A few Smarandache Integer Sequences

Henry lbstedt

Abstract
This paper deals with the analysis of a few Smarandache Integer Sequences which first appeared in
Properties of the Numbers, F. Smarandache, University of Craiova Archives, 1975 . The first four sequences are recurrence generated sequences while the last three are concatenation sequences.

The Non-Arithmetic Progression: $\left\{a_{i}: a_{i}\right.$ is the smallest integer such that $a_{i}>a_{i-1}$ and such that for $k \leq i$ there are at most $t-1$ equal differences $\left.a_{k}-a_{k_{1}}=a_{k_{1}}-a_{k_{2}}=\ldots=a_{k_{t-2}}-a_{k_{t-1}}\right\}$
A strategy for building a t-term non-arithmetic progression is developed and computer implemented for $3 \leq t \leq 15$ to find the first 100 terms. Results are given in tables and graphs together with some observations on the behaviour of these sequences.

The prime-Product Sequence: $\left\{t_{\mathrm{n}}: \mathrm{t}_{\mathrm{n}}=\mathrm{p}_{\mathrm{n}} \#+1, \mathrm{p}_{\mathrm{n}}\right.$ is the n th prime number $\}$, where $p_{\mathrm{n}} \#$ denotes the product of all prime numbers which are less than or equal to p_{n}.
The number of primes q among the first 200 terms of the prime-product sequence is given by $6 \leq q \leq 9$. The six confirmed primes are terms numero $1,2,3,4,5$ and 11 . The three terms which are either primes or pseudo primes (according to Fermat's little theorem) are terms numero 75, 171 and 172. The latter two are the terms $1019 \#+1$ and $1021 \#+1$.

The Square-Product Sequence: $\left\{t_{n}: t_{n}=(n!)^{2}+1\right\}$
As in the previous sequence the number of primes in the sequence is of particular interest. Complete prime factorization was carried out for the first 37 terms and the number of prime factors f was recorded. Terms 38 and 39 are composite but were not completely factorized. Complete factorization was obtained for term no 40 . The terms of this sequence are in general much more time consuming to factorize than those of the prime-product sequence which accounts for the more limited results. Using the same method as for the prime-product sequence the terms t_{n} in the interval $40<n<200$ which may possible be primes were identified. There are only two of them, term \#65: $\mathrm{N}=(65!)^{2}+1$ which is a 182 digit number and term \#76: $\mathrm{N}=(76!)^{2}+1$ which has 223 digits.

The Prime-Digital Sub-Sequence: The prime-digital sub-sequence is the set $\left\{M=a_{0}+a_{1} \cdot 10+a_{2} \cdot 10^{2}+\ldots a_{k} 10^{k}: M\right.$ is a prime and all digits $a_{0}, a_{1}, a_{2} \ldots a_{k}$ are primes $\}$
A proof is given for the theorem: The Smarandache prime-digital sub sequence is infinite, which until now has been a conjecture.

Smarandache Concatenated Sequences: Let $G=\left\{g_{1}, g_{2}, \ldots . g_{k}, \ldots.\right\}$ be an ordered set of positive integers with a given property G. The corresponding concatenated S. G sequence is defined through $S . G=\left\{a_{i}: a_{1}=g_{1}, a_{k}=a_{k-1} \cdot 10^{1+\log _{10} g_{k}}+g_{k}, k \geq 1\right\}$.

The S.Odd Sequence: Fermat's little theorem was used to find all primes/pseudo-primes among the first 200 terms. There are only five cases which all were confirmed to be primes using the elliptic curve prime factorization program, the largest being term 49:
135791113151719212325272931333537394143454749515355575961636567697173757779818385878991939597
Term \#201 is a 548 digit number.
The S.Even Sequence: The question how many terms are nth powers of a positive integer was investigated. It was found that there is not even a perfect square among the first 200 terms of the sequence. Are there terms in this sequence which are $2 \cdot \mathrm{p}$ where p is a prime (or pseudo prime)? Strangely enough not a single term was found to be of the form $2 \cdot \mathrm{p}$.

The S.Prime Sequence: How many are primes? Again we apply the method of finding the number of primes/pseudo primes among the first 200 terms. Terms \#2 and \#4 are primes, namely 23 and 2357. There are only two other cases which are not proved to be composite numbers: term \#128 which is a 355 digit number and term \#174 which is a 499 digit number.

I. The Non-Arithmetic Progression

This integer sequence was defined in simple terms in the February 1997 issue of Personal Computer World. It originates from the collection of Smarandache Notions. We consider an ascending sequence of positive integers $a_{1}, a_{2}, \ldots a_{n}$ such that each element is as small as possible and no t-term arithmetic progression is in the sequence. In order to attack the problem of building such sequences we need a more operational definition.

Definition: The t-term non-arithmetic progression is defined as the set:
$\left\{a_{i}: a_{i}\right.$ is the smallest integer such that $a_{i}>a_{i-1}$ and such that for $k \leq i$ there are at most $t-1$ equal differences $\left.a_{k}-a_{k_{1}}=a_{k_{1}}-a_{k_{2}}=\ldots=a_{k_{t-2}}-a_{k_{t-1}}\right\}$

From this definition we can easily formulate the starting set of a t-term non-arithmetic progression:

$$
\{1,2,3 \ldots . . t-1, t+1\} \text { or }\left\{a_{i}: a_{i}=i \text { for } i \leq t-1 \text { and } a_{t}=t+1 \text { where } t \geq 3\right\}
$$

It may seem clumsy to bother to express these simple definitions in stringent terms but it is in fact absolutely necessary in order to formulate a computer algorithm to generate the terms of these sequences.

Question: How does the density of a t-term non arithmetic progression vary with t. i.e. how does the fraction $\mathrm{a}_{k} / \mathrm{k}$ behave for $\mathrm{t} \geqslant 3$? ${ }^{1}$

Strategy for building a t-term non-arithmetic progression: Given the terms $a_{1}, a_{2}, \ldots a_{k}$ we will examine in turn the following candidates for the term a_{k+1} :

$$
a_{k+1}=a_{k}+d, d=1,2,3, \ldots
$$

Our solution is the smallest d for which none of the sets

$$
\left\{a_{1}, a_{2}, \ldots a_{k} a_{k}+d, a_{k}+d-e, a_{k}+d-2 e, \ldots a_{k}+d-(t-1) \cdot e: e \geq d\right\}
$$

contains a t-term arithmetic progression.
We are certain that a_{k+1} exists because in the worst case we may have to continue constructing sets until the term $a_{k}+d-(t-1)$ e is less than 1 in which case all possibilities have been tried with no t terms in arithmetic progression. The method is illustrated with an example in diagram 1 .

In the computer application of the above method the known terms of a no t-term arithmetic progression were stored in an array. The trial terms were in each case added to this array. In the example we have for $d=1, e=1$ the array: $1,2,3,5,6,8,9,10,11,10,9,8$. The terms are arranged in ascending order: $1,2,3,5,6,8,8,9,9,10,10,11$. Three terms 8,9 and 10 are duplicated and 11 therefore has to be rejected. For $d=3, e=3$ we have $1,2,3,5,6,8,9,10,13,10,7,4$ or in ascending order: $1,2,3,4,5,6,7,8,9,10,10,13$ this is acceptable but we have to check for all values of e that produce terms

[^0]which may form a 4-term arithmetic progression and as we can see from diagram 1 this happens for $d=3, e=4$, so 13 has to be rejected. However, for $d=5, e=5$ no 4-term arithmetic progression is formed and $e=6$ does not produce terms that need to be checked, hence $a_{9}=15$.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Known terms		1	2	3		5	6		8	9	10						
Trials																	
$d=1$	$e=1$								8	9	10	11					reject 11
d=2	$e=2$						6		8		10		12				reject 12
$d=3$	$e=3$				4			7			10			13			try next e
	$e=4$	1				5				9				13			reject 13
$c=4$	$e=3$		2				6				10				14		reject 14
$c^{\prime}=5$	$e=5$					5					10					15	accept 15

Diagram 1 . To find the 9^{m} term of the 4 -term non-arithmetic progression.
Routines for ordering an array in ascending order and checking for duplication of terms were included in a $Q B A S I C$ program to implement the above strategy.

Diagram 2. a_{k} / k for non-arithmetic progressions with $t=3.4,5, \ldots$. 15 . Bars are shown for $k=$ multiples of 10 .

Results and observations: Calculations were carried out for $3 \leq t \leq 15$ to find the first 100 terms of each sequence. The first 65 terms and the $100^{\text {th }}$ term are shown in table 1 . In diagram 2 the fractions a_{k} / k has been chosen as a measure of the density of these sequences. The looser the terms are packed the larger is a_{k} / k. In fact for $t>100$ the value of $a_{k} / k=1$ for the first 100 terms.

In table 1 there is an interesting leap for $t=3$ between the $64^{\text {th }}$ and the $65^{\text {th }}$ terms in that $a_{64}=365$ and $a_{65}=730$. Looking a little closer at such leaps we find that:

Table 1. The 65 first terms of the non-arithmetic progressions for $t=3$ to 15 .

\#	t-3	t=4	$\dagger=5$	$t=6$	$t=7$	$t=8$	$1=9$	$t=10$	$t=11$	$t=12$	$t=13$	$t=14$	$t=15$
1	1	1	1	,	,	1	,	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	4	3	3	3	3	3	3	3	3	3	3	3	3
4	5	5	4	4	4	4	4	4	4	4	4	4	4
5	10	6	6	5	5	5	5	5	5	5	5	5	5
6	11	8	7	7	6	6	6	6	6	6	6	6	6
7	13	9	8	8	8	7	7	7	7	7	7	7	7
8	14	10	9	9	9	9	8	8	8	8	8	8	8
9	28	15	11	10	10	10	10	9	9	9	9	9	9
10	29	16	12	12	11	11	11	11	10	10	10	10	10
11	31	17	13	13	12	12	12	12	12	11	11	11	11
12	32	19	14	14	13	13	13	13	13	13	12	12	12
13	37	26	16	15	15	14	14	14	14	14	14	13	13
14	38	27	17	17	16	16	15	15	15	15	15	15	14
15	40	29	18	18	17	17	16	16	16	16	16	16	16
16	41	30	19	19	18	18	17	17	17	17	17	17	17
17	82	31	26	20	19	19	19	18	18	18	18	18	18
18	83	34	27	22	20	20	20	20	19	19	19	19	19
19	85	37	28	23	22	21	21	21	20	20	20	20	20
20	86	49	29	24	23	23	22	22	21	21	21	21	21
21	91	50	31	25	24	24	23	23	23	22	22	22	22
22	92	51	32	26	25	25	24	24	24	24	23	23	23
23	94	53	33	33	26	26	27	25	25	25	24	24	24
24	95	54	34	34	27	27	28	26	26	26	25	25	25
25	109	56	36	35	29	28	29	27	27	27	27	26	26
26	110	57	37	36	30	30	30	28	28	28	28	28	27
27	112	58	38	37	31	31	31	31	29	29	29	29	28
28	113	63	39	39	32	32	32	32	30	30	30	30	29
29	118	65	41	43	33	33	33	33	31	31	31	31	31
30	119	66	42	44	34	34	34	34	32	32	32	32	32
31	121	67	43	45	36	35	37	35	34	33	33	33	33
32	122	80	44	46	37	37	38	36	35	35	34	34	34
33	244	87	51	47	38	38	39	37	36	36	35	35	35
34	245	88	52	49	39	39	40	38	37	37	36	36	36
35	247	89	53	50	40	40	41	39	38	38	37	37	37
36	248	91	54	51	41	41	43	41	39	39	38	38	38
37	253	94	56	52	50	42	44	42	40	40	40	39	39
38	254	99	57	59	51	44	45	43	41	41	41	41	40
39	256	102	58	60	52	45	46	44	42	42	42	42	41
40	257	105	59	62	53	46	47	45	43	43	43	43	42
41	271	106	61	63	54	47	48	49	45	44	44	44	45
42	272	109	62	64	55	48	49	50	46	46	45	45	46
43	274	110	63	65	57	49	50	51	47	47	46	46	47
44	275	111	64	66	58	50	53	52	48	48	47	47	48
45	280	122	68	68	59	59	55	53	49	49	48	48	49
46	281	126	67	69	60	60	56	54	50	50	49	49	50
47	283	136	68	71	61	61	57	55	51	51	50	50	51
48	284	145	69	73	62	62	58	58	52	52	51	51	52
49	325	149	76	77	64	63	59	59	53	53	53	52	53
50	326	151	77	85	65	64	60	60	54	54	54	54	54
51	328	152	78	87	66	65	64	61	56	55	55	55	55
52	329	160	79	88	67	67	65	62	57	57	56	56	56
53	334	163	81	89	68	69	66	63	58	58	57	57	58
54	335	167	82	90	69	70	67	64	59	59	58	58	59
55	337	169	83	91	71	71	68	65	60	60	59	59	60
56	338	170	84	93	72	72	69	66	61	61	60	60	61
57	352	171	86	96	73	74	70	68	62	62	61	61	62
58	353	174	87	97	74	75	71	69	63	63	62	62	63
59	355	176	88	98	75	76	78	70	64	64	63	63	64
60	356	177	89	99	76	77	79	71	65	65	64	64	65
61	361	183	91	100	78	78	80	72	67	66	66	65	66
62	362	187	92	103	79	79	81	73	68	68	67	67	67
63	364	188	93	104	80	81	82	74	69	69	68	68	88
64	365	194	94	107	81	84	83	75	70	70	69	69	69
65	730	196	126	111	82	85	84	77	71	71	70	70	70
100	977	360	179	183	130	139	138	126	109	109	108	108	113

Leap starts at	Leap finishes at		
5		10	
14	$=3 \cdot 5-1$	28	$=2.14$
41	$=3 \cdot 14-1$	82	$=2.41$
122	$=3.41-1$	244	$=2.122$
365	$=3.122-1$	730	$=2.365$

Does this chain of regularity continue indefinitely?
Sometimes it is easier to look at what is missing than to look at what we have. Here are some observations on the only excluded integers when forming the first 100 terms for $t=11,12,13$ and 14 .

For $t=11: 11,22,33,44,55,66,77,88,99 \quad$ The $n t h$ missing integer is $11 \cdot n$
For $\mathrm{t}=12: 12,23,34,45,56,67,78,89,100 \quad$ The n th missing integer is $11 \cdot \mathrm{n}+1$

For $t=13: 13,26,39,52,65,78,91,104$
The n th missing integer is $13 \cdot \mathrm{n}$

For $t=14: 14,27,40,53,66,79,92,105$
The n th missing integer is $13 \cdot \mathrm{n}+1$
Do these regularities of missing integers continue indefinitely? What about similar observations for other values of t ?

II. The Prime-Product Sequence

The prime-product sequence originates from Smarandache Notions. It was presented to readers of the Personal Computer World's Numbers Count Column in February 1997.

Definition: The terms of the prime-product sequence are defined through $\left\{t_{n}: t_{n}=p_{n} \#+1, p_{n}\right.$ is the $n t h$ prime number\}, where $p_{n} \#$ denotes the product of all prime numbers which are less than or equal to p_{n}.

The sequence begins $\{3,7,31,211,2311,30031, \ldots\}$. In the initial definition of this sequence t_{1} was defined to be equal to 2 . However, there seems to be no reason for this exception.

Question: How many members of this sequence are prime numbers?
The question is in the same category as questions like 'How many prime twins are there?, How many Carmichael numbers are there?, etc.' So we may have to contend ourselves by finding how frequently we find prime numbers when examining a fairly large number of terms of this sequence.

From the definition it is clear that the smallest prime number which divides t_{n} is larger than p_{n}. The terms of this sequence grow rapidly. The prime number functions prmdiv(n) and $n x t p r m(n)$ built into the Ubasic programming language were used to construct a prime factorization program for $n<10^{19}$. This program was used to factorize the 18 first terms of the sequence. An elliptic curve factorization program, ECM.UB, conceived by Y. Kida was adapted to generate and factorize further terms up to and including the 49 th term. The result is shown in table 2 . All terms analysed were found to be square free. A scatter diagram, Diagram 3, illustrates how many prime factors there are in each term.

The 50 th term presented a problem. $\mathrm{t}_{50}=126173 \cdot \mathrm{n}$, where n has at least two factors. At this point prime factorization begins to be too time consuming and after a few more terms the numbers will be too large to handle with the above mentioned program. To obtain more information the method of factorizing was given up in favor of using Fermat's theorem to eliminate terms which are definitely not prime numbers. We recall Fermat's little theorem:

If p is a prime number and $(a, p)=1$ then $a^{p-1} \equiv 1(\bmod p)$.
$a^{n-1} \equiv 1(\bmod n)$ is therefore a necessary but not sufficient condition for n to be a prime number. If n fills the congruence without being a prime number then n is called a pseudo prime to the base a, $\operatorname{psp}(\mathrm{a})$. We will proceed to find all terms in the sequence which fill the congruence

$$
a^{t_{n}-1} \equiv 1\left(\bmod t_{n}\right)
$$

for $50 \leq n \leq 200$. t_{200} is a 513 digit number so we need to reduce the powers of a to the modulus t_{n} gradually as we go along. For this purpose we write $t_{n}-1$ to the base 2 :

$$
\mathrm{t}_{\mathrm{n}}-1=\sum_{k=1}^{m} \delta(k) \cdot 2^{k}, \text { where } \delta(\mathrm{k}) \varepsilon\{0,1\}
$$

From this we have

$$
a^{t_{n}-1}=\prod_{k=1}^{m} a^{\delta(k) \cdot 2^{k}}
$$

Diagram 3. The number of prime factors in the first 49 terms of the prime-product sequence.
This product expression for $a^{t_{n}-1}$ is used in the following Ubasic program to carry out the reduction of $a^{t_{n}-1}$ modulus t_{n}. Terms for which $\delta(k)=0$ are ignored in the expansion were the exponents k are contained in the array $E \%$. The residue modulus t_{n} is stored in F. In the program below the reduction is done to base $\mathrm{A}=7$.

```
100 dim E%(1000)
110 M=N-1:1%=0
120 T= : J%=0
130 while (M-T)>=0
140 inc J%:T=2*T
150 wend
160 dec J%:M=M-\ \2:inc 1%:E%(|%)=J%
170 if M>0 then goto 120
180 F=1
190 for J%=1 to 1%
200 A=7
210 for K%=1 to E%(J%)
240 A=(A^2)@N
250 next
260 F=F*A:F=F@N
270 next
```

Table 2. Prime factorization of prime-product terms

*	P	1	$N=p \geqslant+1$ and its factors
1	2	1	3 Prime number
2	3	1	7 Prime number
3	5	2	31 Prime number
4	7	3	211 Prime number
5	11	4	2311 Prime number
6	13	5	$30031=59.509$
7	17	6	$510511=19 \cdot 97 \cdot 277$
8	19	7	$9699691=347 \cdot 27953$
9	23	9	$223092871=317 \cdot 703763$
10	29	10	646969323I $=331 \cdot 571 \cdot 34231$
11	31	12	200560490131 Prime number
12	37	13	$7420738134811=181 \cdot 60611 \cdot 676421$
13	41	15	$304250263527211=61 \cdot 450451 \cdot 11072701$
14	43	17	$13082761331670031=61 \cdot 450451 \cdot 11072701$
15	47	18	$614889782588491411=953 \cdot 46727 \cdot 13808181181$
16	53	20	$32589158477190044731=73 \cdot 139 \cdot 173 \cdot 18564761860301$
17	59	22	$1922760350154212639071=277 \cdot 3467 \cdot 105229 \cdot 19026377261$
18	61	24	$117288381359406970983271=223 \cdot 525956887082542470777$
19	67	25	$7858321551080267055879091=54730729297 \cdot 143581524529603$
20	71	27	$557940830126698960967415391=1063 \cdot 303049 \cdot 598841 \cdot 2892214489673$
21	73	29	$40729680599249024150621323471=2521 \cdot 16156160491570418147806951$
22	79	31	$3217844767340672907899084554131=22093 \cdot 1503181961 \cdot 96888414202798247$
23	83	33	$267064515689275851355624017992791=265739 \cdot 1004988035964897329167431269$
24	89	35	$23768741896345550770650537601358311 \mathrm{I}=131 \cdot 1039 \cdot 2719 \cdot 64225891884294373371806141$
25	97	37	$2305567963945518424753102147331756071=2336993 \cdot 13848803 \cdot 71237436024091007473549$
26	101	39	$232862364358497360900063316880507363071=960703 \cdot 242387464553038099079594127301057$
27	103	41	$23984823528925228172706521638692258398211=2297 \cdot 9700398839 \cdot 179365737007 \cdot 6001315443334531$
28	107	43	$2566376117594999414479597815340071648394471=149 \cdot 13203797 \cdot 30501264491063137 \cdot 42767843651083711$
29	109	45	$279734996817854936178276161872067809674997231=334507 \cdot 1290433 \cdot 648046444234299714623177554034701$
30	113	47	$31610054640417607788145206291543662493274686991=5122427 \cdot 2025436786007 \cdot 3046707595069540247157055819$
31	127	49	$4014776939333036189094441199026045136645885247731=$ $1513 \cdot 49999 \cdot 552001 \cdot 57900988201093 \cdot 1628080529999073967231$
32	131	51	$525896479052627740771371797072411912900610967452631=$ 1951 - $22993 \cdot 11723231859473014144932345466415143728266617$
33	137	53	
34	139	56	$10014646650599190067509233131649940057366334653200433091=$ $678279959005528882498681487 \cdot 14764768614544245139224580493$
35	149	58	$1492182350939279320058875736615841068547583863326864530411=$ $87549524399 \cdot 65018161573521013453 \cdot 262140076844134219184937113$
36	151	60	
37	157	62	$35375166993717494840635767087951744212057570647889977422429871=$ $1381 \cdot 1867 \cdot 8311930927 \cdot 38893867968570583 \cdot 42440201875440880489113304753$
38	163	64	$5766152219975951659023630035336134306565384015606066319856068811=$ $1361 \cdot 214114727210560829$-32267019267402210517-613228865630544238382107
39	167	66	$962947420735983927056946215901134429196419130606213075415963491271=$ $205590139 \cdot 53252429177 \cdot 7064576339566763 \cdot 12450154709928940906197946067239$
40	173	69	$166589903787325219380851695350896256250980509594874862046961683989711=$ $62614127 \cdot 2660580156093611580352333193927566158528098772260689062181793$
41	179	71	$29819592777931214269172453467810429868925511217482600306406141434158091=$ $601 \cdot 1651781 \cdot 8564177 \cdot 358995947 \cdot 1525310189119 \cdot 6405328664096618954809029861252251$
42	181	73	$5397346292805549782720214077673687806275517530384350655459511599582614291=$ $107453 \cdot 5634838141 \cdot 8914157280964101123344891396571257163632974628403174028667$
43	191	76	$1030893141925860008499560888835674370998623848299590975192766715520279329391=$ $32999 \cdot 175603474759 \cdot 77148541513247 \cdot 2305961466437323959598530415862423316227152033$
44	193	78	$198962376391690981640415251545285153602734402721821058212203976095413910572271=$ $21659496447 \cdot 7979125905967339495018877 \cdot 1152307771625979758044020162101777453615909$
45	197	80	$39195588149163123383161804554421175259738677336198748467804183290796540382737191=$ $521831 \cdot 50257723 \cdot 1601684368321 \cdot 39081170243262541027 \cdot 23875913958369977158572653160969521$
46	199	82	
47	211	85	$1645783550795210387735581011435590727981167322669649249414629852197255934130751870911=$ $1051 \cdot 2179 \cdot 16333 \cdot 43283699 \cdot 75311908487 \cdot 292812710684839 \cdot 46096596672868469293430334044872907384889$
48	223	87	$367009731827331916465034565550136732339800312955331782619462457039988073311157667212931=$ $13867889468159 \cdot 26464714235716608676791598492896703564888100036053342930619463037572880509$
49	227	89	$83311209124804345037562846379881038241134671040860314654617977748077292641632790457335111=$ $3187.31223 \cdot 1737142793 \cdot 11463039340315601 \cdot 973104505470446969309113.43206785807567189232875099500379$

This program revealed that there are at most three terms t_{n} of the sequence in the interval $50 \leq n \leq 200$ which could be prime numbers. These are:

Term \#172. $N=1021 \#+1 . N$ is a 428 digit number.
$\mathrm{N}=208325544418697180526278559204028744572686528568890074734049007840181457187286244301915872863$ 160885721486313893793092847430169408859808718870830265977538813177726058850383316252820523111213 067921935404833217036456300717761688853571267150232508655634427663661803312009807112476455894240 568090534683239067457957262234684834336252590008874119591973239736134883450319130587753586846905 76146066276875058596100236112260054944287636531

The last two primes or pseudo primes are remarkable in that they are generated by the prime twins 1019 and 1021.

Summary of results: The number of primes q among the first 200 terms of the prime-product sequence is given by $6 \leq q \leq 9$. The six confirmed primes are terms numero $1,2,3,4,5$ and 11 . The three terms which are either primes or pseudo primes are terms numero 75, 171 and 172. The latter two are the terms $1019 \#+1$ and $1021 \#+1$.

III. The Square-Product Sequence

Definition: The terms of the square-product sequence are defined through $\left\{\mathrm{t}_{\mathrm{n}}: \mathrm{t}_{\mathrm{n}}=(\mathrm{n}!)^{2}+1\right\}$
This sequence has a structure which is similar to the prime-product sequence. The analysis is therefore carried out almost identically to the one done for the prime-product sequence. We merely have to state the results and compare them.

The sequence begins $\{2,5,37,577,14401,518401, \ldots\}$
As for the prime-product sequence the question of how many are prime numbers has been raised and we may never know. There are similarities between these two sequences. There are quite a few primes among the first terms. After that they become more and more rare. Complete factorization of the 37 first terms of the square-product sequence was obtained and has been used in diagram 4 which should be compared with the corresponding diagram 3 for the prime-product sequence.

[^1]Diagram 4 is based on table 3 which shows the prime factorization of the 40 first terms in the squareproduct sequence. The number of factors of each term is denoted f . The factorization is not complete for terms numero 38 and 39 . A + -sign in the column for findicates that the last factor is not a prime. The terms of this sequence are in general much more time consuming to factorize than those of the prime-product sequence which accounts for the more limited results in this section. Using the same method as for the prime-product sequence the terms t_{n} in the interval $40<n<200$ which may possible be primes were identified. There are only two of them:

Term \#65. $\mathrm{N}=165!$ 1 $^{2}+1 . \mathrm{N}$ is a 182 digit number.
680237402890783289504507819726222037929025769532713580342793801040271006524643826496596237244465781514128589 96571534385340563792951822384455180747800576000000000000000000000000000001

Term \#76 $\mathrm{N}=\left(7611^{2}+1 . \mathrm{N}\right.$ is a 223 digit number.
355509027001074785420251313577077264819432566692554164797700525028005008417722668844213916658906516439209129 303699449994525310062649507767826978507198658011625298409931764786386381150617600000000000000000000000000000 0000001

Table 3. Prime factorization of square-product terms.

n	L	f	$N=(n l)^{2+1}$ and its factors
1	1	1	2
2	1	1	5
3	2	1	37
4	3	1	577
5	5	1	14401
6	6	2	$518401=13-39877$
7	8	2	$25401601=101 \cdot 251501$
8	10	2	$1625702401=17.95629553$
9	12	1	131681894401
10	14	1	13168189440001
11	16	1	1593350927240001
12	18	2	$229442532802560001=101 \cdot 2271708245569901$
13	20	1	38775788043632640001
14	22	3	$7600054456551997440001=29 \cdot 109 \cdot 2404319663572286441$
15	25	2	$1710012252724199424000001=1344169 \cdot 1272170577304043929$
16	27	2	$437763136697395052544000001=149 \cdot 2938007628841577533852349$
17	30	2	$126513546505547170185216000001=9049.13980942259426143240113449$
18	32	2	$40990389067797283140009984000001=37.1107848353183710355135404972973$
19	35	2	$14797530453474819213543604224000001=710341 \cdot 20831587158104092560535861261$
20	37	5	$5919012181389927685417441689600000001=41 \cdot 10657.86816017 .348046955609 \cdot 448324749841$
21	40	3	$2610284371992958109269091785113600000001=61 \cdot 157 \cdot 272557624725170524096177486176631513$
22	43	4	$1263377636044591724886240423994982400000001=337 \cdot 8017 \cdot 514049836440277481 \cdot 909674823323537849$
23	45	3	$668326769467589022464821184293345689600000001=509.15448374629 .84994002604532747687401741723441$
24	48	1	384956219213331276939737002152967117209600000001
25	51	3	$24059763700833204808733562634560448256000000000001=$ 941. $815769831908479758733-313425331349331290243399417$
26	54	5	$162644002617632464507038883409628607021056000000000001=$ 53. 53. 418633-6017159668589. 22985889712876096222556-462301797
27	57	7	$118567477908254066625631346005619254518349824000000000001=$ 113-42461. 745837. 2460281. 7566641. 15238649. 116793504008451126962009
28	59	2	$92956902680071188234494975268405495542386262016000000000001=$ 2122590346576631509.43794085292997939303952241474982753464389
29	62	2	$78176755153939869305210274200729021751146846355456000000000001=$ 171707860473207588349837. 455289320701414063716469396531758248773
30	85	6	$70359079638545882374889246780656119576032161719910400000000000001=$ 61. 1733. 15661. 359525849 . 100636381126568690110069. 1174592249518207759537897
31	68	4	$67615075532642592962076366156210530912566907412833894400000000000001=$ 353. $122041 \cdot 13400767181 \cdot 33867608180948409085305820793832191570324667821677$
32	71	4	$69237837345426015193166198943959583654458513190741907865600000000000001=$ 10591621681. 6415450838021. 522303293914660001204969 . 1950882388585355532025429
33	74	5	$75400004869168930545357990849971986599716210884717937665638400000000000001=$ 37. $3121 \cdot 4421 \cdot 4073332882845936253-36258135123244480427387450762108578223148052301$
34	77	4	$87162405628759283710433837191367 \$ 16509271939759613935941477990400000000000001=$ 193-13217. 866100731693. 39452143443145645231478894644096901291197410624286816576197
35	81	3	$106773948895230122545281450559425330223858126205527071528310538240000000000000001=$ $317 \cdot 373.903019653886808488978285455632355360863474820117616321989077716189815715361$
36	84	3	$138379035176218238818684759925015227970120131562363084700690457559040000000000000001=$ 73. 57986941373 -32690174316982778045052076286249517817882480631366146754011637734149869
37	87	3	$189440899156242768942779436337345847091094460108875062955245236398325760000000000000001=$ $127406364297881 \cdot 49105571194338128021910109 \cdot 30279720114524038428292430769814272052327643069$
38	90	4+	$273552658381614558353373506071127403199540400397215590907374121359182397440000000000000001=$ 233.757. 1550919080749142812170094885906800637254241672273179032363883419184506253167858216021
39	93	4+	$416073593398435743255481102734184780266500949004164913770116038587316426506240000000000000001=$ 61.1004545757741 .6790012826932706654708458821250934897329615368972937285510229243157273033617801
40	96	4	$665717749437497189208769764374695648426401518406663862032185661739706282409984000000000000000001=$ 89.701 .187100101949 .57030519287986915195631567314222236213934965395443794926477281748349020255113441

IV. The Smarandache Prime-Digital Sub-Sequence

Definition: The prime-digital sub-sequence is the set $\left\{M=a_{0}+a_{1} \cdot 10+a_{2} \cdot 10^{2}+\ldots a_{k} 10^{k}: M\right.$ is a prime and all digits $\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{k}}$ are primes $\}$

The first terms of this sequence are $\{2,3,5,7,23,37,53,73, \ldots\}$. Sylvester Smith [1] conjectured that this sequence is infinite. In this paper we will prove that this sequence is in fact infinite. Let's first calculate some more terms of the sequence and at the same time find how many terms there is in the sequence in a given interval, say between 10^{k} and 10^{k+1}. The program below is written in Ubasic. One version of the program has been used to produce table 4 showing the first 100 terms of the sequence. The output of the actual version has been used to produce the calculated part of table 5 which we are going to compare with the theoretically estimated part in the same table.

Ubasic program

$\begin{aligned} & 10 \text { point } 2 \\ & 20 \operatorname{dim} A \%(6), B \%(4) \end{aligned}$		
30	for 1\%=1 to 6:read A\%(1\%):next	
40	data 1,4,6,8,9,0	'Digits not allowed stored in AF ()
	for $1 \%=1$ to 4 :read B\%(1\%):next	
60	data 2,3,5,7	'Digits allowed stored in $8 \%()$
70	for $K \%=1$ to 7	${ }^{\text {'Calc. for } 7 \text { separate intervols }}$
80	$\mathrm{M} \mathrm{\%}=0: \mathrm{N}=0$	
90	for $\mathrm{E} \mathrm{\%}=1$ to 4	'Only 2,3.5 and 7 allowed as first digit
$100 \mathrm{P}=\mathrm{B} \mathrm{\%}$ (E\%)**10ヘK\%:PO=P:S=(B\%(E\%)+1)*10^K\%:gosub 150		
110 next		
120 print K\%,M\%,N,M\%/N		
130 next		
140 end		
150 while $\mathrm{P}<\mathrm{S}$		
160	$\mathrm{P}=\mathrm{nx} \mathrm{p}$ ¢rm(P):P\$=str(P)	'Select prime and convert to string
170	inc N	'Count number of primes
$180 \mathrm{~L} \%=\mathrm{len}(\mathrm{P} \$): \mathrm{C} \mathrm{\%}=0 \quad \mathrm{C} \mathrm{\%}$ will be set to I If P not member		
190	for $1 \%=2$ to $\mathrm{L} \%$	
200	for $J \%=1$ to 6	'This loop examines each digit of P
210 if $\operatorname{val}(\mathrm{mid}(\mathrm{P} \$.1 \%, 1))=\mathrm{AF}(\mathrm{J} \mathrm{\%})$ then $\mathrm{C} \mathrm{\%}=1$		
220	next-next	
230	if $\mathrm{C} \%=0$ then inc $\mathrm{M} \mathrm{\%}$	'If criteria filled count member (m\%)
240	wend	
250	retum	

Table 4. The first 100 terms in the prime-digitd sub sequence.

2	3	5	7	23	37	53	73	223	227
233	257	277	337	353	373	523	557	577	727
733	757	773	2237	2273	2333	2357	2377	2557	2753
2777	3253	3257	3323	3373	3527	3533	3557	3727	3733
5227	5233	5237	5273	5323	5333	5527	5557	5573	5737
7237	7253	7333	7523	7537	7573	7577	7723	7727	7753
7757	22273	22277	22573	22727	22777	23227	23327	23333	23357
23537	23557	23753	23773	25237	25253	25357	25373	25523	25537
25577	25733	27253	27277	27337	27527	27733	27737	27773	32233
32237	32257	32323	32327	32353	32377	32533	32537	32573	33223

Table 5. Comparison of results.

k	1	2	3	4	5	6	7
Computer count:							
m	4	15	38	128	389	1325	4643
$\log (\mathrm{m})$	0.6021	1.1761	1.5798	2.1072	2.5899	3.1222	3.6668
n	13	64	472	3771	30848	261682	2275350
m / n	0.30769	0.23438	0.08051	0.03394	0.01261	0.00506	0.00204
Theoretical estimates:							
m	4	11	34	109	364	1253	4395
$\log (\mathrm{m})$	0.5922	1.0430	1.5278	2.0365	2.5615	3.0980	3.6430
n	7	55	421	3399	28464	244745	2146190
m / n	0.50000	0.20000	0.08000	0.03200	0.01280	0.00512	0.00205

Theorem:

The Smarandache prime-digital sub sequence is infinite.

Proof:
We recall the prime counting function $\pi(x)$. The number of primes $\mathrm{p} \leq \mathrm{x}$ is denoted $\pi(\mathrm{x})$. For sufficiently large values of x the order of magnitude of $\pi(x)$ is given by $\pi(x) \approx \frac{x}{\log x}$. Let a and b be digits such that $a>b \neq 0$ and $n(a, b, k)$ be the approximate number of primes in the interval ($b \cdot 10^{k}, a \cdot 10^{k}$). Applying the prime number counting theorem we then have:

$$
\begin{equation*}
n(a, b, k) \approx \frac{10^{k}}{k}\left(\frac{a}{\log 10+\frac{\log a}{k}}-\frac{b}{\log 10+\frac{\log b}{k}}\right) \tag{1}
\end{equation*}
$$

Potential candidates for members of the prime-digital sub sequence will have first digits $2,3,5$ or 7 , i.e. for a given k they will be found in the intervals $\left(2 \cdot 10^{k}, 4 \cdot 10^{k}\right),\left(5 \cdot 10^{k}, 6 \cdot 10^{k}\right)$ and $\left(7 \cdot 10^{k}, 8 \cdot 10^{k}\right)$. The approximate number of primes $n(k)$ in the interval ($10^{k}, 10^{k+1}$) which might be members of the sequence is therefore:

$$
\begin{equation*}
\mathrm{n}(\mathrm{k})=\mathrm{n}(4,2, \mathrm{k})+\mathrm{n}(6,5, \mathrm{k})+\mathrm{n}(8,7, \mathrm{k}) \tag{2}
\end{equation*}
$$

The theoretical estimates of n in table 5 are calculated using (2) ignoring the fact that results may not be all that good for small values of k.

We will now find an estimate for the number of candidates $\mathrm{m}(\mathrm{k})$ which qualify as members of the sequence. The final digit of a prime number >5 can only be $1,3,7$ or 9 . Assuming that these will occur with equal probability only half of the candidates will qualify. The first digit is already fixed by our selection of intervals. For the remaining $k-1$ digits we have ten possibilities, namely $0,1,2,3,4,5,6,7,8$ and 9 of which only $2,3,5$ and 7 are good. The probability that all $\mathrm{k}-1$ digits are good is therefore $(4 / 10)^{k-1}$. The probability q that a candidate qualifies as a member of the sequence is

$$
\begin{equation*}
q=\frac{1}{2} \cdot\left(\frac{4}{10}\right)^{k-1} \tag{3}
\end{equation*}
$$

The estimated number of members of the sequence in the interval $\left(10^{k}, 10^{k+1}\right)$ is therefore given by $\mathrm{m}(\mathrm{k})=\mathrm{q} \cdot \mathrm{n}(\mathrm{k})$. The estimated values are given in table 5. A comparison between the computer count and the theoretically estimated values shows a very close fit as can be seen from diagram 5 where $\log _{10} \mathrm{~m}$ is plotted against k .

Diagram 5. logio m as a function of k. The upper curve corresponds to the computer count.
For large values of k we can ignore the terms $\frac{\log a}{k}$ and $\frac{\log b}{k}$ in comparison with $\log 10$ in (1). For large k we therefore have

$$
n(a, b, k) \approx \frac{(a-b) 10^{k}}{k \log 10}
$$

and (2) becomes

$$
\begin{equation*}
n(k) \approx \frac{4 \cdot 10^{k}}{k \log 10} \tag{2'}
\end{equation*}
$$

Combining this with (3) we get

$$
\begin{equation*}
m(k) \approx \frac{5 \cdot 2^{2 k}}{k \log 10} \tag{4}
\end{equation*}
$$

From which we see (apply for instance l'Hospital's rule) that $\mathrm{m}(\mathrm{k}) \rightarrow \infty$ as $\mathrm{k} \rightarrow \infty$. A fortiori the primedigital sub sequence is infinite.

V. Smarandache Concatenated Sequences

Smarandache formulated a series of very artificially conceived sequences through concatenation. The sequences studied below are special cases of the Smarandache Concatenated S-sequence.

Definition: Let $\mathrm{G}=\left\{\mathrm{g}_{1}, \mathrm{~g}_{2}, \ldots . \mathrm{g}_{\mathrm{k}}, \ldots.\right\}$ be an ordered set of positive integers with a given property G . The corresponding concatenated S.G sequence is defined through

$$
S . G=\left\{a_{i}: a_{1}=g_{1}, a_{k}=a_{k-1} \cdot 10^{1+\log _{10} g_{k}}+g_{k}, k \geq 1\right\}
$$

In table 6 the first 20 terms are listed for three cases, which we will deal with in some detail below.
Table 6. The first 20 terms of three concatenated sequences

The S.odd sequence	The S.even sequence	The S.prime sequence
1	2	2
13	24	23
135	246	235
1357	2468	2357
13579	246810	235711
1357911	24681012	23571113
135791113	2468101214	2357111317
13579111315	248810121416	235711131719
1357911131517	24681012141618	23571113171923
135791113151719	2468101214161820	2357111317192329
13579111315171921	246810121416182022	235711131719232931
1357911131517192123	24681012141618202224	23571113171923293137
135791113151719212325	2468101214161820222426	2357111317192329313741
13579111315171921232527	246810121416182022242628	235711131719232931374143
1357911131517192123252729	24681012141618202224262830	23571113171923293137414347
135791113151719212325272931	2468101214161820272426283032	2357111317192329313741434753
13579111315171921232527293133	246810121416182022242628303234	235711131719232931374143475359
1357911131517192123252729313335	24881012141618202224262830323436	23571113171923293137414347535961
135791113151719212325272931333537	2468101214161820222425283032343638	2357111317192329313741436753596167
13579111315171921232527293133353739	248810121416182022242628303234363840	235711131719232931374143475359616771
1357911131517192123252729313335373941	24681012141618202224262830323436384042	23571113171923293137414347535961677173

Case I. The S.odd sequence is generated by choosing $G=\{1,3,5,7,9,11, \ldots .$.$\} . Smarandache asks how$ many terms in this sequence are primes and as is often the case we have no answer. But for this and the other concatenated sequences we can take a look at a fairly large number of terms and see how frequently we find primes or potential primes. As in the case of prime-product sequence we will resort to Fermat's little theorem to find all primes/pseudo-primes among the first 200 terms. If they are not too big wee can then proceed to test if they are primes. For the S.odd sequence there are only five cases which all were confirmed to be primes using the elliptic curve prime factorization program. In table 7 \# is the term number, L is the number of digits of N and N is a prime number member of the S.odd sequence.:

Table 7. Prime numbers in the S.odd sequence

$\#$	L	N
2	2	13
10	15	135791113151719
16	27	135791113151719212325272931
34	63	135791113151719212325272931333537394143454749515355575961636567
49	93	135791113151719212325272931333537394143454749515355575961636567697173757779818385878991939597

Term \#201 is a 548 digit number.
Case 2. The S.even sequence is generated by choosing $G=\{2,4,6,8,10, \ldots \ldots\}$. The question here is : How many terms are nth powers of a positive integer?

A term which is a $n t h$ power must be of the form 2^{n} a where a is an odd nth power. The first step is therefore to find the highest power of 2 which divides a given member of the sequence, i.e. to determine n and at the same time we will find a. We then have to test if a is a $\mathrm{n} t h$ power. The Ubasic program below has been implemented for the first 200 terms of the sequence. No $n t h$ powers were fond.

Ubasic program: (only the essential part of the program is isted)

```
6 0 N = 2
70 for U%=4 to 400 step 2
80 D%=int(log(U%)/log(10))+1 'Determine length of U%
90 N=N*'10^D%+U% 'Concatenate U%
100 A=N:E%=0
110 repeat
120 Al=A:A=A\2:inc E% 'Determine E% (=n)
130 unfil res<<0
```

```
132 dec E%:A=Al 'Determine A (=a)
140 B=round(A^(1/E%))
150 if B^E%=A then print E%,N 'Check if a is a nthpower
160 next
170 end
```

So there is not even a perfect square among the first 200 terms of the S.even sequence. Are there terms in this sequence which are $2 \cdot \mathrm{p}$ where p is a prime (or pseudo prime). With a small change in the program used for the S.odd sequence we can easily find out. Strangely enough not a single term was found to be of the form $2 \cdot \mathrm{p}$.

Case 3. The S.prime sequence is generated by $\{2,3,5,7,11, \ldots\}$. Again we ask: - How many are primes? - and again we apply the method of finding the number of primes/pseudo primes among the first 200 terms.

There are only 4 cases to consider. Terms \#2 and \#4 are primes, namely 23 and 2357. The other two cases are: term \#128 which is a 355 digit number and term \#174 which is a 499 digit number.

```
#128
23571111317192329313741434753596167717379838899710110310710911312713113713914915115716316717317918
119119319719921122322722923323924125125726326927127728128329330731131331733133734734935335936737
3379383389397401409419421431433439444444945746146346747948749149950350952152354154755756356957157
7587593599601607613617619631641643647653659661673677683691701709719
#174
2357111317192329313741434753596167717379883899710110310710911312713113713914915115716316717317918
119119319719921122322722923323924125125726326927127728128329330731131331733133734734935335936737
3379383389397401409419421431433439444344945746146346747948749149950350952152354154755756356957157
758759359960160761361761963164164364765365966167367768369170170971972773373974375175776176977378
7797809811821823827829839853857859863877888188388790791191992993794194795396797197798399199710091
0131019102110311033
```

Are these two numbers prime numbers?

[^0]: ${ }^{1}$ This question is slightly different from the one posed in the Personal Computer World where aiso a wider definition of a t-term non arithmetic progression is used in that it allows $a_{2}>_{1}$ to be chosen arbitrarily.

[^1]: Diagram 4. The number of prime factors in the first 40 terms of the square-product sequence.

