Robust Systems Theory and Applications covers both the techniques used in linear robust control analysis/synthesis and in robust (control-oriented) identification. The main analysis and design methods are complemented by elaborated examples and a group of worked-out applications that stress specific practical issues: nonlinearities, robustness against changes in operating conditions, uncertain infinite dimensional plants, and actuator and sensor limitations. Designed expressly as a textbook for master's and first-year PhD students, this volume:

- Introduces basic robustness concepts in the context of SISO systems described by Laplace forms, establishing connections with well-known classical control techniques
- Presents the internal stabilization problem from two different points of view: algebraic and LMI
- Introduces the four basic problems in robust control and the Loop shaping design method
- Presents the \mathcal{H}_∞ control problem from a different viewpoint, including an analysis of robustness properties of \mathcal{H}_∞ controllers and a treatment of the generalized problem
- Extends the \mathcal{H}_∞ control problem using both the state-space approach developed in the 1980s and a Linear Matrix Inequality approach (developed in the mid 1990s) that encompasses more general problems
- Covers more general types of uncertainties (parametric and mixed type) and uses more general types of uncertainties
- Presents an overview of optimal \mathcal{H}_∞ control theory and covers the fundamentals of its basic tools of model order reduction
- Provides a tutorial on robust identification
- Includes numerous end-of-chapter problems and worked-out examples of robust control

Ricardo S. Sánchez-Peña
Mario Sznaier

is a researcher at the National Commission of Activities (CONAE) and Professor of Control Systems at the School of Engineering at University of Buenos Aires, Argentina.

is an Associate Professor in the Department of Electrical Engineering at Pennsylvania State University, University Park, USA.
ROBUST SYSTEMS
THEORY AND APPLICATIONS
Adaptive and Learning Systems for Signal Processing, Communications, and Control

Editor: Simon Haykin

ROBUST SYSTEMS THEORY AND APPLICATIONS

Ricardo S. Sánchez-Peña
Mario Sznaier

Werbos / THE ROOTS OF BACKPROPAGATION: From Ordered Derivatives to Neural Networks and Political Forecasting
Krštić, Kanellakopoulos, and Kokotović / NONLINEAR AND ADAPTIVE CONTROL DESIGN
Nikias and Shao / SIGNAL PROCESSING WITH ALPHA-STABLE DISTRIBUTIONS AND APPLICATIONS
Diamantaras and Kung / PRINCIPAL COMPONENT NEURAL NETWORKS: THEORY AND APPLICATIONS
Tao and Kokotović / ADAPTIVE CONTROL OF SYSTEMS WITH ACTUATOR AND SENSOR NONLINEARITIES
Tsoukalas / FUZZY AND NEURAL APPROACHES IN ENGINEERING
Hrycej / NEUROCONTROL: TOWARDS AN INDUSTRIAL CONTROL METHODOLOGY
Beckerman / ADAPTIVE COOPERATIVE SYSTEMS
Cherkassky and Muller / LEARNING FROM DATA: CONCEPTS, THEORY, AND METHODS
Passino and Burgess / STABILITY OF DISCRETE EVENT SYSTEMS
Sánchez-Peña and Sznaier / ROBUST SYSTEMS THEORY AND APPLICATIONS
Vapnik / STATISTICAL LEARNING THEORY
To our parents
Lolita and Miguel, Rebeca and Marcos

This book is printed on acid-free paper.

Copyright © 1998 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008.

E-Mail: PERMMREQ@WILEY.COM.

Library of Congress Cataloging-in-Publication Data:
Sánchez-Peña, Ricardo
Robust systems theory and applications / Ricardo Sánchez-Peña.
 p. cm.
 Includes bibliographical references and index.
 1. Sznaier, Mario. II. Title.
TJ213.S1544 1998
629.8--dc21
98-6420
CIP

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1
CONTENTS

1 Introduction

1.1 General Control Problem / 1
 1.1.1 Experimental Phase / 2
 1.1.2 Simulation Phase / 3
 1.1.3 Theoretical Phase / 5
1.2 Why Feedback? / 11
1.3 Feedback Loop Trade-off / 14
1.4 Objectives of an Applied Theory / 17
1.5 Objectives of This Book / 19
 1.5.1 General Remarks / 19
 1.5.2 Scope / 19
 1.5.3 How to Use This Book / 21

2 SISO Systems

2.1 Introduction / 23
2.2 Well Posedness / 24
2.3 Nominal Internal Stability / 26
2.4 Robust Stability / 29
 2.4.1 Phase and Gain Margins / 29
 2.4.2 Global Dynamic Uncertainty / 32
2.5 Nominal Performance / 42
 2.5.1 Known Disturbance/Noise/Reference / 42
 2.5.2 Bounded Disturbances at the Output / 44
 2.5.3 Other Performance Criteria / 47
2.6 Robust Performance / 50
2.7 Extension to MIMO Systems / 55
2.8 Problems / 57
3 Stabilization

3.1 Introduction / 61
3.2 Well Posedness and Internal Stability / 63
 3.2.1 Well Posedness / 63
 3.2.2 Internal Stability / 64
3.3 Open-Loop Stable Plants / 65
3.4 The General Case / 68
 3.4.1 Special Problems / 69
 3.4.2 The Output Feedback Case / 75
3.5 Controller Structure and Separation Principle / 78
3.6 Closed-Loop Mappings / 79
3.7 A Coprime Factorization Approach / 80
 3.7.1 Coprime Factorizations / 80
3.8 LFTs and Stability / 88
3.9 Problems / 90

4 Loop Shaping

4.1 Introduction / 93
4.2 Nominal Performance / 97
4.3 Robust Stability / 98
4.4 Nominal Performance and Robust Stability / 99
4.5 Robust Performance / 100
 4.5.1 Sensor Uncertainty / 101
 4.5.2 Actuator Uncertainty / 102
4.6 Design Procedure / 105
4.7 Examples / 109
 4.7.1 Permanent Magnet Stepper Motor / 109
 4.7.2 Loop Shaping $Q(s)$ / 119
4.8 Related Design Procedures / 123
4.9 Problems / 125

5 \mathcal{H}_2 Optimal Control

5.1 Introduction / 127
5.2 The Classical Linear Quadratic Regulator Problem / 128
5.3 The Standard \mathcal{H}_2 Problem / 133
5.4 Relaxing Some of the Assumptions / 141
5.5 Closed-Loop Properties / 142
 5.5.1 The LQR Case: Kalman’s Inequality / 143
5.5.2 Some Consequences of Kalman’s Inequality / 145
5.5.3 Stability Margins of Optimal \mathcal{H}_2 Controllers / 146
5.6 Related Problems / 149
5.7 Problems / 152

6 \mathcal{H}_∞ Control

6.1 Introduction / 157
6.2 The Standard \mathcal{H}_∞ Problem / 158
 6.2.1 Background: Hankel and Mixed Hankel-Toeplitz Operators / 161
 6.2.2 Proof of Theorem 6.1 / 176
6.3 Relaxing Some of the Assumptions / 179
6.4 LMI Approach to \mathcal{H}_∞ Control / 180
 6.4.1 Characterization of All Output Feedback \mathcal{H}_∞
 Controllers / 183
 6.4.2 Connections with the DGKF Results / 188
6.5 Limiting Behavior / 192
6.6 The Youla Parametrization Approach / 193
6.7 Problems / 203

7 Structured Uncertainty

7.1 Introduction / 207
 7.1.1 Stability Margin / 210
7.2 Structured Dynamic Uncertainty / 215
 7.2.1 Computation / 215
 7.2.2 Analysis and Design / 219
7.3 Parametric Uncertainty / 223
 7.3.1 Introduction / 223
 7.3.2 Research Directions / 225
 7.3.3 Kharitonov’s Theorem / 230
 7.3.4 Mapping Theorem / 233
7.4 Mixed Type Uncertainty / 237
 7.4.1 Introduction / 237
 7.4.2 Mixed μ / 239
7.5 Problems / 242

8 \mathcal{L}_1 Control

8.1 Introduction / 245
Robustness against disturbances and model uncertainty is at the heart of control practice. Indeed, in the (completely unrealistic) case where both all external disturbances and a model of the system to be controlled are exactly known, there is no need for feedback: Optimal performance can be achieved with an open loop controller.

The main ingredients of present day robust control theory were already present in the classical work of Bode and in many popular frequency domain-based design techniques. With the advent of state-space methods in the mid-1960s the issue of robustness took a backseat to other topics, but was never completely abandoned by the control community, especially control practitioners. Interest in robust control rose again in the late 1970s where it was shown that many popular control methods (including optimal LQR control and controller design based on the cascade of an observer and state feedback) led to closed-loop systems very sensitive to model perturbations. Moreover, widely accepted “ad-hoc” recipes for “improving robustness,” such as using artificially large noise levels in the design, had precisely the opposite effect.

Robust control has undergone extensive developments in the past two decades, leading to powerful formalisms, such as H_∞, μ-synthesis/analysis, and, more recently, ℓ^1 optimal control, that, coupled with newly developed control-oriented identification techniques, have been successfully applied to challenging practical problems. A salient feature of the framework is that it is oriented towards applications and thus is based on “practical,” realistic assumptions.

There are many excellent books that cover specialized topics (H_2, H_∞, ℓ^1, parametric uncertainty, linear matrix inequalities) with others scattered in the technical journals. Our intention in writing this book is to provide a self-contained overview of robust control that illustrates all the issues involved, ranging from the transformation of experimental signals from the physical plant to a set of models (robust identification), to the synthesis of a controller for that set of models (robust control). The purpose of the book is twofold: to serve as a textbook for courses at the Master’s/beginning Ph.D. level and as a reference for control practitioners. It assumes that the reader has a background in classical and state-space control methods. In order to keep the
text size at a manageable level, in some cases only basic results are covered, and the reader is referred to more specialized literature for further coverage.

In all cases we have strived to link the theory with practical applications. To this end, in addition to the examples covered throughout the book, the last chapter contains several worked out application problems that stress specific practical issues: nonlinearities, unknown time delays, infinite dimensional plants, actuator and sensor limitations. They are all extracted from our practical experience in different engineering fields. Furthermore, due to the fact that most of the problems to be solved by the theory presented here are computer-intensive, we stress the algorithmic and computational aspect of the solution along with the mathematical theory.

We (and our graduate students) have tried to eliminate obvious mistakes. However, as anyone who has tried knows, it is virtually impossible to make a “perfect” book. We encourage readers to send corrections, comments and general feedback to either one of the authors. Finally, as attested by the list of more than 300 references, we have tried to give credit where it is due. However, owing to the sheer volume of literature published on robust control, we may have inadvertently failed to do so on occasion. We apologize in advance to readers or authors who may feel that this is the case, and we encourage them to send us comments.

ACKNOWLEDGMENTS

We owe a special debt to Professor Thanasis Sideris from whom both of us learned a great deal (not only about robust control) and who was very influential in shaping our subsequent research. We would also like to acknowledge the important contribution that Professor Manfred Morari had in the development of the concepts presented in this book, and in advising Ricardo S. Sánchez Peña to make the right decisions during hard times in his career. Mario Sznaier is specially indebted to Professor Mark Damborg for his mentoring. Among Professor Damborg’s many contributions, the two that stand out are attracting him to the field of control and making sure that he got a Ph.D. degree when he showed signs of enjoying life too much as a graduate student.

The reviews by Professors Peter Dorato and Roy Smith at initial stages of this book have been instrumental in encouraging the authors to carry out the project and in shaping its final form. Preliminary versions of the book were tested in courses offered by the authors at Penn State University and the University of Buenos Aires. Feedback from students enrolled in these courses was fundamental to its fine tuning. We are also indebted to our graduate and post-doctoral students, Takeshi Amishima, Pablo Anigstein, Juanyu Bu, Tamer Inanc, Cecilia Mazzaro, Pablo Parrilo and Zi-Qin Wang, for reviewing the book in great detail and providing some of the material. In particular, Cecilia developed very efficiently the examples in Chapter 10 and Takeshi, Juanyu, and Zi-Qin contributed some of the material in Chapters 8 and 11.

The book was shaped to a large extent by interactions with our colleagues. In particular, many of the ideas and developments in Chapter 8 arose from research carried out jointly with Professor Franco Blanchini. Dr. Hector Rotstein influenced the presentation of the H_∞ material in Chapter 6. Professors S. P. Bhattacharyya, D. Bernstein, N. K. Bose, O. Crisalle, M. Dahleh, M. A. Dahleh, J. C. Doyle, M. Fan, C. V. Hollot, M. Khammassi, A. Megretski, A. Packard, J. Boyd Pearson, R. Ray, A. Saberi, A. Stoorvogel, R. Suarez, R. Tempo and J. Vagners contributed (directly or indirectly) to this book through many discussions and comments during the years.

The first author would like to thank his colleagues at LAE, School of Engineering of the University of Buenos Aires and at the Argentine Space Agency (CONAE), especially Professors C. Godfrid and A. Perez, and Ing. Beto Alonso for important support. The financial support of CONAE, the University of Buenos Aires and Fundación Antorchas during his stays at Penn State in 1994 and 1996 are also gratefully acknowledged.

Mario Sznaier would like to thank the National Science Foundation, and in particular Dr. Kishan Baheti, Director of the Engineering Systems Program, for supporting his research program. This book would have not been possible without this support.

We are also indebted to Ms. Lisa Van Horn and Mr. George Telecki at John Wiley and Sons, Inc. for their assistance throughout this project.

Finally we would like to thank our children, Gádriel, Lucila and Pablo, and spouses, Mónica and Octavia, for their infinite patience, support, and understanding for the time this book has stolen from them.

Ricardo S. Sánchez-Peña
Mario Sznaier

Buenos Aires, Argentina
University Park, Pennsylvania