
Model AI Assignments

Todd Neller
Gettysburg College

tneller@gettysburg.edu

John DeNero and Dan Klein
University of California, Berkeley

{denero, klein}@cs.berkeley.edu

Sven Koenig and William Yeoh and Xiaoming Zheng and Kenny Daniel and Alex Nash
University of Southern California

{skoenig, wyeoh, xiaominz, kfdaniel, anash}@usc.edu

Zachary Dodds
Harvey Mudd College
dodds@cs.hmc.edu

Giuseppe Carenini and David Poole
University of British Columbia

{carenini, poole}@cs.ubc.ca

Chris Brooks
University of San Francisco
cbrooks@cs.usfca.edu

Abstract

The Model AI Assignments session seeks to gather and
disseminate the best assignment designs of the Artificial
Intelligence (AI) Education community. Recognizing
that assignments form the core of student learning ex-
perience, we here present abstracts of eight AI assign-
ments that are easily adoptable, playfully engaging, and
flexible for a variety of instructor needs. Assignment
specifications and supporting resources may be found
at http://modelai.gettysburg.edu.

The Pac-Man Projects Software Package for
Introductory Artificial Intelligence - John

DeNero, Dan Klein
The Pac-Man projects apply a variety of artificial intelli-
gence (AI) techniques in the setting of the classic video
game Pac-Man. Despite their video game theme, the
projects are targeted very broadly. They cover a range of
foundational AI concepts, including informed state-space
search, probabilistic inference, and reinforcement learning.
These concepts underlie real-world application areas such as
natural language processing, computer vision, and robotics.
The Pac-Man projects promote effective learning through
several design principles. Graphical interfaces allow stu-
dents to visualize the results of the techniques they imple-
ment. Harness code contains commented examples and clear
directions, but does not force students to wade through un-
due amounts of scaffolding. Finally, the domain of Pac-Man
itself provides a challenging problem environment that de-
mands creative solutions; real-world AI problems are chal-
lenging, and Pac-Man is too. In our course at UC Berke-
ley (CS 188), these projects have substantially boosted en-
rollment, teaching reviews, and student engagement. The
projects have been field-tested, refined, and debugged over
multiple semesters. We are now excited to release them to

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

other universities for instructional use. This software pack-
age includes four primary projects on search, multi-agent
search, reinforcement learning, and probabilistic tracking.
It also includes an open-ended final contest and an initial
Python tutorial.

A Project on Fast Trajectory Replanning for
Computer Games for “Introduction to

Artificial Intelligence” Classes - Sven Koenig,
William Yeoh

This standalone path-planning project for an undergraduate
or graduate artificial intelligence class relates to video game
technologies and is part of our effort to use video games as
a motivator in projects without the students having to use
game engines. Heuristic search and, in particular, A* are
among the most important search techniques and thus are
good candidates for a project in artificial intelligence. In
this project, the students need to code A* and then extend
it to Adaptive A*, a fast trajectory replanning algorithm, to
move game characters in initially unknown gridworlds to a
given target. Adaptive A* is an incremental version of A*
that often searches faster than A* since it updates the heuris-
tics between searches to find solutions to series of similar
search tasks potentially faster than is possible by solving
each search task from scratch. This project requires stu-
dents to develop a deep understanding of A* and heuris-
tics to answer questions that are not yet covered in text-
books. The project is versatile since it allows for theoretical
and implementation questions. We list a variety of possi-
ble project choices, including easy and difficult questions.
The project text and additional support material (such as a
maze generator and pointers to the literature) can be found
at http://idm-lab.org/gameai.

Getting Set with OpenCV - Zachary Dodds
“Getting Set with OpenCV” is a two-week assignment used
as a hands-on introduction to computer vision in an un-
dergraduate AI course. Set is a game of visual percep-



Figure 1: Set Image.

3 4 1 3 1
3 3 3 G 2
3 1 2 2 3
4 2 3 3 3
4 1 4 3 2

Figure 2: Example Rook Jumping Maze. Starting at the cir-
cled cell, each jump number indicates the exact number of
cells one may move in a straight line horizontally or verti-
cally. The object is to find a path to the goal marked “G”.

tion and reasoning: players look through a group of face-up
cards that contain a variety of shapes. Each of those shapes
has four attributes: color, texture, form, and number. The
game’s goal is to find a trio of cards among which these
attributes have all identical or all distinct values. As an ex-
ample, Figure 1 shows nine of the 81 Set cards. Within this
image the “central” card, the “east” card, and the “northeast”
card form a set.

The goals of this assignment are twofold. First, it stands
alone as an introduction to image-processing suitable in a
junior- or senior- level AI course. As we use it, however,
it also motivates the use of the OpenCV library, the largest
and most ubiquitous software foundation for real-time vi-
sion. For all of its strengths, OpenCV continues to be a
challenge to newcomers. This assignment offers a smooth
and task-directed path through which undergraduates can get
“set” with OpenCV before applying it in more advanced in-
vestigations.

Rook Jumping Maze Generation - Todd Neller
A Rook Jumping Maze (Figure 21) consists of a grid of jump
numbers, a start cell, and a goal cell. Each jump number in-
dicates the exact number of cells one may move in a straight
line horizontally or vertically. The object is to find a path
from the start cell to the goal cell.

In this suite of introductory AI assignments, the student
begins by representing a randomly generated maze and per-
forming breadth-first search to compute the minimum solu-

1Shortest 13-move solution for Figure 2: down, right, left, up,
down, left, right, up, left, left, right, down, up

tion path length, one measure of maze quality. There are
many stochastic local search exercise options for iterative
improvement of the maze according to the evaluation func-
tion. Creative opportunities also exist for more sophisticated
evaluation function computation. Reinforcement learning
may also be applied to the tuning of stochastic local search.
Thus, this suite of exercises may be used as a common thread
tying together various topics of an introductory AI course.

Assignment on CSPs for First Undergraduate
AI Course - Giuseppe Carenini, David Poole,

CPSC322 Team2

This assignment covers most of the basic principles and
techniques involved in solving constraint satisfaction prob-
lems (CSPs). The complexity of the questions increases
smoothly. The student is first required to represent and
solve a simple problem with the help of AIspace, an inter-
active tool for teaching and learning AI (http://www.
aispace.org/). After that, the student is asked to imple-
ment several CSP techniques (Arc Consistency, Search by
Domain Splitting, Stochastic Local Search) and apply them
to solve more realistic problems ranging from the Sudoku
game to configuration and scheduling problems. The target
audience is students taking the first undergraduate AI course
(focusing on Representation and Reasoning, not Learning).
This is a very challenging assignment with a strong pro-
gramming component (in Java). Students should be encour-
aged to work in pairs on the programming questions. The
assignment has never been offered exactly in this form, but
from past experience with rather similar formats it should
take students between 15 and 20 hours. The assignment can
be simplified in several ways. For instance, the code for arc
consistency could be given to the students. The same is true
for the code for the SLS algorithms. This would make for an
assignment more focused on representation than reasoning,
and more focused on the interpretation of results. Another
simplification could be to remove the Sudoku question.

A Project on Gesture Recognition with Neural
Networks for “Introduction to Artificial

Intelligence” Classes - Xiaoming Zheng, Sven
Koenig

This standalone neural network project for an undergraduate
or graduate artificial intelligence class relates to video-game
technologies and is part of our effort to use video games as
a motivator in projects without the students having to use
game engines. Neural networks are among the most impor-
tant machine learning techniques and thus are good candi-
dates for a project in artificial intelligence. In this project,
the students need to understand and extend an existing im-
plementation of the back-propagation algorithm and use it
to recognize static hand gestures in images. This project re-
quires students to develop a deep understanding of neural

2Parts of this assignment were designed by Kevin Leyton-
Brown. The code was implemented by Mark Crowley, Erik Peter
Zawadzki and David R.M. Thompson. AIspace is a project co-led
by David Poole and Alan Mackworth.



networks and the back-propagation algorithm. It extends a
project from Tom Mitchell’s “Machine Learning” book and
builds on ideas, text and code from that project (courtesy
of Tom Mitchell). The project is versatile since it allows
for theoretical and implementation questions. We list a va-
riety of possible project choices, including easy and diffi-
cult questions. The project text and additional support ma-
terial (such as code and image data sets) can be found at
http://idm-lab.org/gameai.

An Introduction to Genetic Algorithms -
Christopher Brooks

Genetic algorithms (GAs) are a popular topic for students in
introductory AI classes, and a nice way to introduce a variety
of search and constraint problems. Two common challenges
in teaching students about GAs are the wide variety of de-
sign choices for mutation, crossover, selection and elitism,
and the challenge of applying a GA to a non-trivial problem
that is still small enough to be used in a class.

This assignment addresses these challenges by providing
students with a mixin-based template for working with a
GA, allowing them to easily change selection, crossover,
mutation or elitism operators without editing or recompil-
ing code. It also provides three different problem domains:
the bitstring problem, the traveling salesman problem, and
the nurse scheduling problem, and encourages students to
explore the effect of different design and parameter choices
on each problem in an attempt to better understand the GAs
algorithmic behavior and the underlying diffculties of the
fitness landscape.

It also provides students with exposure to two new pro-
gramming paradigms: the use of multiple inheritance to im-
plement a mixin, thereby combining functionality from sev-
eral different objects at runtime, and the use of higher-order
functions, which allow the user to specify a fitness function
separate from the GA implementation. Both of these tech-
niques allow the student to quickly experiment with a variety
of configurations without any editing of source code.

A Project on Any-Angle Path Planning for
Computer Games for “Introduction to

Artificial Intelligence” Classes - Sven Koenig,
Kenny Daniel, Alex Nash

This standalone path-planning project for an undergradu-
ate or graduate artificial intelligence class relates to video
game technologies and is part of our effort to use video
games as a motivator in projects without the students hav-
ing to use game engines. Heuristic search and, in partic-
ular, A* are among the most important search techniques
and thus are good candidates for a project in artificial in-
telligence. In this project, the students need to code A*
and then extend it to Theta*, an any-angle path-planning al-
gorithm, to plan paths for game characters in known grid-
worlds. Theta*, like A*, propagates information along the
edges of the gridworld (to achieve a small runtime) but, un-
like A*, does not constrain the paths to be formed by grid
edges (to find short “any-angle” paths). This project re-

quires students to develop a deep understanding of A* and
heuristics to answer questions that are not yet covered in
textbooks. For example, Theta* and A* have many differ-
ent properties despite their similarities. Exploring the dif-
ferences between Theta* and A* thus helps students to im-
prove their understanding of A*. The project is versatile
since it allows for theoretical and implementation questions.
We list a variety of possible project choices, including easy
and difficult questions. The project text and additional sup-
port material (such as pointers to the literature) can be found
at http://idm-lab.org/gameai.


