
A Comparative Study of Parallel and Distr ibuted Java Projects for
Heterogeneous Systems

Jameela Al-Jaroodi, Nader Mohamed, Hong Jiang, and David Swanson
Department of Computer Science and Engineering

University of Nebraska – Lincoln
Lincoln, NE 68588-0115, [jaljaroo, nmohamed, jiang, dswanson @cse.unl.edu]

Abstract
During the last few years, the concepts of cluster
computing and heterogeneous networked systems have
received increasing interest. The popularity of using
Java for developing parallel and distributed applications
that run on heterogeneous distributed systems has also
grown rapidly. This paper is a survey of the current
projects in parallel and distributed Java. These projects’
main common objective is to utilize the available
heterogeneous systems to provide high performance
computing using Java. These projects were studied,
compared and classified based on the approaches used.
The study shows three major approaches. One is to
develop a system that replaces the Java virtual machine
(JVM) or utilizes the available parallel infrastructure
such as MPI or PVM. Another is to provide seamless
parallelization of multi-threaded applications. The third
is to provide a pure Java implementation by adding
classes and features that support parallel Java
programming. In addition, a number of open issues are
identified and discussed in this paper.

1. Introduction

The need for high performance and powerful
computing resources led to great advances in the area of
distributed and parallel computing. Currently cluster
machines, grids and heterogeneous networked systems
can provide processing power comparable to special
purpose multi-processor systems for a fraction of the cost.
This direction had also led to the need for system and
application software that can support such systems and
provide the user with transparent and efficient utilization
of the multiple machines used in the cluster or distributed
system.

This paper studies projects that involve providing
parallel and distributed processing facilities in Java for
clusters and heterogeneous networked systems. These

projects were compared in terms of the approach used, the
compatibility with JVM, the level and granularity of
parallelism and other features. Also some quantitative
comparisons were made wherever possible to show the
relative performances of such projects.

This study is meant to provide researchers and
practitioners with an overview of the status of research in
parallel and distributed Java. It also identifies some of the
problems and open issues in this area of research. The
paper provides some background information in section
2. Section 3 reviews the projects. A discussion of the
projects studied is presented in Section 4 which also
identifies a number of open issues in the area, while
Section 5 concludes the study.

2. Background

This section presents a brief introduction to some
concepts related to the study such as RMI, serialization,
reflection and MPI. Many of the features and standards
discussed were utilized, and in some cases improved or
modified, by different research groups to develop their
projects.

2.1 Java Remote Method I nvocation (RMI)

Sockets, in Java, provide programmers with the
flexibility to write efficient distributed applications, but
they tend to make the development process more
complex. Remote Method Invocation (RMI) [23] was
introduced as an alternative to socket programming. It
creates a layer that hides the details of communications to
the level of procedure call (method invocation) from the
developer. RMI simplifies the development process, but it
reduces the efficiency of the application. Many projects
utilize RMI as a communication mechanism between the
participating nodes.

2.2 Reflection API

The reflection API represents, or reflects, the classes,
interfaces, and objects in the current Java Virtual
Machine. With the reflection API, it is possible to
determine the class of an object and get information about
a class's modifiers, fields, methods, constructors, and
superclasses. It is also possible to find out what constants
and method declarations belong to an interface, create an
instance of a class whose name is not known until
runtime and get and set the value of an object's field, even
if the field name is unknown to the program until runtime.
In addition, one can invoke a method on an object, even if
the method is not known until runtime, and create a new
array, whose size and component type are not known
until runtime, and then modify the array's components.

2.3 Serialization

One of the new features added to Java 2 is the public
interface Serializable [24]. When a class is serializable,
any object instantiated from that class can be stored or
sent to any remote machine. When an object is serialized,
it is converted into a byte stream that contains all the
required information to reconstruct that object again.
Many projects use serialization to provide shared objects
or object-exchange mechanisms.

2.4 Class loaders

Java class loader is responsible for loading the Java
classes (bytecode) on a JVM. Java allows programmers to
override the default class loader by writing their own
method for class loading. This gives the programmer the
flexibility to add features to the class loader to achieve
different functionality at run time.

2.5 MPI

Message Passing Interface is a library of routines
provided for users who wish to write parallel and
distributed programs. MPI-1 was developed for use
mainly with FORTRAN and C language. It provides a
number of library functions to exchange messages
between processes. Later MPI-1.2 and MPI-2 were
developed as extensions of MPI-1, adding more
functionality such as process creation and management,
one-sided communications, extended collective
operations, external interfaces, I/O, and additional
language bindings such as C++ bindings.

Object-Oriented MPI was introduced a few years ago
with the main objective of providing C++ programmers
with more abstract message-passing methods. A number
of extensions were developed to provide object

orientation for C++ and FORTRAN 90 such as OOMPI
[16, 21], Charm++ [14] and ABC++ [17].

Later with the success of Java as a programming
language for regular and distributed applications, some
effort was made to provide extensions of MPI that can be
used in Java. The Java Grande Forum has developed a
draft standard for message-passing in Java (MPJ) [9] that
was based on the well-known MPI standard. Many
research groups used this as a basis for implementing a
parallel Java environment using message passing. One
example is mpijava [6], which provides a Java API
closely similar to C++ bindings in MPI-2. This approach
requires users to have the MPI library, a Version of Java
and a C compiler in order to link the MPI library with the
mpijava classes via the Java native interface (JNI).
Another example is jmpi [10], which is also built based
on the MPI-2 C++ bindings, but it requires a Java to C
interface (JCI) that compiles the Java programs into C
before being able to run them.

3. projects

In this section a number of projects are discussed.
Many of these projects are in a research phase.

3.1 Titanium [25]

Developed at the University of California Berkeley,
Titanium is a Java dialect used for large scale scientific
computing. It provides parallelization primitives in a
Java-like language. It provides immutable classes,
flexible and efficient multi-dimensional arrays, an
explicitly parallel SPMD model, distributed data
structures, and zone-based memory management. One
advantage is that programs written for a shared memory
model can be run without modification on a distributed
system. Titanium compiler compiles Titanium programs
into C. Titanium is not compatible with JVM; however, it
inherits some of the safety features of Java.

3.2 Water loo University Research Proj ects

A series of projects: ParaWeb [7], Ajents [13], and
Babylon [12] were developed at York and Waterloo
University.

ParaWeb [7] allows users to utilize the Internet
computing resources seamlessly. It allows users to upload
and execute programs on multiple machines on a
heterogeneous system. Using ParaWeb clients can
download and execute a single Java application in
parallel, on a network of workstations or they can
automatically upload and execute programs on remote
compute servers. ParaWeb has two implementations:

1. Java Parallel Class Library (JPCL): It facilitates
remote creation and execution of threads. It provides
communication using message-passing through send
and receive primitives. This implementation allows
users to write their own parallel applications using
the JPCL.

2. Java Parallel Runtime System (JPRS): in this
implementation, the Java interpreter is modified to
provide the illusion of a global shared address space
for the multi-threaded application. This approach
requires no changes to the Java programs or Java
byte-code.

Some test results are available on ParaWeb using
matrix multiplication (400 x 400 integers) on SUN
SparcStation-10's 143MHz CPU and 64 MB RAM,
connected by 10Mbps Ethernet. The speedup obtained
was 3.8 for four processors and 7.4 for eight.

Ajents [13] is a collection of Java classes and
servers, written in standard Java, that provide seamless
implementation of distributed and parallel Java
applications. It requires no modifications to Java
language or the JVM. An Ajents server is installed on
participating servers to allow users to use their computing
resources, while Java security features are used to protect
these servers.

Ajents provides many features that facilitate the
development of distributed Java applications such as:
Remote object creation, remote class loading,
asynchronous RMI, object migration, and checkpointing,
rollback and restart of objects. Object migration creates a
relatively high overhead due to checkpointing and
serialization/deserialization of the object. Checkpointing
consistency is also a problem. This environment is mostly
suitable for coarse grain simple applications.

Babylon [12], a Java based system to support object
distribution. It inherited many of the Ajents’ features, and
also has additional features. It allows one to easily create
objects, migrate objects at any time (even at execution),
seamlessly handle arrival and departure of compute
servers and provide I/O through the originating machine.
It provides immediate and delayed object migration and
checkpointing, rollback and restart of objects. In addition,
Babylon uses a basic scheduling server.

Babylon was tested using integer matrix
multiplication on SUN SparcStation-10's 143MHz CPU
and 64 MB RAM, connected by 10Mbps Ethernet. Two
settings were used with one and eight processors. In this
experiment, the master process resides on an external
node other than the one or eight servers respectively. The
results show a speedup gain of 6.7 for matrix size 500 and
7.3 for 640.

3.3 JPVM [11]

Java Parallel Virtual Machine is a PVM-like library
of object classes implemented in and for use with the Java
Programming language. The main goal is to provide a
system to utilize the available computing resources in a
heterogeneous system. JPVM is written purely in Java to
achieve portability. It provides explicit message-passing
based distributed memory MIMD parallel programming
in Java. However, programs written for JPVM cannot be
ported to JVM.

Experiments were conducted to measure the
overhead of creating tasks and communications. The
basic results, according to the JPVM author, were not
encouraging. The task creation and communication
overhead is high, which means that JPVM is most
suitable for coarse grain parallelization. A matrix
multiplication (512 x 512) program was used to measure
the speedup achieved using JPVM compared to sequential
Java program. Speedup reported was 6.7 for nine
processors.

3.4 UIUC project [18]

A research group at University of Illinois at Urbana-
Champaign is working on a prototype extension for Java
to provide dynamic creation of remote objects with load
balancing, and object groups [18]. The language
constructs are based on those of Charm++ [14]. The
parallel Java extension is implemented using the
Converse interoperability framework, which makes it
possible to integrate parallel libraries written in Java with
modules in other parallel languages in a single
application. This implementation, using Converse, allows
incremental adoption of parallel Java. Existing libraries
written in C and MPI, Charm++, PVM, etc. can be
utilized in a new application, with new modules written in
Java. The Java user code is written in normal Java with
the addition of the calls to the new runtime library that
provides the parallelization capabilities. The user will
also need to write interface file (in CORBA-IDL style)
that will be translated by an interface translator provided
with the system.

To achieve parallelism, proxy objects and
serialization are utilized in addition to asynchronous
remote method invocation. The main implementation
goals of this system are to minimize native code,
maximize the utilization of Java features, and minimize
copying as much as possible. This system is designed for
multi-lingual parallel programming, and requires using
the provided library and creating special interface files. It
also requires JNI to interface with converse messaging
layer. This system has its own message passing interface
and provides a virtual global object space.

3.5 ProActive PDC [22]

ProActive includes comprehensive library for
parallel, distributed, and concurrent programming in a
MIMD parallel programming model. ProActive provides
a metacomputing framework to convert an object to a
thread running in a defined remote address space. Objects
are classified into passive objects (non-thread objects)
and active object (thread objects). In the ProActive
framework, a passive object can be activated as thread
object running on another node. All method invocations
to any of the methods in the active object will be
transparently transferred to the node where the object is
running. Moreover, the result of invocation of any
method will be transparently returned to caller address
space.

A sequential Java program can be converted by the
user to multithreaded or distributed program by
converting some of the passive objects to active objects
running as threads in the same or different address spaces.
This conversion requires the user to use a ProActive API
in the sequential program to define passive objects as
active objects. The rest of the sequential code will require
no changes. Remote method invocation is a transparently
asynchronous call. The main thread can continue
executing its code without waiting for the result. The
invocation of active object method immediately returns a
future object. This object is a reference to where the result
of the not-yet-performed method invocation will be
placed. The caller thread will be suspended when it
reaches a point where it needs to use the result that will
be returned by one of the previously invoked remote
methods. This is called wait-by-necessity. The wait-by-
necessity is a data-driven synchronization mechanism, as
opposed to control-driven synchronization among the
distributed threads. ProActive utilizes the Java Reflection
API and RMI.

3.6 JavaParty [15, 20]

JavaParty provides facilities for transparent remote
objects in Java. It extends the Java distributed capabilities
by allowing easy porting of multi-threaded Java programs
to distributed environments such as clusters. Remote
classes and their instances are made visible and accessible
anywhere in the distributed JavaParty environment. The
JavaParty environment can be viewed as a Java virtual
machine that is distributed over several computers, but a
trade-off between location transparency and performance
considerations becomes inevitable.

Object migration is one way of adapting the
distribution layout to changing locality requirements of
the application. In JavaParty, objects that are not declared
as residents can migrate from one node to another. This is

important even if the remote object location does not
influence the semantics of the JavaParty program.
JavaParty extends the Java language with only one new
modifier called remote. A class or thread defined with the
remote modifier is declared to be a JavaParty remote class
or thread. The fields and methods of a remote object
instantiated from remote class can be accessed
transparently like in regular Java that works in a single
address space. The programmer does not need to allocate
objects and remote threads to specific machines; the
JavaParty environment deals with locality and
communication optimizations.

The JavaParty environment consists of a pre-
processor generating regular Java and a runtime system.
The pre-processor is used to translate the JavaParty
source program to Java code and RMI hooks to add
distribution and communication mechanisms among
remote objects and threads. The runtime system is a set of
components distributed on all the nodes with a central
component, called RuntimeManager. The manager
maintains the locations of all contributing nodes and the
location of all objects. This information is replicated in
the nodes to reduce the manager’s load. To reduce the
access latency to a remote object, different optimization
efforts were attempted, including more efficient object
serialization and optimized RMI (KaRMI).

3.7 IBM’s cJVM [2, 3, 4, 5, 19]

cJVM is a clustered Java virtual machine that will
allow multi-threaded applications to run on the multiple
nodes of a cluster. The main objective is to allow existing
multi-threaded server applications to be executed in a
distributed fashion without the need for rewriting them.
cJVM creates a single system image (SSI) of the
traditional JVM to transparently exploit the power of a
cluster. It is an object-oriented model that can make use
of the possibility to have remote and consistent replicated
objects on different nodes. cJVM is designed to be aware
of the underlying cluster and at the same time hides this
fact from the application.

The shared object model was implemented by having
a master object (the original object defined by the
programmer) and proxies. Proxy objects, located on other
nodes, are created by the cJVM run time environment to
provide mechanism for other threads located on different
nodes to remotely access the master object in a
transparent way.

Different optimization techniques to reduce the
amount of communication among the nodes were
deployed. All these techniques enhance data locality by
using cashing based on locality of execution and object
migration. Caching is achieved at multiple levels
including classes, entire objects, and individual fields.
Optimization takes advantage of the Java semantics and

common pattern usage. For example, different types of
objects and data elements have different types of
optimization techniques. In addition, to enhance data
locality, the master copy of an object is placed where it
will be used not where it was created. The cJVM run time
environment can correct false speculations. cJVM is a
completely new Java virtual machine that replaces the
standard JVM. Experiments were reported using different
benchmark applications (N-body, TSP and pBob). In
general around 80 percent efficiency was obtained using
four processors.

3.8 Agent-Based Parallel Java [1]

In this project, being developed at University of
Nebraska-Lincoln (UNL), an environment is built to
provide parallel programming capabilities in Java for
heterogeneous systems. For example, Java parallel
programs written for this system can run on homogeneous
multi-processor systems or on a heterogeneous system
like a cluster, a collection of clusters or even through the
Internet. The system is written completely in standard
Java and can be used on any machine that has a Java
virtual machine (JVM), which makes it possible to utilize
different machines of varying architectures to execute the
user program.

Software agents were written to provide the facilities
to coordinate and manage the parallel processes and
schedule multiple user jobs among the available
processors. Each participating machine has an agent on it,
responsible for all the resources on that machine. The
agents help deploy and run the user processes on the
processors available on that machine. The user programs
are converted into threads and executed from memory on
the remote machines. This approach reduces the overhead
of accessing the hard disk, consumes fewer resources for
the threads, and enhances the system security. Currently
the user is provided an Auto scheduling option in which
agents schedule processes for the user. With agents
deployed on different machines user parallel programs
can execute on any collection of processors on different
platforms. These agents also provide a lot of flexibility to
expand the capabilities of this environment. For example
the agents can provide dynamic load balancing and fault
tolerance.

The Java object-passing interface (JOPI) provides the
user with an interface very similar to standard MPI and
the MPJ interface, but it also exploits the object oriented
nature of Java to simplify the process of writing parallel
programs. Compared to the standard MPI, JOPI allows
the programmer to exchange objects instead of predefined
data elements, which simplifies the interface primitives.
JOPI was built using the socket programming classes
available in Java. Although it complicates the
development process, it provides full control over the

system and high flexibility in modifying the underlying
design to further improve and optimize the performance.
In addition, the system becomes faster and more efficient
compared to using RMI.

In this system, a client is created that the user will
use to run the parallel programs. This client will
communicate with the agent(s) to load the program and
run it. Matrix multiplication was used to measure the
system performance (see table 1). The matrix contains
1440x1440 floating numbers and the program was run on
a cluster containing eight dual-processor nodes (800MHz,
512 MB RAM) connected via a 100Mbps Ethernet.

Procs 1 2 4 6 8 10
Time 324.23 158.18 83.29 56.58 42.30 35.52
Speedup 1.0000 2.0498 3.893 5.730 7.665 9.128

Table 1. The results of the parallel matrix
multiplication (time is in seconds).

4. Discussion

Many research groups are working on providing a
parallel and distributed environment for Java. Most of
them target clusters and networks of workstations because
Java is machine independent. The projects selected are
representative of the different approaches identified in
this area of research. Each of these projects has its unique
features, advantages and disadvantages (see table 2).

4.1 Compar ison and classification

Based on the techniques used and the level of user
involvement, it is possible to classify the projects into
three different groups:
1. Building a new system that replaces the standard

JVM or uses the current available infrastructure for
parallelism. Examples are Titanium, which compiles
Java dialect to C, JPVM that creates a new JVM for
parallel processing, ParaWeb (the JPRS
implementation), and the project at UIUC, which is
based on Converse. This approach gives the
development team the freedom to provide many
methodologies for parallelism without having to
conform to the current standards or JVMs. In
addition, it gives the development team the ability to
provide the user with different levels of involvement
in the parallelization process. This approach may also
lead to a more efficient implementation of a parallel
and distributed environment. On the other hand, this
approach has some disadvantages. First, the system
requires different implementations for every different
platform used to support heterogeneity. In addition,
any enhancements or changes in the standard JVM
cannot be easily incorporated in the new system.

Moreover, adding more servers or machines to the
system is not trivial.

2. Extending Java with class libraries to provide explicit
parallelization functions such as ParaWeb (the JPCL
implementation), Ajents, Babylon and JOPI. In this
approach, the parallelization is achieved by adding
class libraries to extend standard Java. All
implementations require some form of demon
running on the participating machines. JOPI is the
only system that utilizes software agents for this
purpose. The main advantage of this approach is that
the system will run on any machine that has a JVM,
which provides a good support for heterogeneity.
Systems using this approach are portable and more
scalable since it is easier to add more machines to the
system. One disadvantage is that the user must be
aware of the parallelization process and needs to
learn the added classes to write parallel programs.
Some implementations make this process simpler by
providing an interface that is similar to standard MPI
such as JOPI. Another drawback is loss in efficiency
due to the overhead introduced to support remote
objects and message-passing. This overhead is
usually higher for systems that use RMI such as
Ajents and Babylon. In addition, using class libraries
limits the features that can be provided and flexibility
in development.

3. Providing seamless parallelization for multi-threaded
applications. This approach does not require
programmers to be aware of the parallelization
process (or at most have minimum involvement).
Any Java program that uses multi-threading can be
run in parallel on a distributed environment.
Examples of this approach are the cJVM from IBM,
JavaParty and ProActive. Here the system is
designed to provide the user with an easy way to use
multiple processors without dealing with the details
of the process. The main advantage is that existing
multi-threaded applications can be run on these
systems without any changes as in cJVM or with
minimum changes as in JavaParty and ProActive.
One disadvantage in this approach is that
optimizations in communications and locality are
difficult. The IBM cJVM project has the
disadvantage of having a modified JVM, which
means that it does not easily support portability and
heterogeneity. Moreover, the other two projects do
not change the JVM, but require more user
involvement such as defining the remote objects in
JavaParty for specifying the parallel parts and the
machines that should be used in ProActive.

From another viewpoint, we can also classify the
projects based on the method used for parallelization.
Some projects provide shared address space (or shared

object space) such as Titanium, JPVM, cJVM and
JavaParty, and others provide some form of message-
passing or object-passing interface such as ParaWeb,
Ajents, Babylon and JOPI. Despite the approach taken
and the implementation techniques used in these projects,
the nature of a distributed environment imposes some
limits on the performance of the parallel or distributed
application. The major issue is the cost of communication
since the processors are not closely coupled as in a MPP
or SMP. Here the overhead makes such environments
mostly suitable for coarse grain parallel applications
where communication is minimized and the computation-
to-communication ratio is high. This limitation should
gradually be overcome by the advancements in the
processing and communications technologies.

4.2 Open issues

This study shows the growing interest in having
environments for high performance computing in Java.
Many approaches and implementations were used, but
there are many open issues to be addressed. The
following is a discussion of some of the issues related to
these projects.
1. Since all projects are based on a distributed

infrastructure, they all experience some inevitable
overhead. This overhead is mainly introduced by the
distributed nature of the platforms used. Generally,
some methods have to be used to migrate objects and
exchange information. This was achieved by either
using RMI or socket programming. A few projects
such as cJVM and JavaParty tried to refine their
techniques to reduce the overhead.

2. Benchmarking these projects is also a difficult issue
since each one has a different approach and syntax
for the parallelization process. Until now the
available benchmarks are limited to specific
implementations such as mpijava and JMPI which
are written based on MPJ [8]. As for other projects,
many have written their own benchmark applications,
which makes the comparison among the results of
different projects difficult and inaccurate. It will soon
be necessary to have some general benchmarks that
can be easily ported to measure and compare the
performance of the different implementations of
parallel Java.

3. Conforming (or not conforming) with MPI or MPJ is
another debated issue. Not conforming with a
standard allows the developers to freely exploit the
object-oriented nature of Java to simplify the
parallelization process, but at the same time creates a
new set of API that the user needs to learn and it
becomes difficult to benchmark. On the other hand,
conforming to some standard like MPI will limit the
capabilities of parallel Java, while providing a

familiar interface to the users and making
benchmarking easier. Some projects tried to join the
two approaches by providing an MPI-like interface in
addition to object-passing methods.

4. Legacy applications written in other languages such
as C and FORTRAN need to be considered. Do we
want to port such applications to Java? Alternatively,
do we need to link Java with these applications?
Many approaches may be used to solve this problem.
One example is the UIUC project, which tries to
build a comprehensive environment that can link and
execute parallel modules written in different
languages. The issues of efficiency and scalability
become important in such implementations.

5. The security of the participating machines must also
be considered. To run parallel Java programs on
multiple machines, we allow users to upload their
programs and execute them on the remote machines.
In this case, we must consider the possibilities of
malicious programs. Almost all projects have not
addressed this issue. The JOPI system provides a
starting point to providing security for the
participating machines by making user threads run on
the remote machines from memory and restricting
them from accessing all other resources on that

machine. More measures need to be considered to
enhance security.

6. The performance of JVM was considered an
important factor in deciding whether to use parallel
Java. A few years back Java programs were many
times slower than similar C programs. Currently with
the major enhancements of JVM, this gap is closing
very quickly and the performance of Java programs
is becoming close to that of C programs. This has
reduced the emphasis on this issue, but there is still
more room for enhancements and better performance
of Java.

7. Scheduling, dynamic load balancing and fault
tolerance need to be addressed. Many parallel Java
implementations do not consider these issues or only
slightly touch on them. Since parallel Java is targeted
for heterogeneous systems, were reliability is
relatively low and performance of participating
machines vary, these issues must be considered in
more details and efficient algorithms and protocols
must be designed to achieve them.

These are some of the issues to be addressed for a
parallel Java implementation to be successful. The more
features an implementation can offer the better chances
for it to be successful and widely used.

Product Name Main Features Approach used User involvement JVM Compatibility
Titanium, Univ.
California-Berkley

Java dialect.
Scientific computing.

Language (compiles to C) Must learn new
language

Not compatible

ParaWeb,
Waterloo & York

Runs parallel java programs
on heterogeneous systems

Class library / run time
machine modifications

Need to learn class
methods

Java interpreter is
modified

Ajents, Waterloo
& York

Provide object migration.
Uses RMI

Class library Need to learn class
methods

Compatible

Babylon,
Waterloo & York

Adds scheduling and load
balancing features

Class library Need to learn class
methods

Compatible

JPVM, Univ. of
Virginia

Provides native parallel
environment

Create new Java virtual
machine

Need to know
PVM

Not compatible

UIUC Project Multi-language parallel
programs support.
Remote objects and load
balancing

Combine different
languages. Uses Converse
and JNI

Need to know how
to use the system
libraries

Not compatible

ProActive,
Université de Nice
- Sophia Antipolis

Active objects.
Migration. Based on RMI

Class library. Creates
remote thread for objects.

Need to define
active objects

Compatible, no
preprocessing
needed

JavaParty,
University of
Karlsruhe

Distributed applications
Uses RMI

Transparent parallelization
of multi-threaded
applications

Need to write
multi-threaded
programs

Compatible
Pre-compiler
needed

cJVM / IBM Creates single system image
to distribute multi-threaded
applications. Modified JVM

Transparent parallelization
of multi-threaded apps.

Need to write
multi-threaded
programs

Not compatible

UNL – Project Uses Software agents.
JOPI

Class library Need to learn JOPI
(similar to MPI)

Compatible

Table 2. Summary of projects studied.

5. Conclusion

This survey provides a brief study of some research
projects that are interested in providing parallel and
distributed environments for java. Most projects target
heterogeneous systems and clusters because Java is
machine independent. The projects selected are
representative of the different approaches taken in this
area. Each of them has its own unique features,
advantages and disadvantages, but they all aim towards
the goal of having a parallel and distributed Java. We
observed that almost all projects follow one of three
approaches: Utilizing the available infrastructure or
building a different JVM, extending Java with class
libraries for parallel programming, and providing
seamless transparent parallelization of multi-threaded
applications. The research in this area still needs to
address a number of open issues to be able to provide a
robust, reliable and scalable parallel Java environment.

Acknowledgements

This study was partially supported by a National
Science Foundation grant (EPS-0091900) and a
Nebraska University Foundation grant, for which we are
grateful. We would also like to thank other members of
the secure distributed information (SDI) group and the
research computing facility (RCF) at the University of
Nebraska-Lincoln for their continuous help and support.

References

[1] Al-Jaroodi, J., Mohamed, N., Jiang, H. and Swanson D.,
“Agent-Based Parallel Computing in Java - Proof of Concept”,
Technical Report TR-UNL-CSE-2001-1004,
http://www.cse.unl.edu/~nmohamed/jAgent/
[2] Aridor, Y., Factor, M., & Teperman A., “cJVM: a Single
System Image of a JVM on a Cluster”, IEEE International
Conference on Parallel Processing, 1999.
[3] Aridor, Y., Factor, M., & Teperman A., “ Implementing Java
on Clusters” , Technical Report, IBM Research Lab in Haifa,
MATAM, Advanced Technology Center, Haifa 31905,
ISRAEL.
[4] Aridor, Y., Factor, M., Teperman A., Eilam, T., & Schuster,
A., "Transparently Obtaining Scalability for Java Applications
on a Cluster", Journal of Parallel and Distributed Computing
special issue – Java on Clusters, June 2000.
[5] Aridor, Y., Factor, M., Teperman A., Eilam, T., & Schuster,
A., "A High Performance Cluster JVM Presenting a Pure Single
System Image", ACM java Grande conference June 2000.
[6] Baker, M, Carpenter, B., Fox, G., Hoon Ko, S., and Lim, S.,
“mpiJava: An Object-Oriented Java interface to MPI,” School of
Computer Science, University of Portsmouth and Syracuse
University, January, 1999

www.npac.syr.edu/projects/pcrc/papers/ipps99/paper/pap
er.html & www.npac.syr.edu/projects/pcrc/mpijava/mpijava.html
[7] Brecht, T., Sandhu, H., Shan, M. and Talbot, J., “ParaWeb:
Towards World-Wide Supercomputing,” Proceedings of the
Seventh ACM SIGOPS European Workshop, Connemara,
Ireland, pp. 181-188. Sep., 1996 http://bbcr.uwaterloo.ca/
~brecht/papers/html/paraweb/welcome.html
[8] Bull, J. M., Smith, A., Westhead, M. D., Henly, D. S.
and Dary, R. A., “A Benchmark Suite for High
Performance Java” ,in Concurrency – Practice and
Experiencre, 12, p375-388, 2000
[9]Carpenter B., et al., “MPI for Java: Position Document and
Draft API Specificaton” , Technical report JGF-TR-03,
http://citeseer.nj.nec.com/cache/papers/cs/12456/http:zSzzSzww
w.npac.syr.eduzSzprojectszSzpcrczSzreportszSzMPIpositionzSz
position.pdf/carpenter98mpi.pdf
[10] Crawford III, G., Dandass, Y. and Skjellum, A., “The JMPI
Commercial Message Passing Environment and Specification:
Requirements, Design, Motivations, Strategies, and Target
Users,” Web Technology Group, MPI Software Technology,
Inc. (MSTI), http://www.mpi-softtech.com/publications/
JMPI_121797.html
[11] Ferrari, A. J., “JPVM: Network Parallel Computing in
Java,” Technical Report CS-97-29, Dept. of Computer Science,
Univ. of Virginia, December, 1997
http://www.cs.virginia.edu/~ajf2j/jpvm.html
[12] Izatt, M., “Babylon: A Java-based Distributed Object
Environment, M.Sc. Thesis, Department of Computer Science,
York University, July 2000.
[13] Izatt, M., Brecht, T. and Chan, P., “Ajents: Towards an
Environment for Parallel Distributed and Mobile Java
Applications,” in ACM 1999 Java Grande Conference, Jun. ‘99
[14] Laxmikant, V. and Krishman, S., “Charm++: A Portable
Concurrent Object Oriented Systems Based on C++,”
Proceedings of OOPSLA ’93 Conference on Object Oriented
Programming, Systems, Languages and Applications.”
[15] Philippsen, M. and Zenger, M., “ ’ JavaParty: Transparent
Remote Objects in Java,”, in Concurrency: Practice &
Experience, Volume 9, Number 11, pp 1225-1242, Nov. 1997.
[16] Squyres, J., Willock, J., McCandless, B., and Rijks, P.,
“Object Oriented MPI (OOMPI): A C++ Class Library for
MPI,” in ’96 POOMA Conference.
[17] ABC++ (1996):
www.kfa-juelich.de/sam/cxx/parallel/abcplusplus.html
[18] Design and Implementation of Parallel Java with Global
Object Space, at University of Illinois at Urbana Champaign
(1997), web (Aug. 2001):
http://charm.cs.uiuc.edu/papers/ParJavaPDPTA97.html
[19] IBM project cJVM (Aug. 2001):
http://www.haifa.il.ibm.com/projects/systems/cjvm/index.html
[20] JavaParty (Sep. 2001): http://wwwipd.ira.uka.de/JavaParty/
[21] OOMPI (Aug 2001): www.mpi.nd.edu/research/oompi
[22] ProActive (Aug. 2001): www-sop.inria.fr/sloop/javall/
[23] Official RMI web pages at Sun Microsystems (Aug. 2001):
http://java.sun.com/products/jdk/1.1/docs/guide/rmi/index.html
[24]Serialization (Aug. 2001): http://java.sun.com/
j2se/1.3.0/docs/api/java/io/Serializable.html
[25] Titanium (Jan 2001):
http://www.cs.berkeley.edu/Research/Projects/titanium/

