph G, so
as to maximize the expected number of dominated ver-
tices. This models, for eg., a sensor network application
in the stochastic setting (see Section 6). Using Corol-
lary 1.1 and the deterministic algorithm from [31], we
obtain:

Theorem 1.4. There is an O(1)-approximation algo-
rithm for stochastic connected dominating set.

1.1.1 Our Techniques The proofs for both Theo-
rems 1.1 and 1.2 rely on working directly with an opti-
mal adaptive decision tree T ∗. The non-adaptive strat-
egy in both cases has the useful property that it is a

random root-leaf path in T ∗ drawn according to the
natural distribution induced by T ∗. It seems important
to explicitly reason about tree T ∗—see Appendix B.2
for a plausible approach that attempts to bypass work-
ing with T ∗ and an example where it fails.

We now present the main ideas in proving Theo-
rem 1.1 in the special case of k = 1 matroid and {0, 1}
values. Here, the distribution of each element e is just
given by pe = Pr[Ve = 1].

For each leaf node ` in T ∗ (corresponding to probed
elements P` and chosen elements S` ⊆ P`), we construct
a “witness” set W` ⊆ P` such that the corresponding
“witness” vector

w`(e) :=

{
pe if e ∈W`

0 otherwise
, ∀e ∈ U

satisfies all matroid rank constraints up to a fac-
tor ρ = O(log n). These witnesses are meant to cap-
ture the expected value obtainable by the respective
non-adaptive strategies. Formally, using contention res-
olution [17] (or correlation gap [4]) of matroids, one
can show that if 1

ρ · w` lies in the matroid polytope
then the expected rank of the non-adaptive strategy
corresponding to leaf ` is Ω( 1

ρ ) · 〈1,w`〉. So the ex-

pected non-adaptive value, taking expectation over (a)
the random choice of the leaf ` (which determines the
non-adaptive strategy) and (b) the random outcomes
of elements P` probed by the non-adaptive strategy, is
Ω(1/ρ) · E` [〈1,w`〉].

The witness sets W` are constructed in a natural
and consistent manner across all leaves: starting from
the root of T ∗, set W` contains the maximum prefix of
elements on the decision path to leaf ` that satisfies the
ρ-scaled rank constraints. (Formally, we use a suitably
modified version of T ∗ in defining the witnesses.)

The final and crucial step is to show that
E` [〈1,w`〉], the expected value of the witness, is close
to that of the best adaptive strategy. To show this,
we prove that if the decision tree T ∗ is truncated at the
first node where any rank constraint is violated by more
than factor ρ then the expected value of T ∗ reduces only
by a constant factor. This uses a martingale tail bound
and a careful union bound to handle all 2n matroid rank
constraints.

Handling weights in Theorem 1.1 (i.e. when Ve are
arbitrary random variables) requires more ideas. In-
deed, if we were satisfied with losing another O(log n)
factor then we could group values in powers of two and
reduce to the {0, 1}-valued case by focusing on a single
group. Instead, we observe that any weighted matroid
rank function can be reduced (at a constant-factor loss)
to the sum of multiple unweighted matroid rank func-
tions. Then we combine this with the “linearity prop-



erty” in the proof of Theorem 1.1 for unweighted ma-
troids, i.e., the non-adaptive strategy is just a random
root-leaf path in T ∗. One final step is to implement the
non-adaptive strategy in an online fashion: this is be-
cause the witnesses only correspond to the value of an
offline decision-making strategy (that selects elements
after observing outcomes of all probes). This conver-
sion from offline to online strategies is done by a direct
application of matroid “prophet inequalities” [32] which
incurs an extra factor of two.

To handle intersections of multiple matroids in
Theorem 1.1 we just need the appropriate results on
(i) approximation ratio of the greedy algorithm, (ii)
contention resolution schemes, (iii) reducing weighted
ranks to unweighted, and (iv) prophet inequalities.
Each of these steps incurs an extra factor k loss.

The improved bound for partition-matroids in The-
orem 1.2 also relies on the idea of witness sets described
above. However, using a more nuanced “truncation”
operation, we can bound the loss ρ by a O(1) for any
constant number of partition matroids, instead of the
O(log n) loss in the weighted case. This truncation relies
on the partition matroid structure and does not extend
to general matroids.

1.2 Related Work Our results add to the body of
work on stochastic packing problems. Various combina-
torial optimization problems have been studied in this
setting, e.g., knapsack [20, 10, 35], packing integer pro-
grams [19], budgeted multi-armed bandits [22, 25] and
orienteering [23, 26]. Except for orienteering, all the
other stochastic problems rely on having good LP-based
approximation algorithms and adaptivity gaps.

When both outer and inner constraints of our
stochastic probing model are b-matchings in a graph,
and all values are Bernoulli random variables, this is
the stochastic matching problem formalized by [18] with
applications to online dating and kidney exchange. An
important notion in this problem is the query-commit
restriction: if a probed element is present (i.e., has
positive value) then it must irrevocably be added to
the solution S. The notion of “online decision-making”
in our model is different since we can chose to reject
an element after observing its value. 3 Many recent
papers have studied stochastic matchings [1, 7, 9, 2].
Again, the use of good LP relaxations is crucial to
these approximation results. More generally, there is
a vast body of work on algorithms for kidney exchange
problems, see, e.g. [36, 5].

The general stochastic probing problem under

3However, query-commit and online decision-making coincide
in the case of Bernoulli values.

Bernoulli values was introduced in [27], where the au-
thors gave an approximation algorithm and adaptivity
gap for inner/outer constraints given by intersections of
matroids and knapsacks. [3] improved the adaptive ap-
proximation algorithms for this problem under matroid
intersection constraints, and also handled submodular
objectives. Both results use LP relaxations; in the sub-
modular case a non-linear relaxation [12] is used. This
approach fails in our setting if good polyhedral relax-
ations for the outer constraints are missing.

A different stochastic probing model was considered
in [21, 24] for minimization problems. In that setting,
the “outer” constraint is very simple (probe at most
some number/cost of elements) but the inner optimiza-
tion problem is complex (e.g., scheduling, clustering,
Steiner tree problems). Moreover, unprobed elements
could be used in the solution to the inner optimization
problem.4 Many results in this setting also bounded the
adaptivity gap of probing. However, due to the complex
outer constraints in our model, these previous results do
not seem applicable.

A stochastic version of orienteering was introduced
by [26] where the rewards vi are deterministic, but each
task requires a random amount of “processing” time
before the reward can be collected, and the travel time
plus the total processing time is constrained to be at
most some budget B. [26] gave an O(log logB) approx-
imation and adaptivity gap for stochastic orienteering,
and [8] showed that the adaptivity gap is Ω(

√
log logB).

This problem is very different from stochastic probing
on metrics that we consider here: (i) there is no inner
constraint in [26] and (ii) the stochasticity in [26] is in
the constraint as opposed to the objective. There is still
a high-level similarity in the approach since both papers
directly deal with the optimal decision tree.

2 Definitions and Notation
A stochastic probing problem instance is given by J =
(U,Fout,Fin, {Ve}e∈U ), where U is a set of n elements.
For each element e ∈ U , the value is a random variable
Ve (whose probability distribution is given as input).
The values of different elements are independent. There
are two constraints:
• Outer constraints: this is a collection Fout of se-

quences of distinct elements from U , which specifies
which ordered set of elements can be probed. We
make the minimal assumption that the outer con-
traint Fout is prefix-closed, i.e., for every sequence
σ ∈ Fout, any prefix of σ is also in Fout.

• Inner constraints: this is a collection Fin ⊆ 2U

specifying which subsets of elements S can be

4We can also handle a variant of our model where unprobed
elements may be chosen: details deferred to a full version.



output.
A strategy now corresponds to a decision tree T

as follows. Each node u of T is either (i) a leaf node
indicating the probing has ended, or (ii) an internal node
corresponding to probing some element elt(u) ∈ U and
for each outcome of the random variable Velt(u), there
is an outgoing arc to a child node. Elements cannot
be repeated on root-leaf paths. Each leaf node ` is
associated with:
(i) The sequence of nodes P` on the path from root

to leaf `. We denote by elt(P`) the sequence
of elements probed in P`. The outer constraints
enforce that elt(P`) ∈ Fout.

(ii) The set S` of elements chosen when this path P` is
traced. Note that S` ⊆ elt(P`) and S` ∈ Fin.
The strategy T is called an online strategy if, once

an element e is probed and its value Ve known, we
make an irrevocable decision about whether to include
it in the solution S or not. Formally, a strategy T is
online if for any pair of root-leaf paths P`, Pk in T ,
we have elt(u) ∈ S` ⇐⇒ elt(u) ∈ Sk for every node
u ∈ P`∩Pk. On the other hand, an offline strategy may
choose the solution S after observing the values of all
the probed elements. Clearly offline strategies obtain at
least as much value as online strategies. Our results will
bound the gap between online non-adaptive and offline
adaptive strategies.

Let ω denote the outcome of all the random vari-
ables {Ve}e∈U . For any strategy T , the random out-
come naturally defines a probability distribution over
root-leaf paths; we denote this distribution on paths by
πT . For any particular outcome ω let `(ω) denote the
unique leaf-node of T at which the strategy ends. (Oc-
casionally we use `← πT to denote this random choice
of leaf.) The offline adaptive value of a strategy T is
denoted

adapt(T ) = Eω

[
max

S⊆elt(P`(ω)):S∈Fin

∑
e∈S

Ve(ω)

]
.(2.1)

The adaptive optimum is the strategy T ∗ that
maximizes Eq.(2.1); let optad := adapt(T ∗) be the value
of this offline adaptive optimum.5

We define a non-adaptive strategy as one where
all nodes at any particular level of the decision tree
probe the same element: the probing decisions can be
specified by a single sequence. Of course, depending
on different outcomes of each element, we may take
different decisions about including elements into the
solution S, so the sets labeling the leaves may still be

5We also consider randomized strategies, where some nodes
correspond to making a random decision instead of probing a

node. All definitions above extend to this case with minor
changes.

different. An important advantage of a non-adaptive
strategy is that it can be specified using much less
space—it is just an a priori path P with elt(P ) ∈ Fout.
For an offline non-adaptive strategy given by path P ,
its objective is

pathval(P ) := Eω

[
max

S⊆elt(P ):S∈Fin

∑
e∈S

Ve(ω)

]
.(2.2)

Recall that an offline strategy can look at all the
outcomes before choosing S. While online non-adaptive
strategies might give less value, we can bound this gap
via “prophet inequalities” (see, e.g., [34, 32]).

A family F ⊆ 2U of subsets of groundset U is said
to admit a β-approximate prophet inequality if there
is an efficient online algorithm that for any sequence
W1, · · · ,W|U | of random variables with distributions
known upfront, selects a subset S ∈ F of elements by
deciding on each element e right after observing We,
such that

E[
∑
e∈S

We] ≥
1

β
· E[max

T∈F

∑
e∈T

We].

The value in the right-hand-side above corresponds to
a set T that is chosen after observing all the random
variables.

Proposition 2.1. If the inner constraint Fin admits a
β-approximate prophet inequality, then for any path P ,
there is an online non-adaptive strategy (that inspects
elements in the order given by P ) having expected value
at least β · pathval(P ).

It is known that β = Ω(1/k) when the inner
constraints are intersections of k matroids [32]. (For
the simple case of a single matroid of rank 1, which
corresponds to picking the maximum, the optimal value
is β = 1/2 [34].) The advantage of Proposition 2.1 is
that we can use the expression in Eq.(2.2) as a surrogate
for the value of the online non-adaptive optimum (which
is difficult to work with directly).

Let P ∗ be the optimal online non-adaptive strategy
for a given instance, with value optna (that lies between
β pathval(P ∗) and pathval(P ∗)). The adaptivity gap of
a stochastic probing problem is the maximum (over all
instances) of the ratio optad

optna
; which compares to the

offline adaptive strategy.

3 The Adaptivity Gap for Unweighted
Instances

In this section we prove our main adaptivity gap result,
Theorem 1.1, but in the “unweighted” case where each
element e is either active with probability pe and has
value Ve = 1, or is inactive with probability 1− pe and



has value Ve = 0. In Section 5 we extend this adaptivity
gap result to the general weighted case, at the loss of
an additional O(k) factor. The central theorem of this
section is the following.

Theorem 3.1. (Unweighted Adaptivity Gap)
Consider an unweighted stochastic probing instance
with k-matroid intersection inner constraints and any
prefix-closed outer constraints. For any strategy T ,

EP←πT [pathval(P )] ≥
1

O (k2 · log(kn))
·
(
adapt(T ) − 1

n2
max
e∈U

pe

)
.

Note that maxe∈U pe ≤ optad by Fact A.1. Choos-
ing T to be the optimal adaptive strategy T ? and com-
bining with Proposition 2.1, it follows that a random
root-leaf path in T ? (drawn from its natural proba-
bility measure) gives an online non-adaptive strategy
with expected value within a factor of O(k3 log(kn)) of
the optimum adaptive value. (The extra factor of k
arises due to the prophet inequality, in going from the
offline to the online straetgy.) Using the probabilistic
method, this immediately bounds the adaptivity gap,
and proves Theorem 1.1 for the unweighted case. For
the special case of a uniform matroid, we give a sim-
pler self-contained proof in Section 7.1: that proof has
the same high-level structure as the general proof below,
but each step is simpler and it yields an O(1) adaptivity
gap.

In the rest of this section, we prove Theorem 3.1.
Suppose the matroids defining the inner constraints are
{Mi}ki=1, with rank functions ri : 2U → Z≥0. For
any strategy T with root node s, recall that T is
represented as a directed tree, where each internal node
u corresponds to probing some element elt(u) ∈ U . For
any node u ∈ T , let Pu = 〈s = v0, v1, . . . , vt = u〉
be the path connecting the root to u, so elt(Pu) =
〈elt(v0), elt(v1), . . . , elt(vt)〉. A leaf node u does not
probe any element, so define elt(Pu) = elt(Pû) where
û is u’s parent.

Preprocessing. For each node u ∈ T let Iu be a
greedy independent set in

⋂p
i=1Mi among the active

elements probed strictly before u; hence set Iu does
not include elt(u). We modify strategy T by ignoring
the value from every node u for which elt(u) ∪ Iu
is not independent, i.e., by treating such nodes u
as a random choice made by the strategy (with no
additional value). Let R denote the set of nodes in
T which are not ignored—call them relevant nodes.
Henceforth we restrict T to the value obtained from
nodes in R. This incurs a loss of at most factor k
in the adaptive value since the greedy algorithm is a
k-approximation for the maximum independent set in

k-matroid intersection [30]. Note that now the set of
active elements seen along any path in T is independent,
so the expected “greedy” value of strategy T is now:

greedy(T ) := E`←πT
[ ∑
e∈elt(R∩P`)

pe

]
(3.3)

= Eω
[ ∑
e∈elt(R∩P`(ω))

1(e active in ω)

]
.

Here ` denotes a leaf node in T drawn according to
the natural distribution πT and P` is the root-to-`
path. The first expectation in Eq.(3.3) has the total
probability on R-nodes of a random path and the second
expectation has the number of active instantiations
on R-nodes of a random path; these are equal since
the decision to probe an element is independent of its
outcome. The above discussion shows that greedy(T ) ≥
1
k · adapt(T ).

Now, for each node u ∈ T define a “witness” vector
x(u) ∈ RU as follows:

(3.4) x(u)e =

{
pe if ∃v ∈ R on path Pu: elt(v) = e
0 otherwise

For any i ∈ [k], a node u is called ρ-valid for matroid
i if x(u) satisfies all rank constraints of Mi up to a
ρ-factor,

i.e.,
∑
e∈A

x(u)e ≤ ρ · ri(A), ∀A ⊆ U.

Otherwise, the node u is called ρ-invalid for matroid
i. Since x(u) ≥ x(v) when u is a descendent of v, the
ρ-valid nodes form a connected subtree from the root.

If ρ = O(log n+log k), we will show how to truncate
the tree (i.e., reduce the set R of relevant nodes) so that
every node becomes ρ-valid for one matroid Mi, and
the value of the resulting tree (following the definition
in Eq.(3.3)) reduces by at most 1

n2k3 maxe∈U pe. By
repeating this for each of the k matroids, we would
obtain a tree T̃ where each node is ρ-valid for every
matroid {Mi}ki=1 and has loss at most 1

n2k2 maxe pe.
Truncation for single matroid M. Let T ′ de-

note an arbitrary decision tree with relevant nodes R
and vectors x(u) defined as above, where we consider
only the value from nodes of R. LetM be any matroid
with rank function r. We now describe a “truncation”
procedure that reduces the set R of relevant nodes so
that all nodes in the resulting tree T ′′ are ρ-valid for
M. Define frontier nodes to be the set F of ρ-invalid
nodes that are closest to the root. The truncated tree
T ′′ is obtained as follows:

For each node u ∈ F do: remove from R all
nodes of the subtree of T ′ below u (i.e., ignore
the value obtained from all such nodes).



The value of the new tree T ′′ is calculated by ap-
plying Eq.(3.3) on the modified set R. The vectors x(u)

on nodes of T ′′ are also updated according to Eq.(3.4)
with the new set R. Due to truncation, the value of T ′′
is now less than that of T . The following key lemma
helps us control this loss.

Lemma 3.1. The value of the truncated tree is
greedy(T ′′) ≥ greedy(T ′)− 1

n2k3 maxe∈U pe.

Proof. [Proof of Lemma 3.1] Recall that u ∈ F (frontier)
if it is the highest node on Pu such that for some set

A ⊆ U , we have
∑
e∈A x

(u)
e > ρ · r(A). Let P denote a

random path in T ′ drawn according to distribution π′T .
For any A ⊆ U , let EA be the event that P hits a node
of F violated for set A. Clearly, the event of reaching
some frontier node, {P ∩ F 6= ∅} =

⋃
A⊆U EA.

Using the first expectation in the definition of greedy
from Eq.(3.3), the loss in truncation below any node
u ∈ F is at most Pr[P 3 u]·n·maxe pe. So the total loss,
greedy(T ′)− greedy(T ′′) ≤ n · (maxe pe) ·Pr[P ∩F 6= ∅].
Next, we show Pr[P ∩F 6= ∅] ≤ 1

(nk)3 which would prove

the lemma. We need the following crucial claim.

Claim 4. If ρ = Ω(log(nk)), then for any set A ⊆ U ,
Pr[EA] ≤ 1

2nr(A) n3k3
.

The proof, which is deferred for now, uses the fact
that the set Iu of observed active elements is always
independent and the x(u) variables (roughly) capture
the expected behaviour of Iu. So the probability that
these two deviate from each other falls exponentially.
The formal proof is via a large-deviations bound for
martingales.

Since there are an exponential number of sets A,
we cannot directly use Claim 4 and union bound to get
a handle on Pr[P ∩ F 6= ∅]. Still, we show how this
can be done using the matroid structure. Call a set
A critical of rank q if it is a maximal set of rank q,
i.e., r(A) = q and r(A′) > r(A) for all A′ ) A. Since
each critical set is the span of some independent set
of rank q, there are at most

(
n
q

)
critical sets of rank q

for matroid M. Moreover, by maximality of critical
sets, if x(A) ≤ ρ r(A) for every critical set A, then
x(Y ) ≤ ρ r(Y ) for all Y ⊆ U . Hence it suffices to focus
on the events EA over critical sets A. So,

Pr[P ∩ F 6= ∅] ≤
∑

A critical

Pr[EA]

≤ 1

2

n∑
q=1

(
n

q

)
n−q

(nk)3
≤ 1

(nk)3
.

The second inequality uses Claim 4. This completes the
proof of Lemma 3.1.

The final truncated tree T̃ . We now take the
tree T and perform the above (single matroid) trunca-
tion sequentially for each matroid {Mi}ki=1. Repeated

application of Lemma 3.1 yields a decision tree T̃ where
each node is ρ-valid for every matroid {Mi}ki=1 and has
value:

greedy(T̃ ) ≥ greedy(T )− 1

(nk)2
max
e∈U

pe(4.5)

≥ 1

k
· adapt(T ) − 1

(nk)2
max
e∈U

pe

The second inequality uses the fact that greedy(T ) ≥
1
k · adapt(T ) from the preprocessing on T . Note that

greedy(T̃ ) = E`←πT̃
[∑

e∈U x
(`)
e

]
by the first expecta-

tion in Eq.(3.3). Thus to complete the proof, it suffices
to show:

Lemma 4.1. For any root-leaf path P` ∈ T̃ with leaf `,

pathval(P`) ≥ 1
(k+1)ρ ·

∑
e∈U x

(`)
e .

Proof. For brevity, denote ye := 1
ρx

(`)
e . Since all

nodes in T̃ (including `) are ρ-valid for all k matroids,
y is a point in the matroid intersection polytope of⋂k
i=1Mi. Recall that pathval(P`) is precisely the

expected maximum independent (in
⋂k
i=1Mi) subset

of a random subset of P` that contains each element e
independently with probability pe. Using “contention
resolution schemes” [17] or the “correlation gap” [37]
for k-matroid intersection, it follows that pathval(P`) ≥
1
k+1

∑
e∈U ye.

Putting together all the pieces, the expected pathval
of a random path in T is at least that of a random path
in T̃ since we only truncated the tree. By Lemma 4.1

this is at least a 1
(k+1)ρ factor of

∑
e∈U x

(`)
e . Taking ex-

pectation over ` and using Eq.(3.3) and Eq.(3.4), the lat-

ter summation equals greedy(T̃ ); finally using Eq.(4.5)
we obtain Theorem 3.1.

It only remains to prove Claim 4 which we had
assumed in the above analysis.

Proof. [Proof of Claim 4] The idea here is to use the
following concentration inequality:

Theorem 4.1. (Theorem 1 in [38]) Let N1, N2, . . .
be a sequence of possibly dependent random vari-
ables: for each t ≥ 1 variable Nt depends only
on Nt−1, . . . , N1. Consider also a sequence of ran-
dom values ξt(N1, . . . , Nt) that lie in [0, 1]. Let
ENt [ξt(N1, . . . , Nt)] denote the expectation of ξt with re-
spect to Nt, conditional on N1, . . . , Nt−1. Furthermore,
let τ denote any stopping time. Then we have ∀δ ≥ 0:

Pr

[
τ∑
t=1

ENt [ξt(N1, . . . , Nt)] ≥



e

e− 1
·

(
τ∑
t=1

ξt(N1, . . . , Nt) + δ

)]
≤ exp(−δ)

We make use of this result by setting Nt to be the
tth node seen by a random path P in tree T ′ and

ξt(N1, . . . , Nt) =

{
1(elt(Nt) is active) if elt(Nt) ∈ A
0 otherwise

.

The stopping time τ corresponds to path P reaching
either a frontier node violated for set A (which captures
event EA) or the end of tree T ′. By the preprocessing
of T ′ and definition of the relevant nodes R, it follows
that:

τ∑
t=1

ξt(N1, . . . , Nt)

=

τ∑
t=1

1(elt(Nt) ∈ A) · 1(elt(Nt) active)

=
∑

e∈elt(R∩P )∩A

1(e is active) ≤ r(A)

The inequality is because the set of active elements
before any node in T ′ is independent. On the other
hand,

τ∑
t=1

ENt [ξt(N1, . . . , Nt)] =

τ∑
t=1

1(elt(Nt) ∈ A) · pelt(Nt)

=
∑
e∈A

x(Nτ )e > ρ · r(A),

where we used the definition of the “expected” active
set x(u) from Eq.(3.4) and the fact that τ corresponds
to nodes where the rank of A is violated by factor more
than ρ.

Applying Theorem 4.1 with δ = 4 log(nk) · r(A)
and assuming ρ > 8 log(nk), it follows that Pr[EA] is at
most exp(−4 log(nk) · r(A)) ≤ 1

2nr(A) n3k3
(for n ≥ 2) as

desired.

5 Weighted Stochastic Probing

We now extend the proof of Theorem 3.1 that gave
an adaptivity gap for unweighted rank functions to the
weighted case, and hence prove our main adaptivity gap
in Theorem 1.1.

The first ingredient is a lemma showing that
weighted rank functions of intersections of k matroids
can be written as sums of unweighted rank functions
of intersections of some other related matroids, up
to a loss of a factor of O(k). Consider k matroids
{Mi}ki=1 defined on ground set U with element weights
{we ≥ 0}e∈U . The k-matroid weighted rank function

w : 2U → R+ is defined as

w(S) = max

{∑
e∈I

we : I ⊆ S, I independent in

k⋂
i=1

Mi

}
for each S ⊆ U . A k-matroid unweighted rank function
corresponds to the special case of unit weights.

Let us partition the ground set based on the weights
as follows:

Uj :=
{
e ∈ U : 2j−1 ≤ we < 2j

}
∀j ∈ Z.

For each j, let uj(·) denote the k-matroid unweighted
rank function restricted to elements in Uj . We claim
that the desired positive linear combination is w′(·) =∑
j∈Z 2j · uj(·).

Lemma 5.1. For any k-matroid weighted rank function
w : 2U → R+, the positive linear combination w′ of
k-matroid unweighted rank functions satisfies w(S) ≤
w′(S) ≤ 4k w(S),∀S ⊆ U .

Proof. The first inequality is easy: w′(S) ≥ w(S) for
any S ⊆ U . Indeed, if I ⊆ S is the max-weight
independent set then each I ∩ Uj is independent in the
restriction to Uj , and so w′(S) ≥

∑
j 2j · |I ∩ Uj | ≥∑

e∈I we.
For the other inequality, fix some S ⊆ U . For each

j, let Ij be a maximum cardinality independent set in
S ∩ Uj , so uj(S) = |Ij |. If

⋃
j Ij were independent

then we would have w(S) ≥ w′(S)/2. But this is not
necessarily independent, which loses an extra k factor
as follows.

Consider running the greedy algorithm on
⋃
j Ij to

select an independent set in the k-matroid intersection,
where elements are inspected in decreasing order of the
Ijs. Let Gj ⊆ Ij denote the elements chosen into
the greedy independent set. We use the shorthand
G≥j :=

⋃
l≥j Gl; set I≥j is defined similarly. Notice

that both Ij and G≥j are independent subsets of I≥j :
the properties of the greedy algorithm on intersections
of k matroids implies k · |G≥j | ≥ |Ij |. So

k
∑
j∈Z

2j · |Gj | ≥
∑
j∈Z

2j · |Ij | − k
∑
j∈Z

2j · |G≥j+1|.

By rearranging, we have

k
∑
j∈Z
|Gj |

(
2j + 2j−1 + · · ·

)
≥

∑
j∈Z

2j · |Ij |.

Hence 2k
∑
j 2j · |Gj | ≥

∑
j 2j · |Ij |. Finally, since

G :=
⋃
j Gj is an independent set in the k-matroid

intersection,

w(S) ≥
∑
e∈G

we ≥
∑
j∈Z

2j−1 · |Gj |



≥ 1

4k

∑
j∈Z

2j · |Ij | =
1

4k
w′(S).

This completes the proof of Lemma 5.1.

Next we combine Lemma 5.1 with Theorem 3.1
for unweighted probing (where elements randomly take
on values in {0, 1} with some probabilities) to prove
Theorem 1.1 for weighted probing (where element values
are drawn from general distributions over R≥0).

Proof. [Proof of Theorem 1.1 (weighted case)] Consider
a stochastic probing instance J with k-matroid intersec-
tion inner constraints and any prefix-closed outer con-
straints. Let T be any adaptive strategy. By discretis-
ing values to powers of two, we may assume (at the
loss of a constant factor) that each Ve ∈ {2j | j ∈ Z}.
Let pe,j be the probability that Ve takes on value 2j ,
where

∑
j pe,j = 1 for all e. Define the mean value

µe := E[Ve] =
∑
j 2j · pe,j .

We create a new unweighted stochastic probing
instance Jj for each integer j ∈ Z. The ground set U ,
inner and outer constraints are the same; however, the
values {V je }e∈U are restricted to {0, 1}. In particular,
V je = 1 with probability pe,j and V je = 0 with
probability 1 − pe,j . Note that T corresponds to a
randomized adaptive strategy for instance Jj as follows:
at a node containing element e:
• if V je = 1 then take the branch Ve = 2j , and
• if V je = 0, randomly take one of the other
branches, where branch corresponding to Ve = 2h

(for h 6= j) is taken with probability proportional
to pe,h.
Since Theorem 3.1 also holds for randomized strate-

gies T , setting α = Ω(1/k2 log(kn)) we have:

EP←πT
[
pathvalj(P )

]
≥ α ·

(
adaptj(T )− 1

n2
max
e∈U

pe,j

)
≥ α ·

(
adaptj(T )− 1

n2

∑
e∈U

pe,j

)
.

Here we used the notation pathvalj and adaptj to em-
phasize that these correspond to instance Jj . Clearly,∑
j 2j · adaptj(T ) ≥ adapt(T ) since this holds for every

outcome of the values. Hence

EP←πT

∑
j

2j · pathvalj(P )


≥ α ·

adapt(T )− 1

n2

∑
j

2j ·
∑
e∈U

pe,j


≥ α ·

(
adapt(T )− 1

n
max
e∈U

E[Ve]

)
.

Fix any root-leaf path P in T . Notice that
pathval(P ) is the expected weighted rank of the inner
k-matroid intersection. Whereas,

∑
j 2j · pathvalj(P ) is

a positive linear combination of unweighted rank func-
tions, whose definition matches that in Lemma 5.1. Now
conditioning on all the outcomes ω, pathval(P ) is just
the weighted rank of P , whereas pathvalj(P ) is the un-
weighed rank restricted to the elements in Uj (under
the outcome ω). Applying Lemma 5.1, we get that∑
j 2j · pathvalj(P ) ≤ 4k · pathval(P ) for each fixed ω.

Taking expectations over ω and using linearity of expec-
tations, we have

EP←πT [pathval(P )] ≥ α
4k ·
(
adapt(T )− 1

n maxe∈U E[Ve]
)
.

Now choosing T to be an optimal adaptive strategy T ?
for the given (weighted) instance and using Fact A.1,
it follows that a random path P in the optimal adap-
tive strategy is a non-adaptive strategy with offline
value pathval(P ) ≥ optad/O(k3 log(kn)). Finally, us-
ing prophet inequalities (Proposition 2.1) we obtain
an online non-adaptive strategy with value at least
optad/O(k4 log(kn)).

6 Applications

6.1 Stochastic Probing on Metrics In the
stochastic probing problem on metrics, recall that the
elements are in a metric space (U, d), and outer con-
straints enforce that the probed elements lie on a path
of length at most B.

To begin, consider the simpler case where the inner
constraint is a single matroidM, with rank function r().
Moreover, suppose each element e is active and has value
1 with probability pe, or is inactive (has value zero)
with probability 1 − pe. For the outcome ω, let Aω be
the active elements for this outcome. The non-adaptive
problem is now to find a path Q of total length B, to
maximize the quantity g(Q) := Eω[r(Q∩Aω)]. Since the
rank function r() is a submodular function, so is g(), and
we have a problem of finding a path Q of length at most
B to maximize the submodular function g(Q). This is
precisely the submodular orienteering problem for which
Chekuri and Pál [16] gave an O(log n) approximation in
quasi-polynomial time.

The case of multiple matroid constraints is only
slightly more involved. For the intersection of k ma-
troids, define the “rank” r(S) to be the size of the largest
common independent set contained in S. The function
r() is no longer submodular, so we cannot use the same
arguments as above. Instead we rework the proof of
Chekuri and Pál, with an additional loss of a factor of
k2. First, we put the stochasticity aside, and try to
maximize the cardinality of a common independent set
in the intersection of k matroids.



Proposition 6.1. There is a quasi-polynomial time
(k log2(2n))-approximate algorithm to maximize the
rank function of the intersection of k matroids, subject
to an orienteering constraint.

Proof. (Sketch) We assume the reader is familiar with
the elegant Savitch-like idea from [16]. By suitable
guessing, we want to find the best s-t path of length B
with ` hops, where the “half-way” point is v, the length
of the s-v portion is B1 and the rest is B2. Let P ?1 and
P ?2 be the s-v and v-t portions of the optimal path P ?,
and let I? be the optimal independent set. Since we
are in the unweighted case, the optimum solution value
is |I?| = |I? ∩ P ?1 | + |I? ∩ P ?2 |. We recursively find a
1/(k log2 `)-approximate solution I1 to the s-v problem
(with `/2 hops and budget B1):

|I1| ≥
1

k log2 `
|I? ∩ P ?1 |.

Then we contract the elements of I1 and find an
approximate solution I2 for the v-t problem (with `/2
hops and budget B − B1). Since contracting each
element of I1 can only reduce the rank of the problem
by k, we get

|I2| ≥
1

k log2 `

(
|I? ∩ P ?2 | − k|I1|

)
.

Combining, we have

|I| = |I1|+ |I2|

≥ 1

k log2 `

(
|I? ∩ P ?1 |+ |I? ∩ P ?2 | − k|I1|

)
⇒ |I| ≥ |I?|

k(1 + log2 `)
=

|I?|
k log2(2`)

.

For the base case ` = 1 the only option is to go from s
to t, and get a 1 ≥ 1

k log2 2 -approximation.

The entire analysis above is linear, and immediately
extends to any positive linear combination of such
unweighted rank functions, say those functions of the
form g(Q) := Eω[r(Q ∩ Aω)]. Finally, using the
reduction from weighted to unweighted rank functions
(Lemma 5.1) we lose another factor of O(k) and get:

Theorem 6.1. There is a quasi-polynomial time
O(k2 log n)-approximation algorithm for non-adaptive
stochastic probing on metrics given intersections of k
matroids.

Finally, combining with Theorem 1.1 completes the
proof of Theorem 1.3.

Stochastic Submodular Orienteering for Ma-
troid Rank Functions The above result also implies
an approximation algorithm for the following stochas-
tic submodular orienteering (StocSO) problem. Given
a metric (U, d) with a root where each vertex v ∈ U is
active independently with probability pv, a monotone
submodular function g : 2U → R+ and length bound B,
the goal is to find an adaptive path of length at most
B that originates from the root and maximizes the ex-
pected function value on active elements. When func-
tion g is a matroid rank function, notice that StocSO
is precisely the above stochastic probing problem on
metrics with k = 1. Hence there is a quasi-polynomial
time O(log2 n)-approximation algorithm for StocSO un-
der matroid rank functions. In fact, this result also
holds for any positive linear combination g of matroid
rank functions: this relies on the “linearity property”
of the adaptivity gap result (Theorem 1.1) and the fact
that such functions g are submodular (so the [16] algo-
rithm can be used to find a non-adaptive strategy). We
summarize this discussion below:

Corollary 6.1. There is a quasi-polynomial time
O(log2 n)-approximation algorithm for stochastic sub-
modular orienteering on positive linear combinations of
matroid rank functions.

This result will be useful for the next section.

6.2 Stochastic Minimum Latency Submodular
Cover The minimum latency submodular cover prob-
lem studied in [29] is as follows: given a metric (U, d)
with root r and m monotone submodular functions
fi : 2U → R+ (for i ∈ [m]), the goal is to find a path
originating from r that minimizes the total “cover time”
of the m functions. Here, function fi is said to be cov-
ered at time t if this is the minimum value such that

fi({v | vertex v visited before time t}) = fi(U).

In the stochastic minimum latency submodular cover
(StocMLSC) problem, the input is the same as above
and furthermore each vertex (element) v ∈ U is active
independently with probability pv. The goal is to find an
adaptive strategy to minimize the expected total cover
time of the m functions. In the stochastic setting,
function fi is said to be covered at time t if this is the
minimum value such that

fi({v | v visited before time t and active}) = fi(U).

Due to the stochasticity, there may be situations where
some functions fi never reach the maximum value
fi(U)—in such cases the cover time is just set to
be the entire path length. We assume, without loss



of generality, that functions are normalized so that
fi(U) = 1 for i ∈ [m].

Obtaining a poly-logarithmic approximation ratio
for StocMLSC was left open in [29]. In this paper, we
answer this question for the interesting case when each
fi is a matroid rank function.

Theorem 6.2. There is a quasi-polynomial time
O(log3 n)-approximation algorithm for stochastic mini-
mum latency submodular cover when all the input func-
tions are matroid rank functions.

Proof. (Sketch) The main ingredient in this algorithm is
an approximation algorithm for stochastic submodular
orienteering (StocSO). Given an α-approximation algo-
rithm for this problem, the algorithm and analysis for
the deterministic minimum latency submodular cover
problem in [29] apply directly to yield an O(α · log 1

ε )-
approximation algorithm for StocMLSC, where ε is the
smallest positive marginal value of any function {fi}mi=1.
Moreover, the function g in the StocSO instances solved
by this algorithm is always a non-negative linear com-
bination of the fis. We defer additional details to the
full version.

In this theorem, each function fi is restricted to
be the rank function of some matroid Mi. Since g is a
linear combination of the fis, Corollary 6.1 yields quasi-
polynomial time O(log2 n)-approximation algorithm for
StocSO with objective g. Applying this within the
algorithm from [29], we obtain a quasi-polynomial time
O(log3 n)-approximation algorithm for StocMLSC (note
that ε ≥ 1

n for matroid rank functions).

As an example, consider the stochastic version of
the latency group Steiner problem [28, 13]. The input
consists of (i) metric (U, d) where each vertex v ∈ U
is active independently with probability pv, (ii) root
r ∈ U and (iii) m groups {Xi ⊆ U}mi=1 of vertices.
The goal is to find an adaptive path (starting from
r) that minimized the expected cover-time of the m
groups. Group Xi is covered at the earliest time
when some active vertex from Xi is observed. A
direct application of Theorem 6.2 yields an O(log3 n)-
approximation algorithm. In this special case however,
we can use (a) Theorem 1.2 to bound the adaptivity gap
by O(1) and (b) the fact that ε = 1, to obtain a quasi-
polynomial time O(log n)-approximation algorithm.

6.3 Stochastic Connected Dominating Set The
budgeted connected dominating set problem (BCDS)
studied in [31] is the following. Given an undirected
graph G = (V,E) and budget k, the goal is to choose
a set S of k vertices such that G[S] is a connected
suggraph, and the number of vertices dominated by S

are maximized. A vertex v ∈ V is said to be dominated
by set S ⊆ V if N(v) ∩ S 6= ∅, where N(v) is the set of
neighbors of v which includes v.

We consider the following stochastic version of
BCDS. The elements are edges E of a graph, and each
edge e ∈ E is active for the purpose of dominating
one end-point by the other only with some independent
probability pe. Furthermore, the status of an edge e is
only known when we “probe” one of its end points. The
(random) subset of active edges is denoted A ⊆ E. We
want an adaptive strategy for probing a sequence of at
most k vertices such that:
• the set P of probed vertices at any point in time is

connected in the (deterministic) graph G = (V,E),
and

• the expected number of vertices dominated by P in
the graph Gp = (V,A) is maximized.
This models, for example, a sensor network appli-

cation where vertices V denote potential coverage lo-
cations and edges E correspond to pairs of locations
between which two sensors can communicate. A sensor
placed at location u covers u, and additionally a (ran-
dom) subset of u’s neighbors between whom the sens-
ing quality is good enough. A priori we only know the
probabilities of having a good sensing quality; the exact
status is known only when a sensor is placed at u or v.
We want to set up a connected network using k sensors
(possibly adaptively) so as to maximize the expected
number of covered locations.

We formally cast the problem in our framework:
The ground set contains the edge set E with prob-
abilities {pe}e∈E . In our model we must probe ele-
ments/edges (and not vertices), but the generality of
our framework helps capture this. The outer constraints
require that there exists a subset S ⊆ V of vertices such
that (i) every probed edge has at least one end-point in
S, (ii) S is connected in G, and (iii) |S| ≤ k. It is easy
to see that this can be captured by a prefix-closed col-
lection of sequences of elements in E. There is no inner
constraint, but the objective is the coverage function

f(A) :=
∑
v∈V

1(A contains edge incident to v),

where A is the set of probed edges that are active.
By Corollary 1.1 the adaptivity gap of this stochastic
probing problem is O(1), so we can focus on the non-
adaptive problem.

In the non-adaptive stochastic BCDS problem, we
want a static set S ⊆ V of at most k connected vertices
in G that maximizes the function

g(S) := |S|+
∑

v∈V \S

Pr[v dominated by S]



= |S|+
∑

v∈V \S

1−
∏

e∈E(S,v)

(1− pe)

 .

Above E(S, v) denotes the set of edges incident to v
whose other endpoint lies in S. Not only is g is a sub-
modular function on V , it is also a “special submodular”
function as defined in [31], so the algorithm from [31]
yields an O(1)-approximation for non-adaptive stochas-
tic BCDS, and hence proves Theorem 1.4.

6.4 Stochastic Precedence Constrained
Scheduling Consider a set U of tasks with precedence
constraints, where each task e ∈ U has an independent
random value/reward Ve ∈ Z+. The exact value of a
task is known only when it is probed, and the order
of probing tasks must satisfy the precedence. (I.e., a
task can be probed only when its predecessors have
all be probed.) There is a bound B on the total
number of probes. Each task must be irrevocably
accepted/rejected immediately after it is probed.
Finally, we are allowed to accept at most k tasks. The
objective is to maximize the expected total value of the
selected tasks.

This can be modeled as a stochastic probing prob-
lem on the ground set U , with independent random val-
ues Ve for each e ∈ U . The outer constraints requires
that we probe a set S ⊆ U with |S| ≤ B that satisfies the
precedence (i.e., it is a lower-ideal of the poset giving the
precedence constraints). The inner constraint is a single
uniform matroid of rank k. By Theorem 1.2 the adap-
tivity gap of this probing problem is O(1), and hence it
suffices to give an algorithm for the non-adaptive prob-
lem.

The non-adaptive problem involves choosing a
precedence-constrained set S ⊆ U with |S| ≤ B that
maximizes:

value(S) := E
[

max

{∑
e∈I

Ve

∣∣∣∣ I ⊆ S, |I| ≤ k}].
By Lemma 5.1 this value is approximated (within factor
4) by value′(S) which is:∑
j∈Z

2j · E
[
max{|I| : I ⊆ S ∩ {e | 2j−1 ≤ Ve < 2j}, |I| ≤ k}

]
=
∑
j∈Z

2j · E
[
min

{
S ∩ {e | 2j−1 ≤ Ve < 2j}, k

}]
.

This in turn is approximated within factor e
e−1 by

value′′(S) =
∑
j∈Z

2j ·min

{∑
e∈S

Pr[2j−1 ≤ Ve < 2j ], k

}
.

This follows from the fact that for independent [0, 1]
valued random variables X1, · · · , Xn with Y =

∑
Xi, it

holds that E[min{Y, 1}] ≥ (1− 1/e) ·min{E[Y ], 1} (see,
e.g., [6, Theorem 4]). For each j, we use this result with
Xe = 1

k · 1(2j−1 ≤ Ve < 2j) and Y =
∑
e∈S Xe.

Define pe,j := Pr[2j−1 ≤ Ve < 2j ] for each e ∈ U
and j ∈ Z. Using standard scaling arguments, we may
assume that the random variable takes on values in
the range [1,poly(n)], that so we have L = O(log n)
weight classes j = 1, · · · , L. Summarizing the above
reductions, we know that with a constant factor loss, the
non-adaptive problem reduces to finding a precedence-
constrained set S ⊆ U with |S| ≤ B that maximizes

V ′(S) =
∑L
j=1 2j ·min

{∑
e∈S pe,j , r

}
.

When L = 1, this reduces to the partially or-
dered knapsack problem for which an FPTAS is known
when the precedence constraint is an “2-dimensional or-
der” [33].6 The algorithm in [33] is a dynamic program
which easily extends to give a quasi-polynomial nO(L)

time approximation scheme for non-adaptive stochas-
tic precedence constrained scheduling in this setting.
Hence we get:

Theorem 6.3. There is a quasi-polynomial time
constant-factor approximation algorithm for stochastic
precedence constrained scheduling under 2-dimensional
orders.

It remains an interesting direction of research to extend
this result to more general classes of matroid inner con-
straints, and also more general precedence constraints.

7 Extensions

7.1 Improved Bound for Uniform Matroids In
this section we improve our bounds from Theorem 3.1
for the special case when the inner constraints are given
by a single uniform matroid. This proof is similar
structure to of Theorem 3.1, however, each step is
simpler.

Theorem 7.1. Consider an unweighted stochastic
probing instance where the inner constraint is a uni-
form matroid of rank R, and the outer constraint is
prefix closed. Let T ? be an optimal adaptive strat-
egy and P be a random path according to πT ? . Then

EP [pathval(P )] ≥ e−1
2e−1 ·

(
1− 1

e

)2 · adapt(T ?).
Proof. Since the greedy algorithm is optimal for a
single matroid, we may assume w.l.o.g. that T ? selects
every active element into its solution, and the tree is
terminated after R elements are chosen. This (online)
strategy also has expected value adapt(T ?).

6This class is strictly more general than series-parallel prece-
dence constraints. For general precedence constraints, no approx-

imation algorithm is known: this is at least as hard as Dense-k-
subgraph.



Recall that the uniform matroid polytope P :=
{x ∈ [0, 1]U |

∑
e∈U xe ≤ R}.

Define the set F of frontier nodes in T ? to be those
nodes u closest to the root that have

∑
e∈elt(Pu) pe ≥

e
e−1R. (Recall that Pu is the path in T ? from the root to
node u.) We truncate T ? below all nodes of F to obtain
tree T . We have the following two useful properties:

1. The conditional expected value in T ? below any
node u is at most the adaptive optimum. This is
because a feasible strategy is to deterministically
follow the path in T ? to u (without making any
selections) and then implement T ?’s strategy below
u.

2. The probability that a random path P in T ? crosses
F is at most 1

e . This follows from Theorem 4.1, by
setting Nt to be the tth node seen by P in T ? and

ξt(N1, . . . , Nt) = 1(elt(Nt) is active).

The stopping time τ corresponds to path P crossing
a frontier node F strictly before reaching a leaf in
T ?. By the preprocessing of T ? it follows that:
τ∑
t=1

ξt(N1, . . . , Nt) =

τ∑
t=1

1(elt(Nt) is active) ≤ R−1.

On the other hand, by definition of F , we have:
τ∑
t=1

ENt [ξt(N1, . . . , Nt)] =

τ∑
t=1

pelt(Nt) >
e

e− 1
·R.

Applying Theorem 4.1 with δ = 1, we have
Pr[cross F ] ≤ 1

e .

Combining the above two properties, the expected value
of T is at least (1− 1

e ) · adapt(T ?).
Consider now a random path P in T and the

probability vector:

xe =

{
pe if e ∈ elt(P )
0 otherwise

,

By construction of T , with probability one, we have∑
e∈U xe ≤ 1 + eR

e−1 , since any frontier node contributes
at most one and the nodes before it contribute at most
e
e−1R. So e−1

2e−1x ∈ P. Moreover, by the truncation
above the expected total probability E[

∑
e∈U xe] equals

the expected value of T which is at least (1 − 1
e ) ·

adapt(T ?).
For any vector y ∈ P, contention resolution

schemes [4, 37, 17] imply that if we randomly and
independently select each element e with probability
ye then the resulting set has expected rank at least
(1− 1

e ) ·
∑
e ye. Using this result with y = e−1

2e−1 · x, the

expected value from any fixed P is at least e−1
2e−1 ·(1−

1
e )

times
∑
e xe, i.e. at least e−1

2e−1 (1− 1
e )2 · adapt(T ?).

7.2 Improved Bound for Intersections of Parti-
tion Matroids Recall that a partition matroid is given
by a partition {Vj} of the elements U , and a subset
I ⊆ U is independent if |I ∩ Vj | ≤ 1 for all parts j.
Here we show that the adaptivity gap when the inner
constraints are intersections of k partition matroids, is
bounded by O(k3 log k). This improves upon the result
for general matroids: in particular we get a constant-
factor adaptivity gap for k = O(1) partition matroids
(instead of O(log n) for arbitrary matroids).

Specifically, we prove the following result for the
unweighted case, which combined with the reduction
in Section 5 from weighted to unweighted instances,
implies Theorem 1.2.

Theorem 7.2. Consider an unweighted stochastic
probing instance with inner constraint being the inter-
section of k partition matroids, and any prefix-closed
outer contraint. For any strategy T ,

EP←πT [pathval(P )] ≥ 1

O(k2 · log k)
· adapt(T ).

For this proof, we assume familiarity with the
proof of Theorem 3.1. We use the same notation and
preprocessing step from Section 3. In particular, recall
the definitions of the independent sets Iu, vectors x(u),
relevant nodes R and ρ-valid nodes. Also recall that
after preprocessing, the value of strategy T is given
by (3.3) and due to the greedy algorithm being a k-
approximation, greedy(T ) ≥ 1

k · adapt(T ). The key
difference is in the truncation operation, which we now
describe.

With ρ = 1 + ln k, we show how to truncate the
tree (i.e. reduce the set R of relevant nodes) so that
every node is (roughly) ρ-valid for one partition matroid
Mi, and the value of the resulting tree (following the
definition in (3.3)) is at least 1− 1

ek times the original.
By repeating this for each of the k partition matroids,
we would obtain a tree T̃ where each node is ρ-valid for
every matroid {Mi}ki=1 and the value is at least Ω(1)
times that of T .

Truncation for single partition matroid M.
Let T ′ denote an arbitrary decision tree with relevant
nodes R, and M a partition matroid with parts {Vj}.
A node u in T ′ is called ρ-valid for part j of matroid

M if
∑
e∈Vj x

(u)
e ≤ ρ; it is called ρ-invalid otherwise.

Note that for any part j, the set of ρ-valid nodes forms
a connected subtree from the root of T ′. Define the
frontier nodes of part j to be the set Fj of ρ-invalid
nodes (for j) that are closest to the root. We are now
ready to define the truncated tree T ′′.

For each part j and node u ∈ Fj do : remove
from R all nodes in the subtree of T ′ strictly



below u that contain an element of Vj (i.e.,
ignore the value obtained from such nodes).

Note that any node v ∈ T ′ may get removed from R
only while processing the unique part Vj that contains
elt(v). The value of the new tree T ′′ is calculated
using (3.3) on the modified set R. The vectors x(u)

on nodes of T ′′ are also updated according to (3.4) with
the new set R.

Lemma 7.1. The value of the truncated tree
greedy(T ′′) ≥ (1− 1

ek ) · greedy(T ′).

Proof. We consider the nodes removed while processing
each part j separately. First, let us condition on
the instantiation σ of all elements in U \ Vj and let
T ′σ denote the conditional decision tree. Note that
T ′σ differs from T ′ only in the transition probabilities
out of nodes containing elements of U \ Vj : these
transitions are deterministic in T ′σ. In T ′σ, consider the
event of a random path crossing a frontier node for
Vj before observing any active element from Vj . Note
that there is at most one such path in T ′σ, which is
obtained by following the “inactive” outcome at each
node containing a Vj-element. Let u denote the unique
frontier node on this path, i.e., the first ρ-invalid node
(if any). We assume that such a node u exists, otherwise
the following analysis is trivial. Recall that Pu denotes
the path in T ′ (and also T ′σ) from the root to u. So∑
e∈Vj∩elt(R∩Pu)

pe =
∑
e∈Vj

x(u)e > ρ = 1+ln k.

We now have (using “inst.” to mean “instantiation”):

Pr
T ′

[cross frontier node before an active inst. for Vj | σ]

= Pr
T ′σ

[cross u before active inst. for Vj | σ]

=
∏

e∈Vj∩elt(R∩Pu)

(1− pe)

≤ exp

(
−

∑
e∈Vj∩elt(R∩Pu)

pe

)
< e−ρ.

All nodes on path Pu appear in both T ′ and T ′′. So,
conditioned on σ, the random path traced in T ′ agrees
with that in T ′′ until u. Moreover, if the paths traced
by T ′ and T ′′ diverge from Pu before the truncation
below node u then they must both contain an active
instantiation for Vj . Hence,

Pr [an active inst. from Vj in T ′′ | σ]

= Pr
T ′σ

[do not cross u before active inst. for Vj | σ]

> 1− e−ρ,

which in turn is clearly at least (1 − e−ρ) ·
Pr [an active instantiation from Vj in T ′ | σ].

Taking expectations over σ and removing its condi-
tioning,

greedyj(T ′′) ≥ (1− e−ρ) · greedyj(T ′)

where we use greedyj to denote the value in (3.3)
only from nodes containing Vj elements. Since {Vj}
partitions U , we have greedy =

∑
j greedyj .

7 The
lemma now follows by adding the above inequality over
all parts j.

By iterating the truncation for each of the k parti-
tion matroids on T , we obtain a decision tree T̃ with
greedy(T̃ ) ≥ (1− 1

ek )k ·greedy(T ) ≥ (1−1/e)·greedy(T ).

The tree T̃ has the property that every non-leaf node is
ρ-valid for each matroid. We emphasize that the frontier
nodes are ρ-invalid but included in T̃ .

If we ignore the leaf-nodes of T̃ then exactly as
in the proof for Theorem 3.1, we can use contention
resolution to obtain that a random path P in T has
E[pathval(P )] at least 1

ρ(k+1) times the total expected

value in non-leaf nodes of T̃ . On the other hand, a
random path P in T clearly has E[pathval(P )] at least

the total expected value in leaf nodes of T̃ . Balancing
these two quantities, using the fact that greedy(T̃ ) ≥
1
k (1− 1/e) · adapt(T ), we obtain

EP←πT [pathval(P )]

≥ 1− 1/e

k · (1 + (k + 1)(1 + ln k))
adapt(T ).

Remark: In the special case of k = 1 partition
matroid, we can use a better (1−1/e)-factor contention
resolution scheme (instead of 1/2) to obtain a slightly
better bound of 1

1+(1−1/e)−2 above.

7.3 Sums of Matroid Rank Functions, and Cov-
erage Functions The adaptivity gaps in Sections 3
and 7.2 show that a random path P in any adaptive
strategy T (chosen from the distribution πT ) has ex-
pected pathval(P ) which is a large fraction of adapt(T ).
While this implies that there exists a good P , the fact
that our claim is about the expected value of a random
path P gives us more.

For example, consider the unweighted case with a
single matroid M with rank function r(·) as the inner

7The claim that greedy =
∑
j greedyj is the key point

where this proof fails for a general matroid M—if we

were to perform a truncation for each (critical) rank con-
straint S then we can no longer lower bound greedy(T ′′) by∑
S E[# active instantiations from S in T ′′].



constraint. Let Aω be the active elements in outcome
ω (i.e., those with non-zero—and hence unit—value),
then by Theorem 3.1 we get that

EP [Eω [ r(elt(P ) ∩Aω) ]] = Ω

(
1

log n

)
· adapt(T )

(by def)
= Ω

(
1

log n

)
· Eω

[
r(elt(P`(ω)) ∩Aω)

]
.

Hence, if we are given several matroids Mi with rank
functions ri, and r̂ =

∑
wiri with non-negative weights

wi, we get the same bound above for r̂ by linearity
of expectations. For partition matroids (and hence for
rank 1 uniform matroids), we can use Theorem 7.2 with
k = 1 (see the remark after proof of Theorem 7.2) to
show the improved bound:

EP [Eω [ r(elt(P ) ∩Aω) ]] =
1

1 + (1− 1/e)−2
· adapt(T )

=
1

1 + (1− 1/e)−2
· Eω

[
r(elt(P`(ω)) ∩Aω)

]
.

Recall that a weighted coverage function f : U →
R+ is defined by a set system (U,S) where each set
Si ∈ S has weight wi, and where f(H) :=

∑
Si∈S wi ·

1(Si ∩H 6= ∅) for H ⊆ U . This function f is a sum of
a collection of uniform matroids of rank 1 defined over
(subsets of) U . The argument above implies that given
any decision tree T , we have

EP [Eω [ f(elt(P ) ∩Aω) ]]

=
1

1 + (1− 1/e)−2
· Eω

[
f(elt(P`(ω)) ∩Aω)

]
.

This proves Corollary 1.1.
Acknowledgements We thank R. Ravi and Rav-

ishankar Krishnaswamy for useful discussions.
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A Miscellaneous Facts

Fact A.1. Given a probing problem with n elements
where the outer constraints are prefix-closed and the in-
ner constraints are subset-closed, the strategy of probing
the element

e∗ := arg max
e∈U

E[Ve]

is a non-adaptive strategy with value at least optad/n,
and at most optad.

Proof. For any e ∈ U , we can assume that (a) the
singleton e satisfies the inner constraints (i.e., set {e} ∈
Fout), and (b) there is some sequence σ 3 e satisfying
the outer constraints (i.e., e ∈ σ ∈ Fout). Indeed, if not,
element e can be discarded, and its probe (if any) in the
optimal strategy can be replaced by a random decision.

For the first part of the claim,

optad ≤
∑
e∈U

E[Ve] ≤ n× arg max
e∈U

E[Ve].

For second part, one feasible strategy is to probe the
sequence of elements such that e can be probed (ignoring
their outcomes), probe e and output the singleton e.
This is a valid non-adaptive strategy, and hence the best
adaptive strategy must give at least as much value.

B Illustrative examples

In this section we give some examples that illustrate the
challenges in bounding the adaptivity gap.

B.1 Adaptivity gap is at least 7
6 The example

below shows a constant adaptivity gap for a simple
stochastic probing probing problem where the inner
constraints form a partition matroid and the outer
constraints form a uniform matroid.

Example 1: Consider three items {e1, e2, e3},
each having a Bernoulli value distribution. Ve1 and
Ve2 are identically distributed and have value 0 with
probability 1

2 and value 1 with probability 1
2 . Ve3

has value 1
4 with probability 1. Suppose the outer

constraints allow us to probe at most two elements and
the inner constraints form a partition matroid with the
partitions ({e1, e2}, {e3}). Here the adaptive optimum
probes element e1 and depending on whether/not it has
positive value, the strategy probes e3 or e2 respectively.
This gives adapt = 7

8 . On the other hand, any non
adaptive strategy can obtain at most 3

4 in expectation.
Hence the adaptivity gap is at least 7

6 .

B.2 Moving Beyond Decision Trees Here we dis-
cuss a different (seemingly promising, but ultimately fu-
tile) approach to proving Theorem 3.1 (and hence The-
orem 1.1). This is motivated by the concept of cor-
relation gaps and completely avoids arguing about the
exponential-sized decision tree.

Recall that the correlation gap [4] of a matroid
rank function r : 2U → Z+ is a statement about the
expected rank under two different distributions over
subsets. Formally, given any distribution {λi, Si} over
subsets Si ⊆ U (where λ ≥ 0 and

∑
i λi = 1) with



pe =
∑
i:e∈Si λi, we have

E[rank of set containing each e ∈ U indep. w.p. pe]

≥ (1− 1

e
) ·
∑
i

λi · r(Si).

In words, among all distributions over subsets having
the same marginal probabilities, the independent distri-
bution approximately maximizes the expected rank.

Given probabilities {pe}e∈U , recall the multilinear
extension [12] of a matroid rank function isR : 2U → R+

where for each S ⊆ U , R(S) equals:

E[rank of set containing each e ∈ S indep. w.p. pe].

So the correlation gap says R(U) ≥ (1− 1
e ) ·
∑
i λi ·r(Si)

for any distribution {λi, Si} with marginals {pe}.
Consider now the following approach to proving

Theorem 3.1 which would generalize the correlation gap.
Let λi denote the probability that the optimum adaptive
strategy (optad) probes set Si ⊆ U , and let Ti ⊆ Si
denote the subset of active elements that are observed
under this outcome. So optad =

∑
i λi · r(Ti). On

the other hand, the non-adaptive value (measured as
pathval) of a random root-leaf path in optad is precisely
E[pathval] =

∑
i λi · R(Si). The expressions for optad

and E[pathval] correspond to the expected rank under
two different distributions, having the same marginal
probabilities:∑

i:e∈Ti

λi = pe
∑
i:e∈Si

λi, ∀e ∈ U.(B.1)

Bounding the adaptivity gap now reduces to the
task of relating the expected rank under these two
distributions; i.e., for some small value ρ,

Is
∑
i

λi · r(Ti) ≤ ρ ·
∑
i

λi ·R(Si) ?(B.2)

Observe that when all the subsets Sis are identical,
the question in (B.2) is precisely the correlation gap
question, in which case the inequality holds with ρ ≤
e
e−1 . Unfortunately, as shown next, the ratio of these

two expectations may be Ω(
√
n) in general.

Example 2: Consider a stochastic probing instance on
U = [n]. The inner matroid constraint is a uniform
matroid of rank one: the rank function has value 1
if at least one element is picked, and is 0 otherwise.
Each element is active independently with probability

p =
√
n−1

n+
√
n−1 . Let S0 := {1, 2, . . . , n}, T0 := ∅, and

λ0 = 1√
n

. For 1 ≤ i ≤ n, let Si := {i}, Ti := {i}, and

λi = 1
n

(
1− 1√

n

)
. It is easy to verify that

∑
i λi r(Ti) =

1− 1√
n

but
∑
i λi R(Si) = O( 1√

n
).


