ECE520 - VLSI Design

Lecture 1: Introduction to VLSI Technology

Payman Zarkesh-Ha

Office: ECE Bldg. 230B
Office hours: Wednesday 2:00-3:00PM or by appointment
E-mail:pzarkesh@unm.edu

Course Objectives

We will focus mainly on CMOS integrated circuits
\square There will be a design project assigned including:

- Schematic design using S-Edit
- Spice simulations and design verification
- Layout design using L-Edit (including LVS and DRC)
- Circuit extract and spice simulation (again)
[Project will be done by groups of 3-4 students
\square Project grade will be based on:
- Quality of report
- Performance (speed/delay)
- Power dissipation
- Layout area
\square There will be a 10\% extra credit for any design that beats certain criteria for layout area, performance, or power consumption

Textbook and References

- Main textbook:
- "Digital Integrated Circuits" by J. M. Rabaey et al. (2nd edition)
\square Other reference books:
- "Physical Design of CMOS Integrated Circuits Using L-Edit" by J. Uyemura
- "Design of High-Performance Microprocessor Circuits", by A. Chandrakasan
\square Lecture Notes: combination of slides and discussions
- Slides will be posted on the class webpage
- Class webpage: www.unm.edu/~pzarkesh/ECE520
\square Reference papers posted on the class webpage

Grading Policy

- Your grade in the course will be comprised of:
- Homework
(25\%)
- Project (25\%)
- Midterm Exam
(25\%)
- Final Exam
(25\%)
- Final letter grade will be based on curve and class performance
- No makeup exam

Homework Policy

\square Homework will be on weekly basis and is setup for the project

- Learn CAD tools and basic circuits
- Require lab work
- Solutions will be posted on the class website as soon as I can
\square Late homework and projects have 20\% per day credit penalty

Class Project \& Tools

\square Use of CAD tools will be required for most assignments. Get yourself familiarized with the tools from today!
\square This is a project oriented course. Be prepared for extensive lab work!
\square We will be using L-Edit for our VLSI project

- all Tanner tools including L-Edit, S-Edit, T-SPICE, LVS, and W-Edit are installed on all machines in ECE 211 Lab
- The tools can also be installed on your own computer for the project use
- for more information about these tools, please visit class website
\square We will be using ON Semiconductor 0.5um for our project
- Selected projects will be submitted for manufacturing by MOSIS
- for more information about this process please visit https://www.mosis.com/vendors/view/on-semiconductor/c5

Projects Manufactured by MOSIS in 2009

Test Chip 1

Test Chip 2

Projects Manufactured by MOSIS in 2010

Selected Design By: Cesar Mendez Ruiz and Ethan Tanner

Die Photograph of the Test Chip

Projects Manufactured by MOSIS in 2011

Die Photograph of the Test Chip 2

Projects Manufactured by MOSIS in 2012

Selected Design By: Javad Ghasemi

Projects Manufactured by MOSIS in 2019

Class Schedule

Warning: Lecture schedule subject to change!!

Date	Day	Topic	Reading/Coverage
January 21	Tue	Introduction to VLSI Technology.	1.1-1.3
January 23	Thr	Basic MOS Physics 1 (static)	3.2
January 28	Tue	Basic MOS Physics II (dynamic)	3.3
January 30	Thr	Device Scaling Issues	3.4-3.5
February 4	Tue	Device Scaling Issues - cont.	3.4-3.5
February 6	Thr	Basic CMOS Inverter	5.1 .4
February 11	Tue	Basic CMOS Inverter - cont.	5.1-5.4
February 13	Thr	Dynamic Behavior of CMOS Inverter	5.4-5.6
February 18	Tue	CMOS Manufacturing Process	2.1-2.3, 2.4 (review), 2.5
February 20	Thr	Interconnect Manufacturing \& Modeling	4.1-4.5
February 25	Tue	Design Rules	2.3, insert A
February 27	Thr	Layout Techniques \& L-Edit Demo	handouts
March 3	Tue	Combinational Static Logic	6.1-6.2
March 5	Thr	Gate Sizing (Inveter Chain)	5.4
March 10	Tue	Gate Sizing (Inveter Chain) - cont.	5.4
March 12	Thr	Midterm Exam	-
March 17	Tue	Spring Break	-
March 19	Thr	Spring Break	-
March 24	Tue	Logical Effort	$6.1-6.2$
March 26	Thr	Logical Effort - cont.	6.1-6.2
March 31	Tue	Pseudo Logic and Pass-Transistor Logic	6.2
April 2	Thr	Project Review	-
April 7	Tue	Dynamic Logic	6.3
April 9	Thr	Advanced topics: Power Reduction	Handout
April 14	Tue	Sequential Logic	7.1-7.2
April 16	Thr	Sequential Logic - cont.	7.1-7.2
April 21	Tue	Timing Issues	10.1-10.2
April 23	Thr	Clock Distribution - PLL	10.3
April 28	Tue	Power Distribution \& I/O Circuits	9.1-9.4
April 30	Thr	Memories	12.1-12.2
May 5	Tue	Nonvolatile Memories	12.2
May 7	Thr	SRAM Memories \& Review for Final	Project Due
May 12	Tue	Final Exam (12:30-2:30PM)	-

Reading Assignment

Today we will review Chapter 1 and some more

- Introduction and history
\square Our next class will be on Chapter 3 (MOS Physics)
- Skim through Diodes but focus on Section 3.2.3 (diode transient behavior)
- Study Section 3.3 (MOS transistor) thoroughly
\square We will get back to Chapter 2 (Manufacturing Process) later

VLSI Design Flow

\square The goal of VLSI designers is to design a circuit block that meets the following objectives:

- Maximize speed or performance
- Minimize power consumption
- Minimize area
- Maximized robustness
[Methods that they use are:
- Circuit design, transistor sizing
- Use of new architectures, clock gating, etc
- Choice of circuit style, efficient layout design
- Interconnect design and optimization

VLSI Design Approaches

- Gate Arrays (Old technology, but still attractive)
- Pre-fabricated chips containing transistors and local wiring
- Upper level wires added to implement design
- Rapid design, but very sub-optimal, slow, and usually high power consumption
- Standard Cells (Used for ASIC design)
- Cells in a library with fixed sizes
- Cells pre-characterized for delay and power
- Design is fast and layout is done automatically
- Better performance, in the range of several 100's MHz
\square Custom Design (Used for Microprocessor design)
- Optimal circuit design and sizes
- Extensive design verification required
- Slowest, but densest layout design
- Best performance, in the range of 1-5 GHz

VLSI Design Tools

\square Synthesis

- Logic, micro-architecture, automatic physical generation
\square Static Analysis
- Design rule checking (DRC)
- Circuit extraction
- Timing analysis
- Test generation (ATPG)
\square Dynamic Analysis
- Architectural simulation
- Logic simulation
- Circuit simulation (SPICE)
- Test verification

High Level VLSI Design Steps

Introduction

Beginning of the Computer: ENIAC, the first electronic computer (1946)

- 333 integer multiplication/second
- A six-week run was equivalent to 100 person-years of manual computation
- Program resides in the wired connections

Intel 4004 Microprocessor

- 1971
- 10 um NMOS-only
- 2300 transistors
- 1 MHz

Intel Technology Advancement

Processor Comparison

Intel ${ }^{\circledR}$ Pentium ${ }^{\ominus} 4$ Processor with HT Technology

Year: 2004
125,000,000 transistors

Moore's Law

In 1965, Gordon Moore (founder of Intel) had a very interesting observation. He noticed that the number of transistors on a chip doubled every 18 to 24 months.
\square He made a prediction that semiconductor technology would double its effectiveness every 18 months.

Moore's Law for Intel Microprocessors

Source: www.intel.com

Moore's Law in Travel Industry

Approximate Cost: \$900 Approximate Travel Time: $\mathbf{7}$ hours

Projected Wafer in 2000, circa 1975

Moore was not always accurate

Die Size Growth

Die size has grown by 14\% to satisfy Moor's law, BUT the growth is almost stopped because of manufacturing and cost issues

Clock Frequency

Lead microprocessors frequency doubles every 2 year, BUT the growth is slower because of power dissipation issue

CMOS Scaling Scenario

Winimum Feature Sire

CMOS Scaling Calculation

Scaling Calculator

$$
\begin{aligned}
& \left.{ }^{0.7 x} \rrbracket^{0.7 x}\right\rceil \\
& 250 \text {-> } 180 \text {-> } 130 \text {-> } 90 \text {-> } 65 \text {-> } 45 \text {-> } 32 \text {-> } 22 \text {-> } 14 \text {-> } 10 \\
& \text { L } 0.5 x \text { ـ } \\
& 200220042006200820102012201420162018
\end{aligned}
$$

The Evolution of Foundry Market

Cost of Design versus Technology Node

Intel's 22nm and 14nm Fin-FET Technology

Transistor Fin Improvement

$22 \mathrm{~nm} 1^{\text {st }}$ Generation
Tri-gate Transistor

$14 \mathrm{~nm} 2^{\text {nd }}$ Generation Tri-gate Transistor

65nm SRAM Memory Cell

10 million of these transistors could fit in a square millimeter - about the size of the tip of a ballpoint pen

MOS in 65nm of Core Due Processor

Distance between Si atoms $=5.43{ }^{\circ} \mathrm{A}$

No. of atoms in channel $=35 \mathrm{~nm} / 0.543 \mathrm{~nm}$
$=64$ Atoms!

Intel strained silicon (top) and a 65 -nm wafer of Intel ${ }^{\text {P }}$ Core" Duo processors (bottom).

Gate Insulator Thickness

Problem: Electrons can easily jump over the 5 atomic layers! This is known as leakage current

Benefit of Smaller Transistors

1) More transistors in the same foot-print
2) More functionality
3) Reduced cost per function
4) Faster devices and higher performance
5) Lower switching energy per transistor

Transistor Scaling Challenges

1) Feature sizes down to few atomic layers
2) Increase uncertainty of transistor behavior
3) Increase leakage power consumption
4) Difficult to maintain performance enhancement
5) Thermal limit issue

New Method to Deal with Scaling

New Waterials and Device Structures Extending Transistor Scaling

Far-future Alternative Logic Devices

1) Spintronics (spin-based electronics)
2) Quantum Computing
3) DNA Computing
4) Optical Computing

Power Dissipation

Lead microprocessors power dissipation continue to increase, BUT it is getting too hard (and expensive) to keep up

Power Density Problem

Power density too high to keep junction at low temperature. Power reaching limits of air cooling.

Heat Management Consideration

Power Consumption Scenario

Increasing Power

Some Calculations!

$$
\begin{aligned}
& \text { Power = } 115 \text { Watts } \\
& \text { Supply Voltage }=1.2 \mathrm{~V} \\
& \text { Supply Current = } 115 \mathrm{~W} / 1.2 \mathrm{~V}=96 \text { Amps! } \\
& \text { Problem: Current density becomes a serious problem! }
\end{aligned}
$$

This is known as electromigration

Note: Fuses used for household appliances = 15 to 40 Amps

Another Calculations!

Power = 115 Watts

Chip Area $=2.2$ Cm 2

Heat Flux $=115 \mathrm{~W} / 2.2 \mathrm{Cm}^{2}=50 \mathrm{~W} / \mathrm{Cm}^{2}$!

Problem: Heat flux is another serious issue!

Notes:
Heat flux in iron $=0.2 \mathrm{~W} / \mathrm{Cm}^{2}$
Heat flux in frying pan $=10 \mathrm{~W} / \mathrm{Cm}^{2}$

Method of Heat Management

1) Proper heat removal system (expensive)
2) Improve manufacturing for low power MOS
3) Architectural solutions (multi-cores)

Hitachi Water Cooling Laptop

Manufacturing Solution

High K for Gate Dielectrics

Architectural Solution

Compatibility and Stability

Quad-Core and Dual-Core Intel ${ }^{\circ}$ Xeon ${ }^{\circ}$ processors can be integrated into a single, advanced technology server platform.

Architectural Solution

Interconnect Architecture

Metal stack over Silicon

Real wiring cross section photograph

Interconnect Scaling Scenario

Technology	45 nm (2008)	35 nm (2010)	22 nm (2012)
Wire width	45 nm	32 nm	22 nm
Wire Thickness	80 nm	60 nm	40 nm
Total Number of Wires	150 Million	300 Million	600 Million
Total wire length	1.4 mile	2 mile	2.8 mile

Delay versus Interconnect Scaling

Interconnect versus Gate Delay

[Bohr, IEDM '95]	
Al	$3.0 \mu \Omega \mathrm{~cm}$
Cu	$1.7 \mu \Omega \mathrm{~cm}$
SiO_{2}	$\kappa=4.0$
Low K	$\kappa=2.0$
$\mathrm{Al} \& \mathrm{Cu}$	0.8μ Thick
$\mathrm{Al} \& \mathrm{CU}$ Line	43μ Long

Interconnect Challenges

1) Slows down with scaling
2) Consume more power
3) Generate more heat
4) Electromigration

Far-future Alternative Interconnects

1) Carbon nanotubes
2) Optical Interconnect
3) Molecular wires
4) Spintronics interconnect system

Process Defects and Yield Loss

Process Defect Causing Fault (Short)

Original layout

A particle or a process defect

Short defect

Process Defects and Yield Loss

Process Defect Causing Fault (Opens)

Original layout

A particle or a process defect

open defect

Process Defect Photograph

Manufacturing Issues

1) Smaller feature size requires ultra-clean manufacturing facility (expensive)
2) Because of the increase in complexity, defects could drastically reduces the manufacturing yield (\% of working chips)
3) There are much more issues related to "Design for Manufacturability" (DFM)

Die Cost

From http://www.amd.com

Cost per Transistor

Cost per transistor is reducing exponentially following Moor's law.

Yield

$$
Y=\frac{\text { No. of good chips per wafer }}{\text { Total number of chips per wafer }} \times 100 \%
$$

$$
\text { Die cost }=\frac{\text { Wafer cost }}{\text { Dies per wafer } \times \text { Die yield }}
$$

Dies per wafer $=\frac{\pi \times(\text { wafer diameter } / 2)^{2}}{\text { die area }}-\frac{\pi \times \text { wafer diameter }}{\sqrt{2 \times \text { die area }}}$

Defects and Die Cost

die yield $=\left(1+\frac{\text { defects per unit area } \times \text { die area }}{\alpha}\right)^{-\alpha}$
α is approximately 3
die cost $=f(\text { die area })^{4}$

Some Examples (1994)

Chip	Metal layers	Line width	Wafer cost	Def./ cm^{2}	Area mm^{2}	Dies/ wafer	Yield	Die cost
386DX	2	0.90	$\$ 900$	1.0	43	360	71%	$\$ 4$
486 DX2	3	0.80	$\$ 1200$	1.0	81	181	54%	$\$ 12$
Power PC 601	4	0.80	$\$ 1700$	1.3	121	115	28%	$\$ 53$
HP PA 7100	3	0.80	$\$ 1300$	1.0	196	66	27%	$\$ 73$
DEC Alpha	3	0.70	$\$ 1500$	1.2	234	53	19%	$\$ 149$
Super Sparc	3	0.70	$\$ 1700$	1.6	256	48	13%	$\$ 272$
Pentium	3	0.80	$\$ 1500$	1.5	296	40	9%	$\$ 417$

Summary

Digital IC Business is Unique

Things Get Better Every Few Years
Companies Have to Stay on Moore's Law Curve to Survive

Benefits of Transistor Scaling

Higher Frequencies of Operation
Massive Functional Units, Increasing On-Die Memory
Cost/Functionality Going Down

Downside of Transistor Scaling

Power (Dynamic and Static)
Design and Manufacturing Cost

