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Go Go Gadget  
Go(lang)
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About This Lecture...

• I don't expect you to program in Go for this class...

• But I admit I'm mightily tempted to encourage 61b to be redone in Go...

• Or create a 161 project in Go

• And I'd like to hope at least 10%+ of the class go "cool" and look into this in more detail


• But the concepts are very interesting

• Interesting enough that I'm kicking myself for not starting to play with it much earlier: 

I only started playing with it on the first day of Spring


• In particular, its focus on concurrency maps well to multicore/multiprocessor 
systems

• Requires shared memory, but programming without shared memory is a much bigger PitA and only 

works for some problems

• Since the future is parallel, this is probably a language you should learn


• Just because this wont be on the test doesn't mean you shouldn't know it!
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What is Go

• Language created at Google starting in 2007

• Primarily by a bunch of old Unix hands:  Robert Griesemer, Rob Pike, and Ken 

Thompson

• 1.0 released in March 2012


• Language continues to evolve, but a commitment to backwards 
compatibility (so far)

• A correct program written today will still work tomorrow

• I'm looking at you, python 3....


• Mostly C-ish but...

• Strong typing, no pointer arithmetic, lambdas, interfaces, and...

• Strong emphasis on concurrent computation
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Concurrency and Parallelism

• Concurrency represents the ability to perform multiple 
things at the same time


• Reminder

• SIMD:  Single Instruction, Multiple Data

• A GPU

• Shared Memory MIMD:  Multiple instruction, multiple data, common memory

• A multicore processor

• Clusters: Each computational group has its own independent memory
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Concurrency doesn't always give parallelism

• Go is concurrent and supports parallel execution

• The runtime can schedule multiple concurrent routines on separate CPU 

threads at the same time

• So a concurrent program in Go running on a 4 core, 2 thread/core Intel processor can 

be running up to 8 separate streams of execution at one time


• Python's threading is concurrent but not parallel:

• Python has a "global interpreter lock": 

Can only execute a single thread of python bytecode at a time

• Python threading code is good for waiting on I/O or special C libraries that 

release the global lock

• But generally can not use multiple processors efficiently
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Good Go Resources

• The Go website:

• https://golang.org/


• Especially useful: Effective Go:

• A cheatsheet of programming idioms.  Several example from this lecture 

stolen from there

• https://golang.org/doc/effective_go.html


• When searching Google, ask for golang, not go

• The language may be Go, but golang refers to the language too
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So Think of Go as:

• C's general structure & concepts

• But with implied ;s and a garbage collector


• A better typing system with interfaces, slices, and maps

• No class inheritance, however


• Much more symmetric functions

• Can return multiple values


• Scheme-like lexical scope

• Lambdas and interior function declarations


• Communicating Synchronous Processes (CSP) concurrency

• Multiple things at once in the same shared memory space: 

quite suitable for MIMD
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Go Typing System

• Go is statically typed with no automatic coercion

• var x int = 32 // Int is architecture dependent 

var y int64 ... 
• y = x          // This is an error 
• y = int64(x)   // this is correct 

• But it does have a lot of automatic type inference and creation with :=

• z := foo(...)       // z is created, type is return type of foo 
• a, b, _ := bar(...) // Bar returns 3 values, 3rd is ignored here 

• And it also has structures & pointers with automatic initialization to default values

• type SyncedBuffer struct {  

    lock    sync.Mutex  
    buffer  bytes.Buffer  
} 

• p := new(SyncedBuffer)  // type *SyncedBuffer 
• var v SyncedBuffer      // type  SyncedBuffer
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Go Memory Allocation

• Go is garbage collected (like Java)

• Its OK to return pointers to items on the stack

• Allocator will keep that memory alive

• ...  

foo := File{fd, name, nil, 0}  
return &foo 

• But you may need to explicitly allocate memory

• new(T) // Creates a pointer to a zeroed object of type T 

• make(T, args) // Only creates channels, slices, and maps
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Slices and Arrays

• Arrays need to be statically declared

• foo string[5] 

• But slices are like python lists

• But they are a view into an arrays

• bar := foo[2:]  

bar[0] = “this_will_set foo[2] as well” 

• Utilities to append by copying

• bar := append(bar, “all”, “this”, “stuff”)

• Creates a new slice and, if necessary, copies the memory

• Allows efficient manipulations
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Defer

• A common motif in programming

• Open a file/grab a lock/etc…

• Do a bunch of stuff

• (forget to) close the file/release the lock/etc…


• Defer allows you to delay the function execution to later

• defer foo(a, b, c()) 
• All arguments are processed (so c is executed immediately)

• defer invokes the deferred functions on exit in last-in, first-out manner when the 

function exits completely
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Functions

• Not only can you declare functions normally

• func foo(a string, b int)(c int, d error){…} 

• You can also declare them in a function body

• Where they have scheme-like lexical scope


• And even declare autonomous functions

• defer func() {…} () 

• Will execute the function as a defer


• Has full scheme-like lexical scope

• So you can access enclosing variables
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Coroutines, err, goroutine

• Conceptually, a goroutine is just a thread...

• go fubar() // Executes fubar as a new coroutine 

• But in practice it is designed to be much lighter weight

• Threads (e.g. in OpenMP) relatively expensive to create: 

Operating System involvement is never cheap


• Go's runtime instead pre-creates a series of threads

• And then schedules the active coroutines itself to the available threads


• Result is goroutines are cheap

• It is only slightly more expensive than a plain function call: 

new goroutine just has a small independent stack 
context switching between goroutines is very cheap

13



Computer Science 61C Spring 2017 Friedland and Weaver

Channels

• Channels are the primary synchronization mechanism

• A typed and (optionally) buffered communication channel

• c := make(chan int)  

e := make(chan fubar, 100) 

• Writing data to a channel:

• c <- 32 // Writing blocks if unbuffered or full 

• Reading from a channel:

• var f = <- e // Reading blocks if no data
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Channels as Synchronization Barriers

• Any writes in the code before writing to the channel complete first

• globalA = ...  

d <- 1   // The write to a must complete just before this 

• Any reads in the code after reading from the channel do not start 
until channel-read takes place

• <- d  

fubar(globalA) // Won't read globalA before channel read 

• Otherwise, compiler can reorder however it wants as long as 
sequential semantics are preserved for the sequential function

• Go may have removed a lot of ways to shoot yourself in the foot... 

but unless you use channels etc, you can easily blow it off with race conditions
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Without Synchronization Barriers, 
The Compiler Can Go To Town
• This doesn't work!

• Compiler can reorder the writes between x and 

done safely

• Similar variants also possible


• This is one of the two biggest pitfalls 
of Go:


• Unless you explicitly synchronize, multiple 
processes can write in "weird" ways


• The other is the abysmal error/exception 
handling mechanism
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var x : string 
var done : bool 
func foo(){ 
  ... 
  x = "something" 
  done = true 
} 

func bar(){ 
  go foo() 
  for !done {...} 
  y := x 
}
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Using goroutines

• For things which may block or wait

• EG, on input/output, waiting for stuff to happen, etc

• Just create as many as you want!

• Its cheap so why not: let the scheduler do useful work when another one is waiting


• For performance tasks

• Only create as many as there are CPU cores

• Otherwise you are wasting resources

• But it should be more efficient than OpenMP:

• Thread creation is significantly more overhead than go
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Example of Fork/Join Style 
Parallelism
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func (v Vector) DoAll(u Vector) { 
    numCPU := runtime.NumCPU()  // # of CPUs 
    c := make(chan int, numCPU) // buffer the signal for done 
    for i := 0; i < numCPU; i++ { 
        go v.DoSome(i*len(v)/numCPU, (i+1)*len(v)/numCPU, u, c) 
    } 
    // Drain the channel. 
    for i := 0; i < numCPU; i++ { 
        <-c    // wait for one task to complete 
    } 
} 
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Select

• Select allows you to wait on multiple channels

•   select {  
     case c <- x:  
         x, y = y, x+y  
      case d := <- e:  
          fmt.Println("Got %v", d)  
      default:  
          time.Sleep(50 * time.Millisecond) 
  } 

• If can write or read to a channel, do so and then execute the associated case

• If multiple cases are valid, chose one at random


• If nothing is available, execute default (if any)

• If no default, just block until you can write or read

• Default enables non-blocking read & write
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Lots of other features

for code correctness
• Compiler is, umm, persnickety

• It is an error to declare but not use a variable or include but not use a 

package


• Designed to turn comments into documents

• Including examples


• Libraries for building example and test routines

• Built in package management

• “Single workspace” notion

• Use common modules to prevent code drift
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But one yuge problem...

• Go's exception handling mechanism is dreadful!

• Instead, the model is C-style: check every function to make sure it returned 

properly


• Its a little better than C because of multiple return values, 
but...


• You will write this EVERYWHERE in your Go code if its good:

• res, err := f(...)  

if err != nil {...} // Usually just return the err up! 

• And if its bad...

• res, _ := f(...) // Forget it Jake, its Chinatown go error 

handling
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There is panic, but...

• You can do a panic and recover, but...

• You get to send a string with panic

• recover is then in a defer block

• defer func() {  

        if r := recover(); r != nil {  
            ...  
        } 

• Which means this results in programming even worse than Python's "catch 
everything" motif

• Because you only have "catch everything"


• Java style is much better:

• Exceptions are typed

• You must either declare or catch all exceptions within a function


• Hopefully 2.0 fixes this...
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Some Real-World 
Go-Code: String Manipulation
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// Input format is pairs separated by commas, e.g. 
// 123456~foo,123459~bar 
func parseRelays(relays string)( r [] RelayInfo) { 
        r = make([] RelayInfo,0) 
        data := strings.Split(relays, ",") 
        for _, i := range(data){ // range builtin can return key/value 
                var relay RelayInfo 
                splits := strings.Split(i, "~") 
                relay.Fingerprint = splits[0] 
                if len(splits) > 1 { 
                  relay.Name = strings.Split(i,"~")[1] 
                } else {relay.Name = "none"} 
                r = append(r, relay) 
        } 
        return r  
} 
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Some Real-World Go: 
3 separate channels in a receiver loop
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// Multiple channels:   
// Channels: collectIdle/collectAck unbuffered, 
// msg/fetchAck unbuffered, packetChannel buffered 
func receiver(){ 
 … 
  for true { 
    select{ 
    case idle = <- collectIdle: 
      collectAck <- true 
    case packet := <- packetChannel: 
      if !active && idle{ 
          idlePackets = append(idlePackets, packet) 
      } else { 
          packets = append(packets, packet) … 
          if (done && ip.SrcIP.String() == idleIP && tcp.RST) { 
               … 
               analyzePackets(packets, sent, recv) 
               fetchAck <- true 
               packets = make([]gopacket.Packet, 0, 1024) 
      } 
    case msg := <- fetchChannel: 
      if msg.clear{ 
           … 
           fetchAck <- true 
      } else {… 
} 
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Switch Topics: 
Premature Optimization
• There are a lot of opportunities for code optimization...

• Especially when you are aware of the hardware


• We do this for Project 4:

• Parallelization with both OpenMP and x86 parallelization ISA


• But you should almost never spend much time optimizing

• Amdahl’s Law

• The Rebugging Problem

• Algorithms > Microoptimizations
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Amdahl’s Law and 
Programmer Effort
• Remember the blindingly obvious: the time the task takes to 

complete is Tprogramming + Texecution

• Unless you are going to run your program a lot

• Your “runtime” will be limited by your own time


• It makes negative sense to optimize your execution time unless 
your execution time exceeds your programming time

• Since often you end up spending vastly more programming time than you’d save


• In the real world, select for programmer productivity first

• Only if performance really really matters should you do anything else

• And even then, make sure you can’t just throw $ at the problem: 

A $10k server is a couple weeks of programmer time
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The Rebugging Problem

• “The art of programming consists of two tasks, debugging 
and rebugging” -Me


• If you are optimizing a program…

• You are going to be adding new bugs rather than removing old ones


• If your program is working, why do you want to break it?

• Because odds are, refactoring code to improve performance is going to start 

with breaking things
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Algorithms are far more important

than microoptimizations
• Knowing how the cache is laid out is cool and useful

• But unless you are squeezing out the last 1%, you would be better served 

focusing on the algorithms


• Project 4 is a great example:

• 3x performance gain through parallelization with OpenMP…

• 100x performance gain by going with a better algorithm to do the same task


• I don’t care how fast your bubble-sort implementation is…

• Its still a cruddy O(n2) implementation
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