



# **Complex arithmetic**

# Introduction.

This leaflet describes how complex numbers are added, subtracted, multiplied and divided.

# 1. Addition and subtraction of complex numbers.

Given two complex numbers we can find their sum and difference in an obvious way.

If  $z_1 = a_1 + b_1 j$  and  $z_2 = a_2 + b_2 j$  then  $z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2) j$   $z_1 - z_2 = (a_1 - a_2) + (b_1 - b_2) j$ 

So, to add the complex numbers we simply add the real parts together and add the imaginary parts together.

## Example

If  $z_1 = 13 + 5j$  and  $z_2 = 8 - 2j$  find a)  $z_1 + z_2$ , b)  $z_2 - z_1$ .

## Solution

a)  $z_1 + z_2 = (13 + 5j) + (8 - 2j) = 21 + 3j$ . b)  $z_2 - z_1 = (8 - 2j) - (13 + 5j) = -5 - 7j$ 

# 2. Multiplication of complex numbers.

To multiply two complex numbers we use the normal rules of algebra and also the fact that  $j^2 = -1$ . If  $z_1$  and  $z_2$  are the two complex numbers their product is written  $z_1 z_2$ .

## Example

If  $z_1 = 5 - 2j$  and  $z_2 = 2 + 4j$  find  $z_1 z_2$ .

## Solution

 $z_1 z_2 = (5 - 2j)(2 + 4j) = 10 + 20j - 4j - 8j^2$ 

Replacing  $j^2$  by -1 we obtain

$$z_1 z_2 = 10 + 16j - 8(-1) = 18 + 16j$$

In general we have the following result:

If  $z_1 = a_1 + b_1 j$  and  $z_2 = a_2 + b_2 j$  then  $z_1 z_2 = (a_1 + b_1 j)(a_2 + b_2 j) = a_1 a_2 + a_1 b_2 j + b_1 a_2 j + b_1 b_2 j^2$  $= (a_1 a_2 - b_1 b_2) + j(a_1 b_2 + a_2 b_1)$ 

## 3. Division of complex numbers.

To divide complex numbers we need to make use of the **complex conjugate**. Given a complex number, z, its conjugate, written  $\overline{z}$ , is found by changing the sign of the imaginary part. For example, the complex conjugate of z = 3 + 2j is  $\overline{z} = 3 - 2j$ . Division is illustrated in the following example.

#### Example

Find 
$$\frac{z_1}{z_2}$$
 when  $z_1 = 3 + 2j$  and  $z_2 = 4 - 3j$ .

### Solution

We require

$$\frac{z_1}{z_2} = \frac{3+2j}{4-3j}$$

Both numerator and denominator are multiplied by the complex conjugate of the denominator. Overall, this is equivalent to multiplying by 1 and so the fraction remains unaltered, but it will have the effect of making the denominator purely real, as you will see.

$$\frac{3+2j}{4-3j} = \frac{3+2j}{4-3j} \times \frac{4+3j}{4+3j} \\ = \frac{(3+2j)(4+3j)}{(4-3j)(4+3j)} \\ = \frac{12+9j+8j+6j^2}{16+12j-12j-9j^2} \\ = \frac{6+17j}{25}$$
 (the denominator is now seen to be real)  
$$= \frac{6}{25} + \frac{17}{25}j$$

#### Exercises

1. If  $z_1 = 1 + j$  and  $z_2 = 3 + 2j$  find a)  $z_1 z_2$ , b)  $\overline{z_1}$ , c)  $\overline{z_2}$ , d)  $z_1 \overline{z_1}$ , e)  $z_2 \overline{z_2}$ 2. If  $z_1 = 1 + j$  and  $z_2 = 3 + 2j$  find: a)  $\frac{z_1}{z_2}$ , b)  $\frac{z_2}{z_1}$ , c)  $z_1/\overline{z_1}$ , d)  $z_2/\overline{z_2}$ . 3. Find a)  $\frac{7-6j}{2j}$ , b)  $\frac{3+9j}{1-2j}$ , c)  $\frac{1}{j}$ .

### Answers

1. a) 1 + 5j, b) 1 - j, c) 3 - 2j, d) 2, e) 13 2. a)  $\frac{5}{13} + \frac{j}{13}$ , b)  $\frac{5}{2} - \frac{j}{2}$ , c) j, d)  $\frac{5}{13} + \frac{12}{13}j$ . 3. a)  $-3 - \frac{7}{2}j$ , b) -3 + 3j, c) -j.