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Office: ECE Bldg. 230B

Office hours: Wednesday 2:00-3:00PM or by appointment

E-mail: pzarkesh@unm.edu

Payman Zarkesh-Ha

ECE520 – VLSI Design

Lecture 1: Introduction to VLSI Technology

mailto:payman@ece.unm.edu
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Course Objectives

❑ We will focus mainly on CMOS integrated circuits

❑ There will be a design project assigned including:

● Schematic design using S-Edit

● Spice simulations and design verification

● Layout design using L-Edit (including LVS and DRC)

● Circuit extract and spice simulation (again) 

❑ Project will be done by groups of 3-4 students

❑ Project grade will be based on:

● Quality of report

● Performance (speed/delay)

● Power dissipation

● Layout area

❑ There will be a 10% extra credit for any design that beats certain 

criteria for layout area, performance, or power consumption
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Textbook and References

❑ Main textbook:

● “Digital Integrated Circuits” by J. M. Rabaey et al. (2nd edition)

❑ Other reference books:

● “Physical Design of CMOS Integrated Circuits Using L-Edit” by J. Uyemura

● “Design of High-Performance Microprocessor Circuits”, by A. Chandrakasan

❑ Lecture Notes: combination of slides and discussions

● Slides will be posted on the class webpage

● Class webpage: www.unm.edu/~pzarkesh/ECE520

❑ Reference papers posted on the class webpage
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Grading Policy

❑ Your grade in the course will be comprised of:

● Homework (25%)

● Project (25%)

● Midterm Exam (25%)

● Final Exam (25%)

❑ Final letter grade will be based on curve and class performance

❑ No makeup exam
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Homework Policy

❑ Homework will be on weekly basis and is setup for the project

● Learn CAD tools and basic circuits

● Require lab work

❑ Solutions will be posted on the class website as soon as I can

❑ Late homework and projects have 20% per day credit penalty
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Class Project & Tools

❑ Use of CAD tools will be required for most assignments. Get 

yourself familiarized with the tools from today!

❑ This is a project oriented course. Be prepared for extensive lab 

work!

❑ We will be using L-Edit for our VLSI project

● all Tanner tools including L-Edit, S-Edit, T-SPICE, LVS, and W-Edit are 

installed on all machines in ECE 211 Lab

● The tools can also be installed on your own computer for the project  use

● for more information about these tools, please visit class website

❑ We will be using ON Semiconductor 0.5um for our project

● Selected projects will be submitted for manufacturing by MOSIS

● for more information about this process please visit 

https://www.mosis.com/vendors/view/on-semiconductor/c5

https://www.mosis.com/vendors/view/on-semiconductor/c5
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Test Chip 1 Test Chip 2

Projects Manufactured by MOSIS in 2009
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Die Photograph of the Test Chip 

Projects Manufactured by MOSIS in 2010
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Die Photograph of the Test Chip 2 

Projects Manufactured by MOSIS in 2011
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Projects Manufactured by MOSIS in 2012
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Projects Manufactured by MOSIS in 2019
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Class Schedule
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Reading Assignment

❑ Today we will review Chapter 1 and some more

● Introduction and history

❑ Our next class will be on Chapter 3 (MOS Physics)

● Skim through Diodes but focus on Section 3.2.3 (diode transient behavior)

● Study Section 3.3 (MOS transistor) thoroughly

❑ We will get back to Chapter 2 (Manufacturing Process) later
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VLSI Design Flow

❑ The goal of VLSI designers is to design a circuit block that 

meets the following objectives:

● Maximize speed or performance

● Minimize power consumption

● Minimize area

● Maximized robustness

❑ Methods that they use are:

● Circuit design, transistor sizing

● Use of new architectures, clock gating, etc

● Choice of circuit style, efficient layout design

● Interconnect design and optimization
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VLSI Design Approaches

❑ Gate Arrays (Old technology, but still attractive)

● Pre-fabricated chips containing transistors and local wiring

● Upper level wires added to implement design

● Rapid design, but very sub-optimal, slow, and usually high power 

consumption

❑ Standard Cells (Used for ASIC design)

● Cells in a library with fixed sizes

● Cells pre-characterized for delay and power

● Design is fast and layout is done automatically

● Better performance, in the range of several 100’s MHz

❑ Custom Design (Used for Microprocessor design)

● Optimal circuit design and sizes

● Extensive design verification required

● Slowest, but densest layout design

● Best performance, in the range of 1-5 GHz
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VLSI Design Tools

❑ Synthesis

● Logic, micro-architecture, automatic physical generation

❑ Static Analysis

● Design rule checking (DRC)

● Circuit extraction

● Timing analysis

● Test generation (ATPG)

❑ Dynamic Analysis

● Architectural simulation

● Logic simulation

● Circuit simulation (SPICE)

● Test verification
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High Level VLSI Design Steps

System Requirements Logic Design & Synthesis

VLSI Design & Layout 

Design Verification

Mask Generation

Silicon Manufacturing Process

Wafer Test (sort)

Package

Final Test

Pass
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Introduction

Beginning of the Computer: ENIAC, the first electronic computer (1946) 

• 333 integer 

multiplication/second

• A six-week run was 

equivalent to 100 

person-years of 

manual computation

• Program resides in the 

wired connections
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Intel 4004 Microprocessor

• 1971

• 10 um NMOS-only

• 2300 transistors

• 1 MHz
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Intel Technology Advancement 
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Moore’s Law 

❑ In 1965, Gordon Moore (founder of Intel) had a very interesting 

observation. He noticed that the number of transistors on a chip 

doubled every 18 to 24 months.

❑ He made a prediction that semiconductor technology would 

double its effectiveness every 18 months.
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Source: www.intel.com

Moore’s Law for Intel Microprocessors 
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Moore’s Law in Travel Industry 
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Moore was not always accurate

Projected Wafer in 2000, circa 1975
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~7% growth per year

~2X growth in 10 years

Die Size Growth

Die size has grown by 14% to satisfy Moor’s law, BUT the growth 

is almost stopped because of manufacturing and cost issues
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Clock Frequency

Lead microprocessors frequency doubles every 2 year, BUT the 

growth is slower because of power dissipation issue
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CMOS Scaling Scenario
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CMOS Scaling Calculation 

2002   2004   2006  2008   2010  2012  2014   2016  2018

14  ->  10  ->  7   
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The Evolution of Foundry Market 
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Cost of Design versus Technology Node
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Intel’s 22nm and 14nm Fin-FET Technology
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10 million of these transistors could fit in a 

square millimeter – about the size of the tip of a 

ballpoint pen

65nm SRAM Memory Cell
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Distance between Si atoms = 5.43 ºA

No. of atoms in channel = 35 nm / 0.543 nm

= 64 Atoms!

Problem: Uncertainty in transistor 

behavior and difficult to control 

variation!

MOS in 65nm of Core Due Processor
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1.2 nm SiO2

~ 5 atomic layers!

Problem: Electrons can easily jump over the 5 atomic layers!

This is known as leakage current

Gate Insulator Thickness 



ECE520 - Lecture 1 Slide: 35University of New Mexico

1) More transistors in the same foot-print

2) More functionality

3) Reduced cost per function

4) Faster devices and higher performance

5) Lower switching energy per transistor

Benefit of Smaller Transistors
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1) Feature sizes down to few atomic layers

2) Increase uncertainty of transistor behavior

3) Increase leakage power consumption

4) Difficult to maintain performance enhancement

5) Thermal limit issue

Transistor Scaling Challenges
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New Method to Deal with Scaling
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1) Spintronics (spin-based electronics)

2) Quantum Computing

3) DNA Computing

4) Optical Computing

Far-future Alternative Logic Devices 
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Power Dissipation

Lead microprocessors power dissipation continue to increase, 

BUT it is getting too hard (and expensive) to keep up
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Power Density Problem

Power density too high to keep junction at low temperature. 

Power reaching limits of air cooling.
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Heat Management Consideration
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Power Consumption Scenario
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Power = 115 Watts 

Supply Voltage = 1.2 V

Supply Current = 115 W / 1.2 V = 96 Amps!

Note: Fuses used for household appliances = 15 to 40 Amps  

Problem: Current density becomes a serious problem!

This is known as electromigration 

Some Calculations! 
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Power = 115 Watts 

Chip Area = 2.2 Cm2

Heat Flux = 115 W / 2.2 Cm2 = 50 W/Cm2 !

Notes:

Heat flux in iron = 0.2 W/Cm2

Heat flux in frying pan = 10 W/Cm2

Problem: Heat flux is another serious issue!

Another Calculations!  
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1) Proper heat removal system (expensive)

2) Improve manufacturing for low power MOS

3) Architectural solutions (multi-cores) 

Method of Heat Management 
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Hitachi Water Cooling Laptop
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Manufacturing Solution
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Architectural Solution
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Architectural Solution
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Metal stack over Silicon 
Real wiring cross section

photograph 

Interconnect Architecture 
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Technology
45 nm

(2008)

35 nm

(2010)

22 nm

(2012)

Wire width 45 nm 32 nm 22 nm

Wire 

Thickness
80 nm 60 nm 40 nm

Total 

Number of 

Wires

150 Million 300 Million 600 Million

Total wire 

length
1.4 mile 2 mile 2.8 mile

Interconnect Scaling Scenario
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Delay versus Interconnect Scaling 
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Al 3.0  cm

SiO2  = 4.0

Al 0.8  Thick

Al  Line 43  Long 

[Bohr, IEDM ‘95]

Gate

Interconnect

Al & SiO2

Al 3.0  cm

Cu 1.7  cm

SiO2  = 4.0

Low   = 2.0

Al & Cu 0.8  Thick

Al & CU Line 43  Long 

Gate

Interconnect

Al & SiO2

Interconnect

Cu & Low 

Interconnect versus Gate Delay
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1) Slows down with scaling

2) Consume more power

3) Generate more heat

4) Electromigration

Interconnect Challenges
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1) Carbon nanotubes

2) Optical Interconnect

3) Molecular wires

4) Spintronics interconnect system

Far-future Alternative Interconnects
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Process Defect Causing Fault (Short)

A particle or 

a process defect
Short defectOriginal layout

Process Defects and Yield Loss
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Process Defect Causing Fault (Opens)

A particle or 

a process defect
open defectOriginal layout

Process Defects and Yield Loss
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Process Defect Photograph
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1) Smaller feature size requires ultra-clean 

manufacturing facility (expensive)

2) Because of the increase in complexity, 

defects could drastically reduces the 

manufacturing yield (% of working chips)

3) There are much more issues related to 

“Design for Manufacturability” (DFM)

Manufacturing Issues
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Single 

die

From http://www.amd.com

Going up to 12” (30cm)

Die Cost 

Wafer
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Cost per transistor is reducing exponentially following Moor’s 

law.

Cost per Transistor 
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Chip Metal 

layers

Line 

width

Wafer 

cost

Def./ 

cm2

Area 

mm2

Dies/

wafer

Yield Die 

cost

386DX 2 0.90 $900 1.0 43 360 71% $4

486 DX2 3 0.80 $1200 1.0 81 181 54% $12

Power PC 

601
4 0.80 $1700 1.3 121 115 28% $53

HP PA 7100 3 0.80 $1300 1.0 196 66 27% $73

DEC Alpha 3 0.70 $1500 1.2 234 53 19% $149

Super Sparc 3 0.70 $1700 1.6 256 48 13% $272

Pentium 3 0.80 $1500 1.5 296 40 9% $417

Some Examples (1994)  
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Digital IC Business is Unique
Things Get Better Every Few Years

Companies Have to Stay on Moore’s Law Curve to Survive

Benefits of Transistor Scaling
Higher Frequencies of Operation

Massive Functional Units, Increasing On-Die Memory

Cost/Functionality Going Down

Downside of Transistor Scaling
Power (Dynamic and Static)

Design and Manufacturing Cost

….

Summary


