a
3

Go Go Gadget
Go(lang)

Berkeley EEC

X

About This Lecture...

- | don't expect you to program in Go for this class...
* But | admit I'm mightily tempted to encourage 61b to be redone in Go...
* Or create a 161 project in Go
* And I'd like to hope at least 10%+ of the class go "cool" and look into this in more detail

- But the concepts are very interesting
* Interesting enough that I'm kicking myself for not starting to play with it much earlier:
| only started playing with it on the first day of Spring
- In particular, its focus on concurrency maps well to multicore/multiprocessor
systems

* Requires shared memory, but programming without shared memory is a much bigger PitA and only
works for some problems

« Since the future is parallel, this is probably a language you should learn

-k Ilus’t because this wont be on the test doesn't mean you shouldn't know it!
Berkeley EE(© 2

What is Go

Computer Science 61C Spring 2017 Friedland and Weaver

- Language created at Google starting in 2007

* Primarily by a bunch of old Unix hands: Robert Griesemer, Rob Pike, and Ken
Thompson

e 1.0 released in March 2012

- Language continues to evolve, but a commitment to backwards
compatibility (so far)
e A correct program written today will still work tomorrow
I'm looking at you, python 3....

« Mostly C-ish but...

« Strong typing, no pointer arithmetic, lambdas, interfaces, and...

e Strong emphasis on concurrent computation
Berkeley EEC © ;

Concurrency and Parallelism

Computer Science 61C Spring 2017 Friedland and Weaver

- Concurrency represents the ability to perform multiple
things at the same time

« Reminder

 SIMD: Single Instruction, Multiple Data
A GPU

e Shared Memory MIMD: Multiple instruction, multiple data, common memory
A multicore processor

» Clusters: Each computational group has its own independent memory

Berkeley EEC - :

Concurrency doesn't always give parallelism

Computer Science 61C Spring 2017 Friedland and Weaver

- Go is concurrent and supports parallel execution

* The runtime can schedule multiple concurrent routines on separate CPU
threads at the same time

So a concurrent program in Go running on a 4 core, 2 thread/core Intel processor can
be running up to 8 separate streams of execution at one time

- Python's threading is concurrent but not parallel.

* Python has a "global interpreter lock":
Can only execute a single thread of python bytecode at a time

* Python threading code is good for waiting on I/O or special C libraries that
release the global lock

* But generally can not use multiple processors efficiently
Berkeley EEC > s

Good Go Resources

Computer Science 61C Spring 2017 Friedland and Weaver

- The Go website:
* https://golang.org/

- Especially useful: Effective Go:

* A cheatsheet of programming idioms. Several example from this lecture
stolen from there

» https://golang.org/doc/effective go.html

- When searching Google, ask for golang, not go
* The language may be Go, but golang refers to the language too

Berkeley EEC & 6

So Think of Go as:

Computer Science 61C Spring 2017 Friedland and Weaver

- C's general structure & concepts
* But with implied ;s and a garbage collector

A better typing system with interfaces, slices, and maps
* No class inheritance, however

* Much more symmetric functions
e Can return multiple values

- Scheme-like lexical scope
e Lambdas and interior function declarations

- Communicating Synchronous Processes (CSP) concurrency

* Multiple things at once in the same shared memory space:

quite suitable for MIMD
Berkeley EEC ¢ 7

Go Typing System

Computer Science 61C Spring 2017 Friedland and Weaver

- Go is statically typed with no automatic coercion

e var x int = 32 // Int is architecture dependent
var y inté4

*y=x // This is an error
e v = int64 (x) // this is correct

- But it does have a lot of automatic type inference and creation with :=

e z := foo(...) // z is created, type is return type of foo
e a, b, :=bar(...) // Bar returns 3 values, 3rd is ignored here

« And it also has structures & pointers with automatic initialization to default values

e type SyncedBuffer struct {
lock sync.Mutex
buffer bytes.Buffer

}
e p := new(SyncedBuffer) // type *SyncedBuffer

e var v SyncedBuffer // type SyncedBuffer
Berkeley EE :

Go Memory Allocation

Computer Science 61C Spring 2017 Friedland and Weaver

- Go is garbage collected (like Java)

- |ts OK to return pointers to items on the stack
* Allocator will keep that memory alive

o ...
foo := File{fd, name, nil, 0}
return &foo

- But you may need to explicitly allocate memory

® new(T) // Creates a pointer to a zeroed object of type T
e make (T, args) // Only creates channels, slices, and maps

Berkeley EEC & 9

Slices and Arrays

Computer Science 61C Spring 2017 Friedland and Weaver

- Arrays need to be statically declared
e foo string[5]

- But slices are like python lists

* But they are a view into an arrays

® bar := foo[2:]
bar[0] = “this will set foo[2] as well”

- Utilities to append by copying
* bar := append(bar, “all”, “this”, “stuff”)
Creates a new slice and, if necessary, copies the memory

Allows efficient manipulations
Berkeley EEC & 10

Defer

Computer Science 61C Spring 2017 Friedland and Weaver

- A common motif in programming
* QOpen a file/grab a lock/etc...
Do a bunch of stuff
* (forget to) close the file/release the lock/etc...

- Defer allows you to delay the function execution to later
o defer foo(a, b, c())

All arguments are processed (so ¢ is executed immediately)

defer invokes the deferred functions on exit in last-in, first-out manner when the
function exits completely

Berkeley EE I

Functions

Computer Science 61C Spring 2017 Friedland and Weaver

* Not only can you declare functions normally
e func foo(a string, b int) (c int, d error){..}

* You can also declare them in a function body
* Where they have scheme-like lexical scope

« And even declare autonomous functions
® defer func() {..} ()

Will execute the function as a defer

- Has full scheme-like lexical scope

e S0 you can access enclosing variables
Berkeley EEC & 12

Coroutines, err, goroutine

Friedland and Weaver

Computer Science 61C Spring 2017

- Conceptually, a goroutine is just a thread...

e go fubar() // Executes fubar as a new coroutine

- But in practice it is designed to be much lighter weight

* Threads (e.g. in OpenMP) relatively expensive to create:
Operating System involvement is never cheap
- Go's runtime instead pre-creates a series of threads
* And then schedules the active coroutines itself to the available threads

- Result is goroutines are cheap

* It is only slightly more expensive than a plain function call:
new goroutine just has a small independent stack

context switching between goroutines is very cheap
Berkeley EEC © 3

Channels

Computer Science 61C Spring 2017

- Channels are the primary synchronization mechanism

* A typed and (optionally) buffered communication channel
® Cc :
e .

make (chan int)
make (chan fubar, 100)

- Writing data to a channel:
e ¢ <- 32 // Writing blocks if unbuffered or full

- Reading from a channel:
e var £ = <- e // Reading blocks if no data

Berkeley EE

Friedland and Weaver

Channels as Synchronization Barriers

Computer Science 61C Spring 2017 Friedland and Weaver

- Any writes in the code before writing to the channel complete first
® globalA = ...
d <-1 // The write to a must complete just before this
- Any reads in the code after reading from the channel do not start
until channel-read takes place
e <-d
fubar (globalA) // Won't read globalA before channel read
- Otherwise, compiler can reorder however it wants as long as
sequential semantics are preserved for the sequential function

« Go may have removed a lot of ways to shoot yourself in the foot...
but unless you use channels etc, you can easily blow it off with race conditions

Berkeley EEC & 15

Without Synchronization Barriers,
The Compiler Can Go To Town

Computer Science 61C Spring 2017 Friedland and Weaver

* This doesn't work! var x : string
var done : bool

func foo () {

 Compiler can reorder the writes between x and
done safely

Similar variants also possible x = "something"

 This is one of the two biggest pitfalls done = true
of Go: }
* Unless you explicitly synchronize, multiple func bar () {
processes can write in "weird" ways go foo()
« The other is the abysmal error/exception jf{o{::!:one RN

handling mechanism }

B_el_;ke]ey_EE_ S 16

Using goroutines

Computer Science 61C Spring 2017 Friedland and Weaver

- For things which may block or wait
* EG, on input/output, waiting for stuff to happen, etc

* Just create as many as you want!
Its cheap so why not: let the scheduler do useful work when another one is waiting

* For performance tasks

* Only create as many as there are CPU cores
Otherwise you are wasting resources

e But it should be more efficient than OpenMP:
Thread creation is significantly more overhead than go

B_erkeley_EE_ S 17

Example of Fork/Join Style
Parallelism

Computer Science 61C Spring 2017 Friedland and Weaver

func (v Vector) DoAll (u Vector) {
numCPU := runtime.NumCPU() // # of CPUs
c := make(chan int, numCPU) // buffer the signal for done
for i := 0; i < numCPU; i++ {
go v.DoSome (i*len (v)/numCPU, (i+l)*len(v)/numCPU, u, c)
}
// Drain the channel.
for i := 0; 1 < numCPU; i++ {
<-c // wait for one task to complete

EIE(‘I’:}'E?}ISX“EE%“ NCES I 8

Select

- Select allows you to wait on multiple channels

J select {
case ¢ <- x:
X, Y=Y, Xty
case d := <- e:
fmt.Println("Got %v", d)
default:
time.Sleep (50 * time.Millisecond)

}

 |f can write or read to a channel, do so and then execute the associated case
* If multiple cases are valid, chose one at random

* If nothing is available, execute default (if any)
 If no default, just block until you can write or read

* Default enables non-blocking read & write
Berkeley EE 9

Lots of other features
for code correctness

Computer Science 61C Spring 2017 Friedland and Weaver

- Compiler is, umm, persnickety

 |tis an error to declare but not use a variable or include but not use a
package

» Designed to turn comments into documents
* Including examples

- Libraries for building example and test routines

- Built in package management

- “Single workspace” notion

* Use common modules to prevent code drift
B_el_;ke]ey_EE_ S 20

But one yuge problem...

Computer Science 61C Spring 2017 Friedland and Weaver

- Go's exception handling mechanism is dreadful!

* Instead, the model is C-style: check every function to make sure it returned
properly

- [Its a little better than C because of multiple return values,

but...
* You will write this EVERYWHERE in your Go code if its good:

e res, err := £(...)
if err '= nil {...} // Usually just return the err up!
 And if its bad...
e res, := f£(...) // Forget it Jake, its Chinatown go error
handling

B_erkeley_EE_ S 21

There is panic, but...

« You can do a panic and recover, but...
* You get to send a string with panic

« recover is then in a defer block

e defer func() {
if r := recover(); r '= nil {

}

- Which means this results in programming even worse than Python's "catch
everything" motif
* Because you only have "catch everything"
- Java style is much better:

* Exceptions are typed
* You must either declare or catch all exceptions within a function

- Hopefully 2.0 fixes this...
B_erkeley_EE__ S 2

Some Real-World
Go-Code: String Manipulation

Computer Science 61C Spring 2017

// Input format is pairs separated by commas, e.g.

// 123456~foo0,123459~bar

func parseRelays (relays string) (r [] RelayInfo) {
r = make([] RelayInfo,0)

data := strings.Split(relays, ",")

for , i := range(data){ // range builtin can return key/value
var relay RelayInfo
splits := strings.Split(i, "~")

relay.Fingerprint = splits[0]
if len(splits) > 1 {
relay.Name = strings.Split(i,"~") [1]
} else {relay.Name = "none"}
r = append(r, relay)
}

return r

Bkrkeley EE

23

Some Real-World Go:
3 separate channels in a receiver loop

Computer Science 61C Spring 2017 Friedland and Weaver

// Multiple channels:

// Channels: collectIdle/collectAck unbuffered,

// msg/fetchAck unbuffered, packetChannel buffered
func receiver () {

for true {
select{
case idle = <- collectlIdle:
collectAck <- true
case packet := <- packetChannel:
if 'active && idle{
idlePackets = append(idlePackets, packet)

} else {
packets = append(packets, packet)
if (done && ip.SrcIP.String() == idleIP && tcp.RST) {

analyzePackets (packets, sent, recv)
fetchAck <- true
packets = make([]gopacket.Packet, 0, 1024)
}
case msg := <- fetchChannel:
if msg.clear{

fetchAck <- true
} else {..

Berkeley EE 24

ELECTRICAL ENGINEERING & COMPUTER SCIENCES

Switch Topics:
Premature Optimization

Computer Science 61C Spring 2017 Friedland and Weaver

- There are a lot of opportunities for code optimization...
* Especially when you are aware of the hardware

- We do this for Project 4.
e Parallelization with both OpenMP and x86 parallelization ISA

- But you should almost never spend much time optimizing

* Amdahl’s Law
* The Rebugging Problem

* Algorithms > Microoptimizations

Berkeley EEC 5 %

Amdahl’s Law and
Programmer Effort

Computer Science 61C Spring 2017 Friedland and Weaver

- Remember the blindingly obvious: the time the task takes to
complete is Tprogramming + Texecution

* Unless you are going to run your program a lot
e Your “runtime” will be limited by your own time

* |t makes negative sense to optimize your execution time unless
your execution time exceeds your programming time
* Since often you end up spending vastly more programming time than you’d save

- In the real world, select for programmer productivity first

* Only if performance really really matters should you do anything else

« And even then, make sure you can’t just throw $ at the problem:

A $10k server is a couple weeks of programmer time
Berkeley EEC © 2

The Rebugging Problem

Computer Science 61C Spring 2017 Friedland and Weaver

- “The art of programming consists of two tasks, debugging
and rebugging” -Me

- |f you are optimizing a program...
* You are going to be adding new bugs rather than removing old ones

- |f your program is working, why do you want to break it?

* Because odds are, refactoring code to improve performance is going to start
with breaking things

B_erkeley_EE_ S 27

Algorithms are far more important
than microoptimizations

Computer Science 61C Spring 2017 Friedland and Weaver

- Knowing how the cache is laid out is cool and useful

e But unless you are squeezing out the last 1%, you would be better served
focusing on the algorithms

* Project 4 is a great example:

* 3x performance gain through parallelization with OpenMP...
* 100x performance gain by going with a better algorithm to do the same task

- | don’t care how fast your bubble-sort implementation is...
* |ts still a cruddy O(n®) implementation

B_el_;ke]ey_EE_ S 28

